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Abstract

We extend the anisotropic Zienkiewicz-Zhu a posteriori error estimator
of [1] to three dimensions. Like the standard Zienkiewicz-Zhu estimator, the
proposed estimator is designed to be independent of the problem at hand,
is cheap to compute and easy to implement. In contrast to the standard
Zienkiewicz-Zhu estimator, the elementwise counterpart of the proposed
estimator explicitly takes into account the geometrical properties of the
actual tetrahedron. Thus, in a wide variety of applications, the estimator
is able to detect the anisotropic features exhibited by the solution of the
governing equations. A metric-based optimization procedure, rigorously
addressed, drives the adaptation of the mesh. It is shown numerically
to yield quasi-optimal triangulations, dictating the accuracy-vs-number of
elements behaviour. Despite being heuristic to some extent, in practice the
overall anisotropic adaptation procedure turns out to be effective.

∗P.E. Farrell wishes to acknowledge support from the Imperial College High Performance
Computing service. The multimaterial water collapse simulation was provided by C. R. Wilson.
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1 Introduction and motivations

Anisotropic mesh adaptation has proved to be a powerful strategy for improving
the quality and efficiency of flow simulations. Examples of anisotropic phenom-
ena are present in several contexts in the literature: sharp fronts, e.g., shocks
in compressible flows, in aerospace applications (see, e.g., [2, 3, 4, 5, 6]); multi-
material flows with sharp immiscible interfaces, e.g., casting, mold filling and
fluid jetting devices, in material processing applications (see, e.g., [7]); steep
boundary layers in viscous flows around bodies (see, e.g., [8, 9, 10, 11, 5, 12]).
Standard isotropic meshes fail to capture these directional features since they
allow us to adjust only the size of the mesh elements. On the contrary, when
anisotropic meshes are used we are able to control both the size, orientation and
stretching of the mesh tetrahedra; thus, in principle, such meshes are able to
identify the directionalities of the problem at hand in an accurate way, with a
contained number of elements.

Anisotropic techniques based on heuristic approaches have been devised in
the past (see, e.g., [8, 9, 2, 3, 10, 13, 11, 14, 15, 16, 17, 5, 18]. These techniques
usually employ a metric-based approach where the metric is derived from a
numerical approximation of the Hessian of the solution, coupled with an a priori
error estimator. The main idea is to find the optimal mesh minimizing the
interpolation error of a target function for a given number of mesh elements.
Although the results are sometimes impressive, these techniques yet fail to link
rigorously with a bound of the discretization error.

More rigorous approaches using theoretically based anisotropic adaptivity
have been developed later on, both in a residual-based and in a goal-oriented
framework ([19, 20, 21, 22, 23, 24]). This last class of adaptive procedures are
suited to control more general quantities with respect to the interpolation error,
e.g., the energy norm in the residual-based framework, or physically meaningful
quantities (pointwise stresses, fluxes, vorticity, etc.) in the case of a goal-oriented
analysis.

Due to an intrinsic complexity, anisotropic adaptation in 3D still represents
the most challenging setting (see, e.g., [19, 20, 11, 15, 16, 17, 5, 25, 26, 27, 6]).
With reference to the above different anisotropic approaches we stick to a heuris-
tic estimator to drive a 3D mesh adaptation procedure. In particular, to limit
the computational load of the adaptive algorithm, we propose a computation-
ally straightforward error estimator, i.e., a Zienkiewicz-Zhu-like estimator. We
consider piecewise linear finite elements, and devise a simple recovery technique,
different from the standard one, yet enjoying the same philosophy: it is not
confined to a specific problem; it is independent of the finite element formula-
tion (except for the finite element space); it is cheap to compute and easy to
implement; and, first and foremost, the method works very well in practice (see,
e.g., [28, 29, 30]). Since the pioneering work [31] dealing with the linear elastic
problem, and some further papers [32, 33], various efforts have been made to
theoretically understand the amazingly good properties of the Zienkiewicz-Zhu
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error estimator, obtained by approximating the true gradient with the recovered
one. A first work in which some averaging technique is studied is [34], though
the idea is nearly as old as the finite element method itself (see, e.g., [35]).

Concerning the Zienkiewicz-Zhu estimator that we propose in this paper,
we follow the two-step procedure typical of the isotropic case: first a recovered
gradient is constructed by performing a series of local operations over patches
of tetrahedra; then such recovered gradient is employed to build the estimator
itself. On the other hand, in contrast to the standard Zienkiewicz-Zhu estimator,
the estimator that we propose is designed to incorporate anisotropic features of
the triangulation, i.e., size, stretching and orientation of each element. The
theoretical background for these anisotropic quantities, as well as for related
anisotropic interpolation estimates is provided in [21, 22].

The layout of the paper is the following. After introducing the anisotropic
background in Section 2, we propose and justify the anisotropic a posteriori error
estimator. In Section 4, we show how to get a suitable metric tensor field out
of the estimator via the introduction of local constrained minimazion problems.
The solution to these problems is explicitly derived and the corresponding ar-
gument is rigorously proved. In Section 5, the actual adaptation procedure is
arranged. Numerical results dealing with both academic test cases and challeng-
ing applications are collected in Section 6. Finally, some conclusions are drawn
in the last section.

2 The anisotropic setting

To begin with, we extend the anisotropic theory developed in [21, 22] to the 3D
case. This provides the theoretical background on which the estimator (16)-(17)
is designed. Let Ω be a polyhedral domain in R3. We introduce a conforming
partition Th = {K} of Ω consisting of tetrahedra (e.g., [36]). The general element
K is characterized geometrically by the properties of the affine map TK : K̂ →
K, where K̂ is the reference isotropic tetrahedron, centred at the origin and
inscribed in the unit sphere (see Figure 1). In particular

x = TK(x̂) = MK x̂ + tK ,

with MK ∈ R3×3 the Jacobian and tK ∈ R3 the shift vector. The matrix MK is
factorized via the polar decomposition, yielding

MK = BK ZK (1)

where BK ∈ R3×3 is symmetric positive definite, and ZK ∈ R3×3 is orthogonal.
Then BK is spectrally decomposed as

BK = RT
K ΛK RK , (2)
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Figure 1: Sketch of the map TK : the main anisotropic quantities are highlighted.

with RT
K = [r1,K , r2,K , r3,K ] and ΛK = diag(λ1,K , λ2,K , λ3,K) the matrices col-

lecting the corresponding eigenvectors and eigenvalues, respectively. These quan-
tities have a meaningful geometric interpretation. The unit sphere circumscrib-
ing K̂ is changed via TK into an ellipsoid circumscribing K: the set of unit
(column) vectors {ri,K} defines the corresponding principal directions, whereas
each λi,K measures the length of the associated semi-axis (see Figure 1). With-
out loss of generality, we assume λ1,K ≥ λ2,K ≥ λ3,K > 0, for any K ∈ Th.

