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ADJOINT-BASED OPTIMAL CONTROL OF JUMP-DIFFUSION

PROCESSES

Abstract. Stochastic differential equations (SDEs) using jump-diffusion processes describe

many natural phenomena at the microscopic level. Since they are commonly used to model
economic and financial evolutions, the calibration and optimal control of such processes are

of interest to many communities and have been the subject of extensive research. In this

work, we develop an optimization method working at the microscopic level. This allows
us also to reduce computational time since we can parallelize the calculations and do not

encounter the so-called curse of dimensionality that occurs when lifting the problem to its

macroscopic counterpart using partial differential equations (PDEs). Using a discretize-then-
optimize approach, we derive an adjoint process and an optimality system in the Lagrange

framework. Then, we apply Monte Carlo methods to solve all the arising equations. We

validate our optimization strategy by extensive numerical experiments. We also successfully
test a optimization procedure that avoids storing the information of the forward equation.
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1. Introduction

Since many physical phenomena are inherently subject to uncertainties and noise their accu-
rate description is often achieved using stochastic differential equations (SDEs). A very broad
class of SDEs is the one governed by the so-called jump-diffusion processes. Their applications
range from physics [3,18,28] over economics and finance [15,20,36] to medical imaging [22]. The
jump-diffusion processes consist of three parts: 1) a deterministic drift, 2) a stochastic diffusion
that is usually modeled as a Brownian motion, and 3) a stochastic jump usually realized using
a compound Poisson process. Suppose that one wants to model and control the state z(t) ∈ Rd

of a physical system over a time interval [0, T ], T > 0, then the corresponding SDE is given by

dz(t) = a(z(t), u(z, t), t) dt + b(z(t), t) dB(t) + c(z(t−), t) dY (t) t ∈ (0, T ].(1.1)

In (1.1), we denote by B a standard d-dimensional Brownian motion [35, Definition 1.1.13] and
by Y a d-dimensional compound Poisson process [35, p. 10]. The function u(z, t) is called the
control. The equation (1.1) is completed with an initial condition z̊ such that z(0) = z̊.

The optimal control of jump-diffusion processes is of interest to many communities and has
therefore led to extensive research over many years; see, e.g., [14, 20, 21, 31, 32] and references
therein. An optimal control problem is given by minimizing a certain objective J(z, u) subject
to the pair (z, u) satisfying (1.1) and there are in principle two approaches to solving optimal
control problems governed by (1.1). On the one hand, one can lift the problem to the level of
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partial differential equations (PDEs). To this end, one defines a probability density function
f(z, t) that contains information on the probability of the state z being in a certain configuration
z at a certain timestep t. The PDE that governs the evolution of f is given by the famous Fokker-
Planck equation [21] that contains in the case of jump-diffusion processes also an integral part.
In this setting, one can apply tools from PDE-constrained optimization [38]. In the case of
b ≡ 0 and c ≡ 0, the first author considered optimal control problems for the corresponding
partial differential equation, i.e. the Liouville equation. In [7,8] deterministic numerical methods
were applied to solve the arising equations. In [5, 10, 11], the author considered a Monte-Carlo
framework to solve the arising equations.

On the other hand, it is possible to work at the microscopic level and directly characterize
the control using stochastic differential equations. Here, no probability density functions come
into play and hence no PDEs must be solved.

In the PDE-based approach, the following difficulties occur. First, the complexity of the
problem grows exponentially with the dimension of the state z ∈ Rd. This is the so-called curse-
of-dimensionality from which all PDE-based approaches suffer. Additionally, for jump-diffusion
processes the Fokker-Planck equation becomes an integro-differential equation, requiring more
advanced solution techniques than in standard PDE optimization.

The problems of the PDE approach can be circumvented to some extent when remaining on
the microscopic level. First, an increase in the state dimensions does not lead to an exponential
growth of computational complexity. If one additionally supposes that each state component
is independent of the others then it is possible to parallelize the computations with respect
to the dimensions. Furthermore, the additional presence of the Poisson process does not lead
to a significantly different structure of the solution method. In fact, the jump part can be
approximated by a piecewise deterministic process for which the jump times have to be sampled
according to a Poisson distribution.

The new contribution in this work is that we construct an optimization strategy working
directly on the microscopic level. In particular, we do not have to assemble probability density
functions that turn out to be a time-consuming bottleneck in hybrid (macroscopic-microscopic)
methods [5,11]. Furthermore, in contrast to [9], we do not consider only Brownian motion, but
also jump processes determined by a Poisson process. The structure of our control is chosen in
such a way that it realizes a feedback-like control. More specifically, we consider the control u
as consisting of a fixed dependence on the state variable given by the smooth function Φ(z) and
a square integrable time-dependent function µ(t). This time-dependent function is considered
considered to be our control mechanism that we want to optimize. Hence, the control can be
written given as

u(z, t) = µ(t)Φ(z).

Furthermore, we use a tracking-type cost functional with a Gaussian-like exponential function.
This is motivated by the fact, that we want to have bounded functions with bounded derivatives
in the optimality system of our framework later on. Furthermore, this setting is then close to
previous works [5, 10].

This work is organized as follows. In Section 2, we formulate and analyze the optimal control
problem, introducing the system dynamics and the corresponding cost functional. Assumptions
necessary for well-posedness are also discussed. In Section 3, we present the fully discretized
problem. Furthermore, we analyze the convergence of discrete approximations to the continu-
ous problem. In Section 4, we derive the optimality system using an adjoint-based approach,
including the equations necessary for characterizing optimal solutions. In Section 5, we explain
the numerical implementation, including the discretization scheme, the design of shape func-
tions, the handling of jump processes, and the optimization procedure. In Section 6, we present
numerical experiments to validate the proposed method. Specific test cases include centering
particles, stabilization, and following a time-dependent trajectory with systems of coupled and
uncoupled particles. Moreover, we successfully test here an idea that avoids the storing of the
forward trajectories. A section of conclusion finishes this work.
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2. Formulation of the optimal control problem

We consider a finite time horizon [0, T ] with T > 0 and the a system of N ∈ N particles in the
phase space Rdz consisting of velocity and position space. Hence, we have the whole state space
Rd with d := N dz. In the following, we consider a two-dimensional phase space, i.e. dz = 2.
We appoint each particle with position and velocity, i.e. zj = (xj ,vj) for j ∈ [N ], where we use
the notation [N ] := {1, . . . , N}.

