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Abstract

The ensemble Kalman filter is nowadays widely employed to solve state and/or parameter
identification problems recast in the framework of Bayesian inversion. Unfortunately its cost
becomes prohibitive when dealing with systems described by parametrized partial differential
equations, because of the cost entailed by each PDE query. This is even worse for nonlin-
ear time-dependent PDEs. In this paper we propose a reduced basis ensemble Kalman filter
technique to speed up the numerical solution of Bayesian inverse problems arising from the
discretization of nonlinear time dependent PDEs. The reduction stage yields intrinsic approx-
imation errors, whose propagation through the filtering process might affect the accuracy of
the identified state/parameters. Since their evaluation is computationally heavy, we equip our
reduced basis ensemble Kalman filter with a reduction error model based on ordinary kriging
for functional-valued data, to gauge the effect of state reduction on the whole filtering process.
The accuracy and efficiency of our method is then verified on two numerical test cases, dealing
with the identification of uncertain parameters or fields for a FitzHugh-Nagumo model and a
Fisher-Kolmogorov model.

1 Introduction

The solution of inverse and uncertainty quantification problems involving systems modeled by
partial differential equations (PDEs) is computationally demanding. In this paper we develop an
inversion technique that combines the reduced basis (RB) method and the ensemble Kalman filter
to solve state/parameter identification problems for large-scale nonlinear dynamical systems arising
from the discretization of nonlinear time-dependent PDEs. The parameter vector µ 2 P ⇢ Rd can
characterize physical or geometrical properties, or again boundary conditions and forcing terms.
In this context, we are interested to identify the value of µ (in a sense to be made precise) which
has generated a set of noisy measurements of an output sh(µ) 2 Rs, provided by a linear function
of the PDE numerical solution uh(t;µ) corresponding to µ at time t. The pedix h typically refers
to the gridsize; for small values of h, we deal with large-scale inverse problems whose solution is
computationally intensive. On the other hand, the distinction between state uh and parameter
variables µ requires a suitable extension of the techniques usually exploited to face this kind of
problems. Following the Bayesian approach, both parameters µ and outputs sh are modeled as
random vectors. In this setting, starting from the observation of the noisy outputs sh, the inverse
problem of state/parameter identification consists in finding the posterior distribution of [µ,uh]

T

by combining the prior distribution and the likelihood of the measurements set, encoding the
information on the forward problem (see e.g. [37, 38]).
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If the forward problem is given by a dynamical system, the posterior distribution usually results
from a sequential update, which combines at each step along the time interval the knowledge on the
estimated parameters (until the current step), together with the most recent update provided by
the solution of the forward problem through a new output evaluation. Due to the nonlinearity of the
map µ ! sh(µ), the resulting posterior distribution cannot be written analytically; its computation
is typically based on sampling techniques, such as Markov chain Monte Carlo (MCMC) methods
[15], however, this requires an extremely large number (order of 105 � 10

6) of evaluations of the
forward problem solution.

For time-dependent problems, alternative approaches like the Bayesian Kalman filters have been
developed in order to provide less expensive approximations of the target distribution [21, 24].
The basic Kalman filter sequentially produces an estimate of the mean and covariance of the
unknown quantities. In its canonical formulation, it requires the random vectors µ and sh to be
normally distributed, and the forward map µ ! sh(µ) to be linear with respect to the parameters.
Since these assumptions are seldomly matched, suitable generalizations known as approximated
Kalman Filters are exploited. In particular, we focus on the Ensemble Kalman filter (EnKF), which
combines the filtering approach with a suitable sampling strategy: the distribution of [µ,uh]

T is
then represented by a finite ensemble of vectors which are advanced in time according to the
Kalman updating formula.

Since the EnKF also requires repetitive evaluations of solutions (and outputs) of the nonlin-
ear dynamical system, solving an inverse problem in this context still represents a computational
challenge. The cost of the inversion procedure can be considerably reduced by approximating
the dynamical system through suitable surrogate or reduced order models (ROMs), see e.g. [1]
for a survey of these techniques. In this work we exploit the RB method [33], relying on (i) the
proper orthogonal decomposition (POD) technique for the basis functions construction and on (ii)
hyper-reduction techniques, such as the discrete empirical interpolation method, for the efficient
evaluation of the nonlinear terms involved in the forward problem [26, 3, 31]. Recently a great
effort has been devoted to the reduction of computational complexity entailed by inverse prob-
lems dealing with PDE system. For instance, ROMs have been exploited both within MCMC
[12, 11, 27, 4, 16], and Gaussian filtering [35, 5, 19] techniques to tackle state identification prob-
lems more efficiently. ROMs have also been considered in conjunction with approximate Gaussian
filters for the sake of state estimation [18] and state/parameter estimation [25, 30]. With respect
to already existing approaches, in this paper we develop for the first time a reduced basis ensemble
Kalman filter (RB-EnKF) for the solution of state/parameter identification problems governed by
nonlinear time-dependent PDEs. In this field, a computationally attractive alternative is repre-
sented by polynomial chaos expansion, a non-sampling-based method for uncertainty propagation
in dynamical systems; this also has been applied for the efficient construction of approximate
Gaussian filters for the sake of state estimation [32, 7] and state/parameter estimation [34].