To fix notation, let us pick the regular tetrahedron K̂ as the one character-

ized by the coordinates V1 =
[
−
√

2
3 ,−

√
2

3 ,−1
3

]
, V2 =

[√
2
3 ,−

√
2
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]
, V3 =[

0, 2
√

2
3 ,−1

3

]
, V4 =

[
0, 0, 1

]
. It can be checked that K̂ is inscribed in the unit

sphere centred at the origin, that all of its edges have length |ê| = 2
√

2/3 and
that the volume |K̂| is equal to 8

√
3/9.

Then given any tetrahedron K whose vertices have coordinates {xi
1, x

i
2, x

i
3},

with i = 1, 2, 3, 4, the affine transformation TK is characterized by
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 ,

tK =
1
4


x1
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1 + x4
1

x1
2 + x2

2 + x3
2 + x4

2

x1
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3 + x3
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3

 .

The above choice for K̂ turns out to be particularly handy with a view to the
metric construction in Section 5.
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We now prove an anisotropic interpolation estimate for functions v ∈ H1(Ω),
standard notation being adopted to denote the Sobolev spaces of functions with
Lebesgue measurable derivatives and their norms (e.g., [37]). In such a case, a
more general interpolant, other than the Lagrangian one, has to be considered,
i.e., the Clément-like interpolant of degree 1, I1

h [38, 39]. Such an estimate will
provide the inspiration for the anisotropic estimator proposed in Section 3.

Proposition 2.1 Let v ∈ H1(Ω). Then, under the assumptions that card(∆K) ≤
D and diam(∆̂K) ≤ δ, for any K ∈ Th, there exists a constant C = C(D, δ),
such that

‖v − I1
h(v)‖L2(K) ≤ C

( 3∑
i=1

λ2
i,K (rT

i,KG∆K
(∇v) ri,K)

)1/2

, (3)

GK(·) being the symmetric semidefinite positive matrix whose general entry is
given by

[G∆K
(v)]i,j =

∑
T∈∆K

∫
T

vi vj dx, with i, j = 1, 2, 3, (4)

for any vector-valued function v = (v1, v2, v3)T ∈ [L2(Ω)]3, and where ∆K , ∆̂K =
T−1

K (∆K) denote a suitable patch of elements associated with the tetrahedron K
and its pullback, respectively.

Proof. We remark that hereafter the constant C may change its value in different
expressions. First, let us recall the relation

∇̂v̂ = MT
K∇v (5)

between the gradient ∇v of a function v ∈ H1(K) and of its pullback v̂ = v ◦ TK ,
referred to the reference element K̂. The polar decomposition (1) combined with the
spectral factorization (2) yields

∇̂v̂ = MT
K∇v = ZT

KRT
KΛKRK∇v.

By considering the L2-norm of ∇̂v̂ on K̂ and thanks to the orthogonality of the matrices
ZK and RK , we get

‖∇̂v̂‖2
L2( bK)

=
∫

bK |ZT
KRT

KΛKRK∇v|2 dx̂ =
∫

bK |ΛKRK∇v|2 dx̂ =
∫

bK |ΛKφK |2 dx̂, (6)

φK defining the R3-vector valued function

φK = RK∇v =

 φ1,K

φ2,K

φ3,K

 =

 ∇v · r1,K

∇v · r2,K

∇v · r3,K

 . (7)
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By substituting (7) into (6), we deduce

‖∇̂v̂‖2
L2( bK)

=
∫

bK
(
λ2

1,K φ2
1,K + λ2

2,K φ2
2,K + λ2

3,K φ2
3,K

)
dx̂

=
λ1,K

λ2,K λ3,K

∫
K

φ2
1,K dx +

λ2,K

λ1,K λ3,K

∫
K

φ2
2,K dx +

λ3,K

λ1,K λ2,K

∫
K

φ2
3,K dx

=
λ1,K

λ2,K λ3,K
‖∇v · r1,K‖2

L2(K) +
λ2,K

λ1,K λ3,K
‖∇v · r2,K‖2

L2(K) +
λ3,K

λ1,K λ2,K
‖∇v · r3,K‖2

L2(K)

=
( 3∏

j=1

λj,K

)−1 3∑
i=1

λ2
i,K‖∇v · ri,K‖2

L2(K),

(8)
where the relation |K| = λ1,K λ2,K λ3,K |K̂| is also exploited.

Let us focus now on the interpolation error on K. We first recall that both the
standard Clément and Scott-Zhang interpolants satisfy the properties

‖w − I1
h(w)‖L2(K) ≤ C hK |w|H1(∆K), (9)

[I1
h(w)]b = Î 1

h (ŵ) (10)

for any w ∈ H1(Ω), b denoting the corresponding pullback quantities as above, and
where the constant C depends on the regularity of the patch ∆K ([40, 21]). Notice
that K is a certain tetrahedron, hK = diam(K), while ∆K represents a suitable patch of
elements surrounding K.

Using relation (10), we get

‖v−I1
h(v)‖2

L2(K) = λ1,K λ2,K λ3,K ‖[v−I1
h(v)]b‖2

L2( bK)
= λ1,K λ2,K λ3,K ‖v̂−Î 1

h (v̂)‖2
L2( bK)

.

(11)
Estimate (9) applied to the term ‖v̂ − Î 1

h (v̂)‖2
L2( bK)

, on letting K = K̂, ∆K = ∆̂K and
w = v̂, yields

‖v − I1
h(v)‖2

L2(K) ≤ C λ1,K λ2,K λ3,K h2bK |v̂|2
H1(b∆K)

= C λ1,K λ2,K λ3,K

∑
bT∈b∆K

|v̂|2
H1( bT )

.

(12)
In the last equality, the quantity h2bK is included into the constant C, being a known

O(1) value. By applying relation (8) to each seminorm |v̂|2
H1( bT )

(after identifying T̂

with K̂), we have

‖v − I1
h(v)‖L2(K) ≤ C

{ ∑
T∈∆K

[ 3∑
i=1

λ2
1,K ‖∇v · ri,K‖2

L2(T )

]}1/2

. (13)

Result (3) follows by straightforward algebraic manipulations of the right-hand side in
(13). �

Remark 2.1 The hypotheses of Proposition 2.1 can be considered smoothness
requirements: they do not limit the anisotropy of each element K, rather they
constrain the variation of {ri,K} and {λi,K} over the patch ∆K .
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3 An anisotropic Zienkiewicz-Zhu error estimator

We now show how to employ Proposition 2.1 to devise an a posteriori error
estimator. For simplicity, we refer to the standard Poisson problem completed
with homogeneous Dirichlet boundary conditions. More general problems can
be tackled as well, as shown in Section 6.
In harmony with a Zienkiewicz-Zhu approach, we distinguish between two steps:
first we furnish a procedure for obtaining an approximate recovered gradient,
more accurate than the actual gradient of the Galerkin solution; second, we
employ this recovered gradient for a posteriori error purposes.

