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Abstract
Advanced imaging and analysis improve prediction of pathology data and outcomes in several tumors, with entropy-based 
measures being among the most promising biomarkers. However, entropy is often perceived as statistical data lacking 
clinical significance. We aimed to generate a voxel-by-voxel visual map of local tumor entropy, thus allowing to (1) make 
entropy explainable and accessible to clinicians; (2) disclose and quantitively characterize any intra-tumoral entropy het-
erogeneity; (3) evaluate associations between entropy and pathology data. We analyzed the portal phase of preoperative 
CT of 20 patients undergoing liver surgery for colorectal metastases. A three-dimensional core kernel (5 × 5 × 5 voxels) 
was created and used to compute the local entropy value for each voxel of the tumor. The map was encoded with a color 
palette. We performed two analyses: (a) qualitative assessment of tumors’ detectability and pattern of entropy distribution; 
(b) quantitative analysis of the entropy values distribution. The latter data were compared with standard Hounsfield data 
as predictors of post-chemotherapy tumor regression grade (TRG). Entropy maps were successfully built for all tumors. 
Metastases were qualitatively hyper-entropic compared to surrounding parenchyma. In four cases hyper-entropic areas 
exceeded the tumor margin visible at CT. We identified four “entropic” patterns: homogeneous, inhomogeneous, periph-
eral rim, and mixed. At quantitative analysis, entropy-derived data (percentiles/mean/median/root mean square) predicted 
TRG (p < 0.05) better than Hounsfield-derived ones (p = n.s.). We present a standardized imaging technique to visualize 
tumor heterogeneity built on a voxel-by-voxel entropy assessment. The association of local entropy with pathology data 
supports its role as a biomarker.
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CLM   Colorectal liver metastases
TRG    Tumor regression grade
RMS   Root mean square
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Background

In recent years, technological progresses have favored 
advanced analyses applied to medical imaging [1, 2]. There 
is indeed thriving literature on the contribution of texture 
analysis, i.e., radiomics, to the prediction of pathology data 
and outcome in several tumor types [2–4]. Entropy has 
emerged as one of the most relevant radiomic features. It 
measures the information content: regions requiring more 
information to be described present higher values of entropy. 
In many series, this index has been associated with tumor 
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Highlights
- We provided a standardized technique to visualize the tumor 

heterogeneity built on a voxel-by-voxel entropy assessment.
- The present maps made entropy visible, provided an innovative 

accurate visualization of tumor margins, and allowed to identify 
different intra-tumoral entropic patterns.

- The quantitative analysis of intra-tumoral local entropy led to the 
identification of new texture-based biomarkers which have strong 
association with pathology data (tumor response to chemotherapy), 
stronger than Hounsfield-based data and standard texture analyses.
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aggressiveness [3, 5, 6]. Nevertheless, the translation of 
entropy into clinical practice is still underway, first and 
foremost because of its “intangible” nature and the lack of 
an exact pathology correlate. Furthermore, the conventional 
radiomic frameworks for feature extraction provide a single 
value of entropy for the whole lesion, missing any intra-
tumor heterogeneity.

To overcome those limitations, we explored a novel visu-
alization tool, capable of providing a voxel-by-voxel map 
of the local entropy across a tumor area, to visualize intra-
tumoral heterogeneity. This study aimed to (1) make entropy 
accessible by visual inspection; (2) identify and quantitively 
characterize any intra-tumoral entropy heterogeneity; and (3) 
provide a preliminary evaluation of the association between 
local entropy and pathology data.

Methods

Study Population

We considered all consecutive patients that underwent 
surgical resection for colorectal liver metastases (CLM) 
at our institution between June 2017 and December 2020. 
The following inclusion criteria were used: age ≥ 18 years; 
CT scan performed ≤ 30 days before surgery at the authors’ 
institution; adequate portal phase of the CT scan; CLM 
with diameter ≥ 10 mm; preoperative chemotherapy. The 
CT acquisition was performed according to a standardized 
protocol, as previously described [7]. Lesions < 10 mm were 
excluded because they could not guarantee enough voxels 
for the analysis. In patients with multiple CLMs, the largest 

lesion was analyzed. This retrospective study was approved 
by the local ethics committee (protocol #83/20) and the need 
for specific informed consent was waived.

Treatment Response Assessment

Treatment response to chemotherapy was radiologically and 
pathologically assessed according to the RECIST [8] and 
the Rubbia-Brandt criteria [9], respectively. Considering 
the pathological response (i.e., the tumor regression grade, 
TRG), the patients were classified as responders (TRG 1–3) 
and non-responders (TRG 4–5).