Our goal is to design a control field capable of driving the mean of an initial configuration z̊
of particles to a desired configuration or follow a desired trajectory z̄d(t) on average. For this
purpose, we define the structure of the deterministic coefficient as:

a(z(t), u(z, t), t) = e⊗
(

0

u(z, t)

)
+Hz, H ∈ RN dz×N dz ,(2.1)

where we define e = (1, . . . , 1) ∈ RN dz and denote by ⊗ the standard Kronecker product, i.e.

e⊗
(

0

u(z, t)

)
=
(
0, u(z1, t), 0, u(z2, t), . . . , 0, u(zN , t)

)⊤
∈ RN dz .(2.2)

The symbol ⊤ denotes the transpose. By the shape of the coefficient of the deterministic part
given in (2.1), the control can be interpreted as force acting in the velocity component. The
matrix H accounts for the dynamic of the particles in the uncontrolled case. For example, it
can model Hook’s law.

To measure the effectiveness of our control mechanism, we consider the cost functional

J(z, u) = E



∫ T

0

1

N

N∑

j=1

J(zj , t) dt+
α

2
∥u∥2L2(Rd×[0,T ])


 ,(2.3)

where α > 0 is the control weight and states the relative importance of the cost of the control
in the optimization problem. The symbol E denotes the expectation value with respect to the
stochastic variable. On the functional J in (2.3), we impose the following

Assumption 2.1. 1) The functional J : Rd → R is lower semicontinuous and bounded from
below.

2) The functional J is continuously differentiable, i.e. J ∈ C1(Rd × [0, T ]).

We consider the following form of the control for some L ∈ N that realizes a separation in
phase space and time

u : Rd × [0, T ] → R, u(z(t), t) =

L∑

ℓ=1

µℓ(t)ϕℓ(z(t)),(2.4)

with µℓ : [0, T ] → R for ℓ ∈ [L]. In this work, the shape functions ϕℓ : Rd → R in phase space
are given and µℓ are the optimization variables. We assume the following structure of ϕℓ with
given shape functions ϕx

ℓ and ϕv
ℓ in position and velocity, respectively,

ϕℓ(z(t)) := ϕx
ℓ (x(t))ϕ

v
ℓ (v(t)).

We define ϕ := (ϕ1, . . . ,ϕL) and µ = (µ1, . . . ,µL). Then, we can write (2.4) as

u(z(t)) = µ(t)⊤ϕ(z(t)).(2.5)

We define

Ψ(z,µ) := e⊗
(

0

µ⊤ϕ(z)

)
.(2.6)

With this, we can write the coefficient a in (2.1) as

a(z, u, t) = Ψ(z,µ) +Hz.(2.7)

For the well-posedness of the state equation (1.1), we need the following assumptions (cf. [37]
and [25]).
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Assumption 2.2. The coefficients a : Rd×R× [0, T ] → Rd, b : Rd× [0, T ] → Rd, c : Rd× [0, T ] →
Rd in (1.1) fulfill

1) (At most quadratic growth) There exists a constant L > 0, such that

|a(z, u, t)|2 + |b(z, t)|2 + |c(z, t)|2 ≤ L(1 + |z|2).
2) (Lipschitz continuity) For an arbitrary R > 0 there exists a constant CR > 0 such that

for all |z1| ≤ R and |z2| ≤ R

|a(z1, u, t)− a(z2, u, t)|2 + |b(z1, t)− b(z2, t)|2

+ |c(z1, t)− c(z2, t)|2 ≤ CR|z1 − z2|2

for all t ∈ [0, T ] and u ∈ R.

We can now formulate our optimal control problem:

min
(z,µ)

E



∫ T

0

1

N

N∑

j=1

J(zj(t), t) dt+
α

2
∥µ(·)⊤ϕ(zj(·))∥2L2([0,T ])


 =: j(z,µ)(2.8a)

s.t.





dz(t) =
(
Ψ(z(t),µ(t)) +Hz(t)

)
dt + b(z(t), t) dB(t)

+ c(z(t−), t) dY (t) t ∈ (0, T ],

z(0) = z̊.

(2.8b)

We state in the following theorem the existence and uniqueness of solutions to (1.1). Notice
that a in the structure of (2.7) fulfills Assumption 2.2 for suitable b, c.

Theorem 2.3. Let Assumption 2.2 hold. Then the equation (1.1) has a unique solution whose
almost all sample functions are continuous from the right.

For the proof, we refer to [37, Theorem 3.14]. For further information on the functions that are
continuous from the right (so-called cadlag functions) D([0, T ]), we refer the reader to, e.g., [13].
Using Theorem 2.3, we can introduce the control-to-state map S:

S : L2(0, T )L → D([0, T ])(2.9)

that associates to every µ ∈ L2(0, T )L the corresponding solution of (2.8b).

Using the control-to-state map, we can introduce the reduced objective function ĵ(µ) as

ĵ(µ) := j(S(µ),µ).(2.10)

We now discuss the existence of optimal controls in our setting. It is in general not possible
to prove existence of optimal controls for general SDE in the strong sense. On the contrary, even
for SDEs without jumps one has to consider so-called relaxed controls for which the probability
space can not be fixed a-priori [16,40]. In [1], the authors deal with the question of existence of
optimal stochastic control for a quite general form of stochastic optimal controls problems with
a state equation of the form (1.1). However, it is possible to characterize an optimal control by
certain maximum principles. In Section 4, we use the Lagrange framework to characterize an
optimal control function.

3. Formulation and analysis of the fully discrete problem

In this work, we apply the discretize-before-optimize approach. Hence, we show in the fol-
lowing how to discretize the continuous optimal control problem (2.8).

To approximate the expectation value E in (2.8), we choose M ≫ 1 realizations for the
Brownian motion and the Poisson process.

