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Abstract 

Background. Evidence highlights the epidemiological value of DNA methylation (DNAm) for 

predicting cardiovascular diseases (CVDs). DNAm surrogates of exposures and risk factors predict 

diseases and longevity better than self-reported or measured exposures in many cases. Composite 

biomarkers based on DNAm surrogates, ‘next-generation’ epigenetic clocks trained on time-to-death, 

constitute non-specific biomarkers representing the general health status rather than disease-specific 

signatures. Training a model on cardiovascular-specific risk factors may improve the identification of 

high-risk populations for CVD. 

Methods. We developed a DNAm-based biomarker predictive of short-term risk for CVD using a two-

step approach: 1) development and validation of novel DNAm surrogates for cardiovascular risk 

biomarkers; 2) development and validation of a DNAmCVDscore as a combination of DNAm 

surrogates. In an independent testing set, we compared the prediction performance of 

DNAmCVDscore with (a) the ‘next-generation’ epigenetic clock DNAmGrimAge, (b) a DNAm score 

for CVD derived through a single-step approach, MRS, and (c) the current state-of-the-art prediction 

model based on traditional CVD risk factors, SCORE2. 

Results. We presented novel DNAm surrogates for BMI, blood pressure, fasting glucose and insulin, 

cholesterol, triglycerides, and coagulation biomarkers, validated in independent datasets. Further, we 

derived a DNAmCVDscore outperforming the model based on traditional CVD risk factors and other 

epigenetic biomarkers for predicting short-term cardiovascular events. 

Conclusions. We provided novel DNAm surrogates useful for future epidemiological research, and 

we described a DNAm based composite biomarker, DNAmCVDscore, predictive of short-term CVD. 

Our results highlight the usefulness of DNAm surrogate biomarkers of risk factors and exposures to 

identify high-risk populations. 
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Key messages:  

• We provided novel blood DNA methylation (DNAm) surrogates for cardiovascular risk factors 

(BMI, cholesterol, triglycerides, fasting glucose and insulin, inflammation and coagulation 

biomarkers) useful for future epidemiological research. 

• We developed a new blood composite biomarker, DNAmCVDscore, outperforming models 

based on traditional cardiovascular risk factors for predicting short-term cardiovascular events 

(within seven years after blood-collection or less). 

• Predictive models based on a two-step training strategy led to more reliable and robust 

biomarkers for identifying high-risk populations for non-communicable and age-related 

diseases. 

• We encourage testing this two-step approach for predicting other non-communicable and 

age-related diseases (cancer, mental diseases, neurodegenerative diseases, respiratory 

problems, hearing and taste loss, etc.) by training and developing DNAm surrogates for 

disease-specific risk factors and exposures. 

 

Introduction 

Emerging epidemiological evidence indicates that composite scores based on blood DNA methylation 

(DNAm) at different CpG sites are valuable biomarkers to predict complex traits and identify high-risk 

populations.1–4 DNAm scores are usually built modelling the association of CpG sites with the trait or 

disease of interest via epigenome-wide association studies (EWAS). However, EWAS suffer from a 

lack of replication in independent datasets,5 with few exceptions like the well-known DNAm CpGs 

associated with smoking.6,7 Further, it is unclear how the disease risk tracked by DNAm is 
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complementary or redundant with other risk factors for non-communicable diseases (NCDs). In fact, 

the inclusion of DNAm scores in prediction models often leads to null or marginal prediction 

improvement compared with traditional models based on classical risk factors like the Framingham 

Risk Score and SCORE2 for cardiovascular diseases (CVD).1,4,8–10  

In contrast, it has been consistently shown that DNAm scores for estimating individual biological age, 

named epigenetic clocks,11–15 are associated with several risk factors for NCDs (smoking, alcohol 

intake, low physical activity, obesity, socio-economic position, and job characteristics),16,17 and 

perform very well for predicting ageing-related diseases and all-cause mortality.18,19 These results may 

be explained by how ‘next-generation’ epigenetic clocks like DNAmPhenoAge and DNAmGrimAge 

have been built.11,12 Contrary to classical DNAm scores for NCDs, ‘next-generation’ epigenetic clocks 

used a two-step approach: 1) development of DNAm surrogates for NCDs risk factors and biomarkers 

associated with all-cause mortality; 2) development of DNAm epigenetic clocks as a weighted 

combination of DNAm surrogates. Such a procedure leads DNAm composite scores to be more 

reliable and reproducible across different cohorts. The best performing epigenetic clock, called 

DNAGrimAge, incorporates DNAm scores for seven circulating proteins and smoking pack-years, and 

has been consistently associated with longevity and numerous age-related diseases, and functional and 

cognitive outcomes.11,18 Other examples of DNAm surrogate of exposures and risk factors include the 

DNAm biomarkers by Colicino and colleagues for cumulative lead exposure,20 the one by Marioni and 

colleagues for several longevity-related and inflammatory proteins,21–23 and the classification by Guida 

and colleagues of current, former (including time since smoking cessation) and never smokers based 

on blood DNAm biomarkers.7 

DNAm surrogates can outperform original exposure measurements in predicting diseases in 

association studies. For example, Zhang and colleagues show that a combination of smoking-

associated DNAm markers predicts lung cancer incidence better than self-reported smoking.24 In 
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addition, Green and colleagues suggest that a DNAm proxy for C-reactive protein (CRP) predicts 

structural neuroimaging brain measures better than blood measured CRP.25 DNAm characteristics 

can explain these counter-intuitive results: 1) DNAm is a more reliable biomarker than self-reported 

exposure (i.e., in the case of smoking or other exposures measured through self-reported 

questionnaires); 2) DNAm variability includes individual genetic and metabolic profiles that can 

influence individual response to exposure and stressors (i.e., the same amount of exposure can be more 

or less dangerous based on genetic profile and general state of health); 3) DNAm variations reflect 

long-term exposures and, in some cases, are more stable in time (i.e. in the case of inflammatory status, 

one of the best blood biomarkers, CRP, has several fluctuations within a single day). 

