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Abstract

This paper proposes an innovative statistical method to measure the impact of the class/school
on its student achievements in multiple subjects. We propose a semi-parametric mixed-e�ects model
with a bivariate response variable, where the random e�ects are assumed to follow a discrete dis-
tribution with an unknown number of support points, together with an Expectation-Maximization
algorithm to estimate its parameters. The bivariate setting allows to estimate the distributions of
the model coe�cients related to each response variable as well as their joint distribution. In the
case study, we apply the BSPEM algorithm to data about Italian middle schools, considering stu-
dents nested within classes, and we identify subpopulations of classes, standing on their e�ects on
student achievements in two di�erent subjects (reading and mathematics). The proposed model is
extremely informative in exploring the correlation between multiple class e�ects, which are typical
of the educational production function. The estimated class e�ects on reading and mathematics
student achievements are then explained in terms of various class and school level characteristics
selected by means of a LASSO regression.
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1 Introduction and motivation

Student learning is a long and complex process that sees many di�erent factors acting on it. During
their careers, students receive inputs from their family, their peers and the school and class they
are attending. The educational system is hierarchical, i.e. di�erent levels of grouping are nested
within each others: students are nested within classes, that are in turn nested within schools, that
are in turn nested within districts and so on so forth. Each one of these levels has a speci�c role
in the student learning process. Measuring how much of the variability in student education is
due to each grouping level of the hierarchy is not easy, but, it is essential for evaluating the role
of educational institutions (i.e., schools). In particular, there is a broad and rich literature about
school value-added based on test scores, intended as the di�erence in test performance of students
in a school and the average peformance of schools populated by students with a comparable level
of prior achievement (and other student characteristics) (Raudenbush & Willms, 1995; Schagen &
Schagen, 2005; Timmermans, Bosker, de Wolf, Doolaard, & van der Werf, 2014). School value-
added promises to enable fair comparisons of school performance despite schools having markedly
di�erent pupil intakes. The logic behind it is indeed to compare schools only on the basis of
unexplained variation between (statistically) �like-for-like� pupils. A simple approach is to compare
the performance of a particular group of pupils to the performance of other pupils with the same
examination score at the earlier point in time. Beyond prior attainment, there are other non-
school factors associated with students' progress, like socioeconomic status, gender or ethnicity.
The inclusion of these confounding variables in the measurement of school value-added has been
long debated (Meyer, 1997; Strand, 1997; McCa�rey, Lockwood, Koretz, Louis, & Hamilton, 2004;
Martineau, 2006). The most recent literature about this topic (Perry, 2016; Leckie & Goldstein,
2017; Parsons, Koedel, & Tan, 2018) supports the development of the so called contextual value-

added, that takes into account, besides student test scores, also age, gender, ethnicity, socioeconomic
status and various other pupil characteristics when measuring the school value-added. The rationale
for contextual value-added is that ignoring these contextual factors considerably biases the results,
attributing successes and failures to schools inappropriately.

Even though the measurement of school value-added continuously receives attention, decades of
educational e�ectiveness con�rm that di�erences between pupils is more within schools than between
them (Hanushek, 1992; Perry, 2016; Rivkin, Hanushek, & Kain, 2005; Rocko�, 2004). In this
perpective, the concept of school value-added, as intended before, can be transfered to the class level,
speaking about class value-added. Class peers, class climate and, especially, teachers considerably
a�ect the student learning process. Indeed, di�erent types of teaching practices promote di�erent
cognitive skills in students (Bietenbeck, 2014) and, now that traditional teaching practices co-exist
together with more modern teaching methods (work in small groups, emphasize real-life application),
their e�ects can be very heterogeneous. In the last twenty years, the analysis of teaching practices
and e�etiveness is increasingly receiving attention and recent studies �nd evidence of an association
between the e�ects on student achievements and di�erent teaching practices, in di�erent school
subjects (Goldhaber & Brewer, 1997; Wenglinsky, 2002; Schwerdt & Wuppermann, 2011; De Witte
& Van Klaveren, 2014). Focusing on the speci�c way in which teaching is organized is also important
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because it allows moving from exploring simple correlations between students results and teachers'
characteristics to a more complex and complete scenario.

In the perspective of evaluating school and class value-added, rich linked national data that
contain longitudinal observations are extremely useful. In Italy, the National Institute for the
Educational Evaluation of Instruction and Training (INVALSI) tests students at di�erent grades
and at di�erent years, both in reading and mathematics, by means of standardized tests in the entire
country. Students are tested at grades II and V of primary school, at grade III of junior secondary
school and at grade II of upper secondary school. Moreover, INVALSI collects information about
students, teachers, classes, schools and school principals, by means of dedicated questionnaires. In
so doing, it creates a dataset that contains a rich picture of the personal and educational reality of
each student. This dataset allows to compare the performances of students that attend di�erent
classes, in di�erent schools, in the various geographical Italian regions, but with the same yardstick.

The INVALSI dataset has been recently studied by economists and statistical scholars interested
in analyzing the determinants of student, class and school performances. In (Agasisti, Ieva, &
Paganoni, 2017; Grilli & Rampichini, 2009; Masci, Ieva, Agasisti, & Paganoni, 2016, 2017; Sani
& Grilli, 2011), the authors, considering the hierarchical nature of educational data, apply mixed-
e�ects linear models in order to identify which are the student characteristics associated to student
performances and to estimate how much of the variability in student performances is due to their
grouping in di�erent classes and schools. These are some of the �rst attempts that aim at separating
and estimating the e�ects of di�erent levels of grouping on Italian student achievement. In (Masci
et al., 2016, 2017), the authors apply a three-level hierarchical structure in which students are
nested within classes that are in turn nested within schools and measure the contribute of each
of these levels on students test scores' variability. Results show that, after adjusting for student
characteristics, the variability among student achievements explained at class level is much higher
that the one explained at school level. By means of parametric mixed-e�ects linear models, they
estimate the school and class e�ect, interpreted as the value-added that each school or class gives
to the performances of its students. A relevant result that the study in (Masci et al., 2017) shows is
that the correlation between the school e�ects on reading and mathematics student achievements is
positive and statistically signi�cant, while the correlation between the two class e�ects is null. This
important �nding suggests that the e�ect of the school is most of the times coherent on the di�erent
school subjects, driven by certain school characteristics (for example, school principal practices,
school body composition and school peers). On the other way, the fact that the correlation among
class e�ects in reading and mathematics is null suggests that there is not a unique e�ect of the
class environment on the di�erent school subjects, but the e�ects of the class on the two school
subjects are potentially uncorrelated. One of the most likely interpretation of this result is that a
signi�cant part of the class e�ect is due to something that is not common between the two school
subjects, the main candidate for this being the teachers. Being the teachers in mathematics and
reading di�erent, their characteristics and their teaching practices might be completely di�erent
too, leading to uncorrelated e�ects on student achievements.

Our paper aims at estimating the school e�ect in the context of within-school heterogeneity.
A similar problem is discussed in (Masci, Paganoni, & Ieva, 2019), where the authors apply a
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multilevel linear model, but, instead of following a classical parametric approach, they follow a
semi-parametric approach in which they develop a semi-parametric mixed-e�ects (two-level, where
students are nested within schools) model able to identify a latent structure among the higher level of
the hierarchy (schools). They cluster schools standing on the evolution of their student achievements
across years. In this sense, the concept of school e�ect, re-de�ned from a methodological point of
view, re�ects the di�erent e�ects of schools on the evolution of their student achievements at di�erent
grades. In particular, they identify subpopulations of schools within which student mathematics
test scores trends (measured by the linear relation between INVALSI test scores at di�erent grades)
are similar and, in a second step, they characterize a posteriori the identi�ed subpopulations of
schools by means of school level characteristics.

In this paper, extending the new statistical model presented in (Masci et al., 2019), we propose a
study that is innovative both from a methodological and an interpretative point of view. We develop
the bivariate version of the Expectation-Maximization algorithm for semi-parametric mixed-e�ects
models (SPEM algorithm) presented in (Masci et al., 2019), i.e. we extend it to the case of a
bivariate response variable (which, in our case, is the test score in reading and mathematics). We
are interested in estimating the impact that attending di�erent classes has on student performance
trends, i.e. student performance evolution over time, and, in particular, in comparing these e�ects
between reading and mathematics. With class e�ect, we intend the way in which achievements of
students have evolved after attending three years of junior secondary school in a speci�c class (within
a given school). The model that we propose is a bivariate two-level linear model where the coe�cients
of random e�ects, under semi-parametric assumptions, follow a bivariate discrete distribution with
an unknown number of mass points. Each group is assigned to a bivariate subpopulation of groups,
that is represented by speci�c values of the parameters of the bivariate mixed-e�ects linear model.
The distribution of the coe�cients of random e�ects is a bivariate discrete distribution where each
dimension is allowed to have a di�erent �nite number, unknown a priori, of mass points. This
formulation permits to estimate the marginal distribution of the random e�ects related to each
one of the two response variables and, moreover, to estimate the joint distribution of random
e�ects related to the two response variables, investigating the correlation among them. Read in
the context of the educational literature on school value-added, it means that for the �rst time
the e�ect estimated considers not only heterogeneity within schools (i.e. between classes) but also
within classes (i.e. between teachers). In this perspective, we do not create a full ranking of the
highest level e�ects, but instead we generate subpopulations of e�ects and we attribute each group
to a single subpopulation.