Let u be the (weak) solution to the model problem: find u ∈ V such that∫
Ω
∇u · ∇v dx =

∫
Ω

fv dx ∀v ∈ V, (14)

where V = H1
0 (Ω). Let uh ∈ V 0

h be its Galerkin approximation satisfying∫
Ω
∇uh · ∇vh dx =

∫
Ω

fvh dx ∀vh ∈ V 0
h , (15)

with V 0
h = Vh ∩ V and Vh the space of the piecewise linear finite elements.

The objective of the recovery procedure is to build an approximation to ∇u,
only using information related to uh. Several approaches can be undertaken for
this purpose (see, e.g., [41, 32, 42, 40, 43, 44, 45, 46]). For example, in the case
of affine finite elements, the Zienkiewicz-Zhu recovery procedure in [32] consists
of the following steps:

• suitable L2 -projections PN (∇uh) of ∇uh onto the space [P1]2 are com-
puted, namely∫

∆N

(∇uh − PN (∇uh)) · v dx = 0 ∀v ∈ [P1]2,

with ∆N = {T 3 xN} the patch associated with the general node xN of
the partition Th, and P1 = span{1, x1, x2};

• the recovered gradient GZZuh ∈ [Vh]2 is then formed as

GZZuh(x) =
∑
N

PN (∇uh)(xN ) ϕN (x) ∀x ∈ Ω,

ϕN being the standard hat function associated with the node N .

We propose here a different and simpler approach, whereby the recovered gra-
dient, denoted by P∆K

(∇uh)(·) is assumed constant over the patch ∆K = {T ∈
Th : T ∩K 6= ∅} comprising all of the tetrahedra that share a node, an edge, or
a face with K. We let

P∆K
(∇uh)(x) =

1
|∆K |

∑
T∈∆K

|T |∇uh|T , with x ∈ ∆K ,
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namely, we compute the volume-weighted average over the patch ∆K of the gra-
dients of the discrete solution. Notice that the recovered gradient P∆K

(∇uh)(·)
is strictly attached to K, and not to the elements comprising ∆K , i.e., for an
element K ′ 6= K, even when K ′ ∈ ∆K , P∆K′ (∇uh)(·) is in general different from
P∆K

(∇uh)(·), and it is constant over ∆K′ .
Hereafter we denote by E∆K

= P∆K
(∇uh) − ∇uh|∆K

, dropping the depen-
dence on x, the recovered error on the gradient over ∆K . Then we define the
anisotropic Zienkiewicz-Zhu local estimator for the H1-seminorm of the dis-
cretization error as

η2
K, aniso =

1
(λ1,Kλ2,Kλ3,K)2/3

3∑
i=1

λ2
i,K (rT

i,KG∆K
(E∆K

)ri,K), (16)

where the matrix G∆K
(·) is defined as in (4). Then the corresponding global

error estimator is given by

η2
aniso =

∑
K∈Th

η2
K, aniso. (17)

The estimator (16)-(17) is essentially heuristic. Nevertheless the rationale is
twofold: on the one hand the terms summed on the right-hand side of (16) are
suggested by Proposition 2.1, after substituting the partial derivatives with the
corresponding components of the recovered gradient (notice that, in general,
the recovered gradient is not computed as the gradient of a scalar function);
on the other hand, the volumetric scaling factor (λ1,Kλ2,Kλ3,K)2/3 guarantees
that when λ1,K = λ2,K = λ3,K , that is when K is an isotropic tetrahedron, the
estimator becomes

η2
K, iso =

∫
∆K

|E∆K
|2 dx,

i.e., an isotropic Zienkiewicz-Zhu like estimator for the H1-seminorm of the dis-
cretization error, based on a patchwise constant recovered gradient [1]. Further
theoretical background is discussed in [1] in the 2D case.
Estimator (16)-(17) can be applied to more general problems, such as the elas-
ticity or Navier-Stokes equations. One possibility is to replace the gradient by
the stress (rate) tensor (see, e.g., [31]). Alternately, a suitable scalar variable,
representative of the problem, can be identified as the “dummy” variable u, and
(16)-(17) can be extended in a straightforward way, as shown in Section 6. More
sophisticated recovery procedures can easily find room in variants of the present
estimator.

4 The estimator-to-metric procedure

We describe the procedure used for adapting the mesh moving from estimator
(16)-(17).
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We employ a metric-based adaptive procedure as a predictive tool. Two recip-
rocal approaches can be pursued: either given a constraint on the maximum
number of elements, find the mesh providing the most accurate numerical solu-
tion; or given a constraint on the accuracy of the numerical solution, find the
mesh with the least number of elements. We here focus on the latter approach.

Let us emphasize that metric and mesh are intertwined. The objective is to
build a mesh that is optimal with respect to a matching condition involving a
suitable metric, induced by a symmetric positive-definite tensor field M̃ : Ω →
R3×3 (see, e.g., [47]). Typically, this mesh is obtained via an iterative procedure
that processes intermediate tentative meshes.
Thus, with any given tentative mesh Th we associate a piecewise constant metric
M̃Th

, such that M̃Th
|K = M̃K = B−2

K = RT
KΛ−2

K RK , for any K ∈ Th, the matrices
RK and ΛK being defined as in Section 2. With respect to this metric, any
tetrahedron K is unit equilateral, i.e.,

(
eT M̃K e

)1/2 = 1, with e the (arbitrarily
oriented) vector identifying any edge e of K.

Vice versa let now M̃ be a given metric. We first diagonalize the tensor field
M̃ as M̃ = R̃T Λ̃−2R̃, with Λ̃ = diag(λ̃1, λ̃2, λ̃3) and R̃T = [r̃1, r̃2, r̃3] a positive
diagonal and an orthogonal matrix, respectively. Notice that this can be done,
ideally, for every x ∈ Ω. We then approximate the quantities

{
λ̃i

}
, {r̃i} via

piecewise constants over a tentative mesh Th, and denote these quantities by
ri,K ∈ R3, λi,K ∈ R, for any K ∈ Th and with i = 1, 2, 3. For example, this can
be carried out by averaging the pointwise functions r̃i, λ̃i over K. The averaged
quantities define a piecewise constant metric, say MTh

.
Thus we state

Definition 4.1 The mesh Th matches M̃ if, for any K ∈ Th, M̃Th
|K = MTh

|K .

In the spirit of a predictive procedure the tensor field M̃ represents the actual
unknown. At each iteration of the adaptive process, say j, we deal with three
quantities:

i) the actual mesh T (j)
h ;

ii) the new metric M̃ (j+1) computed on T (j)
h and piecewise constant;

iii) the updated mesh T (j+1)
h matching M̃ (j+1).