For each realization m ∈ [M ] and each particle j ∈ [N ], we calculate the Nm
j jump times

{Tm
j,k}

Nm
j

k=1. Furthermore, we create a uniform grid in time withNu
t subintervals of size ∆τ = T/Nu

t

as

[0, T ] = ∪Nt−1
κ=0 [τκ, τκ+1], τk = κ∆τ.(3.1)
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0 T/2 T

Time t

Jump times Tm
j,k

Determ. time disc. τκ

(a)

0 T/2 T

Time t

v
j
,m
(t
)

Single realization
Jump times Tm

j,k

Determ. time disc τκ

(b)

Figure 3.1. Different discretization of the time interval [0, T ] and exemplary
trajectory. Gray: Deterministic splitting in Nu

t intervals; Black dashed: Sto-
chastic splitting of the time interval into Nj jump times, different for every
realization and particle. (a) Visualization of stochastic and deterministic parts
of the time discretization. (b) Visualization of an exemplary SDE trajectory
of a single particle in a single realization together with the corresponding dis-
cretization.

For each particle j and each realization m, we the consider a (possible) different time discretiza-
tion generated by gridpoints which are given by the union of the Nu

t deterministic splitting and
the Nm

j stochastic jump points. More specifically, the gridpoints are given by

{Tm
j,1, . . . , T

m
j,Nm

j
} ∪ {τ0, . . . , τNu

t } =: {t0, . . . , tNj,m
t }.(3.2)

Now, we consider the discretization of the time interval into subintervals as

[0, T ] = ∪Nj,m
t −1

κ=0 [tκ, tκ+1], ∆tκ := tκ+1 − tκ,(3.3)

Using the small time-intervals ∆tκ, we generate the samples of Brownian motion ∆Bκ
j,m ∼

N (0,∆tκ). In Figure 3.1(a), we visualize the different time discretizations in our work for
a single particle and a single realization. In Figure 3.1(b), we plot an exemplary trajectory
corresponding to the time discretization given in Figure 3.1(a).

However, for convenience of the implementation, we want to approximate the control to
be constant in equidistant intervals of a given length. For this, we use the partition of the
time interval [0, T ] into the Nu

t > 1, equally-spaced subintervals given in (3.1). Within one
subinterval, we assume the control to be constant. In particular, we assume that we have the
continuous in time interpolation of the control given by

µh(t) :=

Nu
t −1∑

κ=0

µκχ[tκ,tκ+1](t), t ∈ [0, T ].(3.4)

The fully discrete problem is then given by

min
(z,µ)

1

M

M∑

m=1

1

N

N∑

j=1

Nm
j∑

k=1

Nj,m,k+1
t∑

κ=Nj,m,k
t

J(zκ
j,m, tκ) +

α

2
∥µ(tκ)⊤ϕ(zκ

j,m)∥22∆tk

(3.5a)
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s.t.





zκ+1
j,m = zκ

j,m +∆t
(
Ψ(zκ

j,m,µ(tκ)) +Hzκ
j,m

)

+b(zκ
j,m, tκ)∆Bκ

j,m for κ ∈ [N j,m,k−1
t , N j,m,k

t − 1]

z
Nj,m,k

t
j,m = c(z

Nj,m,k
t −1

j,m )

z0
j,m(0) = z̊j,m.

(3.5b)

We define the continuous in time representation of a numerical solution for the j-th particle
in the m-th realization as a piecewise constant function. For this, we set h = (M,Nu

t ) and

zh
j,m(t) =

Nj,m
t −1∑

κ=0

zκ
j,mχ[tκ,tκ+1](t), t ∈ [0, T ].(3.6)

With this definition, we can evaluate zh
j,m at arbitrary times, in particular at the time discretiza-

tions points of the other particles or realizations. We set zh = {zh
j,m}M,N

m,j=1.
We define a discretized version of the objective taking into account the time discretization of

the control

jh(zh,µh) =
1

M

M∑

m=1

∆t

N

N∑

j=1

Nu
t∑

κ=1

J(zh
j,m(tκ), tκ) +

α

2
|ϕ(zh

j,m(tκ))⊤µh(tκ)|2.(3.7)

We have that the discrete solution zh defined as the piecewise constant approximation (cf.
(3.6)) converges to the true solution z in the following sense:

Theorem 3.1. Let Assumption 2.2 hold. Then there exists for any µ ∈ L2(0, T )N a constant
C > 0 and N∗

t ∈ N such that for all Nt ≥ N∗
t

E sup
t∈[0,T ]

[|zh(t)− z(t)|2] ≤ C∆t(1 + E[|z(0)|2]).(3.8)

For the proof, see [25, Theorem 2.4]. For further reading about discretization of jump-diffusion
processes, we refer to [26, Chapter 16] as well as [25] and [35].

Using the result of Theorem 3.1, we can introduce the reduced functional

ĵh(µh) = j(Sh(µh),µh),(3.9)

where Sh(µh) is the solution of (3.5b) using the piecewise constant µh ∈ L(0, T )L given {µκ}N
u
t

κ=0

(cf. (3.4)). The following theorem states that convergence of the value of the discrete functional
to the value of the continuous one in the case of convergence of the discrete controls to a
continuous one. Recall that we set h = (M,Nu

t ). When writing h → ∞, we let both components
tend to infinity at the same time.

Theorem 3.2. Let Assumptions 2.1 and 2.2 hold. Assume that we have given a sequence (µh)h
and a µ ∈ L2(0, T )L with µh → µ for h → ∞. Then we have

|̂jh(µh)− ĵ(µ)| → 0, for h → ∞.(3.10)

Proof. Recall the definition of ĵ in (2.10). We calculate

|̂jh(µh)− ĵ(µ)| = |̂jh(µh)− ĵh(µ)|+ |̂j(µ)− ĵh(µ)|.(3.11)

The first summand on the right-hand side in (3.11) converges to zero due to the continuity of

ĵh. The continuity of ĵh follows because it is a composition of continuous functions since J and
the absolute value are continuous. The second summand converges to zero due to convergence
of quadratures of integral in time [2, Chapter 5], and approximation properties of the discrete
expectation value that is known as the (Weak) Law of Large Numbers [23, Theorem 8.2]. □
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4. Optimality system

In this section, we derive the optimality system corresponding to (3.5). In the following, we
consider only a single realization and omit to write the dependence of all quantities to m for
the sake of better readability. An additional reason is that we only need one realization of each
path of the N particles in each optimization iteration in our optimization procedure below.