The methodology proposed here is completely new to the literature. The semi-parametric mixed-
e�ects linear model in (Masci et al., 2019) on which we base our multivariate model enters in the
research line about the identi�cation of subpopulations of the Growth Mixture Models (GMM)
(Muthén, 2004; Muthén & Shedden, 1999; Nagin, 1999) and of Latent Class Mixture Models
(LCMM) (McCulloch, Lin, Slate, & Turnbull, 2002; Vermunt & Magidson, 2002), but with the
novelty that it does not need to �x a priori the number of latent subpopulations to be identi�ed.
Moreover, being the existing methods speci�ed in the Structural Equation Modeling (SEM) frame-
work, they are still relatively limited when covariates are group-speci�c. Numerous extensions and
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applications of GMM and LCMM has been already realized (Lin et al., 2000; Muthén & Asparouhov,
2015), but none of them include the modeling of a multivariate answer variable, where the latent
subpopulations structure of groups (higher level of hierarchy) are allowed to di�er across the re-
sponses, i.e. are response-speci�c. Our proposed model is the new extension to the bivariate case of
a model that is already innovative by itself and particularly useful in the case of education, where
the output is typically multivariate.

In this speci�c paper, our data provided by INVALSI refer to a sample of classes, representative
at national level - but one per school, so we cannot estimate the class e�ects within schools. In other
words, our model here is applicated with two-levels (students and classes) even though it is formally
presented in its complete three levels form (students, classes and schools). The model estimates a
bivariate e�ect for each class, i.e. the e�ect of the class on mathematics student achievement trends
and the one on reading student achievement trends. The aim is to identify how many di�erent trends
exist in student performances across classes, for both mathematics and reading, i.e. to identify how
many and which are the mass points of the discrete distribution of random e�ects (class e�ects)
for both the �rst and the second response. Moreover, by looking at the joint distribution of these
random e�ects, we investigate the correlation between the class e�ects on reading and mathematics,
allowing di�erences between them (i.e. assuming that teachers' ability and e�ectiveness can be
di�erent between teachers of the same class).

Therefore, the main research questions that we aim to address are:

• Are there di�erences across the e�ects of the Italian classes on their students achievement?

• Are the e�ects of the classes in reading and mathematics achievements correlated?

• Is it possible to identify groups of classes that perform di�erently from the majority?

• Do the identi�ed groups of classes di�er in terms of class level features, for example teachers
characteristics, teaching practices and class body composition?

In the year 2016/2017, INVALSI submitted questionnaires to teachers about their personal infor-
mation, their education, their teaching practices and the environment of the class and school in
which they work, creating an informative and new dataset that, until now and in this context, has
been poorly explored. We leverage this brand new opportunity by using this additional informa-
tion to explore the potential determinants of the class/school e�ects. In this perspective, in order
to investigate whether the di�erent student achievement trends across classes are related to these
aspects, in a second stage of the analysis, we look for associations between class and teacher level
characteristics and the identi�ed subpopulations of class e�ects, by means of a lasso multinomial
logit model. The questionnaire has been realized only in 2016/2017, so our study is cross-sectional
by design.

This paper brings important innovations to the literature on assessment of education results for at
least two main aspects. First, it proposes a novel statistical method to perform in-built, unsupervised
clustering of the higher level of grouping of a bivariate multilevel model, without knowing a priori
the number of clusters (so avoiding the typical rigidities when specifying an educational production
function). Second, exploring di�erences and similarities of class e�ects in mathematics and reading
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by means of a multivariate model is a great advantage, also when the bivariate class e�ects are
characterized, in a second step, in terms of class features (teacher characteristics and practices).

The paper is organized as follows: in Section 2, we present the bivariate semi-parametric two-
level linear model. In Section 3, we perform a simulation study. In Secion 4, we focus on the case
study, (i) presenting the dataset about Italian middle schools, (ii) applying the BSPEM algorithm
to it and showing its results and (iii) analyzing a posteriori the characteristics of the identi�ed
subpopulations of classes. In Section 5, we draw policy implications and conclusions.

2 Model and methods: the bivariate semi-parametric mixed-

e�ects linear model

In this section, we present the bivariate semi-parametric mixed-e�ects linear model1.
Consider a bivariate three-level linear model (considering only the random intercept at the

highest level of hierarchy), where each bivariate observation j, for j = 1, . . . , nil, is nested within a
group i, for i = 1, . . . , Il, that is in turn nested within a group l, for l = 1, . . . , L. The model takes
the following form:

Yil =
(
y1,il y2,il

)
= Xil

(
β1

β2

)T
+ Zil

(
c1,il

c2,il

)T
+αl + εil

i = 1, . . . , Il, l = 1, . . . , L

αTl =

(
α1,l

α2,l

)
∼ N2(0,Σα) εTil =

(
ε1,il

ε2,il

)
∼ N2(0,Σ) ind.

(1)

where N =
∑L

l=1 Il is the total number of level 2 groups and J =
∑L

l=1

∑Il
i=1 nil is the total number

of bivariate observations2. The components of model (1) are the following:

• Yi =

(
y1,1il, . . . , y1,nilil

y2,1il, . . . , y2,nilil

)T
is the (nil × 2)-dimensional matrix of response variable within the

i-th second level group, within the l−th third level group3,

• Xil is the (nil × (P + 1))-dimensional matrix of covariates of �xed e�ects,

• β =
(
β1 β2

)
is the ((P + 1)× 2)-dimensional matrix of coe�cients of X,

• Zil is the (nil × (R+ 1))-dimensional matrix of covariates of random e�ects,

1Details about the EM algorithm for the estimation of model parameters and the sketch of the BSPEM algorithm can
be found in the Appendix.

2In subscript of each variable/parameter, we indicate by the number before the coma whether the variable/parameter
is referred to the �rst or the second response variable (for example, y1,jil and y2,jil are the j-th �rst and second response
variables within (level 2)-group i, that is within (level 3)-group l, respectively).

3We consider the case in which the number of observations of the two response variables is the same within each group,
but is allowed to be di�erent across the groups.
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• cil =
(
c1,il c2,il

)
is the ((R+ 1)× 2)-dimensional matrix of coe�cients of Zil,

• αl =
(
α1,l α2,l

)
is the (L× 2)-dimensional matrix of intercepts of the random e�ects related

to the highest level of the hierarchy,

• εi =
(
ε1,il ε2,il

)
is the (nil× 2)-dimensional matrix of errors and Σ is its variance/covariance

matrix.

Fixed e�ects are identi�ed by parameters associated to the entire population, while random ones
are identi�ed by group-speci�c parameters. In the perspective of the application to INVALSI data,
this model would consider a three-levels hierarchy: students as level 1, classes as level 2 and schools
as level 3. In so doing, thanks to the random intercept αl at school level, the random e�ect of the
second level, i.e. the class e�ect, would be the within-school class e�ect, allowing to model both
between-schools and within-school variabilities. Nonetheless, since the available INVALSI data, that
will be presented in Section 2, regard classes that are all nested within di�erent schools (each class
corresponds to a di�erent school), we can not consider three di�erent levels in our application, but
we consider students nested only within classes. Therefore, the three-level model can be reduced to
the following two-level model:

Yi =
(
y1,i y2,i

)
=Xi

(
β1

β2

)T
+ Zi

(
c1,i

c2,i

)T
+ εi i = 1, . . . , N,

εTi =

(
ε1,i

ε2,i

)
∼ N2(0,Σ) ind.

(2)

In the parametric framework of bivariate linear mixed-e�ects models, the coe�cients of random
e�ects are assumed to be distributed according to a Normal distribution with mean vector equal
to 0 and a variance/covariance matrix that is estimated, together with the other parameters of the
model, through methods based on the maximization of the likelihood or the restricted likelihood
functions (Pinheiro & Bates, 2000). This parametric distribution implies that, for each group i,
the model estimates the coe�cients ci = (ci1, . . . , ci(R+1)) for the (R+ 1) covariates of the random
e�ects, meaning that the covariates of random e�ects are allowed to have N di�erent associations
to the response variables across the N groups.

Following the idea presented in (Masci et al., 2019), we relax the parametric assumptions about
the coe�cients of the random e�ects and we assume the bivariate coe�cients ci to follow a bivariate
discrete distribution P ∗, assuming M × K mass points (c11, . . . , cMK), where each cmk is the
2× (R+ 1)-dimensional matrix of coe�cients of random e�ects for the bivariate mass point related
to the index (m, k), for each m = 1, . . . ,M and k = 1, . . . ,K, where both M and K are smaller than
N. The total number of mass points, that isM×K, is unknown a priori and it is estimated together
with the other parameters of the model. This modeling allows the identi�cation of a bivariate
clustering distribution among the N groups, where each group i is associated to a bivariate cluster,
standing on the linear relationships between the two response variables and their covariates. In
other words, the model identi�es a bivariate latent structure among the groups, that also reveals
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the dependence among the two response variables. Under these assumptions, the semi-parametric
bivariate mixed-e�ects model takes the following form:

Yi =
(
y1,i y2,i

)
= Xi

(
β1

β2

)T
+ Zi

(
c1,m

c2,k

)T
+ εi

i = 1, . . . , N m = 1, . . . ,M k = 1, . . . ,K

εTi =

(
ε1,i

ε2,i

)
∼ N2(0,Σ) ind.

(3)

Without loss of generality, we consider the case of a semi-parametric bivariate two-level linear model,
with one random intercept, one random covariate and P �xed covariates4. Model (3) reduces to:

Yi =
(
y1,i y2,i

)
=

(
c1,1m

c2,1k

)T
1 +

P∑
p=1

xip

(
β1p

β2p

)T
+ zi

(
c1,2m

c2,2k

)T
+ εi

i = 1, . . . , N m = 1, . . . ,M k = 1, . . . ,K

εTi =

(
ε1,i

ε2,i

)
∼ N2(0,Σ) ind.