In more detail, at each step j, first problem (15) is solved on T (j)
h and M̃ (j+1) is

built elementwise through a suitable local optimization procedure (one for each
K ∈ T (j)

h ). Then the new mesh T (j+1)
h is built via the matching condition. This

last task is accomplished by the mesh optimisation procedure described in [11].
A quality function is defined for each element, measuring its conformity to the
ideal element described by the tensor field (both size and shape). The quality
of the mesh is defined to be the quality of the worst element within the mesh.
Iterations of optimisation procedures such as edge collapsing, edge splitting, edge
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and face swapping and node movement are applied and the operation accepted
if the quality of the mesh improves. This procedure is applied until the mesh
quality function satisfies a user-specified threshold. For background reading on
mesh optimisation procedures, see [47].

For practical reasons, the metric M̃ (j+1) is averaged nodewise before being
passed to the mesh optimisation procedure, as it takes as input a piecewise-
linear representation of the tensor field. This nodewise averaging can change the
desired number of elements of the mesh encoded by the tensor field. Empirically,
it is found that rescaling the averaged piecewise-linear representation to match
the expected number of elements of the piecewise-constant representation is
important for the convergence of the adaptive procedure.

The local optimization procedure involved in point ii) consists first in mini-
mizing the estimator η2

K, aniso in (16) with respect to stretching and orientation,
and then, by an equidistribution criterion, in computing the actual value of
λ1,K , λ2,K and λ3,K . For the purpose of minimization, we introduce the stretch-
ing factors

s1,K =
(

λ2
1,K

λ2,Kλ3,K

)2/3

, s2,K =
(

λ2
2,K

λ1,Kλ3,K

)2/3

, and s3,K =
(

λ2
3,K

λ1,Kλ2,K

)2/3

.

(18)
The estimator can thus be rewritten as

η2
K, aniso =

3∑
i=1

si,K (rT
i,KG∆K

(E∆K
)ri,K)

=
( 3∏

i=1

λi,K

)
|∆̂K |

3∑
i=1

si,K (rT
i,KĜ∆K

(E∆K
)ri,K), (19)

where Ĝ∆K
(·) is the scaled matrix G∆K

(·)/|∆K |, and ∆̂K is the patch defined
as in Proposition 2.1 Thus it holds |∆K | = λ1,Kλ2,Kλ3,K |∆̂K |.
Notice also that s1,K ≥ s2,K ≥ s3,K and that these stretching factors are not
independent as

3∏
i=1

si,K = 1. (20)

The idea behind expression (19) is that we have singled out the volume infor-
mation (the term before the summation) from quantities that just depend on
orientation and stretching. We now state a result about the minimization of the
terms involved in the summation.

Proposition 4.1 Let

J({si,K , ri,K}i=1,2,3) =
3∑

i=1

si,K (rT
i,KĜ∆K

(E∆K
)ri,K), (21)
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and let {gi, gi}, i = 1, 2, 3, represent the eigen-pairs associated with Ĝ∆K
(E∆K

),
where it is understood that g1 ≥ g2 ≥ g3 > 0 as well as that {gi} defines an
orthonormal frame. Under the constraint (20) and assuming that {ri,K} defines
a right-handed orthonormal basis, then J(·) is minimized when

s1,K =
3
√

g1 g2 g3

g3
, s2,K =

3
√

g1 g2 g3

g2
, s3,K =

3
√

g1 g2 g3

g1
(22)

and
r1,K = g3, r2,K = g2, r3,K = g1. (23)

Proof. The proof consists of three parts: in 1) we minimize J(·) with respect to
{ri,K}, thus proving that the optimal unit vectors coincide with {gi}, up to a permu-
tation; in 2) we exploit the ordering s1,K ≥ s2,K ≥ s3,K to unequivocally determine
the optimal {ri,K}; in 3) we compute the optimal values of the stretching factors by
minimizing J(·) with respect to {si,K}. As intermediate steps, we study in 1a) the case
when all elements of {si,K} are distinct; in 1b) when any and only two are equal; in 1c)
when all elements of {si,K} are equal.

1) Let us first minimize J(·) with respect to {ri,K}. In order to enforce orthonormality,
we require that the Gateaux derivative of J(·) be zero for rotations about the arbitrary
unit vector ω ∈ R3, i.e.,

δJ = lim
ε→0

1
ε

(
J({si,K , ri,K + ε ω ∧ ri,K})− J({si,K , ri,K})

)
= 0. (24)

Notice that this way allows us to avoid using the Lagrange multiplier approach to enforce
the constraint. We obtain

J({si,K , ri,K + ε ω ∧ ri,K}) = J({si,K , ri,K})

+ 2 ε

3∑
i=1

si,K

(
rT

i,KĜ∆K
(E∆K

)(ω ∧ ri,K)
)

+ ε2
3∑

i=1

si,K

(
(ω ∧ ri,K)T Ĝ∆K

(E∆K
)(ω ∧ ri,K)

)
.

(25)
This shows that, provided that the first order condition (24) is satisfied, that is

3∑
i=1

si,K

(
rT

i,KĜ∆K
(E∆K

)(ω ∧ ri,K)
)

= 0 ∀ unit vector ω ∈ R3
, (26)

the stationary point of J(·) is an actual minimum, since the O(ε2) quantity in (25) is
nonnegative, because si,K > 0 and due to the positive semidefiniteness of Ĝ∆K

(E∆K
).

From (26), first choosing ω = r1,K , we have ω ∧ r1,K = 0, ω ∧ r2,K = r3,K and
ω ∧ r3,K = −r2,K . Thus δJ = (s2,K − s3,K) rT

2,KĜ∆K
(E∆K

) r3,K . Taking successively
ω = r2,K and ω = r3,K , the first order conditions (26) for the minimum become

(s2,K − s3,K) rT
2,KĜ∆K

(E∆K
) r3,K = 0

(s3,K − s1,K) rT
3,KĜ∆K

(E∆K
) r1,K = 0

(s1,K − s2,K) rT
1,KĜ∆K

(E∆K
) r2,K = 0.

(27)
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1a) To deal with (27), suppose first that all the elements of {si,K} are distinct. Then
it must hold rT

2,KĜ∆K
(E∆K

) r3,K = rT
3,KĜ∆K

(E∆K
) r1,K = rT

1,KĜ∆K
(E∆K

) r2,K = 0.
From these relations it follows that Ĝ∆K

(E∆K
) r1,K ⊥ span{r2,K , r3,K}. Similar rela-

tions can be obtained by permuting cyclically the indices {1, 2, 3}. Thus we must have
that G∆K

(E∆K
) r1,K is parallel to r1,K , i.e., r1,K is an eigenvector of G∆K

(E∆K
). This

shows that, when all the elements of {si,K} are distinct, {ri,K} must coincide with {gi},
up to a permutation.