When a full-order (or high-fidelity) model of the forward problem based on an approximation
technique such as the finite element, finite volume or spectral methods, is replaced by a ROM, the
propagation of the reduced-order approximation errors during the inversion procedure could lead to
biased estimates of the unknown state/parameter [27, 18]. In order to enhance the accuracy of the
inversion process when relying on very efficient (but very low-dimensional, too) ROM, we develop a
statistical error model, to be included in the RB-EnKF to correct the bias on the output evaluation.
Acting as a calibration of the reduced-order input/output map, this reduction error model (REM)
can be obtained through a kriging interpolation procedure, thus extending a technique previously
introduced in [27] to the case of forward problems described by unsteady PDEs.

To the best of our knowledge, this is the first investigation on the effect of the ROM accuracy
during the filtering procedure. Our analysis shows that in the case of complex forward PDE
problems, the ROM dimension could be significantly large for the sake of accuracy of the inversion
procedure, thus yielding a dramatic loss of computational efficiency. On the other hand, equipping
our RB-EnKF with a REM aims at improving the reliability of state/parameter identification
problems also in those cases where the ROM has small dimension. The error analysis represents
another original contribution of this paper: by adopting the perspective of functional data analysis,
we are able to provide an efficient prediction of the propagation of the error on the estimated
quantities.
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The paper is organized as follows. In Sect. 2 we provide a general formulation of the class of
problems we are interested to, whereas in Sect. 3 we introduce the ensemble Kalman filter, outlining
the whole algorithm for state/parameter estimation. In Sect. 4 we exploit the RB method to solve
nonlinear dynamical systems efficiently, and derive a RB formulation of the EnKF. Some theoretical
results are also proven in order to carry out an a priori error analysis on the estimated quantities,
with respect to the increasing accuracy of the underlying RB approximation. In Sect. 5 we
introduce the kriging-based reduction error model, we incorporate it into the inversion procedure,
and we provide an analysis of the estimation error with respect to the uncorrected RB-EnKF.
In the last section, we present some numerical results exploiting the proposed procedure for the
identification of unknown parameters or random fields when either a FitzHugh-Nagumo or a Fisher-
Kolmogorov model is considered.

2 Problem formulation

In this section we introduce the class of problems we focus on, and recall some basic notions on
the Bayesian approach instrumental to set up the whole framework. For the sake of simplicity, we
directly deal with the algebraic formulation of the full-order model (FOM), obtained by a finite
element approximation of the forward problem.

2.1 Forward problem

We consider as FOM of the forward problem a map assigning to any µ 2 P ⇢ Rd an output vector

sh(µ) =

Z T

0
Huh(t;µ)dt 2 Rs

, (1)

where uh = uh(t;µ) is the solution of a nonlinear parametrized dynamical system, arising from
the spatial semi-discretization of a nonlinear parabolic PDE, under the form

(
M(µ)

@uh

@t

+A(µ)uh +N(uh;µ) = fh(t;µ), t 2 (0, T )

uh(0;µ) = u0;

(2)

H 2 Rs⇥Nh encodes the observation (linear) operator, M(µ) 2 RNh⇥Nh the mass matrix, fh 2 RNh

the data of the PDE problem (source term and boundary conditions), A(µ) 2 RNh⇥Nh and
N(·;µ) 2 RNh a parametrized linear differential operator and a nonlinear operator respectively.
Problem (2) arises e.g. by applying a Galerkin-finite element (FE) method relying on a finite-
dimensional space Xh ⇢ X of (possibly very large) dimension dim(Xh) = Nh; X = X(⌦) denotes
the functional space where the continuous problem is formulated, whereas ⌦ 2 Rp

, p = 1, 2, 3, is
the spatial domain; h is a parameter related to the mesh size of the computational grid.

Given a partition (t

(`)
, t

(`+1)
), ` = 0, . . . , Nt � 1 of the time interval (0, T ) into Nt subintervals

of length �t, we adopt the implicit Euler method for the time discretization, thus solving
8
<

:

✓
M(µ)

�t

+A(µ)

◆
u
(`+1)
h +N(u

(`+1)
h ;µ) =

M(µ)

�t

u
(`)
h + f

(`+1)
h (µ), ` = 0, . . . , Nt � 1

u0
h = u0.

(3)

To solve the nonlinear problem in (3), we rely on the Newton method as follows: at each time step
` = 1, . . . , Nt � 1, while k�ıuk < tol, we solve

J(u
(`+1)
h,ı )�ıu = r(u

(`+1)
h,ı ), u

(`+1)
h,ı+1 = u

(`+1)
h,ı + �ıu ı = 1, . . . , (4)

being u
(`+1)
h,0 = u

(`)
h and tol > 0 a fixed small tolerance. The Jacobian matrix J and the residual

vector r of the problem (2) are respectively given by
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J(v) =
M(µ)

�t

+A(µ) + JN (v;µ) 2 RNh⇥Nh
,

r(v) = fh(t
(`+1)

;µ)� M(µ)

�t

(v � u
(`)
h )�A(µ)v �N(v;µ) 2 RNh

,

being JN 2 RNh⇥Nh the Jacobian matrix of the nonlinear term N.
Since the state/parameter identification problem is performed sequentially over the time interval