(4)

where 1 is the ni-dimensional vector of 1,M is the total number of mass points for the �rst response
and K is the total number of mass points for the second response and both of them are unknown a
priori. Coe�cients cmk, for m = 1, . . . ,M and k = 1, . . . ,K are distributed according to a discrete
probability measure P ∗ that belongs to the class of all probability measures on R4. P ∗ can then
be interpreted as the mixing distribution that generates the density of the stochastic model in (4).
The ML estimator P̂ ∗ of P ∗ can be obtained following the theory of mixture likelihoods in (Lindsay
et al., 1983a, 1983b), as explained in (Masci et al., 2019). The ML estimator of the random e�ects
distribution can be expressed as a set of points (c11, . . . , cMK) and a set of wights (w11, . . . , wMK),
where

∑M
m=1

∑K
k=1wmk = 1 and wmk ≥ 0, for m = 1, . . . ,M and k = 1, . . . ,K. Each group i, for

i = 1, . . . , N , is assigned to a bivariate cluster (m, k), standing on the fact that the �rst response
belongs to cluster m and the second one to cluster k. Indeed, the marginal distribution given by
(c1,1, . . . , c1,M ) and (w1,1, . . . , w1,M ) represents the �rst response-speci�c latent structure among
groups, while the marginal distribution given by (c2,1, . . . , c2,K) and (w2,1, . . . , w2,K) represents the
second response-speci�c one. The estimation of the parameters β, (c11, . . . , cMK), (w11, . . . , wMK)
and Σ is performed through the maximization of the likelihood function, mixture by the discrete
distribution of random e�ects,

4This choice is driven by the application in the case study shown in Section 3. Nonetheless, the BSPEM algorithm
allows to consider as random e�ects both the intercept and one slope, as well as only one of them.
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L(β, cmk,Σ|y) =
M∑
m=1

K∑
k=1

wmk√
|det(2πΣ)|J

×

× exp

{
N∑
i=1

ni∑
j=1

−1

2

(
y1,ij − c1,1m −

∑P
p=1 β1px1p,ij − c1,2mz1,ij

y2,ij − c2,1k −
∑P

p=1 β2px2p,ij − c2,2kz2,ij

)T
Σ−1

(
y1,ij − c1,1m −

∑P
p=1 β1px1p,ij − c1,2mz1,ij

y2,ij − c2,1k −
∑P

p=1 β2px2p,ij − c2,2kz2,ij

)}
(5)

with respect to β, the distribution of the coe�cients of random e�ects (cmk, wmk), form = 1, . . . ,M
and k = 1, . . . ,K, and Σ, respectively.

3 Simulation study

In this section, we test the performance of the BSPEM algorithm simulating four situations in which
the two response variables are related to each other in four di�erent ways, facing both structural
correlation/uncorrelation between the subpopulations distributions and correlation/uncorrelation
between the errors of the linear model.
We generate 1, 000 bivariate observations that are nested within 100 groups in the following way:

(
y1,i y2,i

)
=

(
c1,1m

c2,1k

)T
+ xi

(
β1

β2

)T
+ zi

(
c1,2m

c2,2k

)T
+ εi

i = 1, . . . , 100 m = 1, . . . ,M k = 1, . . . ,K

εTi =

(
ε1,i

ε2,i

)
∼ N2(0,Σ) ind.

(6)

in which we set M = 3 and K = 2. Without loss of generality, we set ni = 100, for i = 1, . . . , 100,
and we make the following choice of parameters5 cmk, for m = {1, 2, 3} and k = {1, 2}:
Besides the coe�cients, we sample the observations of the variables x, z and ε in the following way6:

zi ∼ N (0.10, 0.42) i = 1, . . . , 33

zi ∼ N (0.12, 0.42) i = 34, . . . , 66

zi ∼ N (0.08, 0.42) i = 67, . . . , 100

(7)

5Note that this choice of parameters is �nalized to the simulation study and it is driven only from the aim of a simple
and clear visualization of the results. Any other choice of parameters is possible. Moreover, we consider the case of only
one �xed covariate, but the all the considerations hold for any number of �xed covariates P > 1.

6Again, di�erent choices of values for variables x and z are possible and they are also allowed to be di�erent between
�rst and second response variables (i.e. x1,i 6= x2,i).
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First response parameters Second response parameters

c1,11 = 5 c2,11 = 3
i = 1, . . . , 33 c1,21 = 10 c2,21 = 1

β1 = 3 β2 = 2
c1,12 = 2 c2,11 = 3

i = 34, . . . , 66 c1,22 = 5 c2,21 = 1
β1 = 3 β2 = 2
c1,13 = 0 c2,12 = 0

i = 67, . . . , 100 c1,23 = −2 c2,22 = −3
β1 = 3 β2 = 2

Table 1: Set of parameters used in Eq. (6) to simulate data. The intercepts and the coe�cients of
z di�er across subpopulations, while the coe�cients β of x are �xed. Colors highlight the di�erent
subpopulations related to each response variable. We impose a structure with three subpopulations in
the �rst response (M=3) and two subpopulations in the second one (K=2).

xi ∼ N (0.30, 0.42) i = 1, . . . , 33

xi ∼ N (0.28, 0.42) i = 34, . . . , 66

xi ∼ N (0.27, 0.42) i = 67, . . . , 100

(8)

and

εi ∼ N2

(
0,Σ =

(
1 0
0 1

))
i = 1, . . . , 100. (9)

Since we choose three di�erent sets of parameters (c,β) to generate the data of the �rst response
and two di�erent sets to generate the ones of the second response, the data related to the �rst
response are clustered within three subpopulations (M=3), while the ones related to the second one
are clustered within two subpopulations (K=2). Figure 1 shows the data simulated with the set of
parameters reported in Table 1.
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Figure 1: Data simulated with the set of parameters reported in Table 1 and values of x, z and ε de�ned
in Eq. (7), (8) and (9) respectively. Figure on the left panel represents the �rst response and �gure
on the right panel represents the second one. It is possible to identify the presence of three and two
subpopulations in the �rst and in the second response respectively. Colors are automatically assigned
by the software R.

The correlation among the two response variables depends both on the subpopulations distributions
that we use to generate them (i.e. on the choice of cmk) and on the correlation between the errors. In
this perspective, the parameters distribution shown in Table 1 induces a structural correlation among
the subpopulations of the two response variables, since the bivariate distribution of cmk follows a
precise structure among the groups. Regarding the distribution of the errors, the covariance of the
errors ε1 and ε2 in Eq. (9) is set to zero, implying the absence of any further correlation among the
two responses.

We apply the BSPEM algorithm to this simulated dataset, choosing D = 1 and tollR = tollF

= 10−2 (see Algorithm 1 in Appendix). We repeat the simulation for 100 runs. On average, the
algorithm converges in 6 iterations and it always identi�es the correct number of clusters for both
the two response variables, whose estimated parameters (mean and MSE over the 100 runs) are
shown in Table 2.
Figure 2 shows the data with the regression planes identi�ed by the algorithm in one of the 100
runs, for both the two response variables.
The algorithm assigns each group i, for i = 1, . . . , 100, to the correct cluster related to the two
response variables, that means that assigns each group i, for i = 1, . . . , 100, to the correct bivariate
cluster (m, k). The estimates of the (M ×K)-dimensional matrix of weights W and of Σ, averaged
over the 100 runs, are the following:
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First response parameters Second response parameters

ĉ1,11 = 4.99723 ĉ2,11 = 3.01097
(MSE1,11 = 0.00043) (MSE2,11 = 0.00024)

i = 1, . . . , 33 ĉ1,21 = 10.00621 ĉ2,21 = 1.00384
(MSE1,21 = 0.00249) (MSE2,21 = 0.00091)

β̂1 = 2.99822 β̂2 = 1.99856
(MSEβ1 = 0.00059) (MSEβ2 = 0.00065)
ĉ1,12 = 2.01128 ĉ2,11 = 3.01066

(MSE1,12 = 0.00037) (MSE2,11 = 0.00024)
i = 34, . . . , 66 ĉ1,22 = 4.92278 ĉ2,21 = 1.01334

(MSE1,22 = 0.00187) (MSE2,21 = 0.00091)

β̂1 = 2.99923 β̂2 = 1.99459
(MSEβ1 = 0.00059) (MSEβ2 = 0.00065)
ĉ1,13 = 0.00645 ĉ2,12 = −0.00768

(MSE1,13 = 0.00195) (MSE2,12 = 0.00065)
i = 67, . . . , 100 ĉ1,23 = −2.00531 ĉ2,22 = −2.99967

(MSE1,23 = 0.00203) (MSE2,22 = 0.00182)

β̂1 = 2.99948 β̂2 = 1.99493
(MSEβ1 = 0.00059) (MSEβ2 = 0.00065)

Table 2: Values of the parameters of Eq. (6) estimated by the BSPEM algorithm, obtained as the average
over the 100 runs (for each parameter we also report its Mean Square Error in brackets). Colors represent
the di�erent subpopulations identi�ed by the algorithm. The algorithm identi�es three subpopulations
(M=3) for the �rst response and two subpopulations for the second one (K=2).

Ŵ =

0.33 0.00
0.33 0.00
0.00 0.34

 Σ̂ =

(
1.0012 0.0001
0.0001 0.9996

)
(10)

MSEΣ =

(
0.0002 0.0001
0.0001 0.0003

)
. (11)

By looking at the matrix Ŵ , we can identify the distribution of the groups on the support, composed
by the 6 mass points. Since we impose a structural correlation between the clusters distribution
of the two response variables (see the coe�cients in Table 1), the estimated distribution of the
weights wmk is not uniform on theM×K masses, but it is possible to recognize the pattern that we
used to generate the data. Regarding the variance/covariance matrix Σ̂, the covariance is correctly
estimated as null and the two estimated variances are also close to 1.