We define the following Lagrange functional L, introducing the adjoint processes r and λ, as

L(z,µ, r,λ) := 1

N

N∑

j=1

Nj
t −1∑

k=0

Lj,k(z,µ, r,λ),(4.1)

with

(4.2) Lj,k(z,µ, r,λ) :=

Nj,k+1
t∑

κ=Nj,k
t

J(zκ
j , t

κ)∆tκ +
α

2
|ϕ(zκ

j )
⊤µκ|2∆tκ

−
Nj,k+1

t −1∑

κ=Nj,k
t

(
zκ+1
j − zκ

ja(z
κ
j ,µ

κ, tκ)∆tκ + b(zκ
j , t

κ)∆Bκ
j

)⊤
rκ+1
j

+
(
z
Nj,k

t
j − c(z

Nj,k
t −1

j )
)⊤

λ
Nj,k+1

t
j .

The optimality system consists of the partial derivatives of the Lagrange functional with
respect to its variables set to zero.

Calculating the gradient with respect to z, we obtain that ∇zκ
j
L δzκ

j = 0 must hold for all

admissible directions δzκ
j with j ∈ [N ] and κ = N j,k

t , . . . , N j,k+1
t − 1. This is equivalent to

rκj − rκ+1
j −∇za(z

κ
j ,µ

κ, tκ)⊤rκ+1
j −∇zb(z

κ
j , t

κ)⊤rκ+1
j +∇zj

h(zκ
j ,µ) = 0.(4.3)

We also have to deal with the initial conditions. We have that ∇
z
N

j
t

j

L δz
Nj

t
j = 0 and

∇
z
N

j,k
t −1

j

L δz
Nj,k

t −1
j = 0 are equivalent to

δz
Nj,k

t
j

(
λ
Nj,k+1

t
j − r

Nj,k
t

j

)
= 0

and

δz
Nj,k

t −1
j

(
r
Nj,k

t −1
j −∇zc(z

Nj,k
t −1

j )⊤λ
Nj,k+1

t
j

)
= 0.

Using this calculations, and since δzκ
j was arbitrary, we can conclude that

λ
Nj,k+1

t
j = r

Nj,k
t

j

and

r
Nj,k

t −1
j = ∇zc(z

Nj,k
t −1

j )⊤λ
Nj,k+1

t
j .

Hence for all j ∈ [N ] and k ∈ [Nj ], the terminal condition for jumps in the adjoint model are
given by

r
Nj,k

t −1
j = ∇zc(z

Nj,k
t −1

j )⊤r
Nj,k

t
j .(4.4)

Furthermore, we get from (4.3) the dynamics

rκj = rκ+1
j +∇za(z

κ
j ,µ

κ, tκ)⊤rκ+1
j +∇zb(z

κ
j , t

κ)⊤rκ+1
j −∇zj

h(zκ
j ,µ

κ).(4.5)

Summarizing, we obtain the following adjoint model

(4.6a) rκj = rκ+1
j +∇za(z

κ
j ,µ

κ, tκ)⊤rκ+1
j +∇zb(z

κ
j , t

κ)⊤rκ+1
j

−∇zj
h(zκ

j ) for κ ∈ [N j,k
t , N j,k+1

t − 1],
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r
Nj,k

t −1
j = ∇zc(z

Nj,k
t −1

j )⊤r
Nj,k

t
j .(4.6b)

Notice that (4.6) evolves backwards in time. There are some important differences between
the discretize-before-optimize (DBO) approach that we exploit in this work and the optimize-
before-discretize approach (OBD). First of all, we do not have to solve Forward-Backward-SDE
(FBSDE) since we do not have to take care of the filtration that evolves forward in time; see,
e.g., [33, Chapter 7, Definition 3.1] for the definition of solutions to Backward SDEs. Since we
discretized before we optimized, we cosider for the adjoint equation the same Brownian motion
increments and jump-times as for the original system; see also [9]. Furthermore, the adjoint jump
kernel coincides with one of the model and hence the adjoint jump frequency also coincides with
the model jump frequency. This is different in the OBD case [5].

Analogously to Theorem 3.1, we can formulate a result for the adjoint equation. For this let
rh define the continuous representation of a numerical solution for the j-th particle in the m-th

realization as the piecewise constant function as rh = {rhj,m}M,N
j,m=1 with

rhj,m(t) =

Nj,m
t −1∑

κ=0

rκj,mχ[tκ,tκ+1](t) t ∈ [0, T ].(4.7)

Theorem 4.1. Let Assumptions 2.1 and 2.2 hold. Let rh be the piecewise constant approxima-
tion given in (4.7). Then there exists for any µ ∈ L2(0, T )N a constant C > 0 and N∗

t ∈ N such
that for all Nt ≥ N∗

t

E sup
t∈[0,T ]

[|rh(t)− r(t)|2] ≤ C∆t(1 + E[|r(0)|2]).(4.8)

The next step is to derive the reduced gradient ∇µĵ
h of ĵh defined in (3.9). For this, we take

the directional derivative of L with respect to µκ for κ ∈ [Nu
t ] and calculate for the arbitrary

direction δµκ

∇µkL δµκ =
∆t

N

N∑

j=1

δµκ
{
αϕ(zh

j (t
κ))ϕ(zh

j (t
κ))⊤µκ −Ψ(zh

j (t
κ))⊤rhj (t

κ)
}
.(4.9)

Hence, the reduced gradient is given by

∇µκ ĵh(µκ) =
∆t

N

N∑

j=1

αϕ(zh
j (t

κ))ϕ(zh
j (t

κ))⊤µκ −Ψ(zh
j (t

κ))⊤rhj (t
κ),(4.10)

where z and r are solutions to (3.5b) and (4.6), respectively, corresponding to µ. Hence, we
have that at optimality it must hold for all κ ∈ [Nu

t ] that

∇µκ ĵh(µκ) = 0(4.11)

which is equivalent to

N∑

j=1

αϕ(zh
j (t

κ))ϕ(zh
j (t

κ))⊤µκ =

N∑

j=1

Ψ(zh
j (t

κ))⊤rhj (t
κ) ∀κ ∈ [Nu

t ].(4.12)

Notice that (4.12) is a high-dimensional nonlinear system with respect to µκ.

5. Numerical implementation and optimization procedure

In this section, we explain our strategy to solve the model and adjoint problem and the
procedure to solve the full optimization problem (3.5). We use Monte Carlo strategies to solve
the arising equations. In principle, these methods are meshless. However, to define our shape
functions ϕ, we shall introduce a computational domain and a discrete phase space. We want to
point out, that we do not specify boundary conditions, as this computational domain is needed
only to define the number and the centers of the shape functions.