Because of the way ‘next-generation’ epigenetic clocks have been built (e.g., trained on a set of 

biomarkers associated with longevity), they are non-specific biomarkers that mirror an individual 

general state of health rather than risk for specific diseases. This study aims to evaluate the possibility 

of developing disease-specific blood DNAm biomarkers, training a DNAm score on disease-specific 

exposure and risk factors (rather than on all-cause mortality, as it has been done for ‘next-generation’ 

epigenetic clocks). Specifically, we aim to: 1) develop a DNAm composite biomarker for predicting 

cardiovascular events trained on CVD-specific risk factors, and 2) to compare its predictive 

performance for incident CVD events with (a) the ‘next-generation’ epigenetic clock DNAmGrimAge; 

(b) a DNAm score for CVD based on a single-step approach developed by Fernández-Sanlés et al., 

named methylation risk score (MRS);1 and (c) a prediction model based on traditional CVD risk factors 

(chronological age, sex, diabetes status, smoking, systolic blood pressure, total and HDL cholesterol 

levels), named SCORE2.10  

We selected the most relevant DNAm surrogates for our purpose among those already available from 

the literature11,20,21 or newly developed within this study. The initial set of candidate DNAm surrogates 

includes 60 biomarkers for smoking pack-years, alcohol consumption, obesity indexes, blood 
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pressure, insulin, glucose, blood coagulation biomarkers, cholesterol levels, and several blood-

measured (mainly inflammatory) proteins. Our procedure derived a blood DNAm biomarker named 

‘DNAmCVDscore’ predictive of short-term cardiovascular events as a combination of ten DNAm 

surrogates, outperforming current state-of-the-art prediction models based on traditional CVD risk 

factors and DNAm scores based on single-step approaches. Finally, since COVID-19 has several risk 

factors in common with CVD risk, we investigated the association of DNAmCVDscore with COVID-

19 susceptibility and severity in an independent case-control study. 

 

Methods 

Study sample 

This study sample includes DNAm data from five studies described previously,17,18,26–29 and 

summarised in Table 1.  

EPIC Italy, the training set, contains 1,803 individuals (62% women), age range from 35 to 75 years, 

including 295 (16.4%) incident CVD cases. The average (standard deviation) time from recruitment 

to CVD events was 7.6 (3.8) years. The average (standard deviation) follow-up time was 11.3 (5.6) 

years.  

EXPOsOMICS CVD is a case-control study nested in the EPIC Italy cohort, including 160 incident 

CVD cases and age- and sex-matched controls (not overlapping with EPIC Italy sample), age range 

from 35 to 70 years (53% women). The average (standard deviation) time from recruitment to CVD 

events was 9.6 (3.9) years. The average (standard deviation) follow-up time was 12 (4) years.  

TILDA includes data for 490 individuals, originally selected to investigate the association of 

epigenetic biomarkers of biological ageing with intergenerational socio-economic trajectories, with 

individuals equally distributed among four socio-economic categories, age range from 50 to 80 years 

(50% women). 
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The United Kingdom Household Panel Study (UKHLS), also known as Understanding Society, is an 

ongoing longitudinal, nationally representative study of the UK, designed as a two-stage stratified 

random sample of the general population. The data used here consist of two pooled cross-sectional 

waves (waves 2 and 3), age range from 28 to 98 years (59% women).  

GSE174818 contains data for 101 COVID-19 cases and 27 age- and sex-matched controls 

hospitalised with respiratory symptoms, ranging from 21 to 90 years (40% women). 

Details of participant recruitment, relevant covariate acquisition, and laboratory methods for DNAm 

measuring, pre-processing and normalisation procedures are described in Supplementary Material. 

 

Statistical analyses 

In Figure 1, we present the analytical flowchart summarising the main steps for developing the 

DNAmCVDscore:  

1) Develop and validate novel DNAm surrogate biomarkers (training set: EPIC Italy study; testing sets: 

EXPOsOMICS CVD, Understanding Society, TILDA, and GSE174818 studies) through LASSO 

regularisation for linear regression model. 

2) Develop the DNAmCVDscore (training set: EPIC Italy study; 60 candidate DNAm surrogate 

biomarkers) through elastic net for Cox proportional hazards model. 

3) Validation of the DNAmCVDscore (testing set: EXPOsOMICS CVD study) investigating its 

prediction performance through ROC curve analysis, right censoring follow-up data at different time 

points. 

4) Comparison of DNAmCVDscore, MRS, SCORE2, and DNAmGrimAge predictive value. 

The analytical details for each step are presented in Supplementary Material. 

 

Results 
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Estimation and validation of DNAm surrogates. We developed DNAm surrogates for body mass index 

(BMI), systolic and diastolic blood pressure, and ten blood measured biomarkers. In Table 2, we 

report the number of CpGs whose linear combination best predicted the corresponding marker and 

the Pearson correlation coefficients of observed (measured) vs predicted (DNAm surrogate) in the 

EPIC Italy testing set (25% of the total sample). The correlation of DNAm surrogates with the 

corresponding measured marker was always higher than 0.4 (all P-values lower than 0.0001), ranging 

from 0.43 (DNAmPAI-1 vs PAI-1) to 0.73 (DNAmTriglycerides vs triglycerides). Further, in Table 

2, we report the Pearson correlation coefficients of observed vs predicted values computed in the four 

validation datasets. The correlation of DNAm surrogates with the corresponding measured marker was 

always positive, ranging from 0.08 (DNAmHDL vs HDL cholesterol) to 0.44 (DNAmInsulin vs 

insulin). The P-value was lower than 0.05 for all but D-dimer, diastolic blood pressure, LDL 

cholesterol, and total cholesterol. Based on the above, we validated nine (out of 13) DNAm surrogates 

for BMI, CRP, fasting glucose and insulin, HDL cholesterol, triglycerides, PAI-1, Platelet tissue factor 

(CD142), and systolic blood pressure. 

Comparison with previously developed DNAm surrogates. We compared our newly developed DNAm 

surrogates with previously developed DNAm surrogates for HDL cholesterol, BMI,21 and PAI-1.11 

The Pearson correlation coefficients of our DNAm surrogates with those previously developed were 

0.31 (P < 0.0001), 0.45 (P < 0.0001), and 0.36 (P < 0.0001) for HDL cholesterol, BMI, and PAI-

1, respectively. 

Development and validation of the DNAmCVDscore. We developed a combined score, 

DNAmCVDscore, predictive of future CVD events by regressing the time to CVD event on 60 DNAm 

surrogates previously described. The elastic net Cox regression model selected chronological age, sex, 

and DNAm surrogates for blood measured glucose, HDL cholesterol, systolic blood pressure, PAI-1, 

CRP (developed within this study), Serine/threonine-protein kinase receptor 3 (SKR3) and 
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hepatocyte growth factor (HGF) (developed in Hillary et al.21) growth differentiation factor 15 

(GDF15) protein, smoking pack-years (developed in Lu et al.11), and lead level measured in patella 

bone (developed in Colicino et al.20). Table 3 shows the coefficients extracted from the elastic net 

model, representing weights for computing the DNAmCVDscore. Since our validation dataset is a 

case-control study matched for chronological age and sex, we deliberately chose not to include 

chronological age and sex in the DNAmCVDscore and test its prediction performance in logistic 

regression models adjusted for chronological age and sex. All the biomarkers but DNAmHDL have a 

positive regression coefficient (higher risk associated with higher values). The linear combination of 

standardised values for the ten DNAm surrogates listed in Table 3 can be interpreted as a standardised 

(within the population in which it is computed) CVD risk score (named DNAmCVDscore). 