(0, T ), we need to evaluate the output (1) at various time steps instead than only once. Hence,
we introduce a coarse partition of the time interval (0, T ) into N⌧ windows (⌧

(k)
, ⌧

(k+1)
) of length

�⌧ = K�t, with k = 0, . . . , N⌧ � 1 and K > 1 (a sketch is reported in Fig. 1). Therefore, we
consider as outputs over each window (⌧

(k)
, ⌧

(k+1)
) the values

s
(k+1)
h (µ) =

Z ⌧ (k+1)

⌧ (k)

Huh(t;µ)dt ' �tH

K(k+1)X

`=Kk

!`uh(t
(`)

;µ), k = 0, . . . , N⌧ � 1, (5)

where !`, ` = Kk, . . . ,K(k + 1) are weights depending on the chosen quadrature formula.

t

(0)
T

t

(1)
t

(2)
t

(3)
t

(K)
t

(2K)
t

(3K)

⌧

(0)
⌧

(1)
⌧

(2)
⌧

(3)

Figure 1: Example of partition of the time interval in windows of length �⌧ = K�t, K = 4.

Remark 1. An alternative choice for the output vector is given by the measured values at each
t = ⌧

(k+1), i.e.
s
(k+1)
h (µ) = Huh(⌧

(k+1)
;µ) k = 0, . . . , N⌧ � 1. (6)

However, this choice provides less information than (5), thus affecting the estimation accuracy.
We only use the outputs given by (6) when providing a detailed derivation of the Kalman update
formula in the Appendix A, for the sake of simplicity.

2.2 Inverse problem

We formulate the problem of estimating µ⇤ 2 P ⇢ Rd and u⇤ 2 Xh from noisy data {s(k)}N⌧
k=1 2

RN⌧⇥s as a Bayesian inverse problem (BIP). The solution of the BIP is given by the posterior
probability density function (pdf) ⇡post : {P, Xh} ⇥ RN⌧⇥s ! R+

0 of the parameters µ⇤ and the
state u⇤ given the noisy data {s(k)}N⌧

k=1. Thanks to the Bayes theorem, we can express ⇡post as

⇡post

✓
µ

u
(Nt)
h

� ���� {s
(k)}N⌧

k=1

◆
=

1

⌘(s)
⇡

✓
{s(k)}N⌧

k=1

���

µ
u0

�◆
⇡prior

✓
µ
u0

�◆
, (7)

being ⇡prior : {P, Xh} ! R+
0 the prior pdf of the parameters, ⇡ : RN⌧⇥s ⇥ {P, Xh} ! R+

0 the
likelihood function and ⌘(s) a suitable norming constant, which does not affect the inversion step.
We consider the (rather classical) additive noise model:

s(k) = s
(k)
h (µ) + "noise, 8k = 1, . . . , N⌧ (8)

where we assume that the noise is modeled by a gaussian random variable "noise ⇠ N (0,�).
Due to the nonlinearity of the forward map µ ! sh(µ), a closed form for the posterior distribu-

tion ⇡post cannot be obtained; instead, sampling methods like MCMC techniques are exploited to
approximate ⇡post. Nevertheless, for the case at hand, the computationally expensive solution of
the nonlinear dynamical system (3), required to evaluate sh(µ), would make MCMC-based inver-
sion extremely inefficient. A more feasible option is represented by Bayesian filtering techniques,
which are well-suited for the sequential estimation in the case of BIPs featuring nonstationary for-
ward models. The aim of a filtering technique is to sequentially approximate the posterior pdf of
(µ,uh) through a sequence of pdfs {⇡(k)}N⌧

k=1, given the measurement vectors {s(k)}N⌧
k=1, exploiting

an update algorithm based on the following prediction-analysis procedure at the generic step k:
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1. Prediction stage: at step k, given

⇡

(k)

✓
µ

u
(k)
h

����� s
(k)

◆
,

compute u
(k+1)
h = uh(⌧

(k+1)
; ·) by solving (3) on the window [⌧

(k)
, ⌧

(k+1)
) with initial datum

uh(⌧
(k)

, ·), to obtain the prior for the k + 1 step

⇡

(k)

✓
µ

u
(k+1)
h

����� s
(k)

◆
;

then, compute the corresponding output s
(k+1)
h and evaluate the likelihood

⇡

✓
s(k+1)

���


µ

u
(k+1)
h

�◆
= (2⇡)

(� s
2 )|�|� 1

2
exp{�1

2

(s(k+1) � s
(k+1)
h )

T
�

�1
(s(k+1) � s

(k+1)
h )}, (9)

assuming that "noise is normally distributed.

2. Analysis stage: update the posterior distribution according to the Bayes theorem:

⇡

(k+1)

✓
µ

u
(k+1)
h

����� s
(k+1)

◆
=

1

⌘(s)
⇡

✓
s(k+1)

���


µ

u
(k+1)
h

�◆
⇡

(k)

✓
µ

u
(k+1)
h

����� s
(k)

◆
, (10)

where the prior ⇡prior = ⇡

(k) is nothing but the posterior evaluated at stage k.