Creation of the Entropy Maps

For each patient, a tumor entropy map was built according 
to the following steps:

1. All slices of the portal phase of preoperative CT were 
considered. (Fig. 1, blue volume).

2. A three-dimensional kernel with a dimension of 5 × 5 × 5 
voxels (Fig. 1, orange cube) was used for the computation 
of local entropy. A sensitivity analysis of the impact of 
different kernel dimension (k) on the local entropy map 
computation and performance was performed (Supple-
mentary Fig. 1). The 5 × 5 × 5 one was chosen as the best 
trade-off between spatial resolution and noise smoothing.

Within each kernel, the computation of entropy was per-
formed according to the following formula:

Fig. 1  Building of the entropy 
maps. Slices including the liver 
were selected on the portal 
phase of the pre-operative CT 
scan (blue volume). A three-
dimensional kernel (5 × 5 × 5 
voxels) was considered for 
the computation of the local 
entropy (orange cube). The 
entropy value was retained and 
saved in the map as the focal 
entropy of the central voxel of 
the kernel (red cube). This pro-
cedure was repeated for every 
voxel of the volume, letting the 
kernel slide with a one-voxel 
stride, and obtaining an output 
volume (green volume)
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with “P” being the probability of occurrence of each of n 
voxel intensity “i” in the volume.

3. The so-computed value was retained and saved in the 
map as the local entropy of the central voxel of the ker-
nel (Fig. 1, red cube). This procedure was repeated for 
every voxel of the volume, letting the kernel slide with 
a one-voxel stride. The resulting volume was defined as 
the tumor entropy map (Fig. 1, green volume).

4. The map was obtained encoding the range of the entropy 
values with a dedicated color palette. To optimize the 
visualization of the tumor entropy, slices were smoothed 
with a Gaussian filter with � = 1 and normalized over the 
mean entropy value of the patient’s liver parenchyma.

5. The resulting three-dimensional entropy map was sliced 
to provide images similar and comparable to CT images. 
This allowed a visual assessment of the distribution of 
entropy, with the identification of “hyper-entropic,” “iso-
entropic,” and “hypo-entropic” areas, in comparison with 
the liver parenchyma remote from the tumor (Fig. 2).

Comparison of CT Images and Entropy Maps

Two expert readers with long-standing experience in 
advanced image analysis (GC and FF), under the supervision 
of an MD expert in radiology (AC), executed a slice-by-slice 

Entropy = −

n
∑

{i=1}

P(i)loge(P(i))
manual segmentation of the CLM (Tumor-VOI) on the same 
CT slices used for the creation of the entropy map. The 
Tumor-VOI was then superimposed to the entropy map to 
match the manually segmented lesion with the one resulting 
from the entropy map.

Data Analysis

We performed two separate analyses. First, we qualitatively 
analyzed the entropy maps evaluating the characteristics of 
the tumor and peritumoral liver parenchyma (hyper/hypo/
iso-entropic), the detectability of the tumor and its margin, 
the pattern of entropy distribution into the tumor, and the 
visual match between the entropy-based tumor area and the 
manually segmented Tumor-VOI.

Second, we performed a quantitative analysis of the dis-
tribution of the entropy values by extracting their histogram 
from each map. We considered the portion of the entropy 
map delimited by the superimposed Tumor-VOI. The fol-
lowing descriptive statistics were computed: mean, median, 
standard deviation, variance, root mean square (RMS), per-
centiles (5th, 25th, 75th, 95th), number of zero crossings, 
and number of mean crossings. In addition, we used the 
LifeX software [10, 11] to compute the global entropy of 
the tumor (Tumor-VOI) and the entropy of the non-tumoral 
liver parenchyma. For the latter, we performed a virtual 
liver biopsy (Liver-VOI), as previously detailed [12]. Upon 
z-score standardization, univariate non-parametric sta-
tistical tests were used to compare variables’ distribution 

Fig. 2  The entropy map: example 
of a slice. The three-dimensional 
entropy map obtained after the 
computation process was then 
sliced to provide images similar 
and comparable to CT images
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in responders (TRG 1–3) and non-responders (TRG 4–5). 
According to the literature data demonstrating an association 
between the Hounsfield units and tumor response to chemo-
therapy [13, 14], the same processing workflow was carried 
out on CT images: the histogram of the Hounsfield units was 
extracted from each Tumor-VOI, and the descriptive statis-
tics were compared between responders and non-responders. 
A P-value < 0.05 was considered significant for all tests.