In the independent test set (EXPOsOMICS CVD dataset), we computed the DNAmCVDscore based 

on the coefficients derived in the training set, and we compared its predictive performance with those 

of MRS, SCORE2 and DNAmGrimAge through ROC curve analysis of logistic regression models 

adjusted for age, sex, and centre of recruitment (matching parameters for the EXPOsOMICS CVD 

case-control study). In Table 4 and Figure 2, we present the area under the ROC curve (AUC), 

sensitivity, and specificity (best threshold selected according to the minimum distance from the top left 

corner of the ROC curve) of the four composite biomarkers at different time points. For all the 

epigenetic biomarkers DNAmCVDscore, MRS, and DNAmGrimAge, the AUC increases as the follow-

up time decreases, suggesting that epigenetic biomarkers predict short-term events rather than long-

term CVD risk (Table 4 and Figure 2). Contrarily, the AUC for SCORE2 was not time-dependent, 

ranging from 0.678 (seven years follow-up) to 0.785 (four years follow-up). The MRS had the worst 

performance independently of the follow-up length (Table 4 and Figure 2). SCORE2 outperforms 

epigenetic biomarkers in predicting CVD events considering follow-up time from 18 to eight years. 

However, right censoring the follow-up time at seven years or less, DNAmCVDscore and 
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DNAmGrimAge perform better than SCORE2, with DNAmCVDscore having a slightly higher AUC 

than DNAmGrimAge (Table 4 and Figure 2). 

Additional results about sensitivity analyses, the correlation of DNAmCVDscore with epigenetic 

clocks, and the association of DNAmCVDscore with COVID-19 case-control status and severity are 

reported in Supplementary Material. 

 

Discussion 

Emerging evidence highlights the epidemiological value of composite scores based on blood DNAm 

surrogates of exposures and risk factors, e.g., epigenetic clocks, associated with non-communicable 

diseases (NCDs) and predictive of mortality.19 However, since ‘next-generation’ epigenetic clocks 

have been trained on time to death, they constitute non-specific biomarkers, representative of the 

general individual state of health, rather than disease-specific biomarkers. In this work, we present a 

combined blood DNAm based biomarker for predicting future cardiovascular events, named 

DNAmCVDscore. To the best of our knowledge, this is the first example of a disease-specific 

biomarker using molecular data only, without the need for additional information (other than age and 

sex) about the personal history of exposure, general state of health, lifestyle habits, and other 

commonly used biomarkers. This may be important for future risk prediction avoiding invasive and 

expensive procedures. Also, a predictive score based on a single experiment reduces the possibility of 

measurement errors and bias due to self-reported exposure to risk factors. For this aim, DNAm based 

biomarkers are optimal candidates because DNAm is strongly influenced by long-term exposures, 

genetic susceptibility, and lifestyle habits.30 In other words, it is possible to extract information about 

the history of exposures and susceptibility to complex diseases from whole-genome DNAm data with 

high accuracy. 
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We applied a two-step approach, following the successful example of the epigenetic clocks. First, we 

developed and validated nine novel DNAm surrogates for CVD risk factors: systolic blood pressure, 

BMI, CRP, fasting glucose and insulin, HDL cholesterol, triglycerides, PAI-1, and platelet tissue 

factor (a.k.a. CD142 protein). We provided an R script for generating the new DNAm surrogates in 

independent datasets for future epidemiological research in the Supplementary material. Then, we 

developed a DNAmCVDscore starting from 60 candidate DNAm surrogates (nine newly developed 

within this study plus 51 from previous literature), including surrogate measures for the main risk 

factors for CVDs (obesity, smoking habits, alcohol consumption, inflammatory proteins, lipid levels, 

blood pressure, coagulation biomarkers). Our elastic net model extracted ten DNAm surrogate 

biomarkers whose linear combination constitutes the so-called DNAmCVDscore: fasting glucose, 

HDL cholesterol, systolic blood pressure, smoking pack-years, lead exposure and blood levels of PAI-

1, CRP, SKR3, HGF, and GDF15 proteins. We validated the ability of the DNAmCVDscore to predict 

future cardiovascular events in an independent prospective case-control study (EXPOsOMICS CVD). 

This dataset matches incident CVD cases with healthy controls by age, sex, recruitment centre, and 

length of follow-up using the incident density sampling method. We showed that existing prediction 

models based on traditional CVD risk factors (SCORE2,10 based on chronological age, sex, diabetes, 

smoking, systolic blood pressure, total and HDL cholesterol) outperform epigenetic biomarkers for 

predicting long-term CVD risk according to the AUC measure. However, DNAmCVDscore predicts 

short-term (seven years follow-up or less) CVD risk better than SCORE2. According to the AUC 

measure, the prediction performance of DNAmCVDscore and DNAmGrimAge was comparable 

(slightly higher for DNAmCVDscore for short-term events). This is not unexpected considering that 

four out of ten components of the DNAmCVDscore are in common with DNAmGrimAge (DNAmCRP, 

DNAmPAI1, DNAmPackYears, and DNAmGDF15), and the Pearson correlation coefficient for the 

two epigenetic biomarkers is R = 0.56 (P < 0.0001). It is interesting to observe such commonalities 



12 
 

among DNAmGrimAge and DNAmCVDscore even if the first was trained on all-cause mortality, 

whereas the second was trained on the time to cardiovascular events. These results confirm previous 

research indicating that heightened inflammation (associated with all the four components common in 

the two scores) plays a major role in biological ageing and the risk of age-related diseases, including 

CVDs.31 Finally, we showed that the MRS, built directly modelling the association of CpGs on CVD 

risk using a single-step approach, had the worst prediction performance independently of the length 

of follow-up. 

The results described above suggest that blood DNAm predictor of diseases may be improved. For 

example, the DNAmCVDscore can be ameliorated in different ways: i) more DNAm surrogates, such 

as surrogate measures for air pollution exposure, physical activity, dietary quality (e.g., adherence to 

the Mediterranean diet or consumption of ultra-processed food)32–35 should be developed and 

included among the list of candidates in the training model; ii) refined statistical methods can be used 

to improve DNAm biomarkers reproducibility and reducing noise due to unmeasured batch effect;36,37 

iii) increasing the sample size of the training set by combining data from multiple cohorts and different 

countries, possibly modelling country-specific risk factors to improve results generalizability. 