At the end of this procedure, ⇡post = ⇡

(N⌧ ) is the solution of the BIP. In order to efficiently update
{⇡(k)}N⌧

k=1, it is necessary to consider specific Bayesian filters, known as Gaussian filters, which
assume the noise to be Gaussian and the output sh to be linear with respect to µ (see e.g. [22]).
Since the map µ ! sh(µ) is usually not linear, suitable approximations must be introduced to
handle more general cases. Among the approximated Gaussian filters, we consider the ensemble
Kalman filter, which takes advantage of a randomly generated sample to successively approximate
the distribution of {⇡(k)}N⌧

k=1. In the following section we recall the basic features of this technique,
a more detailed overview can be found e.g. in [8, 20].

3 Ensemble Kalman filter

The ensemble Kalman filter (EnKF) is a recursive filter, based on the original Kalman filter, widely
exploited in data assimilation and forecasting, see e.g. [9, 17, 34]. This method is based on the
idea of updating an ensemble of particles using the prediction/analysis procedure introduced in the
previous section. In our case, by ensemble of particle we mean a sample of Ne parameter vectors

P(k)
h = {µ(k)

h,q}
Ne
q=1, k = 1, . . . , N⌧ ,

where µ(k)
h,q denotes the value of a parameter vector µh,q at the k� th iteration, and the associated

ensemble of Ne state solutions

U (k)
h = {u(k)

h (µ), µ 2 P(k)
h }, k = 1, . . . , N⌧ .

Moreover, let us introduce, for any k = 1, . . . , N⌧ , the sample mean vectors

u
(k)
h =

1

Ne

X

µ2P(k�1)
h

u
(k)
h (µ), s

(k)
h =

1

Ne

X

µ2P(k�1)
h

s
(k)
h (µ), µ(k)

h =

1

Ne

X

µ2P(k)
h

µ, (11)

the sample covariance of the outputs

C(k)
shsh

=

1

Ne � 1

X

µ2P(k�1)
h

(s
(k)
h (µ)� s

(k)
h )(s

(k)
h (µ)� s

(k)
h )

T 2 Rs⇥s (12)
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and the sample cross-covariances

C(k)
µhsh

=

1

Ne � 1

X

µ2P(k�1)
h

(µ� µ(k�1)
)(s

(k)
h (µ)� s

(k)
h )

T 2 Rd⇥s
, (13)

C(k)
uhsh

=

1

Ne � 1

X

µ2P(k�1)
h

(u
(k)
h (µ)� u

(k)
h )(s

(k)
h (µ)� s

(k)
h )

T 2 RNh⇥s
. (14)

All these quantities will be used in the following to characterize the updating formula of the Kalman
Filter. Hence, starting from the initial ensemble {P(0)

h ,U (0)
h } sampled from the prior distribution,

the prediction-analysis procedure of the EnKF is given by the following two stages recursion:

1. prediction stage:

• compute the solution u
(k+1)
h (µ) of the forward problem over [⌧ (k), ⌧ (k+1)

) by solving (3)
with initial datum u

(k)
h (µ) 2 U (k), and the relative output s

(k+1)
h (µ) for each µ 2 P(k)

h ;

• compute the sample means u
(k+1)
h , s(k+1)

h and µ(k);

• compute the sample covariance C
(k+1)
shsh and the cross-covariances C

(k+1)
µhsh and C

(k+1)
uhsh .

2. analysis stage: update the state/parameters ensemble by taking advantage of the new infor-
mation from the prediction stage, through the following Kalman formula:
"

µ(k+1)
h,q

u
(k+1)
h (µ(k+1)

h,q )

#
=

"
µ(k)

h,q

u
(k+1)
h (µ(k)

h,q)

#
+

"
C

(k+1)
µhsh

C
(k+1)
uhsh

#
(�+C(k+1)

shsh
)

�1
(s(k+1)� s

(k+1)
h (µ(k)

h,q)), (15)

for each q = 1, . . . , Ne.

Note that even though the algorithm is derived under Gaussian assumptions, the ensemble is not
prescribed to be Gaussian as it evolves under nonlinear dynamics. Then, at each iteration we
estimate the unknown parameter vector by computing the sample mean ˆµh = µh, and compute
an empirical confidence region from the updated ensemble P(k+1)

h . For a formal derivation of the
EnKF algorithm see Appendix A, while for further properties and results, see e.g. [2, 23, 6]. A
detailed description of the procedure is reported in Algorithm 1.

Algorithm 1 Full-order Ensemble Kalman filter procedure
1: procedure EnKF
2: Initialization

3: {P(0)
h ,U (0)

h } sampling Ne particles from ⇡prior

4: for k = 0 : N⌧ � 1 do

5: Prediction stage:
6: for [µ,u(k)

h (µ)]T 2 {P(k)
h ,U (k)

h } do

7: u
(k+1)
h (µ) solve forward problem (3) with initial datum u

(k)
h (µ)

8: compute means u
(k+1)
h , s(k+1)

h , and µ(k)
h by (11)

9: compute covariance C
(k+1)
shsh by (12)

10: compute cross-covariances C
(k+1)
uhsh and C

(k+1)
µhsh by (13)

11: Update stage:
12: for [µ] 2 {P(k)

h } do

13: update each state/parameters particle using (15)

4 Reduced-order model

Even if the sequential update through the EnKF requires, at each step, the solution of the forward
problem on the window [⌧

(k)
, ⌧

(k+1)
) for each particle in the ensemble, the large size of this latter

entails very large computational costs. The nonlinear nature of the forward problem makes the
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whole estimation process even more challenging. For these reasons we rather rely on the RB
method for the fast evaluation of the prediction stage, taking advantage of a further hyper-reduction
procedure based on the (discrete) empirical interpolation method for managing nonlinear terms
more efficiently.