In Section 5.1, we introduce the computational domain and define the shape functions in
Section 5.2. In Section 5.3, we explain our procedure to handle the jump processes before we
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Figure 5.1. A radial basis function φ and its derivative φx.

discuss our strategy to solve the model and adjoint equation in Section 5.4 and Section 5.5,
respectively. In Section 5.6, we discuss our optimization strategy.

5.1. Discretization. We consider our two-dimensional computational domain as Ωx × Ωv :=
(−xmax, xmax) × (−vmax, vmax), with given xmax, vmax > 0. We use a standard finite-volume
discretization in phase space and define the discrete phase space Ω∆x,∆v := Ω∆x × Ω∆v as
follows; see also [4, 5]. We choose a partition of Ωx and Ωv of equally-spaced, non-overlapping
square cells with side length ∆v = 2vmax/Nv where Nv ≥ 2 and ∆x = 2xmax/Nx with Nx ≥ 2,
respectively. On this partition, we consider a cell-centered representation as follows:

Ω∆x :=
{
xi ∈ Ωx

∣∣ i ∈ [Nx]
}
, xi := (i− 1/2)∆x− xmax

and

Ω∆v :=
{
vl ∈ Ωv

∣∣ l ∈ [Nv]
}
, vl := (l − 1/2)∆v − vmax.

Notice that the computational phase space is centered at (0, 0) by this choice.
In order to discretize the control µℓ, ℓ ∈ [L], with L = Nx Nv, we use the time discretization

given in (3.1). We identify the control and the solution z as the constant approximation between
the grid points corresponding to this discretization of [0, T ]; cf. (3.6) and (3.4).

5.2. Shape functions. For our implementation of the shape functions φℓ, ℓ ∈ [L], we consider
radial-basis functions (RBF) [17]. More specifically, we choose a certain form of a bump function
with center xc and shape parameter εφ > 0 given by

φ(x, xc, εφ) :=

{
exp

(
− 1

1−(εφ|x−xc|)2

)
for |x− xc| < 1

εφ
,

0 else.
(5.1)

The functions ϕx
ℓ , ϕ

v
ℓ , ℓ ∈ [L], are defined using φ by

ϕx
ℓ : R → R, ϕx

ℓ (x) = φ(x, xℓ, εφ),(5.2a)

ϕv
ℓ : R → R, ϕv

ℓ (v) = φ(v, vℓ, εφ).(5.2b)

There are results for the convergence of the approximation of L2 functions using RBF with
compact support present in the literature; see, e.g., [17, Theorem 6.7].

The derivative of the shape functions is given by:

φx(x, xc, εφ) =

{
exp

(
− 1

1−(εφ|x−xc|)2

)
−2εφ|x−xc|

(1−(εφ|x−xc|)2)2 for |x− xc| < 1
εφ

,

0 else.

In Figure 5.1, we visualize the RBF function together with its derivative. We point out,
that both of them are defined on whole R and are compactly supported. Notice that we choose
the same shape function for position and velocity for the sake of simplicity. However, it is in
principle possible to choose different functions for each component.
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5.3. Jump process. For our implementation, we consider the jump part c to be related to the
Keilson-Storer kernel introduced in [29]. For a pre-jump velocity v ∈ R and post-jump velocity
w ∈ R, it is given by

A(v, w) = Γ

√
β

π
exp(−β|w − γv|2),(5.3)

with parameters γ ∈ [−1, 1] and β > 0.
With this kernel, many physical phenomena can be modeled including Brownian motion,

telegraphic noise, and the famous Bhatnagar–Gross–Krook (BGK) collision operator [12]. It
was also used in previous work [5, 6] by the authors. For this work, we define for a position
x ∈ R and velocity v ∈ R

c(x, v) = (x, γv + ςβ)
⊤,(5.4)

where ςβ are precalculated random numbers obeying N (0, (2β)−1). We denote by N (ξ,ϖ) the
Gaussian distribution with mean ξ and variance ϖ. The parameters γ and β are given in the
definition of the Keilson-Storer kernel (5.3).

Furthermore, we need to sample the jump times Tj,k. For this, we use the fact that the mean
free time is given as the reciprocate of jump frequency of the Keilson-Storer kernel defined as

σ =

∫

R
A(v, w) dv =

√
β

π
.(5.5)

In order to determine the time instances at which a particle undergoes a velocity transition due
to jump using σ, one can follow the procedure described in, e.g., [11, 27].

If σ is the jump frequency, then σ dt is the probability that a particle has a jump during the
time dt. Now, assuming that a particle has a jump at time t, the probability that it will be
subject to another jump at time t+ δt dt is computed according to a Poisson distribution given
by

exp

(
−
∫ t+δt

t

σ dt′

)
= exp (−δt σ) .(5.6)

The formula in (5.6) is the probability distribution of the distance between two events of a
Poisson process. Following a standard approach [27] and using a uniformly distributed random
number ν ∈ (0, 1), one obtains the following rule

δt = −σ−1 log(ν).(5.7)

Notice that we do not have an adjoint jump frequency, like we have it in [11].

5.4. Model equation. For our numerical examples in Section 6, we consider in the following
structure the coefficient functions

a(z, u, t) = e⊗
(

0

u(z, t)

)
+Hz + h(z, t), H :=

(
0 1
−η 0

)
⊗ IN ,(5.8a)

where h is a given smooth nonlinear function such that a fulfills Assumption 2.2, IN ∈ RN×N

is the N -dimensional identity matrix and

b(z, t) =

(
b1 0
0 b2

)
⊗ IN , b1,b2 > 0.(5.8b)

During the free flight, we consider Euler’s method for integration using stepsize ∆t that is
smaller than the difference of two jump times. The Euler-Maruyama method is given by

xκ+1
j = xκ

j + vκ
j ∆t+ b1 ∆Bx,κ

j x
Nj,k

t
j = x

Nj,k
t −1

j ,(5.9a)

vκ+1
j = vκ

j +
(
u(zκ

j , t
κ)− η xκ

j

)
∆t+ b2 ∆Bv,κ

j v
Nj,k

t
j = γv

Nj,k
t −1

j + ςβ ,(5.9b)
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where ∆Bx,κ
j and ∆Bv,κ

j for j ∈ [N ] and κ ∈ [Nt] are precomputed Gaussian samples for

position and velocity with zero mean and standard deviation
√
∆tκ; see [34]. The whole method

for solving the forward model is summarized in Algorithms 5.1 and 5.2.