Also, we showed that, although DNAmCVDscore is not directly trained on age, it is correlated with 

chronological age (R = 0.41, P < 0.0001) and epigenetic clocks. These results further support the 

idea that susceptibility due to increasing ageing is included in the DNAmCVDscore, even if 

chronological age (or epigenetic clocks) does not directly contribute to it. Further, we demonstrated 

the usefulness of DNAm surrogate biomarkers in investigating COVID-19 susceptibility and severity, 

showing that DNAmBMI was associated with case-control status, while measured BMI was not, and 

that DNAmCRP outperformed blood measured CRP in predicting disease severity. Finally, we showed 

that DNAmCVDscore is higher in COVID-19 patients than in controls (hospitalised with respiratory 

problems) and that a higher DNAmCVDscore is associated with a worse prognosis (according to the 
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GRAM score) after COVID-19 infection. These results support recent literature suggesting COVID-

19 shares direct and indirect determinants (i.e., ethnicity, socio-economic status) with other NCDs, 

supporting the concept of COVID-19 as a syndemic38,39 with implications for restrictions and 

prevention strategies. 

 

Study limitations and conclusions 

We developed a combined biomarker as a linear combination of DNAm surrogates, named 

DNAmCVDscore, with high performance in predicting short-term cardiovascular events 

outperforming current state-of-art CVD prediction models based on traditional risk factors, and 

DNAm scores based built using a single-step approach. This work has limitations. Both the training 

and testing sets for the time from recruitment to the cardiovascular events come from Italian population 

studies, and the predictive performance for long-term CVD was poor. Further, we deliberately chose 

not to include the effect of chronological age and sex in the DNAmCVDscore because of the different 

study designs of the training and validation datasets. We discussed previously how DNAmCVDscore 

could be refined by re-training the model after increasing the sample size and using updated analytical 

methods. However, this work provides a proof of concept about the effectiveness of the described 

methodology based on DNAm surrogate biomarkers. Developing biomarkers for screening, entirely 

based on blood data, without the need for additional information or invasive measurements, would be 

significant for disease burden from a public health perspective. Also, our results encourage testing this 

approach for other NCD diseases (cancer, mental diseases, neurodegenerative diseases, respiratory 

problems, hearing and taste loss, etc.) by training and developing DNAm surrogates for disease-

specific risk factors and exposures. 
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Figure legends 

 

Figure 1. Flowchart for development and validation of DNAmCVDscore 

Step 1: We train prediction models for developing DNAm surrogates for 13 CVD risk 

factors/biomarkers using data from the EPIC Italy study (n=1,803). We tested the validity of DNAm 

surrogates in four independent studies (n=2,107). Nine out of 13 DNAm biomarkers were validated 

in the testing set. 

Step 2: 60 candidate DNAm surrogates (nine newly developed + 51 from the literature) were 

regressed against the time from recruitment in the study to cardiovascular event in EPIC Italy 

(n=1,803). The elastic net regression model selected ten DNAm surrogates as components of the 

DNAmCVDscore.  

Step 3: In EXPOsOMICS CVD dataset (n=315), we evaluated the prediction performance of 

DNAmCVDscore at different time points (right censoring follow-up time) using logistic regression 

models adjusted for chronological age, gender, and centre of recruitment (matching variables in 

EXPOsOMICS CVD). DNAmCVDscore has a higher AUC for short-term cardiovascular events than 

for long-term CVD. 
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Step 4: We compared the prediction performance of DNAmCVDscore with previously developed 

composite biomarkers: MRS, DNAmGrimAge, and SCORE2. SCORE2 outperforms epigenetic 

predictors for long-term CVD risk (occurred more than eight years after recruitment), whereas 

DNAmCVDscore predicts short-term events (occurred within seven years after recruitment) better 

than other biomarkers. 

 

 

Figure 2. Comparison of the prediction performance of DNAmCVDscore, MRS, 

DNAmGrimAge, and SCORE2 

Area under the ROC curve (AUC), on the y-axis, as a function of the follow-up length (x-axis) for the 

four composite biomarkers investigated in this study. MRS has the worst prediction performance at 

each time points. SCORE2 outperforms epigenetic predictors for long-term CVD risk (occurred more 

than eight years after recruitment), whereas DNAmCVDscore and DNAmGrimAge predict short-term 

risk (CVD events within seven years after recruitment or less) better than the other biomarkers.
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Tables 
Table 1: Study sample descriptive table. 

Study name Description Country N Age means (min; 
max) 

Female 
% Training/Testing set 

EPIC Italy Italian sub-sample of the European Investigation into 
Cancer and Nutrition study Italy 1,803 53.3 (34.7; 74.9) 62% Training set for DNAm surrogates and 

DNAmCVDscore 

EXPOsOMICS 
CVD 

Case-control study on CVD nested in the EPIC Italy 
cohort Italy 315 54.9 (35.2; 69.3) 53% Validation set for DNAm surrogates and 

DNAmCVDscore 
Understanding 

Society The United Kingdom Household Panel Study (UKHLS) UK 1,174 58.0 (28.0; 98.0) 59% Validation set for DNAm surrogates 

TILDA The Irish Longitudinal Study on Ageing Ireland 490 62.1 (50.0; 80.0) 50% Validation set for DNAm surrogates 

GSE174818 Case-control study on COVID-19 susceptibility and 
progression USA 127 61.8 (21.0; 90.0) 40% Validation set for DNAm surrogates 
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Table 2: List of newly developed DNAm surrogate biomarkers. For each candidate marker, we reported: the model used to extract significant CpGs (LASSO 

or mixed effect LASSO depending on the association with the centre of recruitment), the number of CpGs whose linear combination constitute the best marker 

prediction, the Pearson correlation coefficient and p-value in the primary test set (random 25% of EPIC Italy samples), the Pearson correlation coefficient and 

p-value in independent test sets (random effect meta-analysis across studies). Nine out of 13 DNAm surrogates for CVD risk factors/markers were validated 

in independent testing set (p-value for the Pearson correlation test lower than 0.05). R script to compute DNAm surrogates in independent datasets (together 

with the list of CpGs) is provided in the Supplementary material. 