13



Figure 2: Simulated data with the regression planes identi�ed by the BSPEM algorithm in one of the
100 runs. Colors represent the di�erent subpopulations: three for the �rst response (�gure on the left
panel) and two for the second response (�gure on the right panel). The estimated parameters of the
regression planes are shown in Table 2.

The case just shown represents only the particular situation in which the subpopulations dis-
tributions are not uniform on the mass points and the errors are not correlated, but it can also be
the case that the two response variables do not present correlated subpopulations or even present
correlated errors ε1 and ε2. In order to test the performance of the BSPEM algorithm in these
further cases, we modify the values of cmk and ε in order to simulate four di�erent situations:

• Case 1: structural correlation among subpopulations of the two response variables and inde-
pendence between the errors ε1 and ε2 (case seen above);

• Case 2: structural correlation among subpopulations of the two response variables and depen-
dence between the errors ε1 and ε2;

• Case 3 : not structural correlation among subpopulations of the two response variables and
independence between the errors ε1 and ε2;

• Case 4: not structural correlation among subpopulations of the two response variables and
dependence between the errors ε1 and ε2.

In order to avoid a structural correlation among the subpopulations of the two response variables
(Case 3 and 4), i.e. in order to have a subpopulations distribution uniform on the mass points, we
randomly shu�e the order of the parameters shown in Table 1 across the 100 groups, so that
there are no de�nite patterns on the parameters cmk between the two responses. In order to
impose the dependence among the errors ε1 and ε2 (Case 2 and 4), we set the covariance of the

variance/covariance matrix Σ equal to 0.5. In particular, we set Σ =

(
0.5 0.5
0.5 0.5

)
.
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We apply the BSPEM algorithm to these four di�erent types of simulated data (100 runs for
each of the four cases), with the same choice of parameters D = 1, tollR = tollF = 10−2 (see
Algorithm 1 in Appendix). The algorithm is able to identify the correct subpopulations distribution
in all the four situations. The visualization of the results in all the four cases is similar to the one
shown in Figure 2 and the estimates of the parameters cm,k, for m = 1, . . . , 3 and k = 1, 2 and β
in the four cases are in line with the ones shown in Table 2. What changes across the four cases
are the estimates of the weights matrices W and of Σ, whose means over the 100 runs are shown in
Table 3.

Structural correlation among subpopulations Not structural correlation among subpopulations

ε1 ⊥6⊥ ε2 Ŵ =

0.33 0.00
0.33 0.00
0.00 0.34

 Σ̂ =

(
0.5006 0.5006
0.5006 0.5007

)
Ŵ =

0.25 0.08
0.21 0.12
0.20 0.14

 Σ̂ =

(
0.4999 0.4998
0.4998 0.4999

)
MSEΣ =

(
0.0003 0.0001
0.0001 0.0004

)
MSEΣ =

(
0.0003 0.0002
0.0002 0.0001

)

ε1 ⊥⊥ ε2 Ŵ =

0.33 0.00
0.33 0.00
0.00 0.34

 Σ̂ =

(
1.016 0.001
0.001 0.969

)
Ŵ =

0.23 0.10
0.22 0.12
0.21 0.12

 Σ̂ =

(
0.993 0.009
0.009 1.023

)
MSEΣ =

(
0.0002 0.0001
0.0001 0.0004

)
MSEΣ =

(
0.0005 0.0001
0.0001 0.0003

)

Table 3: Estimates of the weights matrix W and of the variance/covariance matrix Σ (with its MSE
computed over the 100 runs) of model in Eq. (6) for the four di�erent cases of values of cmk and ε.

From Table 3, we see that the model is completely identi�able, since it is able to distinguish the
correlation among the two response variables that is given by a structural correlation among sub-
populations distribution (showed in W ) from the correlation imposed by dependent errors (showed
in Σ). In cases 3 and 4 (last column in Table 3), where we do not impose a structural correlation
among subpopulations, the distribution of the weights , less than small variations, is uniformly
distributed on the mass points.

The only parameter that signi�cantly in�uences the results of the BSPEM algorithm is the
threshold distance D (see Algorithm 1 in Appendix). In order to give an idea of the sensitivity of
the algorithm to the values of D, in the cases seen above, the algorithm gives the same result for
each value of D between 0.5 and 2. For values of D < 0.5, the BSPEM algorithm is too sensitive to
the variability among the data and identi�es more that 6 mass points, while for values of D > 2, the
algorithm does not entirely catch the variability among the data identi�es less than 6 mass points7.

7Further information regarding the choice of the threshold value D is given in (Masci et al., 2019).
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4 Case study: application to Italian middle schools (grades

6 - 8)

In this section, we present our dataset, that deals with a sample of Italian middle schools in
2016/2017. We apply the BSPEM algorithm to identify subpopulations of classes, on the basis
of their di�erent e�ects on mathematics and reading student achievements.

The sample that we consider is composed by students and classes that take the INVALSI test
under the supervision of the INVALSI sta�. This sample regards the 10% of the total population
and it is directly selected by INVALSI in order to be representative of the entire Italian population.
Being the test in this sample supervised by the INVALSI sta�, we overcome the potential problems
related to the cheating of students or teachers. We restrict the sample to classes with at least 10
students. The sample comprises 18, 242 students nested within 1, 082 classes8.

4.1 The database about the Italian middle schools

The database includes data about students attending grade III of junior secondary school in year
2016/2017. About these students, besides their results of the INVALSI tests in reading and math-
ematics at grade 8 (read8 and math8 respectively), we consider other �ve variables: the INVALSI
test scores in reading and mathematics of these students three years before, i.e. at the last year
of primary school (read5 and math5 respectively); the socioeconomic index (ESCS) that is an index
built by INVALSI by considering parents' occupation and educational titles and the possession of
certain goods at home (for instance, computer or the number of books); the gender of the student
(gender, 1 = female, 0 = male) and the immigrant status (immig, 0 = Italian, 1 = �rst/second
generation immigrant). The INVALSI test score is a continuous variable that takes values between 0
and 100 (proportion of correct answers in the test), while the ESCS is built as a continuous variable
with mean equal to 0 and variance equal to 1. Controlling for prior achivement at grade 5 allows
the model to be speci�ed as a value-added. Table 4 reports the �ve student level variables used in
the analysis with their descriptive statistics9. In the considered cohort of students, 51% are females
and 7% are not native Italians, but 1st or 2nd generation immigrants. On average, the INVALSI
test scores are slightly higher at grade 5 than at grade 8 (we deal with this factor by standardizing
values, see Section 4.2).
In 2016/2017, INVALSI collected information about classes and teachers by means of a dedicated
questionnaire. This questionnaire includes an abundant set of information about the class body
composition, the approach of the teacher to INVALSI tests, personal information of the teacher
(age, education, gender), teaching practices and available materials in the class. Table 5 reports
teacher and class level variables that we consider, following suggestions derived from the literature
about school e�ectiveness (David, Teddlie, & Reynolds, 2000), with their explanation.

8We remind that in our sample each class is within a di�erent school, i.e. we do not observe more classes in the same
school.

9In the analysis, these variables will be standardized.
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Variable type Mean sd Median IQR

math8 cont 53.201 20.036 52.489 29.322
read8 cont 64.491 17.278 66.392 23.001
math5 cont 68.475 16.641 70.000 26.001
read5 cont 66.608 16.736 68.965 24.138
ESCS cont 0.147 0.991 0.069 1.323
gender 0/1 0.51 − − −
immig 0/1 0.07 − − −

Table 4: Student level variables of the INVALSI database 2016/2017 used in the analysis with their
descriptive statistics.

Variable Type Explanation

Teachers general questions (for both maths and reading teachers)

updated techniques y/n the teacher applies new techniques
learned at refreshment courses

team work or research y/n the teacher organizes team work or
research in groups for students

extra activities y/n the teacher organizes extra scholastic
activities for student reinforcement

computer/internet y/n the teacher uses media support in class
refresher courses num number of refreshment courses the teacher

had in the last two years
contacts among teachers y/n teacher exchanges views with other teachers

Teachers personal information (for both maths and reading teachers)

num years of teaching here 1 : 4 since how many years the teacher teaches
in the actual school. 1: one year or less;
2: 2-3 years; 3: 4-5 years; 4: > than 5 years.

permanent job y/n the teacher has a permanent contract
gender y/n y= male; n = female.
age num age of the teacher
education 1 : 3 higher level of education of the teacher

1: less than degree; 2: degree; 3: phd/master
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Questions about school principals (for both maths and reading teachers)

princ refreshment courses y/n the school principal encourages teachers to
follow refreshment courses

princ lineup teach y/n the school principal organizes lineup
meetings for teachers

princ evaluate y/n the school principal evaluates the teachers
in their job

Only for mathematics teachers

num mathematics hours num number of hours of maths lesson per week
main teaching method cat `a': teach de�nitions and theorems that

students can apply to solve new problems
`b': favor the maths language and the capacity
of using formulas written in symbols
`c': favor meanings of maths symbols
`d': favor the capacity of build concepts,
models and theories

oral individ exam y/n the teacher tests students by means
of oral individual exams

oral group exam y/n the teacher tests students by means
of oral exams for groups of students

teacher written exam y/n the teacher tests students by means
of written exam made by him/herself

book written exam y/n the teacher tests students by means
of written exam taken by the book

calculations alone y/n the teacher teaches students to make
calculations without the support of the
calculator

table diagram graph y/n the teacher teaches students to interpret
tables, diagrams and graphs

maths memory y/n the teacher asks students to memorize
maths rules and theorems

graphs for problems y/n the teacher teaches students to analyze
graphs to solve maths problems
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Variable Type Explanation

Only for reading teachers

num reading hours num number of hours of reading lesson per week
programmed oral exam y/n the teacher tests students by means

of programmed oral exam
not programmed oral exam y/n the teacher tests students by means

of not programmed oral exam
grouped oral exam y/n the teacher tests students by means

of oral exam for groups of students
teacher close test y/n the teacher tests students by means of written

close questions tests made by him/herself
teacher open test y/n the teacher tests students by means of written

open questions tests made by him/herself
teacher book test y/n the teacher tests students by means

of written tests taken by the book
summarize text y/n the teacher trains students to

summarize texts
write reflections y/n the teacher trains students to write

texts about their re�ections and thinking
read newspaper y/n the teacher trains students to

read newspapers and journals

Class information and body composition

area geo cat Northern/Central/Southern Italy
Nstud num number of students
% stud antic num percentage of early-enrolled students
% stud postic num percentage of late-enrolled students
% 1st-gen immig num percentage of �rst generation immigrants
% 2nd-gen immig num percentage of second generation immigrants

Table 5: Teacher and class levels variables of the INVALSI database 2016/2017 used in the analysis with
their explanation.