1b) Suppose now that any and only two of {si,K} are equal. Since the argument ap-
plies whatever pair is picked, to fix ideas, let s2,K = s3,K and s1,K 6= s2,K . More-
over, let {l, m, n} denote a permutation of {1, 2, 3}. From (27)2,3 we can only infer
that Ĝ∆K

(E∆K
) r1,K ⊥ span{r2,K , r3,K}, that is, r1,K is an eigenvector of Ĝ∆K

(E∆K
),

say gl. Relation (27)1 is trivially satisfied. As for r2,K , r3,K , we can only state that
span{r2,K , r3,K} = span{gm,gn}. Enforcing r1,K = gl and s2,K = s3,K , the functional
J(·) in (21) becomes

J({si,K , ri,K}i=1,2,3) = s1,K gl + s2,K

(
rT
2,KĜ∆K

(E∆K
) r2,K + rT

3,KĜ∆K
(E∆K

) r3,K

)
.

(28)
We show now that the term multiplying s2,K takes a value independent of r2,K , r3,K .
This allows us to pick, r2,K = gm and r3,K = gn, say. To prove this, we recall that the
symmetric matrix Ĝ∆K

(E∆K
) can be decomposed as

Ĝ∆K
(E∆K

) =
3∑

i=1

gi gi gT
i .

Substituting this into (28), we get

J({si,K , ri,K}i=1,2,3) = s1,K gl + s2,K

3∑
i=1

{
gi (rT

2,Kgi)(gT
i r2,K) + gi (rT

3,Kgi)(gT
i r3,K)

}
= s1,K gl + s2,K

3∑
i=1

{
gi

[
(gT

i r2,K)2 + (gT
i r3,K)2

]}
= s1,K gl + s2,K

{
gm

[
(gT

mr2,K)2 + (gT
mr3,K)2

]
+ gn

[
(gT

n r2,K)2 + (gT
n r3,K)2

]}
,

where the contribution due to i = l is zero since gT
l r2,K = gT

l r3,K = 0. Introducing
the angle θ ∈ [0, π) such that gT

mr2,K = cos θ, and using the orthonormality and copla-
narity properties of {r2,K , r3,K} and {gm,gn}, it holds (gT

mr2,K)2 = (gT
n r3,K)2 = cos2 θ

and (gT
mr3,K)2 = (gT

n r2,K)2 = sin2 θ. Thus we obtain that J({si,K , ri,K}i=1,2,3) =
s1,K gl + s2,K (gm + gn), that is, the independence of J({si,K , ri,K}i=1,2,3) of r2,K , r3,K .

1c) The case when s1,K = s2,K = s3,K can be dealt with using algebraic arguments to
show, again, that the functional J({si,K , ri,K}i=1,2,3) does not depend on the choices of
r1,K , r2,K , r3,K . In such a case relations (27) are identically satisfied. However, we can
still match r1,K , r2,K , r3,K to the eigenvectors of Ĝ∆K

(E∆K
). In fact, in this case, we

12



have

J({si,K , ri,K}i=1,2,3) = s1,K

3∑
i=1

rT
i,K Ĝ∆K

(E∆K
) ri,K = s1,K Tr

(
RKĜ∆K

(E∆K
)RT

K

)
,

(29)
where the orthogonal matrix RT

K is defined as in Section 2 and Tr(·) denotes the trace of
a matrix. Actually it can be checked that

[
RKĜ∆K

(E∆K
)RT

K

]
ij

= rT
i,KĜ∆K

(E∆K
) rj,K ,

with i, j = 1, 2, 3. On noting that RKĜ∆K
(E∆K

)RT
K is similar to Ĝ∆K

(E∆K
), it

clearly holds that Tr
(
RKĜ∆K

(E∆K
)RT

K

)
= Tr

(
Ĝ∆K

(E∆K
)
)

=
∑3

i=1 gi, showing that
J({si,K , ri,K}i=1,2,3) in (29) does not depend on the choice of r1,K , r2,K , r3,K .

Summarising what we have proved so far, we can state that, whatever the values of
the stretching factors {si,K}, we can always pick the orthonormal vectors {ri,K} such
that r1,K = gl, r2,K = gm, and r3,K = gn, for a suitable permutation {l, m, n} of the
indices {1, 2, 3}.

2) In the following, we exploit the ordering s1,K ≥ s2,K ≥ s3,K to unequivocally deter-
mine l,m and n. Let then

J({si,K , ri,K}i=1,2,3) = Jlmn({si,K , ri,K}i=1,2,3) = s1,K gl + s2,K gm + s3,K gn,

where we have used the property of the Rayleigh quotients, i.e., gT
i Ĝ∆K

(E∆K
)gi = gi,

for i = 1, 2, 3. To shorten the notation we neglect in this point the dependence of
J({si,K , ri,K}i=1,2,3) on its arguments. It can be proved that J is minimized with the
identification {l,m, n} = {3, 2, 1}. In fact, letting J∗ = J321 = s1,K g3+s2,K g2+s3,K g1,
we show that any other permutation yields a non-smaller value of J . Any of the five
other permutations of {3, 2, 1} is at distance d (1 or 2) to {3, 2, 1}, i.e., d pairwise
operations of swapping are applied to {3, 2, 1}. Let us first consider any of the three
permutations of {3, 2, 1} at distance 1, e.g., {3, 2, 1} 7→ {2, 3, 1}. For this choice, we
have

J231 − J∗ = s1,K (g2 − g3) + s2,K (g3 − g2) = (s1,K − s2,K)(g2 − g3) ≥ 0. (30)

The other two permutations at distance 1, i.e., {3, 2, 1} 7→ {1, 2, 3} and {3, 2, 1} 7→
{3, 1, 2}, can be dealt with in the same fashion and yield the same result. Consider
now one of the two permutations at distance 2, e.g., {3, 2, 1} 7→ {1, 3, 2} (the other is
{3, 2, 1} 7→ {2, 1, 3}). This can be equivalently obtained by composing two distance-1
permutations, i.e., {3, 2, 1} 7→ {2, 3, 1} 7→ {1, 3, 2}. We thus have

J132 − J∗ = (J132 − J231) + (J231 − J∗).

The second term is nonnegative thanks to (30). Let us check the first one.

J132 − J231 = s1,K (g1 − g2) + s3,K (g2 − g1) = (s1,K − s3,K)(g1 − g2) ≥ 0.

Thus it holds J132 − J∗ ≥ 0. The optimality of J321 can be checked analogously for
the second permutation at distance 2. This proves the desired result that the minimum
value of J is attained at J = J∗ = J321.