4.1 Reduced basis method

The RB method is a projection-based ROM which computes an approximation un(t;µ) of uh(t;µ)
(as well as an approximation sn(µ) of the output sh(µ)) by means of a Galerkin projection on
a reduced subspace Xn ⇢ Xh of very small dimension n ⌧ Nh (see e.g. [33] for a detailed
overview). Here we construct such a space by means of the proper orthogonal decomposition
(POD) technique. This latter selects as basis functions the first n singular vectors (corresponding
to the largest n singular values) of the snapshot matrix, whose columns are given by the full-
order solution uh(t

(`)
;µj), computed for each time-step t

(`), ` = 1, . . . , Nt and a large training set
µj 2 Strain = {µ1, . . . ,µNtrain

}. Given the matrix V 2 RNh⇥n which collects the basis functions,
we approximate the full-order solution uh(t;µ) ⇡ Vun. By projecting (2) onto the space generated
by the columns of V 2 RNh⇥n we obtain: find un(t;µ) 2 Rn as the solution of the following reduced
nonlinear parametrized dynamical system:

(
Mn(µ)

@un

@t

+An(µ)un +VTN(Vun;µ) = fn(t;µ), t 2 (0, T )

un(0;µ) = VTu0

(16)

where the reduced arrays are given by

Mn(µ) = VTM(µ)V, An(µ) = VTA(µ)V, fn = VT fh.

Proceeding similarly to the full-order case concerning time discretization, the implicit Euler
method applied to (16) yields the following dynamical system:
8
>>>><

>>>>:

✓
Mn(µ)

�t

+An(µ)

◆
u(`+1)
n +VTN(Vu(`+1)

n ;µ)

=

Mn(µ)

�t

u(`)
n + fn(t

(`+1)
;µ), ` = 0, . . . , Nt � 1

u0
h = u0.

(17)

Due to the presence of the nonlinear term N(·;µ), we use the Newton method as follows: while
k�ıun

k < tol, we solve

Jn(u
(`+1)
n,ı )�ıun

= rn(u
(`+1)
n,ı ), u

(`+1)
n,ı+1 = u(`+1)

n,ı + �ıu ı = 1, . . . , (18)

with u
(`+1)
n,0 = u

(`)
n . The reduced Jacobian matrix Jn 2 Rn⇥n and the reduced residual vector

rn 2 Rn of the problem (17) are

Jn(v) =
Mn(µ)

�t

+An(µ) +VTJN (Vv;µ), v 2 Rn
,

and
rn(v) = fn(t

(`+1)
;µ)� Mn(µ)

�t

(v � u(`)
n )�An(µ)v �Nn(v;µ),

respectively. For the ROM output evaluation, we consider the integral of the reduced output vector
over each interval (⌧ (k), ⌧ (k+1)

], that is

s(k+1)
n (µ) =

Z ⌧ (k+1)

⌧ (k)

Hnun(t;µ)dt, 8k = 0, . . . , N⌧ � 1,

where the reduced output operator is defined as Hn = HV 2 Rs⇥n. As a consequence the additive
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noise model (8) is now replaced by

s(k+1)
= s(k+1)

n (µ) + "noise, 8k = 0, . . . , N⌧ � 1.

The efficient evaluation of the reduced arrays appearing in (17) as time and parameters vary
is still a challenging task in order to achieve an efficient online evaluation of a ROM when dealing
with nonlinear (and/or complex nonaffine) terms. Indeed, under the assumption of affine paramet-
ric dependence, those arrays can be expressed as the finite sum of products between µ-dependent
functions and µ-independent operators [33]. In nonaffine cases, an (approximate) affine approxi-
mation can be recovered by means of the empirical interpolation method (EIM), see e.g. [26]. For
instance, given a nonaffine operator A(µ), the EIM approximation reads

A(µ) ⇡
mEIMX

j=1

�j(µ)A
j

where for any µ 2 P, the coefficients {�j(µ)}mEIM
j=1 are evaluated by solving a linear system of

dimension mEIM ⇥mEIM, arising by the imposition of mEIM interpolation constraints over a set of
mEIM magic points selected according to a suitable greedy procedure (see [26]). Given this approx-
imation, the reduced operator can then be obtained by projecting each µ-independent operators
Aj , that is,

An(µ) =
mEIMX

k=1

�j(µ)A
j
n, Aj

n = VTAjV.

In this way, computations can be decoupled into an expensive µ-independent offline stage and
a very inexpensive µ-dependent online stage, to be performed several times during the inversion
algorithm. Unfortunately, when dealing with nonlinear operators, evaluating VTN(V·;µ) would
also depend on the FOM size Nh, and therefore still very expensive. To overcome this problem, the
(discrete) empirical interpolation method (DEIM) can be exploited at each iteration of the Newton
algorithm to handle the µ-dependent nonlinear terms efficiently, as proposed in [3] and further
discussed in [31]. In particular, the DEIM approximation of a nonlinear operator N : RNh ! RNh

is given by

N(uh;µ) ⇡
mDX

j=1

cj(uh;µ)�j(x),

where the coefficients {cj}mD
k=1 can be computed at each iteration by solving a linear system of

dimension mD ⇥mD. In particular, by defining the basis matrix U = [�1, . . . ,�mD ] and the index
matrix P = [ei1, . . . , eimD ], we get the following reduced approximation of the nonlinear function

N(un) ⇡ VTU(PTU)

�1

| {z }
n⇥mD

N(PTVun;µ)| {z }
mD⇥1

.