The variables shown in Table 5 cover the four areas that regard (i) the class body composition,
(ii) teacher personal information (gender, age, education, . . . ), (iii) teaching practices of the teacher
and (iv) teacher's perception about the work and the collaboration within the school and about
the school principal. Class body composition and teacher personal information have been broadly
considered in the literature as potential in�uencer of student learning (Palardy, 2008; Winkler, 1975;
Dar & Resh, 1986, 2018; Bel�, Goos, De Fraine, & Van Damme, 2012; Wayne & Youngs, 2003). More
recent studies investigate also the e�ets of di�erent teaching approaches (traditional versus modern
teaching methods) on student learning, �nding heterogeneous results (Brewer & Goldhaber, 1997;
Schwerdt & Wuppermann, 2011; Bietenbeck, 2014; De Witte & Van Klaveren, 2014; Wenglinsky,
2002). Therefore, besides information regarding the class body composition, the geographical area

19



and personal information of the teacher, we decided to select from the questionnaire the information
that describes the type of teaching method of the teacher (i.e. the student skills that the teacher
stress more and aim to develop, the type of exercises that the teacher does in class and the type
of tests that the teacher prepares for students) and the managerial practices adopted by the school
principal.

4.2 BSPEM applied to data of Italian middle schools: estimating

subpopulations of classes

The semi-parametric two-level linear model applied to INVALSI data, considering students (level
1) nested within classes (level 2), takes the following form:

Yi =

(
c1,1m

c2,1k

)T
1 +

P∑
p=1

xip

(
β1p

β2p

)T
+ zi

(
c1,2m

c2,2k

)T
+ εi

i = 1, . . . , N m = 1, . . . ,M, k = 1, . . . ,K

εTi =

(
ε1,i

ε2,i

)
∼ N2(0,Σ) ind.

(12)

where i is the class index and N is the total number of classes. Yi =
(
math8i read8i

)
is the

bivariate vector of the INVALSI test scores of students attending grade 8, in mathematics and read-
ing. X = (x1,x2,x3) is the (ni× 3)-matrix of the �xed covariates, that comprehends socioeconomic
index, gender and immigrant status. z is the vector of INVALSI test score of the same students
but three years before (at grade 5), that di�ers across the two response variables, being math5 for
the �rst response (math8) and read5 for the second one (read8). In particular, we standardize the
variables math8, read8, math5, read5 and ESCS, so that they all have mean equal to 0 and variance
equal to 1. Our interest is to see how the association between the INVALSI test score at the end
of the primary school/beginning of the junior secondary school and the INVALSI test score at the
end of the junior secondary school does change across students attending di�erent classes, after
adjusting for some student level confounding factors (socioeconomic index, gender and immigrant
status), both in reading and mathematics. The period between grade 5 and grade 8 is the entire
period of the junior secondary school and this association represents a kind of class e�ect, seen as
the impact that the class has on the evolution of its student achievements. With this modeling, we
identify subpopulations of classes within which class impacts are similar and across which they are
di�erent. The bivariate nature of the modeling allows to do that both for reading and mathematics
achievements, considering also the joint e�ect of the class on the two school subjects. We apply
the BSPEM algorithm with the following choice of parameters: D1 = D2 = 0.3, w̃1 = w̃2 = 0.01,
tollR = tollF = 10−2, it=40, itmax=20, it1=20 (see Algorithm 1 in Appendix). The algorithm
converges in 30 iterations and identi�es M = 5 mass points for the random e�ects distribution
related to the �rst response (mathematics) and K = 4 mass points for the one related to the second
response (reading). From an educational viewpoint, for interpretation, classes can be classi�ed into
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�ve homogeneous groups when considering value-added in mathematics, while in four groups when
considering value-added in reading. The estimates of the identi�ed parameters (which measure the
e�ectiveness of classes) are shown in Table 6.

First response variable

ĉ1,1 ĉ1,2 ŵ1 β̂11 β̂12 β̂13

(intercept) (math5) (weight) (ESCS) (gender) (immigrant)

m=1 0.295 0.719 0.458

0.089 −0.055 0.048
m=2 −0.181 0.464 0.384
m=3 0.762 0.463 0.025
m=4 −1.301 0.112 0.064
m=5 0.366 0.291 0.069

Second response variable

ĉ2,1 ĉ2,2 ŵ2 β̂21 β̂22 β̂23

(intercept) (read5) (weight) (ESCS) (gender) (immigrant)

k=1 −2.848 −0.101 0.019

0.095 0.219 −0.083k=2 −0.622 0.262 0.095
k=3 −1.556 0.188 0.018
k=4 0.054 0.544 0.868

Table 6: Estimates of the parameters of Eq. (12) obtained by the BSPEM algorithm, related to the two
response variables. The coe�cients β of the �xed e�ects do not change across subpopulations.

β̂1 and β̂2 are the coe�cients of �xed e�ects and therefore their estimates are stable across the
subpopulations; ĉ1,m, for m = 1, . . . , 5 and ĉ2,k, for k = 1, . . . , 4 are the estimates of the coe�cients
of random e�ects and ŵ1 and ŵ2 are the estimated weights related to the marginal distributions of
the two random e�ects. Regarding the �xed e�ects (i.e. the individual-level covariates that a�ect
students' performance), the positive coe�cient of the variable ESCS (0.089 for mathematics and
0.095 for reading) suggests that students with higher ESCS are associated to higher grade 8 INVALSI
scores; females have on average higher scores in reading and lower ones in mathematics, with respect
to males (coe�cient of gender is −0.055 for mathematics and 0.219 for reading); being an immigrant
student has a negative e�ect in reading, but a slightly positive one in mathematics, once controlling
for other individual characteristics (coe�cient of immigrant is −0.083 for reading and 0.048 for
mathematics). In order to visualize the results related to random e�ects (class e�ectiveness), Figure
3 reports the regression planes identi�ed for both the two response variables, projected on the
2-dimensional plane identi�ed by the answer variable and the random covariate.
By looking at the estimated parameters in Table 6 and the regression lines in Figure 3, it is possible to
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Figure 3: Regression planes projected on the 2-dimensional plane identi�ed by the answer variable and
the random covariate, identi�ed by the parameters of Eq. (12) estimated by the BSPEM algorithm and
whose parameters are shown in Table 6. Panel on the left reports the results for the �rst response, while
panel on the right reports the results for the second one. The algorithm identi�es M = 5 mass points
for the �rst response and K = 4 mass points for the second one. For a better visualization, we do not
represent all the observations but only the identi�ed regression lines. Line widths are proportional to
the marginal weights w1 and w2.

make considerations about the identi�ed subpopulations of classes. Such classi�cation is particularly
useful for decision-makers, who can have a clear image of the heterogeneous e�ect of attending classes
with di�erent characteristics. Among the �ve identi�ed subpopulations related to the class e�ect
in mathematics, subpopulation m = 4 (containing 6.4% of the classes) clearly contains the classes
with the worse e�ect on student achievements, since the predicted values of y are the lowest for
almost the entire range of previous score math5. Subpopulations m = 1 and m = 2 (containing
45.8% and 38.4% of the classes, respectively) represent the most common trends and with respect
to them, subpopulations m = 3 and m = 5 have the two following characteristics: subpopulation
m = 3 (2.5% of the classes) can be interpreted as the best set of classes since the predicted values
of y are the highest in almost the entire range of the covariate math5; subpopulation m = 5 (6.9%
of the classes) contains classes where students have on average higher predicted values of INVALSI
score at grade 8 than the ones in subpopulation m = 2, while with respect to population m = 1 they
have higher predicted values of y for values of math5 smaller than 0, while they have lower predicted
values of y for values of math5 bigger than 0. These subpopulations contain classes which exert
heterogeneous e�ects on achievements, namely their e�ectiveness is di�erent along the distribution
of initial students' ability (as measured by test score at grade 5). Regarding the results of reading,
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the four identi�ed subpopulations are very well distinct. The subpopulation of the worst classes
corresponds to subpopulation k = 1 (containing about 2% of the classes), that is characterized by
a very low intercept and a slightly negative slope: students attending classes that belong to this
subpopulation have a low predicted value of INVALSI score, regardless of the fact that they had
high or low scores at grade 5. On the opposite, subpopulation k = 4 (containing 86.8% of the
classes) contains the set of the best classes since for all values of previous score z between -3 and 2,
i.e. for almost the entire range of values of the random covariate, the predicted value of y is higher
that the ones of the other subpopulations of classes. Subpopulation k = 2 (containing 9.5% of the
classes) is the second one in terms of high values of predicted score y, while subpopulation k = 3
(containing 1.8% of the classes) have predicted values of y lower than the ones of subpopulations
k = 4 and k = 2 but higher than the ones of subpopulation k = 1.