13



3) We are left with the task of minimizing J({si,K , ri,K}i=1,2,3) with respect to {si,K}.
To take into account the constraint (20), we introduce the Lagrangian

L({si,K}i=1,2,3, µ) = s1,K g3 + s2,K g2 + s3,K g1 + µ
( 3∏

i=1

si,K − 1
)
,

where µ ∈ R is the Lagrange multiplier. The optimality conditions yield

∂L
∂s1,K

= g3 + µ s2,K s3,K = 0

∂L
∂s2,K

= g2 + µ s3,K s1,K = 0

∂L
∂s3,K

= g1 + µ s1,K s2,K = 0

∂L
∂µ

= s1,K s2,K s3,K − 1 = 0.

(31)

These equations provide the value of the Lagrange multiplier µ = − 3
√

g1 g2 g3 as well as
the optimal stretching factors (22). �

Remark 4.1 The optimal {ri,K} and {si,K} in (23)-(22) equalize the three
terms si,K (rT

i,KĜ∆K
(E∆K

)ri,K) in (21), i.e.,

s1,K g3 = s2,K g2 = s3,K g1. (32)

This equalization in turn yields
3∑

i=1

si,K (rT
i,KĜ∆K

(E∆K
)ri,K) = 3 3

√
g1 g2 g3,

that is, on the optimized mesh, the functional J(·) in (21) does not depend any
longer on the stretching factors of the elements. Although we do not have a
rigorous proof yet, we expect this property as well as the global equidistribution
principle (invoked shortly below) to be the reason why the estimator (17), built
on the local contributions (19), performs well with respect to the effectivity index,
as shown in the numerical test cases in Section 6.

To construct the optimal metric, we need the optimal {ri,K} and {λi,K}.
Thus we just have to compute {λi,K}. For this purpose we move from the optimal
{si,K} in (22), combined with (18) and with the equidistribution criterion

η2
K, aniso =

τ2

#Th
, (33)

with τ a user-defined global tolerance on the H1-seminorm of the discretization
error and #Th being the cardinality (number of elements) of the actual mesh.
In more detail, from (19), (33), and employing (32) three times, we have

3∏
i=1

λi,K =
τ2

#Th|∆̂K |(3 s1,K g3)
=

τ2

#Th|∆̂K |(3 s2,K g2)
=

τ2

#Th|∆̂K |(3 s3,K g1)
.
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Thus ( 3∏
i=1

λi,K

)3

=
(

τ2

3#Th|∆̂K |

)3 1
g1 g2 g3

,

where also (20) has been used. From this we obtain

3∏
i=1

λi,K =
τ2

3#Th|∆̂K |

( 3∏
i=1

gi

)−1/3

≡ VK . (34)

Now, using (18) and (34), we have

λ1,K = V
1/3
K

(∏3
i=1 gi

g3
3

)1/6

=
(

τ2

3#Th|∆̂K |

)1/3( 3∏
i=1

gi

)1/18

g
−1/2
3

λ2,K = V
1/3
K

(∏3
i=1 gi

g3
2

)1/6

=
(

τ2

3#Th|∆̂K |

)1/3( 3∏
i=1

gi

)1/18

g
−1/2
2

λ3,K = V
1/3
K

(∏3
i=1 gi

g3
1

)1/6

=
(

τ2

3#Th|∆̂K |

)1/3( 3∏
i=1

gi

)1/18

g
−1/2
1 .

(35)

We are in a position to identify the optimal elementwise metric, M̃K , given by
M̃K = RT

KΛ−2
K RK , with RT

K = [r1,K , r2,K , r3,K ] and ΛK = diag(λ1,K , λ2,K , λ3,K),
where {ri,K} and {λi,K} are provided by (23) and (35), respectively. The corre-
sponding nodewise metric is thus defined by

M̃N =
1

|∆N |
∑

K∈∆N

|K| M̃K ,

where N is any node of the mesh, ∆N is the patch of the elements that share N
and |∆N | is the corresponding volume.

Finally the metric is obtained dividing by (2
√

2/3)2 = 8/3 every M̃N . This
scaling amounts to shrinking the reference tetrahedron to a unit edge one.

Remark 4.2 The hypothesis g1 ≥ g2 ≥ g3 > 0 in Proposition 4.1 can be relaxed
by assuming g1 ≥ g2 ≥ g3 ≥ 0 which happens when Ĝ∆K

(E∆K
) is actually

positive semidefinite. However this degenerate case can be tackled by defining a
minimum value

gmin = h−12
Ω

(
τ2

3#Th|∆̂K |

)4

, (36)

for gi where hΩ is the diameter of the domain. The eigenvalues are modified
by taking gi to be max(gi, gmin). When this expression is used for gmin, if all
the eigenvalues {gi} are degenerate, then, from (35), λi,K is equal to hΩ for
i = 1, 2, 3.
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5 The adaptive procedure

We summarize here the main steps of the actual adaptive procedure. The ob-
jective is to approximate the solution to the constrained minimization problem:

min
Th∈T (Ω)

#Th s.t.
∑

K∈Th

η2
K, aniso = τ2,

where T (Ω) is the set of all possible conformal meshes of Ω, with τ the global
tolerance enforced on the H1-seminorm.

We detail in the following the resulting algorithm.

1. Let T (0)
h be a background mesh;

2. Set the iteration counter j = 0;

3. While ‘‘a convergence criterion is not satisfied’’
Compute uh from (15);
Loop on K ∈ T (j)

h :

(a) Compute

P∆K
(∇uh) =

1
|∆K |

∑
T∈∆K

|T |∇uh|T

and E∆K
= P∆K

(∇uh)−∇uh|∆K
;

(b) Compute Ĝ∆K
(E∆K

) = G∆K
(E∆K

)/|∆K | with

[G∆K
(E∆K

)]ij =
∫

∆K

(E∆K
)i (E∆K

)j dx, with i, j = 1, 2, 3;

(c) Compute MK = RT
K ΛK RK ZK by the SVD algorithm:

[RT
K ,ΛK , QK ] = svd(MK), such that MK = RT

K ΛK QK,
with QK = RK ZK;

(d) Let λ
(j)
1,K ≥ λ

(j)
2,K ≥ λ

(j)
3,K be the entries of ΛK;

(e) Compute |∆̂K | = |∆K |/(
∏3

i=1 λ
(j)
i,K);

(f) Compute the eigen-pairs {gi,gi} of Ĝ∆K
(E∆K

):
[gi,gi] = eig(Ĝ∆K

(E∆K
)), with g1 ≥ g2 ≥ g3;

set gi = max(gi, gmin) for i = 1, 2, 3, with gmin as in (36);
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(g) Set r(j+1)
1,K = g3, r(j+1)