In the case of the implicit Euler method, also the Jacobian JN has to be assembled efficiently at
each Newton step. For the case at hand, we can directly differentiate the previous formula, yielding

JN (un;µ) ⇡ VTU(PTU)

�1

| {z }
n⇥mD

JN (PTVun;µ)| {z }
mD⇥mD

PTV| {z }
mD⇥n

.

Alternative solutions can be obtained by considering an extension of DEIM for sparse Jacobians,
known as matrix DEIM; see also the related discussion in [31, 36].

4.2 Reduced basis Ensemble Kalman filter

Given a suitable ROM for approximating the solution of the forward problem, a reduced-order
EnKF can be obtained by replacing the full-order output evaluation with the reduced-order one.
Since we have adopted the RB method, we will refer to the resulting procedure as to the reduced
basis ensemble Kalman filter (RB-EnKF). We define the ensemble of Ne parameters as

P(k)
n = {µ(k)

n,q}
Ne
q=1, k = 0, . . . , N⌧ ,
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and the associated ensemble of reduced state solution

U (k)
n = {un(µ), µ 2 P(k)

n }, k = 0, . . . , N⌧ .

Consequently, we also compute the means (11), the covariance (12) and the cross-covariances (13)
by relying on the reduced-order quantities. Hence, starting from the initial ensemble {P(0)

n ,U (0)
n },

directly sampled from the prior, the RB-EnKF can be built with a two-stage recursion, similarly
to what we did in Section 3:

1. prediction stage:

• compute the reduced solution u
(k+1)
n of the forward ROM (17) on the window [⌧

(k)
, ⌧

(k+1)
)

with initial datum u
(k)
n (µ) 2 U (k)

n , and the relative output s
(k+1)
n for each µ 2 P(k)

n ;
• compute the sample means u(k+1)

n , s(k+1)
n and µ(k)

n ;

• compute the sample covariance C(k+1)
snsn 2 Rs⇥s and the cross-covariance matrices C(k)

µnsn 2
Rd⇥s and C

(k+1)
unsn 2 Rn⇥s, using formulas (12)–(14) by substituting sh, uh and P(k�1)

h

with sn, un and P(k�1)
n , respectively;

2. analysis stage: update the state/parameters ensemble through the following reduced Kalman
formula:
"

µ(k+1)
n,q

u
(k+1)
n (µ(k+1)

n,q )

#
=

"
µ(k)

n,q

u
(k+1)
n (µ(k)

n,q)

#
+

"
C

(k+1)
µnsn

C
(k+1)
unsn

#
(�+C(k+1)

snsn )

�1
(s(k+1)� s(k+1)

n (µ(k)
n,q)), (19)

for each q = 1, . . . , Ne.

In this way, we are neglecting the error between the ROM and the FOM, which nevertheless
might affect the accuracy of the inverse problem solution, as shown in the following section.

4.3 Effectivity of the RB-EnKF

We now want to prove that the solution of the inverse problem given by the RB-EnKF converges,
as long as the ROM dimension increases, to the one which would be obtained by relying on the
full-order EnKF. For that we compare the resulting state/parameters ensemble {P(N⌧ )

,U (N⌧ )}
with the reduced ones {P(N⌧ )

n ,U (N⌧ )
n }, for any dimension n. To this goal, let us denote by

e(k) =

"
e
(k)
µ

e
(k)
u

#
=

"
ˆµ(k)
h

ˆu
(k)
h

#
�
"

ˆµ(k)
n

Vˆu
(k)
n

#
, k = 1, . . . , N⌧ � 1,

the error between the means [ˆµ(k)
n ,Vˆu(k)

n ]

T and [

ˆµ(k)
h ,

ˆu(k)
h ]

T computed over the respective ensem-
bles. Then, let us denote by

�

(k)
h = k(�+C(k)

shsh
)

�1k �

(k)
n = k(�+C(k)

snsn)
�1k,

being k · k the Euclidean norm. Then, at each step we can bound the error e(k) as follows.

Theorem 2. For any 0 < n < Nh, k = 1, . . . , N⌧ , the following relationships hold:

ke(k)µ k  ke(k�1)
µ k+ c

(k)
µ,1ks

(k)
h � s(k)n k+ c

(k)
µ,2kC(k)

µhsh
�C(k)

µnsnk+ c

(k)
µ,3kC(k)

shsh
�C(k)

snsnk, (20)

ke(k)u k  ke(k�1)
u k+ c

(k)
u,1ks

(k)
h � s(k+1)

n k+ c

(k)
u,2kC(k)

uhsh
�VC(k)

unsnk+ c

(k)
u,3kC(k)

shsh
�C(k)

snsn)k, (21)
where

c

(k)
µ,1 = �

(k)
h kC(k)

µhshk, c

(k)
u,1 = �

(k)
h kC(k)

uhshk,
c

(k)
µ,2 = c

(k)
u,2 = �

(k)
h ks(k) � s(k)n k,

c

(k)
µ,3 = �

(k)
n �

(k)
h kC(k)

µnsnkRd⇥sks(k) � s(k)n k, c

(k)
u,3 = �

(k)
n �

(k)
h kVC

(k)
unsnkks(k) � s(k)n k.