The algorithm also identi�es the reference subpopulations, that are the most numerous ones,
and the subpopulations that depart from them, composed by classes that have an exceptional
e�ect, whether positive or negative.

The interpretations of these subpopulations are also supported by the average values of the
standardized variables across them10, reported in Table 7. Regarding mathematics, subpopulation
m = 4 contains classes where the average score of math5 is the highest (math51 = 0.224), but where
the average score of math8 is the lowest (math81 = −1.351), con�rming the negative e�ects (value-
added) of the classes that belong to this subpopulation on students' achievement. Subpopulation
m = 3, interpreted as the subpopulation containing classes with the highest positive e�ect, is charac-
terized by the lowest average score of math5 (math52 = −0.118), but with the highest average score
of math8 (math82 = 0.753). This subpopulation is the one with the highest average student ESCS.
When considering reading, subpopulation k = 4, interpreted as the one containing the best classes,
is indeed characterized by the lowest average value of read5 (read51 = −0.051) and the highest
average score of read8 (read81 = 0.138). Also in this case, this subpopulation is characterized by
the highest average value of ESCS. On the other side, subpopulation k = 1, associated to a negative
class e�ect, has the highest average value of read5 (read54 = 0.427) and the lowest average value
of read8 (read84 = −2.78).
The M ×K matrix of the joint weights W and the variance/covariance matrix Σ are estimated as
follows:

Ŵ =


0.0000 0.0007 0.0003 0.4571
0.0054 0.0518 0.0047 0.3220
0.0022 0.0000 0.0023 0.0204
0.0068 0.0312 0.0082 0.0179
0.0043 0.0111 0.0029 0.0507

 Σ̂ =

(
0.455 0.183
0.183 0.451

)
. (13)

The covariance and the correlation among the errors ε1 and ε2 are 0.183 and 0.404, respectively.

10These average values are obtained by computing the means of the variables over all students attending classes that
belong to the di�erent subpopulations.
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First response variable

math8 math5 ESCS

m=1 0.259 −0.049 0.103
m=2 −0.214 0.007 −0.106
m=3 0.753 −0.118 0.102
m=4 −1.351 0.224 −0.432
m=5 0.326 −0.075 −0.078

Second response variable

read8 read5 ESCS

k=1 −2.78 0.427 −0.075
k=2 −0.518 0.149 −0.345
k=3 −1.398 0.342 −0.128
k=4 0.138 −0.051 0.014

Table 7: Average values of some student level variables used in the analysis, across the identi�ed sub-
populations (�ve for mathematics and four for reading).

Considering the two marginal distributions of the class e�ects, we observe from Table 6 that, in
the case of mathematics (�rst response variable), classes are divided into �ve subpopulations, two
numerous ones containing 84.2% of the total number of classes (45.8% + 38.4%) and three smaller
subpopulations containing the remaining 15% of the classes. The distribution of the class e�ects in
reading on the four subpopulations also sees a very numerous subpopulation containing the 86.8%
of the classes, followed by a subpopulation containing about the 9.5% of the classes and by two very
small subpopulations containing the remaining 3.7% of the classes. By looking at the matrix Ŵ of
the joint weights, we see that the joint distribution of the class e�ects on reading and mathematics
is not uniform on the 20 mass points, but it is mainly concentrated on certain mass points. This
result further highlights the utility and the advantage of the bivariate modeling. The most numerous
subpopulation is (m = 1, k = 4), that contains the 45.71% of the classes, followed by subpopulation
(m = 2, k = 4) with the 32.20% of the classes. These two subpopulations represent the reference
trend, the most common one, where classes, with respect to the other subpopulations, have the
highest positive e�ect in reading (k = 4) and a positive (but not the highest) e�ect in mathematics
(m = {1, 2}). In terms of weights, these subpopulations are followed by subpopulation (m = 2, k =
2), that contains 5.18% of the classes, that are characterized by slightly lower positive e�ects than the
ones in the reference subpopulations. Subpopulations (m = 3, k = 4) and (m = 5, k = 4) contain the
2.04% and the 5.07% of the classes, respectively, and are composed by classes with the best e�ects
both in reading and mathematics. This �nding also corroborates the idea that the proportion of
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classes that are able to in�uence their students' achievement in a very positive way for both subjects
is quite limited. On the opposite, subpopulations (m = 4, k = 1) and (m = 4, k = 3) are the worst
subpopulations since students in these classes have the lowest increment in their achievements both
in reading and mathematics. There are also cases where the class e�ects in reading and mathematics
are opposite: subpopulations (m = 5, k = 1) and (m = 5, k = 3) are composed by classes with a very
high positive e�ect in mathematics and a very low e�ect in reading; on the other side, subpopulation
(m = 4, k = 4) contains classes with a negative class e�ect in mathematics but a very high positive
e�ect in reading.

In particular, among the entire set of di�erent behaviors of classes, we are interested in identi-
fying and analyzing the behaviors of the classes that signi�cantly di�er in their e�ects on student
achievements from the ones of the reference subpopulation and, therefore, we focus our attention
on four types of subpopulations:

• Sref = the union of subpopulations (m = {1, 2}, k = 4) - the reference subpopulation. It
contains 843 classes, that are associated to the highest positive impact in reading and a positive
impact (but not the highest) in mathematics.

• S2 = union of subpopulations (m = 4, k = {1, 3}). It contains 16 classes, that are associated
to negative impacts, with respect to the others, both in mathematics and reading.

• S3 = union of subpopulations (m = {3, 5}, k = {1, 3}). It contains 13 classes, that are
associated to a very positive impact in mathematics and a negative one in reading.

• S4 = subpopulation (m = 4, k = 4). It contains 19 classes, that are associated to a negative
impact in mathematics and a positive one in reading.

Table 8 highlights these four subpopulations in the joint distribution of the subpopulations. The
subpopulations Sref and S2 contain classes that have homogeneous e�ects in reading and mathe-
matics, since they exert both negative or both positive e�ects on their student achievements. On
the other side, S3 and S4 contain classes that have heterogeneous e�ects in the two school subjects,
since they exert a positive e�ect in mathematics and a negative one in reading and viceversa. We
focus our attention on these four cases since they represent the borderline cases of all the possible
interactions between class e�ects in mathematics and reading. Indeed, they result of great interest
in the perpective of investigating eventual in�uences between teaching and learning dynamics in the
two school subjects.

As a �nal remark, we must recall that in this analysis we cosider only one level of grouping, i.e.
students nested within classes. As a consequence, part of the correlation that we identify among
the class e�ects might be due to the school in which classes are nested. Future research will be
dedicated to understand how schools are shaping the e�ectiveness of their classes in a di�erent way.

4.3 Factors associated to the class e�ects

The presence of subpopulations of classes that di�er in their e�ect on mathematics and reading
student achievements might be the consequence of di�erent class body-compositions, peers, teachers
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k=1 k=2 k=3 k=4

m=1 Sref
m=2 Sref
m=3 S3(+−) S3(+−)
m=4 S2(−−) S2(−−) S4(−+)
m=5 S3(+−) S3(+−)

Table 8: Distribution of the selected four subpopulations (Sref , S2, S3 and S4) in the joint distribution
of the 5×4 subpopulations identi�ed by the BSPEM algorithm. Except for the reference subpopulation
(Sref , in bold), for each subpopulation, the signs into the brackets represent the positive (+) or negative
(-) class e�ect in mathematics and reading, respectively.

or teaching practices. These aspects may in�uence the class e�ect in reading, mathematics or
both of them. Moreover, having a disadvantaged situation in one school subject learning may
favor student learning in the other school subject and viceversa. Therefore, we are interested
in investigating whether there are some class and teacher level variables associated to the four
heterogeneous types of subpopulations. Such an exercise can be relevant for decision-makers, who
can make interventions to modify schools' and classes' activities and characteristics, in search of
higher levels of e�ectiveness. To this end, we apply a multinomial lasso logit model (Tibshirani,
1996; Lokhorst, 1999) by treating the class and teacher levels characteristics as covariates and the
belonging of classes to the 4 subpopulations (Sref , S2, S3, S4) as outcome variable. This choice is
driven by the fact that the number of class and teacher levels covariates is very high and we do
not expect all of them to be signi�cant. Using a lasso model allows us to select the signi�cant
covariates, addressing multicollinearity issues, and to estimate their association with the response
variable. From a methodological point of view, this approach is more robust and preferable than
the traditional linear modelling often used in educational research.

Denoting with Yi the cluster of belonging of class i, for i = 1, . . . , N , and considering K =
{Sref , S2, S3, S4} the set of possible values of Y, the multinomial lasso logit model takes the following
form:

P (Yi = k|Xi = xi) =
eβ0k+βT

k x∑K
k=1 e

β0l+β
T
l xi

, (14)

where K is the total number of categories assumed by Y, i.e. 4, and X is the N × Q matrix of
class and teacher levels covariates shown in Table 5. Denoting by Ỹ the N ×K indicator response
matrix, with elements ỹil = I(yi = l), the elastic-net penalized negative log-likelihood function is

l({β0k, βk}K1 ) = −

[
1

N

N∑
i=1

(
K∑
k=1

ỹil(β0k + xTi βk)− log(
K∑
k=1

eβ0k+xT
i βk)

)]
+ λ

Q∑
j=1

||βj ||1, (15)
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where λ is a tuning parameter that controls the overall strength of the penalty, β is a Q × K
matrix of coe�cients, βk refers to the k−th column (for outcome category k), and βj to the j−th
row (vector of K coe�cients for variable j). We choose to perform a lasso penalty on each of the
parameters.