2,K = g2, and r(j+1)
3,K = g1,

λ
(j+1)
1,K =

(
τ2

3#T (j)
h |∆̂K |

)1/3( 3∏
i=1

gi

)1/18

g
−1/2
3

λ
(j+1)
2,K =

(
τ2

3#T (j)
h |∆̂K |

)1/3( 3∏
i=1

gi

)1/18

g
−1/2
2

λ
(j+1)
3,K =

(
τ2

3#T (j)
h |∆̂K |

)1/3( 3∏
i=1

gi

)1/18

g
−1/2
1 ,

and form the matrices

RT
K = [r(j+1)

1,K , r(j+1)
2,K , r(j+1)

3,K ], ΛK = diag(λ(j+1)
1,K , λ

(j+1)
2,K , λ

(j+1)
3,K );

(h) Build the metric M̃K = RT
K Λ−2

K RK;

4. Loop on the nodes and build the nodewise metric

M̃N =
3
8

1
|∆N |

∑
K∈∆N

|K| M̃K ;

5. Compute the mesh T (j+1)
h ;

6. Set j = j + 1;

7. End While

Step 5. assumes the availability of an adaptive remeshing procedure, as already
anticipated in Section 4. This could consist of global remeshing (e.g., [8, 48]),
local remeshing (e.g., [49, 50]), or mesh optimisation (e.g., [11]). In this work,
the mesh optimisation algorithm of [11] is used.
Concerning the convergence criterion at point 3., an example is provided in the
next section.

6 Examples

In this section we assess the performance of both the error estimator (17),(19)
and the adaptive procedure in Section 5 on some numerical simulations dealing
with academic test cases as well as fluid dynamic and multi-material applications.
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Figure 2: Adapted mesh for the academic test case with isotropic solution, for
τ = 1.

6.1 Academic test case with isotropic solution

The convergence of ηaniso and of the adaptive procedure is investigated for an
analytic solution, for different values of the tolerance τ . An initial mesh of 17000
elements is generated for the domain Ω = (0, 1)3. On this mesh, the field u is
applied by nodal evaluation, with

u(x) = ||x− c||2, (37)

to give uh, where c is the centre of the cube and ‖·‖ denotes the Euclidean norm
on R3. In practice uh is the Lagrange interpolant of u.
The adaptive procedure is then applied to generate a new mesh, upon which u
is re-evaluated. The adopted convergence criterion is

3
4
τ ≤ ηaniso ≤

5
4
τ. (38)

Results are shown in Table 1, where θ = ηaniso/|u − uh|H1(Ω) denotes the effec-
tivity index. It appears that, despite its large values, θ is independent of the
chosen tolerance.
As can be seen from Figure 2, the resulting mesh is isotropic as expected. The
interpolation error behaviour in Figure 3 (left) shows that the error scales like
O(#T −1/3

h ). This is the expected trend in a 3D framework.
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Figure 3: Plots of interpolation error in the H1-seminorm for the academic test
case with isotropic (left) and anisotropic (right) solution.

τ |u− uh|H1(Ω) #Th ηaniso θ iterations
2.0 8.06×10−2 9011 1.90 23.6 1
1.5 6.62×10−2 16118 1.59 24.0 1
1.25 5.86×10−2 23172 1.43 24.4 1
1.0 4.52×10−2 45439 1.16 25.7 2
0.8 3.66×10−2 84799 0.97 26.5 2

Table 1: Convergence data for the academic test case with isotropic solution:
tolerance; H1-seminorm of the error; number of elements; estimator; effectivity
index; number of iterations.

Figure 4: Adapted mesh for the academic test case with anisotropic solution,
for τ = 1.
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Figure 5: Top-down view (left) and zoom (right) of the bottom-left corner of
the plane x3 = 1 for the academic test case with anisotropic solution, for τ = 1.

6.2 Academic test case with anisotropic solution

To assess the performance of ηaniso and of the adaptive procedure on a test case
exhibiting anisotropic features, we consider the field

u(x1, x2, x3) = e−x1/ε + e−x2/ε + e−x3/ε, (39)

with ε = 0.01. This function emulates the presence of three boundary layers
along x1 = 0, x2 = 0 and x3 = 0. This field is applied to the same initial mesh
as in the previous section. The same convergence criterion is used.
Results are shown in Table 2. Notice the reduced values of the effectivity index,
indicating a higher reliability of the estimator, as well as a larger number of
adaptive iterations since now more involved adaptation is required due to the
steep boundary layers. As the field is poorly represented on the initial isotropic
mesh, the algorithm takes more iterations to converge to a highly anisotropic
mesh. In general, we can observe that the meshes yielded by the adaptive
procedure are quasi-optimal. Actually, the effectivity index is not unitary, yet
being independent of the accuracy required on the true error. In fact, for a
given problem, the family of (optimally) adapted triangulations characterized
by a different level of accuracy, τ , in the H1-seminorm, shows an effectivity
index which is independent of τ , as well as of the stretching factors (related to
the shape regularity) of the family of triangulations. Thus the quasi-optimality
has essentially an impact only on the constant in the error-vs-number of elements
relation.

As can be seen from Figures 4 and 5, the resulting mesh is highly anisotropic.
The interpolation error behaviour is shown in Figure 3 (right). The slope of
the trend is now about −1/2. This substantial improvement is related to the
essentially 2D nature of the problem.
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τ |u− uh|H1(Ω) #Th ηaniso θ iterations
10.0 3.30 793 10.5 3.2 6
8.0 2.49 1079 7.9 3.2 6
5.0 1.35 3228 4.2 3.1 5
3.0 1.00 7122 2.9 2.9 5
2.0 0.75 14016 2.1 2.8 5
1.0 0.28 63588 0.9 3.2 6

Table 2: Convergence data for the academic test case with anisotropic solution:
tolerance; H1-seminorm of the error; number of elements; estimator; effectivity
index; number of iterations.

τ |u− uh|H1(Ω) #Th ηaniso θ iterations
34.0 2.37 1747944 35.9 15.1 3
35.0 3.07 788518 42.2 13.7 3
36.0 2.67 1169779 39.4 14.7 3

Table 3: Convergence data for the academic test case with anisotropic solu-
tion with isotropic adaptivity: tolerance; H1-seminorm of the error; number of
elements; estimator; effectivity index; number of iterations.

Table 3 shows results where the adaptive algorithm is prevented from exploit-
ing anisotropy by forcing the metric to be isotropic. This is achieved by setting
each λi,K to be the minimum of {λi,K}. As can be seen, anisotropic adaptivity is
vastly more efficient for representing anisotropic functions; similar levels of error
are achieved for approximately 103 fewer elements. This strongly motivates the
development of error estimators which are able to exploit anisotropy.