9



Proof. By averaging over the sample P(k�1) of (15), we obtain the following update equation for the
estimate [

ˆµh; ˆuh] "
ˆµ(k)
h

ˆu
(k)
h

#
=

"
ˆµ(k�1)
h

ˆu
(k�1)
h

#
+

"
C

(k)
µhsh

C
(k)
uhsh

#
(�+C(k)

shsh)
�1

(s(k) � s
(k)
h ). (22)

By doing the same on (19) we have
"
ˆµ(k)
n

ˆu
(k)
n

#
=

"
ˆµ(k�1)
n

ˆu
(k�1)
n

#
+

"
C

(k)
µnsn

C
(k)
unsn

#
(�+C(k)

snsn)
�1

(s(k) � s(k)n ). (23)

By subtracting (23) from (22), we can express e(k)
= e(k�1)

+ e
(k)
I + e

(k)
II , being

e
(k)
I =

"
C

(k)
µhsh

C
(k)
uhsh

#
(�+C(k)

shsh)
�1

(s(k)n � s
(k)
h ),

e
(k)
II =

 "
C

(k)
µhsh

C
(k)
uhsh

#
(�+C(k)

shsh)
�1 �

"
C

(k)
µnsn

VC
(k)
unsn

#
(�+C(k)

snsn)
�1

!
(s(k) � s(k)n ). (24)

Then, the following error estimates hold

ke(k)
I,µk  c(k)µ,1ks

(k)
n � s

(k)
h k, c(k)µ,1 = �(k)

h kC
(k)
µhshk, (25)

ke(k)
I,uk  c(k)u,1ks

(k)
n � s

(k)
h k, c(k)u,1 = �(k)

h kC
(k)
uhshk, (26)

respectively. On the other hand, by adding and subtracting in (24) the quantity
"

C
(k)
µnsn

VC
(k)
unsn

#
(�+C(k)

shsh)
�1

and rewriting the expression (24) as e
(k)
II = e

(k)
i + e

(k)
ii , with

e
(k)
i =

 "
C

(k)
µhsh

C
(k)
uhsh

#
�
"

C
(k)
µnsn

VC
(k)
unsn

#!
(�+C(k)

shsh)
�1

(s(k) � s(k)n ),

e
(k)
ii =

"
C

(k)
µnsn

VC
(k)
unsn

#⇣
(�+C(k)

snsn)
�1 � (�+C(k)

shsh)
�1
⌘
(s(k) � s(k)n ),

we have

ke(k)
i,µk  c(k)µ,2kC

(k)
µhsh �C(k)

µnsnk c(k)µ,2 = �(k)
h k(s

(k) � s(k)n )k,

ke(k)
i,uk  c(k)u,2kC

(k)
uhsh �VC(k)

unsnk c(k)u,2 = �(k)
h k(s

(k) � s(k)n )k.
(27)

By applying the Sherman-Morrison-Woodbury Formula (see, e.g., Sect. 2.4 in [14]) we have that

(�+C(k)
snsn)

�1 � (�+C(k)
shsh)

�1
= (�+C(k)

snsn)
�1

(C(k)
shsh �C(k)

snsn)(�+C(k)
shsh)

�1,

and, consequently,

k(�+C(k)
snsn)

�1 � (�+C(k)
shsh)

�1k  �(k+1)
n �(k)

h kC
(k)
shsh �C(k)

snsnk,

whence the following bounds hold for e

ke(k)
ii,µk  c(k)µ,3kC

(k)
shsh �C(k)

snsnk, ke(k)
II,uk  c(k)u,3kC

(k)
shsh �C(k)

snsnk. (28)

Finally, by combining (25), (26), (27) and (28), we obtain (20)–(21).

In order to obtain accurate state/parameters estimates when employing our proposed RB-
EnKF, we thus require the ROM to be able to generate similar means s(k)n (µ) ' s

(k)
h (µ) and

similar covariance matrices C
(k)
snsn ' C

(k)
shsh and C

(k)
µnsn ' C

(k)
µhsh , for each k = 1, . . . , N⌧ , to the

ones which would have been provided by the FOM.
As a matter of fact, from the previous proposition we can also prove an asymptotic consistency

property, ensuring that the state/parameters estimated through the RB-EnKF converge to the
ones estimated by the full-order EnKF, as soon as n,mD ! Nh.
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Corollary 3. By assuming that for any RB dimension n = 1, . . . , Nh and DEIM dimension
mD = 1, . . . , Nh, there exists ✏

(`)
(n,mD) > 0 such that

ku(`)
h (µ)�Vu(`)

n (µ)k  ✏

(`)
(n,mD), 8` = 0, . . . , Nt 8µ 2 P

and ✏

(`)
(n,mD) ! 0 for n,mD ! Nh, then it follows that

kˆµn � ˆµhk ! 0 kVˆun � ˆuhk ! 0 for n,mD ! Nh.