Results

Our cohort included 20 patients, twelve males and eight 
females, with a median age of 63 years (range, 41–83). All had 
preoperative chemotherapy. The median CLM size before sur-
gery was 17 mm (range, 10–57 mm). According to the RECIST 
criteria, 13 patients had a partial response and 7 a stable disease. 
According to the pathology data, 8 patients were responders 
(TRG 1–3) and 12 non-responders (TRG 4–5). Five of the 13 
(38%) patients having a partial response at imaging did not have 
a tumor response at pathology (TRG 4–5). The entropy map 
was obtained in all cases. Table 1 summarizes the patients’ data.

Qualitative Analysis

The entropy maps identified all CLMs (CLMs presented at 
least some foci of “hyper-entropic” tissue) and provided accu-
rate identification of the tumor edges (Figs. 3 and 4). The 
non-tumoral liver parenchyma had homogeneous entropy. 
Intrahepatic small vessels were uniformly “hyper-entropic,” 
while large ones (e.g., hepatic veins at their caval confluence) 
were “hypo-entropic” with a “hyper-entropic” rim.

The entropy of CLMs differed among patients. We identi-
fied four “entropic” patterns (Fig. 5):

• Homogeneous pattern: the lesion appears as a uniform 
“hyper-entropic” tissue with a homogeneous distribution 
of entropy in ≥ 75% of its surface.

• Peripheral rim pattern: a peripheral “hyper-entropic” rim 
surrounds a homogeneous central “iso/hypo-entropic” 
area for ≥ 75% of its circumference. The rim can be com-
plete or incomplete. The central area is homogeneous, 
i.e. ≥ 75% of its surface has a uniform entropy.

• Inhomogeneous pattern: the lesion has a scattered distri-
bution of “hyper-” and “iso/hypo-entropic” components 
(hyper-entropic areas < 75% of the surface) and does not 
have a peripheral rim.

• Mixed pattern: the lesion has a peripheral “hyper-
entropic” rim in combination with an inhomogeneous 
core, as defined above.

Patterns are detailed in Table 1. The most common pat-
tern was the peripheral rim (9 out of 20 cases), while the 

homogeneous one was detected only among the smallest 
metastases (size < 15 mm).

Superimposing the manually segmented Tumor-VOI 
to the entropy map, we observed some “hyper-entropic” 
areas extended beyond the Tumor-VOI contour in four 
cases (Fig. 4).

Quantitative Analysis

The global entropy of the Tumor-VOI computed with LifeX 
was 0.91 ± 0.08, higher than the entropy of the non-tumoral 
liver parenchyma (Liver-VOI, 0.75 ± 0.09, p < 0.001). 

Table 1  Patient’s characteristics and entropy patterns of the metasta-
ses at the qualitative analysis

Demographics and tumor characteristics N (%) – Median (range)

Age, years 63 (41–83)
Sex (M/F) 12 (60): 8 (40)
Primary tumor

  Colon/rectum 15 (75) / 5 (25)
  T3/4 16 (80)
  N+ 15 (75)

Liver metastases
  Size, mm 17 (10–57)
  Synchronous disease 15 (75)

Strategy in synchronous metastases
  Colon-first approach 10/15 (67)
  Liver-first approach 3/15 (20)
  Simultaneous hepatic/colo-rectal resec-

tion
2/15 (13)

Preoperative chemotherapy 20 (100)
  Oxaliplatin 13 (65)
  Irinotecan 6 (30)
  Oxaliplatin + Irinotecan 1 (5)
  +Anti-VEGF 5 (25)
  +Anti-EGFR 4 (20)

Cycles of chemotherapy 7 (4–32)
Radiological response

      Stable disease 7 (35)
      Partial response 13 (65)

Pathological response
      TRG 1–2 7 (35)
      TRG 3 1 (5)
      TRG 4–5 12 (60)

Qualitative analysis
Entropy pattern

      Homogeneous pattern 3 (15)
      Inhomogeneous 5 (25)
      Peripheral rim 9 (45)
            Complete 3 (15)
            Incomplete 6 (30)
      Mixed pattern 3 (15)
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Responders (TRG 1–3) had higher global entropy values 
than non-responders (0.96 ± 0.06 vs 0.88 ± 0.09; p = 0.020).

Of the 11 variables extracted from the histograms of 
the entropy maps, seven were associated with TRG (per-
centiles, 5th, p = 0.025; 25th, p = 0.010; 75th, p = 0.003; 
95th, p = 0.002; median, p = 0.006; mean, p = 0.006; RMS, 
p = 0.006), with stronger correlation than global Tumor-
VOI entropy. In detail, magnitude variables showed higher 
importance than variability indices, with higher values char-
acterizing responders over non-responders. Considering 
the histograms of the Hounsfield units extracted from each 
Tumor-VOI, no Hounsfield-derived variable was associated 
with the TRG. Data are summarized in Fig. 6 and Table 2.