By using cross-validation, we select the penalization term λ of the lasso regression in order to
minimize the mean-squared error. The results of the lasso multinomial logit model, with the best
selected choice of λ, are obtained by using the R package glmnet (Friedman, Hastie, & Tibshirani,
2010) and are shown in Table 9.

Variable name Sref S2 S3 S4

Teachers general questions

contacts among maths teachers −0.186
contacts among reading teachers −0.169

Teachers personal information

Maths teacher age −0.024
Reading teacher age −0.003
Reading teacher gender (male=1) 0.249

Only for mathematics teachers

main teaching method `a' −0.132
teacher written exams −1.729

Only for reading teachers

num years of teaching here −0.015
num reading hours −0.016
summarize text −0.071
read newspapaper 0.610

Class information and body composition

% 2nd-gen immig 4.519
area geo South −1.417 0.048

Table 9: Results of the lasso multinomial logit regression in Eq. (14). We report in the table only the
coe�cients of the variables at class and teacher levels that result to be signi�cant in the model.

According to the results of the multinomial logit model shown in Table 9, the variables that
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result to be signi�cant in predicting the belonging of the classes to the four subpopulations regard
contacts among teachers, the age and the gender of teachers, some aspects of the teaching methods
in both mathematics and reading, the amount of hours of reading lesson, the geographical area and
the percentage of immigrant (second generation) students. Classes where teachers of reading and
mathematics are used to exchange views about teaching with other teachers are less likely to belong
to the reference subpopulation Sref (variable contacts among reading/maths teachers). The
elder are the mathematics and reading teachers the less likely are classes to belong to the reference
subpopulaton Sref (variable maths/reading teacher age). This suggests that younger teachers
are associated to worse class e�ects in reading and both to very positive or very negative class e�ects
in mathematics. Classes with male reading teachers are more likely to belong to subpopulation S4,
that is the one associated to a negative impact in mathematics and a positive one in reading (variable
reading teacher gender). Speaking about mathematics teaching methods, classes where teachers
follow the method `a' - teach de�nitions and theorems that students can apply to solve new problems
- are less likely to belong to Sref (the reference method is `d' - the teacher favors the capacity of
build concepts, models and theory). Classes where the mathematics teacher personally prepares
the written exam for the students are less likely to belong to subpopulation S2 (variable teacher

written exam). In this case, having a mathematics teacher who does not elaborate the tests and
adapt them to his/her students results to be a disadvantage, since this characteristic increases the
probability of a class of being in a subpopulation with a negative e�ect in mathematics. Regarding
the characteristics of reading, the higher is the number of hours per week dedicated to reading lesson
the lower is the probability of belonging to the reference subpopulation Sref (variable num reading

hour). Classes where the reading teacher works in the school since many years are less likely to
belong to Sref (this association is in line with the one of the age of the reading teacher). Moreover,
classes where the reading teacher trains students in summarinzg texts are less likely to belong to Sref
(variable summarize text). Lastly, classes where the reading teacher reads newspapers in class as
part of the lesson are more likely to be associated to subpopulation S2 (variable read newspaper).
Classes in Southern Italy are less likely to belong to the reference subpopulation Sref and are more
likely to belong to S2 (variable area geo south). Subpopulation S2 contains classes with a worse
e�ect than the ones in Sref and, therefore, classes in Southern Italy have on average worse e�ects on
student achievements than to the ones in Northern Italy. Classes with a high percentage of second
generation immigrant students are more likely to belong to Sref , suggesting the positive e�ect of
diversity of class composition (this result is also partially explained by the fact that the percentage
of immigrant students in Southern Italy is very low with respect to the one in Northern Italy).

Besides the geographical area or the number of hours of lesson per week, these results re�ect
the fact that personal and working characteristics of teachers are in some way associated to student
learning. For instance, being a �not proactive� teacher, who simply follows the book and who does
not make personalized tests, has a negative e�ect in mathematics and spending time in reading
newspapers in class results to be a disadvantage in reading.
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5 Conclusions

In this paper, we develop a bivariate semi-parametric mixed-e�ects model, together with an EM
algorithm for estimating its parameters (BSPEM algorithm), for hierarchical data. We apply this
new algorithm to Italian middle schools data of 2016/2017 for performing a classi�cation of Italian
classes/schools. The BSPEM algorithm is the extension to the bivariate case of the SPEM algorithm
presented in (Masci et al., 2019). We assume the random coe�cients of the mixed-e�ects model to
follow a discrete distribution, where the numbers of support points of the coe�cients distribution
related to the multiple responses are unknown and are allowed to be di�erent. Each group, i.e.
observation at the higher level of hierarchy (classes/schools), is assigned to one of the subpopulations
identi�ed, that characterizes the e�ect of the group related to the multiple response variables. The
novelty and the advantage of this modeling is twofold. First, the BSPEM algorithm identi�es two
latent structures among the higher level of hierarchy, one related to the �rst response and one
related to the second one (in our case, they represent test scores in two di�erent subjects within the
same class/school). Second, the joint modeling reveals two natures of the correlation between the
two response variables: one is the correlation among the distribution of the subpopulations, that
can be seen in the matrix of weights W , that tells us how groups are distributed on the M × K
mass points; the second correlation is among the unexplained variance of the two response variables,
i.e. Σ12, that tells us whether in the variance of the two response variables that we are unable to
explain with the model there is still correlation or not. In this perspective, the BSPEM algorithm
is unique in the literature and can be applied in many classi�cation problems, also in di�erent �elds
than education, with the aim of individuating latent patterns within data or also for con�rming the
presence of a theoretically known number of subpopulations.

Applying the BSPEM algorithm to the achievement data of Italian middle school students,
considering students as level 1 and classes as level 2, we jointly model the impact of the class/school
on both mathematics and reading student achievements. We interpret the impact of a class as the
linear relation between previous (grade 5) and current (grade 8) INVALSI test scores of students
within a class, adjusting for student socio-economic index, gender and immigrant status (i.e. the
value-added of class/school). The algorithm reveals the presence of �ve di�erent trends (class e�ects)
in mathematics and four di�erent ones in reading. The distribution of classes on these 5 × 4 mass
points is not uniform but it is possible to identify some more common behaviors. In particular, we
distinguish classes that have a positive impacts on student achievements in both maths and reading,
from the ones that have a negative one, from the ones that have heterogeneous impacts on the two
school subjects.

Interested in characterizing the identi�ed subpopulations of classes, we apply, in a second step, a
lasso multinomial logit model to explain the belonging of classes to the subpopulations by means of
teacher and class levels variables. It emerges that, in addition to the classical information about class
body composition or peers, there are certain teacher practices or characteristics that are associated
to di�erent class impacts. In particular, the attitude, the pro-activeness and the preparation of
teachers result to be e�ective on student learning.

The method and the results presented in this paper have three clear and important policy and
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managerial implications. Firstly, it is useful to classify the classes in groups on the basis of their
likely e�ect on student achievement, instead of creating �rankings� among them. This way, the
characteristics of groups can be analysed, and decision makers can have clear indications about how
to intervene to try boosting the e�ectiveness of educational activities. For example, our results
point at demonstrating that classes where the e�ects on achievement are more positive are those in
which teachers adopt a more proactive in building concepts, methods and theories. Secondly, the
e�ectiveness of classes must be judged on the basis of their joint e�ect on di�erent subjects, in a
multidimensional perspective. Our results indicate that many classes are able to exert a positive
e�ect on students' achievement in one subject but not the other. The proportion of classes that
contribute very positively to achievement in both reading and mathematics is quite limited (around
10%), and they should serve as a benchmark and reference point to understand the key features that
make them particularly e�ective. Anyway, most of previous literature in the �eld focuses on one
subject at a time, so neglecting a lot of the complex interaction in teaching and educational practices
that have an e�ect on students' results - and our work overcomes this problem. Thirdly, background
individual characteristics of the students are con�rmed to be very important in in�uencing their
academic results. The estimate of classes' e�ects that we provide are determined net of students'
characteristics, but a necessary development of our methodology will be to study more profoundly
the interaction between individual features' and classes' characteristics and activities. This way, the
proposed method could provide useful insights to understand which are the likely results of moving
students between classes.

A limitation of our study, determined by data availability, is that we do not have information
about multiple classes within the same school. An interesting development of our research e�ort
will consist in obtaining new data and exploring how the information about the clustering in di�er-
ent schools in�uences the heterogeneity of classes' e�ectiveness, adjusting for individual students'
characteristics. The proposed model is already presented in its complete form in this paper, for
allowing empirical analyses in this direction.

Summing up, the present study pares the way for extensions towards better understanding of the
educational production process, in particular for modelling heterogeneity of e�ects within classes
and schools.
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Appendix

The EM algorithm for bivariate semi-parametric mixed-

e�ects linear models

The EM algorithm that we propose to estimate the parameters of the model in (4) is the general-
ization for the bivariate case of the one proposed in (Masci et al., 2019). It alternates two steps:
the expectation step (E step) in which we compute the conditional expectation of the likelihood
function with respect to the random e�ects, given the observations and the parameters computed in
the previous iteration; and the maximization step (M step) in which we maximize the conditional
expectation of the likelihood function. At each iteration, the EM algorithm updates the parameters
in order to increase the likelihood in Eq. (5) and it continues until the convergence. The update of
the parameters is the following:

w
(up)
mk =

1

N

N∑
i=1

Wimk for m = 1, . . . ,M, k = 1, . . . ,K (16)

and

(β(up), c
(up)
mk ,Σ

(up)) =
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(17)

where

Wimk =
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m=1
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and
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The coe�cientWimk represents the probability of ci being equal to cmk conditionally to observations
yi and given the �xed coe�cient β and the variance/covariance matrix Σ. Indeed, since wmk =
p(ci = cmk), then

Wimk =
wmk p(yi|β,Σ, cmk)∑M

m=1

∑K
k=1wmk p(yi|β,Σ, cmk)

=
p(bi = cmk) p(yi|β,Σ, cmk)

p(yi|β,Σ)
=

=
p(yi, ci = cmk|β,Σ)

p(yi|β,Σ)
= p(ci = cmk|yi,β,Σ).