Model training, EPIC Italy training set, n=1,352 Results on EPIC ITALY test 
set n=451 Results on the validation set 

Risk 
factor/biomarker Model type Number of 

CpGs Pearson R P Validation datasets (N) Pearson 
R P Validated DNAm 

surrogate 

BMI Mixed-effect LASSO 405 0.59 <0.0001 US, TILDA, EXPOsOMICS, 
GSE174848 (2,045) 0.27 <0.0001 Yes 

CRP LASSO 265 0.57 <0.0001 US, TILDA, EXPOsOMICS, 
GSE174849 (1,893) 0.23 <0.0001 Yes 

D-dimer LASSO 483 0.72 <0.0001 EXPOsOMICS, GSE174848 
(248) 0.17 0.56 No 

Diastolic blood pressure Mixed-effect LASSO 401 0.57 <0.0001 EXPOsOMICS, TILDA (772) 0.10 0.36 No 

Glucose Mixed-effect LASSO 354 0.67 <0.0001 EXPOsOMICS, TILDA, US 
(1,810) 0.28 0.007 Yes 

HDL cholesterol Mixed-effect LASSO 151 0.58 <0.0001 EXPOsOMICS, TILDA, US 
(1,829) 0.08 0.001 Yes 

Insulin Mixed-effect LASSO 574 0.66 <0.0001 EXPOsOMICS (170) 0.44 <0.0001 Yes 
LDL cholesterol Mixed-effect LASSO 368 0.62 <0.0001 EXPOsOMICS, TILDA (661) 0.15 0.36 No 

PAI-1 LASSO 90 0.43 <0.0001 EXPOsOMICS (171) 0.28 0.0001 Yes 
Systolic blood pressure Mixed-effect LASSO 275 0.64 <0.0001 EXPOsOMICS, TILDA (772) 0.28 0.001 Yes 
Tissue Factor (CD142) Mixed-effect LASSO 197 0.62 <0.0001 EXPOsOMICS (171) 0.16 0.03 Yes 

Total Cholesterol Mixed-effect LASSO 257 0.53 <0.0001 EXPOsOMICS, TILDA, US 
(1,830) 0.13 0.14 No 

Triglycerides LASSO 471 0.73 <0.0001 EXPOsOMICS, TILDA (661) 0.22 0.0003 Yes 
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Table 3: DNAm surrogates composing the DNAmCVD score. DNAmCVDscore is computed as a linear combination of standardised (mean=0, variance=1) 

DNAm surrogates with weights listed in the coefficient column. All biomarkers but DNAmHDL have positive coefficients (higher CVD risk associated with a 

higher value for the biomarker). 

Study DNAm surrogate biomarker DNAmCVDscore coefficient Original biomarker/risk factor 
This study DNAmGlucose 0.0329 Blood glucose 
This study DNAmHDL -0.4473 Blood HDL cholesterol 
This study DNAmSBP 0.1420 Systolic blood pressure 
This study DNAmCRP 0.0276 Blood C-reactive protein 
This study DNAmPAI1 0.1679 Blood Plasminogen activator inhibitor 1 

Hillary et al. 2020 DNAmSKR3 0.0362 Blood Serine/threonine-protein kinase receptor R3 
Hillary et al. 2020 DNAmHGF 0.0371 Blood Hepatocyte growth factor 

Colicino et al. 2021 DNAmLeadPatella 0.0402 Lead levels in Patella’s bone 
Lu et al. 2019 DNAmGDF15 0.0947 Blood Growth Differentiation Factor 15 
Lu et al. 2019 DNAmPACKYRS 0.1192 Smoking pack years 
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Table 4: Results from the ROC curve analyses. For each composite biomarker, we report the AUC (95% CI), sensitivity and specificity according to the best 

threshold (minimising the distance from the top left corner of the ROC curve) derived from logistic regression model adjusted for matching parameters (age, 

sex, and centre of recruitment). Predictive performance was evaluated at different time points, right-censoring the follow-up time in the range of 18 to two 

years, with one year interval. The highest AUC for each time point is highlighted in red. 

Follow-up time # events 
DNAmCVDscore DNAmGrimAge SCORE2 MRS 

AUC (95% CI) sensitivity; 
specificity AUC (95% CI) sensitivity; 

specificity AUC (95% CI) sensitivity; 
specificity AUC (95% CI) sensitivity; 

specificity 

18 years  160 0.525 (0.461; 0.589) 0.477; 0.580 0.569 (0.505; 0.632) 0.647; 0.482 0.749 (0.696; 0.803) 0.719; 0.698 0.484 (0.420; 0.548) 0.523; 0.500 
17 years  159 0.527 (0.463; 0.591) 0.520; 0.553 0.562 (0.498; 0.626) 0.669; 0.472 0.753 (0.700; 0.806) 0.753; 0.671 0.516 (0.452; 0.580) 0.545; 0.484 
16 years  158 0.527 (0.463; 0.591) 0.513; 0.554 0.559 (0.496; 0.623) 0.583; 0.572 0.751 (0.698; 0.805) 0.718; 0.692 0.527 (0.463; 0.591) 0.449; 0.610 
15 years  149 0.541 (0.477; 0.604) 0.518; 0.577 0.560 (0.496; 0.623) 0.681; 0.450 0.739 (0.684; 0.794) 0.741; 0.671 0.536 (0.472; 0.600) 0.509; 0.477 
14 years  139 0.567 (0.504; 0.630) 0.483; 0.662 0.581 (0.518; 0.644) 0.494; 0.662 0.730 (0.674; 0.786) 0.705; 0.691 0.573 (0.509; 0.636) 0.682; 0.475 
13 years  123 0.595 (0.531; 0.659) 0.625; 0.537 0.592 (0.528; 0.656) 0.526; 0.667 0.720 (0.663; 0.777) 0.662; 0.699 0.595 (0.531; 0.659) 0.531; 0.650 
12 years  111 0.596 (0.530; 0.662) 0.529; 0.649 0.594 (0.529; 0.659) 0.510; 0.694 0.709 (0.650; 0.768) 0.588; 0.775 0.592 (0.525; 0.658) 0.588; 0.613 
11 years  95 0.622 (0.554; 0.690) 0.536; 0.705 0.618 (0.549; 0.686) 0.568; 0.663 0.693 (0.630; 0.755) 0.582; 0.758 0.610 (0.540; 0.680) 0.536; 0.695 
10 years  84 0.622 (0.551; 0.693) 0.580; 0.607 0.619 (0.548; 0.691) 0.576; 0.631 0.700 (0.636; 0.765) 0.550; 0.845 0.602 (0.530; 0.673) 0.541; 0.667 
9 years   67 0.647 (0.571; 0.722) 0.601; 0.612 0.645 (0.569; 0.721) 0.649; 0.582 0.683 (0.611; 0.754) 0.609; 0.746 0.623 (0.546; 0.700) 0.581; 0.627 
8 years   55 0.687 (0.611; 0.762) 0.569; 0.709 0.676 (0.601; 0.752) 0.627; 0.673 0.692 (0.618; 0.766) 0.623; 0.746 0.638 (0.554; 0.722) 0.635; 0.618 
7 years   37 0.711 (0.626; 0.796) 0.615; 0.703 0.707 (0.625; 0.789) 0.554; 0.811 0.678 (0.587; 0.770) 0.622; 0.703 0.668 (0.566; 0.770) 0.669; 0.622 
6 years   28 0.778 (0.702; 0.854) 0.673; 0.786 0.771 (0.688; 0.853) 0.634; 0.821 0.753 (0.668; 0.839) 0.686; 0.786 0.730 (0.616; 0.844) 0.669; 0.750 
5 years   23 0.774 (0.695; 0.853) 0.623; 0.826 0.773 (0.694; 0.851) 0.634; 0.826 0.761 (0.665; 0.856) 0.723; 0.783 0.735 (0.618; 0.852) 0.688; 0.783 
4 years   16 0.823 (0.746; 0.899) 0.799; 0.688 0.821 (0.736; 0.906) 0.632; 0.938 0.785 (0.653; 0.917) 0.722; 0.875 0.783 (0.649; 0.917) 0.689; 0.875 
3 years   13 0.811 (0.720; 0.901) 0.642; 0.846 0.806 (0.724; 0.888) 0.652; 0.846 0.772 (0.620; 0.923) 0.772; 0.846 0.762 (0.628; 0.896) 0.768; 0.769 
2 years   7 0.851 (0.767; 0.935) 0.799; 0.857 0.842 (0.745; 0.939) 0.737; 0.857 0.751 (0.575; 0.926) 0.656; 0.857 0.717 (0.562; 0.872) 0.779; 0.571 
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Supplementary material for: ‘A blood DNA methylation biomarker for predicting short-term risk of cardiovascular events’ by Andrea Cappozzo1, 