Discussion

The present manuscript depicts a novel approach to advanced 
image analysis, aiming at the visualization of tumor entropy. 
The procedure was successfully applied to all patients. We 
were able to correctly identify the tumor and its margin 
within the entropy maps. In some cases, we even identified 
a discrepancy between the tumor-contour detected by the 
entropy maps and the one visible at CT. Entropy within the 
lesion was irregularly distributed and had different patterns. 
Finally, the quantitative analysis of the map showed consid-
erable discriminant power of entropy distribution—better 
than standard texture analysis or conventional parameters—
in predicting pathology data (i.e., TRG).

The textural analysis represents a major achievement of 
modern medical imaging. In several tumors, it allows the 
identification of clinically relevant biomarkers, based on 
invisible-to-eye pixel and voxel patterns, which improve the 

prediction of pathology and outcome data [1, 2]. Entropy is 
one of the most investigated textural features and, in CLMs, 
has been associated with radiological response to chemo-
therapy as well as prognosis [3, 15–18]. Nevertheless, radi-
omic features did not impact clinical practice yet because 
they are still felt as statistical and mathematical data lacking 
an immediate clinical significance. While the heterogeneity 
in the greyscale of Hounsfield units can be easily appreci-
ated, the entropy remains an abstract concept, even if it can 
catch some microscopic characteristics missed by standard 
imaging modalities [7]. We tried to overcome this limitation 
by building a colored map of entropy, disclosing differences 
between the tumor and liver parenchyma, and unveiling its 
intra-tumoral distribution.

In our pilot series, both the qualitative and quantitative 
information showed a potential connection with the clini-
cal and pathological domains. The visual inspection of the 
entropy maps allowed to identify the tumor in all patients as 
a “hyper-entropic” volume, which, in some cases, exceeded 
the tumor margins identified on the CT. The latter finding 
could correspond to well-known pathological data, i.e., the 
early regrowth of the metastases at their periphery after 
chemotherapy and the peritumoral micrometastases, which 
both dictate the need for a wide surgical margin [19, 20]. 
Furthermore, at qualitative analysis, we were able to char-
acterize intra-tumoral heterogeneity and catch focal levels 
of disorder: different entropic patterns emerged, even if the 
sample of patients was small. These patterns deserve fur-
ther investigation for their potential correspondence with a 
pathology/molecular profile. For instance, the peripheral rim 
might reflect the liver-tumor interface, which is the niche 
of major biomarkers (e.g., the tumor growth pattern and 
peritumoral immune infiltrate) and the battlefield for tumor 

Fig. 3  Comparison of the resec-
tion specimen (B, D), CT scan 
(A), and entropy maps (C, E). 
A patient with a colorectal liver 
metastasis located in segment 5. 
The entropy map provides accu-
rate identification of the tumor 
edges and necrotic tissue
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progression [21–23]. Different patterns could correspond 
to different tumor behavior requiring different surgical and 
oncological strategies. Intrahepatic vessels showed increased 
entropy as the tumor did but they can be easily identified by 
comparing the entropy map with the portal venous CT. In 
the future, the task of removing the vessel-related entropy 
component could be even automated.

Considering the quantitative analyses, the voxel-by-voxel 
evaluation of entropy provided relevant information. We 
performed a preliminary evaluation of the potential clini-
cal relevance of the current study by assessing the associa-
tion between the entropy maps and TRG. In the literature, 
RECIST criteria have limited capability to predict the patho-
logical response to chemotherapy [20, 24], while entropy [3, 
15–18] and tumor density (Hounsfield units) [13, 14] achieve 
better performances. The present study not only confirmed 

the poor reliability of the RECIST criteria but also demon-
strated that a detailed analysis of the intra-tumoral entropy 
maximizes the prediction of response, improving the one 
achieved by a single global entropic value and by Hounsfield 
units. A more accurate depiction of entropy has the potential 
to grant a deeper comprehension of tumor biology.