5.5. Adjoint equation. Recall that the adjoint equation (4.6) evolves backward. We introduce
the adjoint position q and adjoint velocity p for the adjoint phase space coordinate r = (q,p).
The adjoint equations for the coefficients fixed in (5.8) are given by

qκ
j = qκ+1

j +∆t
( (

ux(z
κ
j )− η

)
pκ+1
j −∇xj

h(zκ
j , u(z

κ
j ))
)
,(5.10a)

pκ
j = pκ+1

j +∆t
(
qκ+1
j + uv(z

κ
j )p

κ+1
j −∇vj

h(zκ
j , u(z

κ
j ))
)
,(5.10b)

with terminal conditions

qj,TNj,k
= −∇xj

h
(
zj,TNj,k

, u(zj,TNj,k
)
)
, pj,TNj,k

= −∇vj
h
(
zj,TNj,k

, u(zj,TNj,k
)
)
.(5.11)

The derivatives of u are given by

ux(x, v, t) =
∑

µℓ∂xϕ
x
ℓ (x)ϕ

v
ℓ (v), uv(x, v, t) =

∑
µℓϕ

x
ℓ (x)∂vϕ

v
ℓ (v).

The derivatives of the functional are given by

∇xj
h(zj , u) = ∇xJ(zj) + αu(zj)ux(zj), ∇vj

h(zj , u) = ∇vJ(zj) + αu(zj)uv(zj).(5.12)

5.6. Optimization procedure. In this section, we describe our numerical strategy to solve
the discrete optimization problem (3.5). We exploit a stochastic gradient method (SGD) with
linesearch [39]. To assemble the gradient in every iteration, we need to integrate the equations
of motion for the model (5.9) and adjoint equation (5.10). In Algorithm 5.1, we summarize this
procedure taking into account the jumps.

Algorithm 5.1 Integration of the equations of motion

Require: Initial position x0
j and velocity v0

j , number of jump times Nj of the j-th particle
1: Set tκ ← 0, t← 0, t̄← 0, κ← 0
2: while t < T do
3: if tκ+1 > T j,k then ▷ jump
4: t̄← T j,k − t
5: Update position and velocity using Euler’s method according to (5.9) (respectively (5.10))

using t̄ as stepsize in time
6: Calculate the initial condition of the next time interval using c(vj,k) in (5.4) (respectively
∇c)

7: t← T j,k

8: else ▷ no jump
9: t̄← tk+1 − t

10: Update position and velocity using Euler’s method according to (5.9) (respectively (5.10))
using ∆t as stepsize in time t̄.

11: Set t← tκ+1

12: end if
13: κ← κ+ 1
14: end while

In Algorithm 5.2, we summarize the procedure to solve the state equation. Notice that since
the particles evolve independently from each other, one can heavily parallelize this method.
Furthermore, notice that we generate jump times for each particle a priori. This jump times are
then also used in the solver for the adjoint equation.

Algorithm 5.2 Model solver

Require: Parameters γ, β > 0, initial particles z0

1: for each particle j = 1 to N do ▷ particles evolve independently from each other
2: Tj,0 ← 0, k̃ ← 0
3: while Tj,k̃ < T do ▷ Sample jump times
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4: Set k̃ ← k̃ + 1
5: Sample new jump time δtj,k̃ using (5.6) and set Tj,k̃ ← Tj,k̃−1 + δtj,k̃

6: end while ▷ Create ∪Nj

k=1(Tj.k−1, Tj,k] = (0, T ]

7: Set Nj ← k̃ − 1
8: Sample ςkβ , k ∈ [Nj ] obeying N (0, (2β)−1) for each jump time Tj,k

9: Integrate the equations of motion of the particles using Algorithm 5.1
10: end for
11: return

The method to calculate the reduced gradient (4.10) is presented in Algorithm 5.3. This
procedure is executed iteratively in the complete optimization algorithm summarized in Algo-
rithm 5.4. In each iteration, we sample a new set of initial conditions for the particles obeying
the initial distribution z. Then we solve the model equation where we generate the jump times
and Brownian motion increments. These are then also used in the solver for the adjoint equa-
tion. The resulting (discrete) trajectories for all particles are taken in to account to assemble
the reduced gradient for this iteration.

Algorithm 5.3 Calculate the gradient

Require: current control iterate µn = (µn, . . . ,µn
Nt

), initial distribution z̊ = (x̊, v̊), desired trajectory
z̄d(t) = (x̄d(t), v̄d(t))

1: Sample initial condition of N particles obeying z̊
2: Solve the model system (3.5b) using Algorithm 5.2
3: Calculate terminal condition for adjoint equation according to (5.11)
4: Solve adjoint system (4.6) using the timesteps generated in Algorithm 5.2 and the integration analog

to the one in Algorithm 5.1

5: Calculate the reduced gradient ∇µĵ
h according to (4.10).

6: return ∇µĵ
h

The resulting gradient is then used as a stepdirection as usual in the stochastic gradient
descent; see, e.g, [24]. Additionally, we consider the stochastic version of the classical Armijo-
linesearch to determine a stepsize ζn > 0

ĵh
(
µn − ζn∇ĵh(µn)

)
≤ ĵh(µn)− c ζn∥∇ĵh(µn)∥2,(5.13)

with a hyperparameter c > 0; see [19, 39]. The algorithm terminates if the difference between
two subsequent control iterates is closer than a given tolerance or if the maximum iteration
depth nmax is reached. The whole strategy is summarized in Algorithm 5.4.

Algorithm 5.4 Gradient descent scheme

Require: desired state z̄d(t) = (x̄d(t), v̄d(t)), initial guess of the control µ0 = (µ0, . . . ,µ0
Nt

), initial
distribution z̊ = (x̊, v̊), tolerance tol > 0, maximum iteration depth nmax

1: Set n← 0 and initialize E≫ tol
2: while E > tol and n < nmax do
3: Compute reduced gradient hn using Algorithm 5.3 ▷ Sampling of random data included here
4: Determine the step-size ζn along hn satisfying (5.13)
5: Update control: µn+1 ← µn + ζn hn

6: E← ∥µn+1 − µn∥2
7: Set n← n+ 1
8: end while
9: return U ℓ



ADJOINT-BASED OPTIMAL CONTROL OF JUMP-DIFFUSION PROCESSES 13

Choose initial guess u0, desired trajectory z̄d,
hyperparameters,

and initialize E≫ tol, n← 0

E≫ tol

n < nmax

false

true

Solve forward model with

Algorithm 5.2 and Algorithm 5.1

Solve adjoint model analog

to solving forward model

Calculate gradient (cf. (4.10))
perform Armijo

lineserach (5.13)

Update Control

µn+1 = µn + ζn gn

n = n+ 1 stop

zh
j

rh
j

ζn

gn

Algorithm 5.3

Figure 5.2. UML flowchart of the optimization procedure Algorithm 5.4.