Cathal McCrory2, Oliver Robinson3, Anna Freni Sterrantino3,4, Carlotta Sacerdote5, Vittorio Krogh6, Salvatore Panico7, Rosario Tumino8, Licia 

Iacoviello9,10, Fulvio Ricceri11,12, Sabina Sieri6, Paolo Chiodini13, Rose Anne Kenny2, Aisling O’Halloran2, Silvia Polidoro14, Giuliana Solinas15, Paolo 

Vineis3, Francesca Ieva1,16, Giovanni Fiorito2,3,15, * 

 

Subject recruitment, demographic/lifestyle variables acquisition and DNA methylation measurements 

EPIC Italy - Study participants were drawn from the Italian component of the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort,1 

a large general population cohort consisting of ~520,000 individuals, with standardized lifestyle and personal history questionnaires, measured 

anthropometric data and blood samples collected for DNA extraction. Smoking habits data were collected at study enrolment through the use of a 

questionnaire, and participants were categorized as ‘never’, ‘former’ and ‘current’ smokers. Height and weight were measured at enrolment with a 

standardized protocol, and body mass index (BMI) was calculated as the ratio between weight in kg and squared height in meters, treated as a continuous 

variable. Methods for measurements of blood pressure, cholesterol levels, triglycerides, and PAI1, D-dimer, and CRP are reported elsewhere.2 

This study sample includes individuals from five nested case-control studies on breast, colon, and lung cancer, lymphomas, and myocardial infarction.3,4 

Participants were sampled from the 47,749 participants of the EPIC Italy cohort and included 354 incident breast cancer cases, 169 incident colon cancer 

cases, 192 incident lung cancer cases, 72 incident lymphoma cases, 295 incident myocardial infarction cases and their 1,079 matched controls. Controls 

were individually matched on age (±5 years), sex, the season of blood collection, centre, and length of follow-up. Since the disease diagnoses were made years 
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after the blood draw, all the subjects were treated as healthy at recruitment. In the time to CVD event analyses, the follow-up time was (right) censored at the 

time of diagnosis for incident cancer cases. Overall, after DNA methylation data quality controls and sample filtering 1,803 EPIC Italian subjects were used 

in this analysis. 

 

EXPOsOMICS CVD - Study participants pertain to the EPIC Italy cohort. 160 incident CVD cases and one-to-one matched controls (not overlapping with 

the EPIC Italy dataset described hereafter) were extracted using the incident density sampling method.5 After DNAm data quality control and sample filtering, 

315 individuals were included in this study. 

For the microarray, DNA samples were extracted from buffy coats using the QIAsymphony DNA Midi Kit (Qiagen, Crawley, UK). Bisulphite conversion of 

500 ng of each sample was performed using the EZ-96 DNA Methylation-Gold™ Kit according to the manufacturer’s protocol (Zymo Research, Orange, CA). 

Then, bisulphite-converted DNA was used for hybridization on the Infinium HumanMethylation 450 BeadChip, following the Illumina Infinium HD 

Methylation protocol. Briefly, a whole genome amplification step was followed by enzymatic end-point fragmentation and hybridization to HumanMethylation 

450 BeadChips at 48°C for 17 h, followed by single nucleotide extension. The incorporated nucleotides were labeled with biotin (ddCTP and ddGTP) and 

2,4-dinitrophenol (DNP) (ddATP and ddTTP). After the extension step and staining, the BeadChip was washed and scanned using the Illumina HiScan SQ 

scanner. The intensities of the images were extracted using the GenomeStudio (v.2011.1) Methylation module (1.9.0) software, which normalizes within-

sample data using different internal controls that are present on the HumanMethylation 450 BeadChip and internal background probes. The methylation 
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score for each CpG was represented as a β-value according to the fluorescent intensity ratio representing any value between 0 (unmethylated) and 1 

(completely methylated). 

 

The Irish Longitudinal Study on Ageing (TILDA) is a large prospective cohort study examining the social, economic and health circumstances of 8,175 

community-dwelling older adults aged 50 years and over resident in the Republic of Ireland. The sample was generated using a 3-stage selection process and 

the Irish Geodirectory as the sampling frame. The Irish Geodirectory is a comprehensive listing of all addresses in the Republic of Ireland, which is compiled 

by the national post service and ordnance survey Ireland. Subdivisions of district electoral divisions pre-stratified by socio-economic status, age, and 

geographical location, served as the primary sampling units. The second stage involved the selection of a random sample of 40 addresses from within each PSU 

resulting in an initial sample of 25,600 addresses. The third stage involved the recruitment of all members of the household aged 50 years and over. 