6.3 Laminar flow past a cylinder

The cylinder flow benchmark of [51] is considered. In this problem, laminar flow
through a channel is interrupted by a cylindrical body. The benchmark specifies
that the incompressible Navier-Stokes equations are to be solved in the domain
Ω = (0,H)× (0,H)× (0, 2.5) \C, where H = 0.41 m is the height of the domain
and C is a cylinder of radius 0.1 m and length H positioned 0.45 m from the
inflow boundary in the channel. The inflow condition of case 3D-1Z is used:

u(0, x2, x3) = (16 Um x2 x3 (H − x2)(H − x3)/H4, 0, 0)T , (40)

where u is the velocity field and Um is chosen to be 0.45 m/s such that the
Reynolds number is 20. Homogenous Dirichlet boundary conditions are imposed
on velocity on the horizontal sides of the channel and the cylindrical body.
This motivates placing extra resolution along the sides and in the wake of the
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Figure 6: Overlay of the norm of the velocity field and mesh for laminar flow
past a cylinder.

Figure 7: Zoom of the mesh and norm of the velocity field in the wake of the
cylinder (left) and along the sides of the channel (right).

cylinder to resolve the flow features. At the outflow, a homogenous Neumann
boundary condition is imposed on velocity and a homogenous Dirichlet boundary
condition is imposed on pressure. The incompressible Navier-Stokes equations
are discretised with the stabilised P1-P1 element pair [52]. The speed is chosen
as the field to guide adaptivity, with τ = 1.5. The maximum number of nodes
allowed is set to 500000, and the minimum element size set to 4.1 × 10−3, i.e.,
one hundredth of the height of the domain. These settings are chosen so as not
to interfere with the adaptive procedure. Moreover we additionally employ the
gradation algorithm of [53] with γ = 2, to smooth the variation in mesh spacing
requested by the metric.

The results can be seen in Figures 6 and 7. The adaptive procedure converges
in 5 iterations, with ηaniso = 1.64. The resulting mesh has approximately 220000
nodes, or 1.2 million elements. Note the concentration of the resolution in the
wake past the cylinder and along the boundary layers along the side of the
channel. As can be seen in Figure 7, the elements along the sides of the channel
are extremely anisotropic, reflecting the anisotropy of the solution caused by the
boundary conditions there. The elements in the wake of the cylinder are mostly
isotropic, again reflecting the nature of the dynamics in that region. This result
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gives confidence that the anisotropic resolution of boundary layers analysed in
the previous section also holds for flows of practical interest.

If the objective of the simulation is to compute the lift or drag coefficients,
the use of goal-based adaptivity is extremely efficient [54]. Here, no dual-based
information is incorporated into the adaptive procedure. Future work will com-
bine this approach with the dual-based approach described in [24].

6.4 Multimaterial application

Simulations of multimaterial flows are numerically challenging. The interfaces of
the material volume fractions recording the materials are sharp and anisotropic,
and this must be reflected in the mesh upon which these flows are discretised.
Furthermore, the discretisation must be conservative and bounded; otherwise
nonphysical phenomena such as mass exchange may occur.

The adaptive algorithm is applied to an unsteady multimaterial simulation
of a water column collapsing under gravity. The models solved comprise the
incompressible Navier-Stokes equation and the advection equation for the evolu-
tion of the material volume fraction. The simulation is conducted in the domain

Figure 8: The multimaterial application: material volume fraction (top) and
zoom (bottom) of the mesh at t = 0 (left) and t = 2 (right) time units.
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Ω = (−0.5, 0.5)×(−0.5, 2)×(−0.5, 0.5). A material volume fraction representing
water is initialised to be 1 in the region [−0.5,−0.25]× [−0.5, 0]× [−0.5, 0] and
zero elsewhere. No-normal flow is imposed on velocity on all boundaries except
for the top. At the top, a homogenous Neumann boundary condition is imposed
on velocity, and a homogenous Dirichlet boundary condition is imposed on pres-
sure. The P0-P1cv element pair is used for the velocity-pressure discretisation;
the HyperC control volume face value algorithm is used for the advection equa-
tion [55]. The discretisation is described in [56]. The material volume fraction
representing water is chosen as the field to guide adaptivity, with τ = 25. A
minimum edge length of 0.001 is enforced to constrain the adaptive algorithm.
The mesh is adapted every 10 timesteps. As conservation and boundedness are
crucial, the interpolation algorithm presented in [57] is used to transfer data
between meshes. To spread resolution ahead of the dynamics, the metric tensor
formed is advected forward for one adaptivity period and superimposed with
itself. This has the effect of extending resolution to where the interface will be
over the course of the adaptivity period.
The results can be seen in Figures 8 and 9. The error estimator clearly detects

Figure 9: The multimaterial application: material volume fraction (top) and
zoom (bottom) of the mesh at t = 4 (left) and t = 6 (right) time units.

the anisotropic nature of the material interface and places anisotropic elements
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there to resolve it. The estimate ηaniso stays within the range [20, 30] for most
of the simulation, except at the end when the resolution requested is finer than
the minimum element size imposed. The computation of this simulation to the
same accuracy on any fixed grid would be prohibitively expensive.

7 Conclusions

A suitable 3D adaptation algorithm based on an optimization procedure is de-
vised and proved, numerically, to yield quasi-optimal meshes. In fact, academic
test cases with both smooth (isotropic) and nonsmooth (anisotropic) solutions,
show that the error measured in the H1-seminorm depends on the number of
mesh elements, #Th, as O(#T −1/3

h ), the optimal scaling in 3D. Moreover, when
the 3D problem at hand exhibits 2D features, such as boundary layers, the de-
pendence of the error on the cardinality of the mesh becomes O(#T −1/2

h ), still
optimal in 2D. Despite its heuristic nature, the proposed anisotropic Zienkiewicz-
Zhu a posteriori estimator goes to prove effectiveness. Indeed, the error estimator
is able to detect the main features of the solution even in complex applications.
Results in Section 6.4 are promising with a view to unsteady problems as well.
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[42] Rodŕıguez R. Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods
Partial Differential Equations 1994; 10:625–635.

[43] Carstensen C. All first-order averaging techniques for a posteriori finite
element error control on unstructured grids are efficient and reliable. Math.
Comp. 2004; 73:1153–1165.

[44] Naga A, Zhang Z. A posteriori error estimates based on the polynomial
preserving recovery. SIAM J. Numer. Anal. 2004; 42:1780–1800.

[45] Yan N, Zhou A. Gradient recovery type a posteriori error estimation for
finite element approximations on irregular meshes. Comput. Methods Appl.
Mech. Engrg. 2001; 190:4289–4299.

[46] Bottasso C, Maisano G, Micheletti S, Perotto S. On some new recovery
based a posteriori error estimators. Comput. Methods Appl. Mech. Engrg.
2006; 195:4794–4815.

[47] George PL, Borouchaki H. Delaunay Triangulation and Meshing: Applica-
tion to Finite Elements. Hermes: Paris, 1998.
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equations. ETH Zürich Lectures in Mathematics, Birkhäuser Verlag: Basel,
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