(20)

Therefore, in order to compute the point cmk for each group i, for i = 1, . . . , N , we maximize
the conditional probability of ci given the observations yi, the coe�cient β and the error vari-
ance/covariance matrix Σ. So that, the estimation of the coe�cients ci of the random e�ects for
each group i is obtained maximizing Wimk over m and k, that is

ĉi = cm̃k where m̃k = arg max
m,k

Wimk i = 1, . . . , N. (21)

The maximization in Eq. (17) involves two steps and it is done iteratively. In the �rst step,
we compute the arg-max with respect to the support points cmk, keeping β and Σ �xed to the
last computed values. In this way, we can maximize the expected log-likelihood with respect to all
support points cmk separately, that means

c
(up)
mk = arg max

c

N∑
i=1

Wimk ln p(yi|β,Σ, cmk) m = 1, . . . ,M k = 1, . . . ,K. (22)

Since we are considering the linear case, the maximization step is done in closed-form11. In the
second step, we �x the support points of the random e�ects distribution computed in the previous
step and we compute the arg-max in Eq. (17) with respect to β and Σ. Again, this step is done in
closed-form.

The initialization of the support points of the discrete distribution P ∗ and the criteria for the
convergence of the EM algorithm are the direct extension of the ones chosen in (Masci et al., 2019)
for the bivariate case. In particular, the algorithm starts considering N support points for the
coe�cients of random e�ects and a starting estimate for the coe�cient of the �xed e�ects, for both
the response variables. These parameters are chosen in the following way:

• random e�ects: for each response variable, the starting N support points are obtained �tting a
simple linear regression within each group and estimating the couple of parameters (both the
intercept and the slope) for each one of the N groups. The weights are uniformly distributed
on these N ×N support points;

11Closed-form calculations of model parameters can be found in (Masci et al., 2019).
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• �xed e�ects: the starting values of β and Σ are estimated by �tting a unique bivariate linear
regression on the entire population (i.e. without considering the nesting of the observations
within groups).

Nonetheless, if the number of starting support points N is extremely large, the algorithm is rela-
tively slow and using N starting support points becomes not strictly necessary. In this case, the
initialization of the support points of the random e�ects distribution is done in the following way:

• we choose a number N* < N of support points, that is the same for both the two response
variables;

• for each response variable, we extract N* points from a uniform distribution with support on
the entire range of possible values for each parameter, that is estimated by �tting N distinct
linear regressions for each one of the N groups, as before, and identifying the minimum and
the maximum values;

• we uniformly distribute the weights on these N∗ ×N∗ support points.

TheM×K matrix of weights, that is composed by the elements wmk previously described, represents
the joint distribution of groups across the bivariate clusters and, by summing over rows and columns
respectively, it represents the marginal distribution of the groups across the univariate clusters, for
each single response variable.
During the iterations, the EM algorithm performs the support reduction of the discrete distribution
of random e�ects, in order to identifyM×K mass points (starting from N×N mass points), where
both M and K are smaller than N . The support reduction is made standing on two criteria. The
former is that we �x a threshold value D and if two mass points are closer, in terms of euclidean
distance, than D, they collapse to a unique point. This procedure is separately applied to the
clusters related to the �rst and second response variable respectively. In particular, considering, for
example, the case of the �rst response variable, if two mass points c1,h and c1,g, for h, g = 1, . . . ,M ,

are closer than D, they collapse to a unique point c1,(hg), where c1,(hg) =
c1,h+c1,g

2 . Consequently,

Mnew = Mold − 1, the new marginal weight is obtained as w1,(hg) = w1,h + w1,g and the joint
weights w(hg)k = whk + wgk, for k = 1, . . . ,K. The same criterion applies to the clusters related to
the second response variable. The �rst two masses collapsing to a unique point are the two masses
with the minimum euclidean distance, among the couples of masses with euclidean distance less
than D, and so on so forth. Note that the threshold value D is the same for the clusters related
to the two response variables, but the procedure might lead to di�erent number of mass points M
and K. The latter is that, starting from a given iteration up to the end, we �x a threshold value w̃
and we remove mass points with marginal weights w1,m ≤ w̃, for m = 1, . . . ,M and w2,k ≤ w̃, for
k = 1, . . . ,K or that are not associated to any subpopulation. D and w̃ are two tuning parameters
that tune the estimates of the subpopulations. Further insights on the choice of these parameters
can be found in (Masci et al., 2019).

The sketch of the BSPEM algorithm is shown in Algorithm 1. At each iteration a, the algorithm,
given the estimated number of mass points, estimates all the parameters in Eq. (4) in an iterative
way, updating the coe�cients related to both �xed and random e�ects, until convergence or until
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it reaches the maximum number of sub-iterations �xed a priori for this stage (itmax). At the
beginning of the iterative process, the algorithm performs the dimensional reduction of the mass
points standing only on the distance between the mass points. When the estimates are stable,
meaning that all the di�erences between the estimates of the parameters at two consecutive iterations
are smaller than �xed tolerance values, or after a given number of iterations it1, the algorithm
continues performing the dimensional reduction of the support points standing also on the criterion
of the minimum weight w̃ . The �nal convergence is reached when all the di�erences between the
estimates of the parameters at two consecutive iterations are smaller than �xed tolerance values, or
after a given number of iterations it. In particular, we �x the tolerance values for the estimates of
both the parameters of �xed and random e�ects to tollF and tollR respectively, which depend on
the scale of the parameters. The usage of the maximum number of iterations it, it1 and itmax is
merely to avoid an in�nite loop and their values depend on the complexity of the data and on the
consequent convergence rate. The code is implemented using the R software (R Core Team, 2014).
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Algorithm 1: EM algorithm for bivariate semi-parametric mixed-e�ects models

input : Initial estimates for (c
(0)
11 , . . . , c

(0)
MK) and (w

(0)
11 , . . . , w

(0)
MK), with M = N and K = N ;

Initial estimates for β(0) and Σ(0);
Tolerance parameters D1, D2, w̃1, w̃2, tollR, tollF, it, it1, itmax.

output: Final estimates of c
(a)
mk, w

(a)
mk, for m = 1, . . . ,M , k = 1, . . . ,K, β(a) and Σ(a).

a=1; conv1=0; conv2=0;
while (conv1 == 0 or conv2 == 0 & a < it) do

compute the distance matrices DIST1 and DIST2 for both the subpopulations distribution (where, e.g.,for
the �rst response variable, DIST1st =

√
(c1,1s − c1,1t)2 + (c1,2s − c1,2t)2 is the euclidean distance between

each couple of mass points s, t ∀s, t = 1, . . . ,M, s 6= t);
if (DIST1st < D1 & DIST1st = min(DIST1) (∀s, t = 1, . . . ,M, s 6= t)) then

collapse marginal masses s and t to a unique mass point;

if (DIST2st < D2 & DIST2st = min(DIST2) (∀s, t = 1, . . . ,K, s 6= t)) then
collapse marginal masses s and t to a unique mass point;

compute the new distance matrices DIST1 and DIST2;
if conv1 == 1 or a ≥ it1 then

if w
(a)
1,m ≤ w̃1 (∀m = 1, . . . ,M) then
delete marginal mass point m;
reparameterize the weights;

if w
(a)
2,k ≤ w̃2 (∀k = 1, . . . ,K) then
delete marginal mass point k;
reparameterize the weights;

if no changes are done then
conv2 = 1;

given c
(a−1)
mk , w

(a−1)
mk for m = 1, . . . ,M and k = 1, . . . ,K, β(a−1) and Σ(a−1), compute the matrix W

according to Eq. (20);

update the weights w
(a)
11 , . . . , w

(a)
MK according to Eq. (16);

β(a,0) = β(a−1);
Σ(a,0) = Σ(a−1);

c
(a,0)
mk = c

(a−1)
mk ;

w
(a,0)
mk = w

(a−1)
mk ;

keeping β(a,0) and Σ(k,0) �xed, update the M ×K support points c
(a,1)
11 , . . . , c

(a,1)
MK according to Eq. (17);

keeping c
(a,1)
mk , w

(a,0)
mk for m = 1, . . . ,M and k = 1, . . . ,K �xed, update β(a,1) and Σ(a,1) according to Eq. (17);

j=1;
while

(|β(a,j−1)−β(a,j)| ≥ tollF or |Σ(a,j−1)−Σ(a,j)| ≥ tollF or |c(a,j−1)
mk − c

(a,j)
mk | ≥ tollR) & j ≤ itmax

do
j=j+1;

keeping β(a,j−1) and Σ(a,j−1) �xed, update the M ×K support points c
(a,j)
11 , . . . , c

(a,j)
MK according to Eq.

(17);

keeping c
(a,j)
mk , w

(a,j−1)
mk for m = 1, . . . ,M and k = 1, . . . ,K �xed, update β(a,j) and Σ(a,j) according to

Eq. (17);

set c
(a)
mk = c

(a,j)
mk for m = 1, . . . ,M and k = 1, . . . ,K, β(a) = β(a,j), Σ(a) = Σ(a,j);

estimate subpopulation mk for each group i according to Eq. (21);

if (β(a) − β(a−1) < tollF ) & (Σ(k) − Σ(k−1) < tollF ) & (c
(a)
mk − c

(a−1)
mk < tollR) then

conv1 = 1;

a= a+1;
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