Consequently, the response rate was defined as the proportion of households including an eligible participant from whom an interview was successfully 

obtained. A response rate of 62% was achieved at the household level. There were three components to the survey. Respondents completed a computer-

assisted personal interview and a separate self-completion paper and pencil module which collected information that was considered sensitive. All participants 

were invited to undergo an independent health assessment at one of two national centres using trained nursing staff. Blood samples were taken during the 

clinical assessment with the consent of participants. A more detailed exposition of study design, sample selection and protocol is available elsewhere. The 

present study sample included 500 healthy individuals: 125 for each of the four SES classes: stable professional, any downward mobility, any upward mobility, 
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and stable unskilled (see socioeconomic position assessment). Buffy coat or peripheral blood mononuclear cells (PBMC) samples were available for all the 

individuals. Overall, after DNA methylation data quality controls and sample filtering, 490 subjects were analysed in this study. 

For the microarray, DNA samples were extracted from buffy coats using the QIAGEN GENTRA AUTOPURE LS (Qiagen, Crawley, UK). Bisulphite 

conversion of 500 ng of each sample was performed using the EZ DNA Methylation-Lightning™ Kit according to the manufacturer’s protocol (Zymo 

Research, Orange, CA). Then, bisulphite-converted DNA was used for hybridization on the Infinium HumanMethylation 850k BeadChip, following the 

Illumina Infinium HD Methylation protocol. Briefly, a whole-genome amplification step was followed by enzymatic end-point fragmentation and hybridization 

to HumanMethylation EPIC Chip at 48°C for 17 h, followed by single nucleotide extension. The incorporated nucleotides were labeled with biotin (ddCTP 

and ddGTP) and 2,4-dinitrophenol (DNP) (ddATP and ddTTP). After the extension step and staining, the BeadChip was washed and scanned using the 

Illumina HiScan SQ scanner. The intensities of the images were extracted using the GenomeStudio (v.2011.1) Methylation module (1.9.0) software, which 

normalizes within-sample data using different internal controls that are present on the HumanMethylation 850k BeadChip and internal background probes. 

The methylation score for each CpG was represented as a β-value according to the fluorescent intensity ratio representing any value between 0 (unmethylated) 

and 1 (completely methylated). 

 

Understanding Society: The study sample consisted of participants from the United Kingdom Household Panel Study (UKHLS), also known as Understanding 

Society,6 an ongoing longitudinal, nationally representative study of the UK, designed as a two-stage stratified random sample of the general population. While 

Understanding Society is a panel survey, the data used here consist of two pooled cross-sectional waves where a nurse collected blood samples from the 
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respondents, among other physiological measures. The eligibility criteria for collecting blood samples were: (i) participation in the previous main interviews 

in England (had participated in all annual interviews between 1999 (BHPS wave 9) and 2011–2013 (Understanding Society wave 2 and 3); (ii) age 16 and 

over; (iii) living in England, Wales, or Scotland. From the potential pool of 6,337 survey respondents, eligibility requirements for epigenetic analyses meant 

that the samples for DNA methylation measurement were restricted to participants of white ethnicity, resulting in 1,175 subjects; more details can be found 

elsewhere.7 Details about laboratory analyses for DNAm and how to access raw data can be found at the Understanding Society web site 

(https://www.understandingsociety.ac.uk/documentation/mainstage/dataset-documentation/variable/epigenetics). 

 

For the GSE174818 (Covid-19 case-control) study, details of sample characteristics and laboratory methods for DNAm and biomarker analyses are described 

in the original publication.8 

 

DNA methylation data pre-processing and quality controls 

For all the studies, raw DNAm data were pre-processed and normalized using in-house software written for the R statistical computing environment, including 

background and colour bias correction, quantile normalization, and BMIQ procedure to remove type I/type II probes bias, as described elsewhere.9 DNAm 

levels were expressed as the ratio of the intensities of methylated cytosines over the total intensities (β values). Samples were excluded if the bisulphite 

conversion control fluorescence intensity was less than 10,000 for both type I and type II probes. Methylation measures were set to missing if the detection 
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P-value was greater than 0.01. Additionally, the set of cross-reactive and/or polymorphic (with minor allele frequency greater than 0.01 in Europeans) CpGs 

(n=39,238) described by Chen et al.10 was excluded due to the low reliability of methylation measure. 

The Fernández-Sanlés methylation risk score (MRS) was computed as a standardised weighted sum of 34 CpG sites, with weights defined by the estimates 

described by the authors in the Supplementary material of their original publication.11 DNAmGrimAge and other epigenetic clocks were computed using 

Steve Horvath online DNAmAge calculator 

(https://horvath.genetics.ucla.edu/html/dnamage/). 

 

Additional statistical analyses 

Development and validation of DNAm surrogates. We developed DNAm surrogates for BMI, systolic and diastolic blood pressure, and ten blood measured 

biomarkers: total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, Plasminogen activator inhibitor-1 (PAI-1), C-reactive protein (CRP), D-

dimer, Platelet tissue factor (a.k.a. CD142 protein), fasting glucose and insulin. We used the EPIC Italy dataset randomly split into training (n=1,352; 75% 

of the sample) and test set (n=451; 25% of the sample). For each risk factor/biomarker, we created a DNAm surrogate through a three-step procedure:  

i) we identify risk factors/biomarkers showing significant differences across EPIC Italy centres (Turin, Varese, Naples, Ragusa) via ANOVA analyses. We 

employed a linear model with a random intercept component, accounting for differences across centres for this subset of biomarkers, consisting of all but PAI-

1, CRP, D-dimer, and triglycerides. We used a fixed-effect linear model for the other biomarkers.  
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ii) log-transformed risk factors/biomarkers were regressed on DNAm through a linear model adjusted for age, gender (fixed effect), and centre of recruitment 

(random effect, where necessary) to identify the top 1% ranked CpGs based on the P-value. 

iii) DNAm surrogates of risk factors/biomarkers were constructed, regressing the response variables on the top 1% CpG sites, adjusting for sex and age. 

Finally, we applied L1 penalised estimation for enforcing sparsity in the regression coefficients employing the LASSO procedure12 or the corresponding 

penalised mixed model13 (for the biomarkers showing difference by centre) depending on the biomarker. For the latter, method ad-hoc R routines were 

devised: the source code is freely available in the form of an R package at 

https://github.com/AndreaCappozzo/mixedelnet. 