6. Numerical experiments

In this section, we show the results several numerical experiments in order to validate our
optimization procedure. For all of them, we fix the numerical computational phase space having
the bounds xmax = 2 and vmax = 2. For the basis functions φ in (5.1), we take the grid-points of
Ω∆x × Ω∆v as centers of the radial basis functions. Hence, we have L = Nx Nv basis functions.
We iterate through all center points (xi, vl) while assembling u in (2.4). For the final time, we
choose T = 1.

As tracking cost, we consider for z = (x, v) ∈ R2

J(z) = − exp

(
− 1

2σ2
J

(|x− x̄d(t)|2 + |v − v̄d(t)|2)
)

(6.1)

with a desired (mean) phase space trajectory z̄d(t) = (x̄d(t), v̄d(t)). Notice that J is bounded
from above and below and smooth and hence satisfies Assumption 2.1. Its partial derivatives
are then given by

∇xJ(z) = σ−2
J (x− x̄d) exp

(
− 1

2σ2
J

(|x− x̄d|2 + |v − v̄d|2)
)
,

∇vJ(z) = σ−2
J (v − v̄d) exp

(
− 1

2σ2
J

(|x− x̄d|2 + |v − v̄d|2)
)
.

In all experiments, we use β = 10 and γ = 0.9. Furthermore, for the temporal discretization,
we choose Nt = 50, ∆t = 0.1 which leads to T = 5. Furthermore, we consider Nx = Nv = 10,
∆x = ∆v = 0.4 and use εφ = 0.5 and consider N = 2 · 103 particles.

We start with a test case where we want to center all particles in the middle of the com-
putational domain given a Gaussian distribution as initial configuration and continue with the
case where we have a uniform distribution in a subdomain of the computational domain and
also want to have the particles centered in the middle (cf. Section 6.1). Then, in Section 6.2,
we average the control found in this case in time and apply it to a random initial configuration
that also has particles outside the previous subdomain. The next test case is to follow a (non-
smooth) trajectory in time (cf. Section 6.3). After this, we test our framework with a system
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of particles including coupling in Section 6.4. Finally, we present in Section 6.5 a strategy that
avoids storing the forward trajectories and test it for the setting of the previous case.

6.1. Centering of the particles. For our first example, we choose z̄d(t) = (0, 0). More-
over, we take η = 1 in (5.8). We start first with a normal distributed initial condition
z̊ ∼ N (0.75, 0.75)⊤, 0.01 I2). In Figure 6.1, we plot the result of this numerical experiment.
In Figure 6.1(a), we plot the initial configuration (gray) and the one obtained in the final
timestep using our optimized control. The corresponding evolution of the mean and variance
in phase space is plotted in Figure 6.1(b). In the uncontrolled case, all particles will (up to the
effects of jumps and diffusion) remain on their initial orbit around the center. In the control
case, the orbit is immediately decreased in position, i.e. the particles move directly close to the
center. On the other side in velocity, there is a small overshoot before converging to the center.
From Figure 6.1(c), we can obtain that the final configuration is kept stable. In the uncontrolled
case, one expects sinusoidal behaviour for the mean in position and velocity due to Hook’s law
given by H (cf. (5.8)).
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Figure 6.1. Results of numerical experiments trying to center the particles
starting from a normal distribution. (a) Initial (gray) and final (black) configu-
ration; (b) Mean and standard deviation in phase space; (c) Mean and standard
deviation in position and velocity over time.

Now, we start with a uniform distribution in a subset of our computation domain, i.e. uniform
distributed in [−1, 1]2. Our goal is again to center the particles in the middle, i.e. z̄d(t) = (0, 0),
while again considering η = 1 in (5.8). In Figure 6.2, we show the results of this test case. In
Figure 6.2(a) the initial and final configuration is visualized. From Figure 6.2(b) it is evident
that also here the final configuration is stable. In Figure 6.2(c), we plot the values of µ(t) for
t = 0 to give an impression of how the control might look like. In Section 6.2, we will use the
results of this test case the generate a stabilization control for general random initial data.

−1 0 1

−1

0

1

Position x

V
el

oc
ity

v

Initial particles
Final particles

(a)

0 1 2 3 4 5

−0.5

0

0.5

Time t

Po
si

ti
on

x
an

d
ve

lo
ci

ty
v E[x]

E[x]±
√

V[x]
E[v]
E[v]±

√
V[v]

(b) (c)

Figure 6.2. Results of numerical experiments trying to center the particles
starting from a uniform distribution. (a) Initial and final configuration; (b)
Evolution of mean and variance; (c) Control µ(t) at final time t = T .
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6.2. Stabilization. In this test case, we aim at stabilizing the system at z̄d(t) = (0, 0) with a
random initial condition, in particular with an initial condition different from the one that was
used to calculate the control. More specifically, we show that by taking the average in time of
the control obtained using our procedure above, we might be able to apply it to any input data
and observe a stabilizing behavior. Since our control depends by construction on position and
velocity and hence on the state of the system, we can interpret it as a feedback-like control. The
idea of taking the time average of an open-loop control to obtain a closed-loop one can already
be found in [6]. However, in the current work, there are now distribution functions involved. We
consider still η = 1 in (5.8). This means, in particular, that the desired configuration z̄d is not
reached in the uncontrolled case since the particles stay on their initial orbit (up to perturbations
by jump and diffusion).

We define the time-averaged control given the optimized control from Section 6.1 where we
started with a uniform initial distribution

ū(x, v) =

L∑

ℓ=1

µ̄ℓϕ
x
ℓ (x)ϕ

v
ℓ (v) with µ̄ℓ :=

1

T

∫ T

0

µℓ(t) dt.(6.2)

Notice that this control ū is now independent of time. Hence it can also be used in an infinite
time interval. We want to point out that there is no additional optimization procedure executed.