We herein introduce a user-friendly approach to radiomic 
analyses with their visual representation. It can be theoreti-
cally applied to all textural features, to different imaging 
modalities, and to different tumors, not only the hepatic 
ones. The entropy maps could be superimposed to the CT 
and read in fusion mode, as currently done for PET-CT. Sev-
eral clinical implications can be anticipated. We moved the 
task of radiomics interpretation within a “comfort zone” for 
the clinicians, making the spatial heterogeneity of entropy 
discernible. This opens the way to an easy association of 

Fig. 4  Discrepancies of the tumor boundaries between CT scan and entropy map. In a colorectal liver metastasis located in segment 8, the 
entropy map showed “hyper-entropic” areas extending beyond the border of the lesion detected on the CT scan
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Fig. 5  Patterns of entropy distribution into the tumors. After qualita-
tive analysis, four different patterns of distribution of entropy were 
identified: a homogeneous; b inhomogeneous; c peripheral rim; d 

mixed distribution. CT scan (first column), entropy map (second col-
umn), and schematic representation of the patterns are reported
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Fig. 6  Results of quantitative analysis. Analysis of the distributional 
variables extracted from the histogram of CT scan (Hounsfield-
derived, lower box) and entropy maps (upper box). Patients with and 
without pathological tumor response to chemotherapy were compared 
(responders, TRG 1–3, orange bars; non-responders, TRG 4–5, blue 

bars). Seven variables extracted from the histograms of entropy maps 
were significantly associated with the response to chemotherapy. 
No Hounsfield-derived variable was associated with the response to 
chemotherapy. RMS, root mean square 
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textural features with the pathology data and could help 
modern oncology to pursue a precision medicine approach. 
In fact, the non-invasive assessment of tumor heterogeneity 
is crucial to optimize and personalize the treatment strategy 
[25, 26] but is still an unmet need. The quantitative analysis 
of the map could provide new radiomic-based biomarkers. 
The analysis of liver entropy could even be used to spot 
lesions in their earliest stages when they have not caused 
structural changes yet. Despite the promising results of our 
study, some limitations have to be acknowledged: reproduc-
ibility is still under testing; clinical implications remain to 
be proved; further investigations with more complex models 
and a larger cohort of subjects are needed. Moreover, the 
integration of further parameters, such as tumoral perfusion 
[27], and a dynamic assessment of entropy, e.g., before and 
after systemic therapy, could improve the capability of the 
method to stratify the lesions even further.

Conclusion

In conclusion, this approach could represent the new frontier 
of non-invasive evaluation of tumor biology and be a cru-
cial step toward the clinical application and interpretation 
of radiomics.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10278- 023- 00799-9.

Author Contribution All authors contributed to the study conception 
and design. Material preparation, data collection and analysis were per-
formed by Guido Costa, Lara Cavinato, Francesco Fiz, Martina Sollini, 
Luca Viganò, and Francesca Ieva. The first draft of the manuscript was 
written by Guido Costa, Lara Cavinato, Francesco Fiz, and Martina 
Sollini; all authors commented on previous versions of the manuscript. 
All authors read and approved the final manuscript.”

Funding The present study was funded by the AIRC (Italian Asso-
ciation for Cancer Research) grant #2019 − 23822 (PI: Luca Viganò).

Data Availability Data are available and can be obtained from the cor-
responding author upon reasonable request.

Declarations 

Ethics Approval This study was performed in line with the principles of 
the Declaration of Helsinki. Approval was granted by the Ethics Com-
mittee of the Humanitas Research Hospital (protocol #83/20).

Consent to Participate Because of the retrospective design of the 
study, specific written informed consent was waived by the Institu-
tional Review Board.

Consent to Publish No individual details, images or videos are 
included in the present manuscript. Accordingly, no informed consent 
for publication of the images was needed.

Competing Interests We state that there are no personal conflicts of 
interest of any of the authors pertinent to the present manuscript. Con-
sidering the conflicts of interest in general, we state that: Luca Viganò 
received speaker’s honoraria from Johnson & Johnson. Arturo Chiti 
received speaker’s honoraria from the following companies: Advanced 
Accelerator Applications, General Electric Healthcare, Sirtex Medical 
Europe, AmGen Europe, travel grants form General Electric Healthcare 
and Sirtex Medical Europe; he is a member of Blue Earth Diagnostics’ 
and Advanced Accelerator Applications’ advisory boards and received 
scientific support, in terms of a three-year Ph.D. fellowship, from the 
Sanofi Genzyme. Francesco Fiz acts as a consultant for the MSD Sharp 
& Dohme GmbH (LLC).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 

Table 2  Analysis of the 
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TRG 1–3

Non-responders
TRG 4–5

P

Standard entropy measurement (whole tumor)
Global entropy 0.91 0.96 0.88 0.020
Entropy map measurement
Mean (Std. Dev.) 3.65 (0.12) 3.71 (0.11) 3.59 (0.12) 0.006
Median 3.66 3.71 3.59 0.006
Variance 0.014 0.013 0.015 0.508
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