We validated the DNAm surrogates investigating their association (Pearson correlation coefficients) with the corresponding measured risk factor/biomarker 

in the EPIC Italy testing set (n=451, 25% of the sample), and four additional independent studies: Understanding Society (n=1,174), TILDA (n=490), 

EXPOsOMICS CVD (n=315), and GSE174818 (n=128). We used fixed-effect meta-analysis (inverse variance weights) to combine the results across the 

four validation datasets into a single estimate. As a result, we defined as ‘validated’ DNAm surrogates with significant associations (P < 0.05) in both EPIC 

Italy and the combined validation sets. As further validation, we investigated the correlation of our newly developed DNAm surrogates with those previously 

developed for BMI, HDL cholesterol,14 and PAI-1.15 
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Derivation of DNAmCVDscore. We developed a blood DNAm based biomarker (that integrates several DNAm surrogates) for predicting the risk of future 

CVD events named DNAmCVDscore. We used Cox regression model with elastic net regularisation to regress the time from recruitment to CVD event, and 

for selecting the most critical features from 60 (standardised: mean=0, standard deviation=1) blood DNAm surrogates: nine newly developed within this study, 

32 DNAm surrogates for blood measured (mainly inflammatory) proteins produced by Hillary and colleagues;14,16,17 three epigenetic clocks 

(HorvathDNAmAge, HannumDNAmAgem and DNAmPhenoAge);18 two DNAm surrogates for lead exposure;19 six ‘Houseman’ DNAm surrogates for white 

blood cell (WBC) proportion;20 and the nine components of the DNAmGrimAge clock (DNAm surrogates for smoking pack-years, telomere length, and seven 

blood measured proteins).15 The best λ parameter was derived from ten-fold cross-validation to minimise the Harrel concordance C-index. The overall 

procedure includes 1,000 permutations using each time 80% of the whole EPIC Italy dataset (n=1,443). The DNAm surrogates comprising the 

DNAmCVDscore were selected among those with non-zero coefficients in at least half of the permutations. Finally, DNAmCVDscore was computed as a linear 

combination of the selected DNAm surrogates where weights correspond to the average (non-zero) coefficient among the 1,000 permutations. 

 

Validation of DNAmCVDscore and comparison with MRS, SCORE2 and DNAmGrimAge. We validated the DNAmCVDscore in an independent dataset 

(EXPOsOMICS CVD, n=315), including incident CVD cases and matched controls. Since the testing set is designed as a case-control study nested in a 

cohort, we ran logistic regression analyses, and we evaluated the predictive performance of DNAmCVDscore through ROC curve analysis. We compared the 

performance of four logistic regression models: i) based on DNAmCVDscore adjusted for matching parameters (age, sex, and centre of recruitment); ii) based 
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on MRS adjusted for matching parameters; iii) the SCORE2 prediction model based on chronological age, sex, diabetes, smoking, systolic blood pressure, 

total and HDL cholesterol, adjusting for matching parameters; iv) based on DNAmGrimAge adjusted for matching parameters. 

To investigate the predictive performance of the four composite biomarkers at different time points, we computed the area under the ROC curve (AUC), 

sensitivity, and specificity as a function of the time from recruitment to diagnosis, right-censoring follow-up at constant intervals of one year from 18 to two 

years. Confidence intervals for AUC were computed according to De Long et al.21 

 

DNAm surrogates and DNAmCVDscore vs COVID-19 case-control status and severity. As an additional sensitivity analysis, despite being out of the main 

scope of this work, we investigated the usefulness of using DNAm surrogate biomarkers in epidemiological studies on COVID-19 using the GSE174818 

dataset (101 patients with COVID-19 infection and 26 controls hospitalised with respiratory problems). Specifically, we investigated the association of BMI 

and blood measured CRP with COVID-19 case-control status and severity (using the GRAM score as a proxy), and we compared the results with those obtained 

using their DNAm surrogates (DNAmBMI and DNAmCRP). Finally, since CVDs and COVID-19 share several risk factors22 we investigated the association 

of the DNAmCVDscore with COVID-19 case-control status and severity. We used logistic and linear regression models adjusted for age and gender to 

investigate the association with case-control status and GRAM score, respectively. 

 

Additional results 
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Sensitivity leave-one-out analysis. We performed a sensitivity analysis to evaluate whether one of the ten DNAm surrogate biomarkers comprising the 

DNAmCVDscore drives the results described in the previous section. First, the DNAmCVDscore was re-computed ten times, excluding one DNAm surrogate 

each time. Then, AUC and 95% CI were calculated at different time points right censoring follow-up length as described previously. The results presented in 

Table S1 show that the AUC obtained using ten DNAm surrogates is generally higher than those obtained excluding one of them. However, none of the 

biomarkers significantly reduces the AUC when excluded (according to the DeLong test), suggesting that all the ten DNAm surrogates contribute predicting 

CVD events. 

 

Correlation of DNAmCVDscore with epigenetic clocks. We computed the Pearson correlation coefficients (meta-analysis of the five studies) between 

DNAmCVDscore and previously developed epigenetic clocks. Although DNAmCVDscore was not explicitly trained on chronological age, it is highly 

correlated with age (R = 0.41) and four epigenetic clocks (R range from 0.35 to 0.56), DNAmGrimAge being the one with the highest correlation. In 

Supplementary Figure 1, we present the correlation heatmap. 

 

DNAm surrogates and DNAmCVDscore vs COVID-19 case-control status and severity. In the GSE174818 dataset, BMI was not significantly different when 

comparing COVID-19 cases with matched controls whereas DNAm surrogate for BMI was significantly associated with COVID-19 case-control status: OR 

per one standard deviation increase = 2.64 (95% CI 1.56; 4.77, P = 0.0006, Table S2). Among COVID-19 cases, DNAmCRP outperforms blood measured 
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CRP in predicting disease severity (GRAM score). The increase in the GRAM score were 17.1 (8.6; 25.6, P = 0.0002, Table S2) and 9.9 (1.1; 18.7, P = 

0.03, Table S2) for DNAmCRP and blood measured CRP, respectively. Finally, DNAmCVDscore was (borderline significantly) associated with COVID-19 

case-control status: OR per one standard deviation increase = 1.84 (95% CI 0.96; 3.65, P = 0.07, Table S2 and Supplementary Figure 2A), and GRAM 

score severity index. The estimate from the linear regression (interpretable as an increase in the GRAM score for one standard deviation increase in 

DNAmCVDscore) was 16.35 (95% CI 1.36; 31.04, P = 0.03, Table S2 and Supplementary Figure 2B). 
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Figure S1: Correlation heatmap with mutual Pearson correlation coefficients among DNAmCVDscore and epigenetic clocks 
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Figure S2: a) Violin plot of standardised DNAmCVDscore vs COVID-19 case-control status; b) scatterplot and regression line for DNAmCVDscore vs 

COVID-19 severity (GRAM score). 
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