In Figure 6.3 we show the results of this test case. We start with a superposition of a bimodal
and uniform configuration as initial condition that is shown in Figure 6.3(a). After applying
our control ū that is visualized in Figure 6.3(b), we end up with a final configuration shown in
Figure 6.3(c). We observe that our average control is capable of collecting the particles in the
center and keeping them there. Notice that we initialized the particles outside of the domain
where we generated uniform particles (cf. Figure 6.2). Nevertheless, since our control u is
defined in whole R2, it is possible the stabilize all particles in the center (0, 0).
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Figure 6.3. Results of numerical experiments of stabilization with time-
averaged control. (a) Initial configuration; (b) Contourplot of averaged µ̄; (c)
Final configuration obtained with averaged control µ̄ without additional opti-
mization process.

6.3. Following a time-dependent trajectory. In the last test case, we search for an optimal
control such that the particles follow a desired non-smooth time-dependent trajectory z̄d(t) for
t ∈ [0, T ]. We choose z̄d(t) = (−xmax

2 + xmax

T t,−| vmax

2T t| + vmax

2 ). Furthermore, we choose η = 0
for this experiment and εφ = 0.1. In particular, the particles will not feel a harmonic oscillator
force, as this is not sensible for following a time-dependent trajectory that is not a circular
motion. We present the results of this test case in Figure 6.4, where in all plots the desired
trajectory is plotted in red. In Figure 6.4(a), the initial configuration and final configurations
are shown. In Figure 6.4(b), the desired trajectory and the resulting mean and variance of
particles applying the optimal control are depicted in phase space, whereas in Figure 6.4(c) the
mean and variance in position and velocity are plotted over time. We see that the mean of the
particles follows closely the prescribed desired trajectory. Since we cannot control the variance
with out control mechanism, it grows as expected.
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Figure 6.4. Results of numerical experiments with desired time-dependent
trajectory (red). (a) Initial and final configuration; (b) Desired trajectory (red)
and evolution of mean and standard deviation in phase space; (c) Desired tra-
jectory (red) and evolution of mean and standard deviation over time.

6.4. Interacting particles. As a next example, we now consider a system of particles that
interact with each other. More in detail, we consider a system of N particles, in which all nearest
neighbours are coupled. For three particles with positions xi, velocities vi, v2, i = 1, 2, 3, and
with positive parameters η and ω, we have the system:

ẋi = vi v̇i = u(xi, vi, t)− ηxi − ω


2xi −

3∑

i=1,i̸=j

xi


(6.3)

With this system of coupled oscillators, we can model in particular interacting phonons [30].
As a test case, we initialize N particles equidistantly distributed on an ellipse in phase space

described by
(

x

Ax

)2

+

(
v

Av

)2

= 1,(6.4)

with given Ax, Av > 0. The phonons should stay on this ellipse. However, since we have diffusion
and jumps in the process, the phonons leave this orbit. With our control, we aim to keep the
orbit as stable as possible. For this reason, we implement also another functional Jc for this test
case with coupled particles:

Jc(z, t) = − exp

(
− 1

2σ2
J

(∣∣∣∣
x2

A2
x

+
v2

A2
v

− 1

∣∣∣∣
2
))

.(6.5)

This implements our desire to keep the particles on the ellipse described in (6.4).
In the following figures, we present the results of this test case. We set Ax = 1.5, Av =

1.7071067811865475, and η = 1, ω = 0.5.
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Figure 6.5. Results of experiment with coupled particles. (a): Uncontrolled
case; (b): Applying optimized control mechanism.
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Figure 6.6. Behaviour of particles; (a): Initial particles on the desired ellipse;
(b): final particles distributed on average on the ellipse.

6.5. Adjoint equation independent of realization of forward trajectories. In this sec-
tion, we consider the same setting as in Section 6.3 but we do not take the solution of the forward
model into account for the calculation of the solution to the adjoint model. The main reason
for this is that it is then possible to avoid the storing of the forward trajectories and hence save
memory. More specifically, it is possible to save the memory for N · Nt datapoints for the N
particles with Nt timesteps. Instead of using zh

j , we use the (known) desired trajectory z̄d(t)
and sample for each particle and realization a position and velocity according to N (z̄d(t), ς(t))
with ς(t) : [0, T ] → R+ being the two-dimensional variance in phase space that mirrors the
behavior of the variance of the forward model, i.e it growths linearly over time.

Notice, that in the generation of the gradient (4.10), we consider the forward trajectories for
everything else expect the calculation of the adjoint variable r since this can be done during the
calculation of the forward model.

In Figure 6.8, we present the results of this test case. We observer a similar behavior as in the
test case of Section 6.3 which stresses the effectiveness of our idea in this test case in order to save
memory capacity. When we compare the behavior of the convergence of the (relative) functional,
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(a)
(b)

Figure 6.7. Averaged (in time) optimal control; (a) Contour plot; (b) Surface
plot

we see that more steps are needed in order to reach a certain functional value compared the the
case in which we take the exact forward trajectories (cf. Figure 6.8(c)).
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Figure 6.8. Results of numerical experiments with desired time-dependent
trajectory (red). (a) Evolution of mean and standard deviation in phase space;
(b) Evolution of mean and standard deviation for position and velocity in time;
(c) Comparison of convergence of relative functional ĵh(uℓ)/ĵh(u0) over optimiza-
tion iterations.

7. Conclusion

In this work, we developed and analyzed an adjoint-based optimization method for the control
of systems governed by jump-diffusion processes, staying within the microscopic framework of
stochastic differential equations. Our approach avoids the curse of dimensionality associated
with macroscopic PDE-based methods and allows for highly parallelizable computations.

We derived the optimality system using a discretize-then-optimize approach and validated
the theoretical results with Monte Carlo methods tailored to the microscopic context. Numer-
ical experiments demonstrated the effectiveness of the proposed method in diverse scenarios,
including centering particles, stabilization, and following time-dependent trajectories and using
interacting and non-interacting particles. Moreover, we also presented a memory saving strat-
egy that avoids storing the forward trajectories. These results underscore the robustness and
versatility of our approach in solving complex control problems in stochastic settings.
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Future work could explore extensions to more complex jump processes including the control
also in the diffusive and jump part. The integration of machine learning for enhanced control
strategies also presents an interesting direction for further research.
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