Proof. Since the outputs s
(k)
h (µ), s(k)n (µ) are linear with respect to the solution u(t;µ) of the dynamical

system, it follows that, for any µ 2 P,

ks(k)h (µ)� s(k)n (µ)k  �tkHk
X

K(k�1)`K(k)

✏(`)(n,mD) 8k = 1, . . . , N⌧ . (29)

Since the means and the covariance matrices of the quantities of interest are evaluated on different subsets
P(k)

h and P(k)
n for each k = 1, . . . , N⌧ , let us denote by

(s(k)n )Ph =

1

Ne

X

µ2P(k�1)
h

s(k)n (µ),

(C(k)
snsn)Ph =

1

Ne � 1

X

µ2P(k�1)
h

(s(k)n (µ)� (s(k)n )Ph)(s
(k)
n (µ)� (s(k)n )Ph)

T

the mean and the covariance of the reduced output over the full-order ensemble Ph, respectively. Then,
we can control the difference between the output means as

ks(k)h � s(k)n k  ks(k)h � (s(k)n )Phk+ k(s
(k)
n )Ph � s(k)n k

so that, by averaging (29) with respect to Ph, we bound the first term as

ks(k)h � (s(k)n )Phk  �tkHk
X

K(k�1)`K(k)

✏(`)(n,mD) 8k = 1, . . . , N⌧ .

Similarly, the difference between the covariance matrices can be bounded as

kC(k)
shsh �C(k)

snsnk  kC
(k)
shsh � (C(k)

snsn)Phk+ k(C
(k)
snsn)Ph �C(k)

snsn)k

where the first term can be bounded as

kC(k)
shsh � (C(k)

snsn)Phk  c(k)ss

X

K(k�1)`K(k)

✏(`)(n,mD) 8k = 1, . . . , N⌧ ,

where
c(k)ss = 4�t max

µ2P(k�1)
(ks(k)h (µ)� s

(k)
h k+ ks

(k)
n (µ)� s(k)n k),

being, for any couple of random vectors x = [x1,x2],y = [y1,y2],

kC
x1y1 � C

x2y2k  (ky1 � y1k+ kx2 � x2k)(kx1 � x2k+ kx1 � x2k+ ky1 � y2k+ ky1 � y2k),

where C
xy

denotes the cross-covariance matrix between x and y; see e.g. [6].
Provided that P(0)

h = P(0)
n and assuming that ✏(`)(n,mD)! 0 for n,mD ! Nh, we have that

ks(k)h � (s(k)n )Phk ! 0, kC(k)
shsh � (C(k)

snsn)Phk ! 0, k = 1, . . . , N⌧

and, consequently,

k(s(k)n )Ph � s(k)n k ! 0, k(C(k)
snsn)Ph �C(k)

snsn)k ! 0, k = 1, . . . , N⌧ .

In the same way, we can conclude that kC(k+1)
uhsh �C

(k+1)
unsn )k and kC(k+1)

µhsh �C
(k+1)
µnsn )k are also controlled by

✏(`)(n,mD), ` = Kk, . . . ,K(k + 1), thus yielding the fact that the right-hand sides of both (20) and (21)
go to zero in the limit n,mD ! Nh.
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5 Reduction error model

Using a ROM to evaluate the output of the forward PDE system greatly reduces the cost entailed
by the solution of the whole Bayesian inverse problem. Indeed, by simply rewriting the additive
error noise model (1), we get

s(k) = s(k)n (µ⇤
) +

⇣
s
(k)
h (µ⇤

)� s(k)n (µ⇤
)

⌘
+ "noise, 8k = 1, . . . , N⌧ ; (30)

hence, if the reduction error s
(k)
h (µ⇤

) � s
(k)
n (µ⇤

) is not negligible with respect to "noise, the RB-
EnKF might yield biased estimates. Therefore, we wish to introduce a statistical model for the
reduction error "(k)ROM(µ), over each window k = 1, . . . , N⌧ , such that (30) can be replaced by

s(k) = s(k)n (µ⇤
) +

ˆ"(k)ROM(µ⇤
) + "noise 8k = 1, . . . , N⌧ (31)

and the evaluation of the deterministic quantity sh(µ)� sn(µ), which would depend on the FOM
solution, can thus be avoided.

To compute an estimate of "(k)ROM(µ), which will be denoted hereon by ˆ"(k)ROM(µ) and to which
we refer to as reduction error model (REM), we rely on the curve kriging method, a weighted
interpolation technique for spatially-distributed functional data (see e.g. [13, 28]).

Let us denote by Scal = {µ1, . . . ,µNcal
} a calibration set made by Ncal parameter vectors,

for which we need to determine Ncal queries to both the ROM and the FOM. We underline that
these evaluations have to be performed only once, after the ROM has been built, and before the
inversion procedure takes place. In particular, we can choose Scal such that Strain ⇢ Scal so that
we can take advantage of the snapshots already computed before running the POD, and ensure
not to overestimate the reduction error in those training points.

We assume each component {�(j)
t (µ)}, j = 1, . . . , s, of the reduction error

�t(µ) = H(uh(t;µ)� un(t;µ)) 2 Rs
, t 2 (0, T )

to be a functional random field, that is, a set of functional random variables indexed by µ 2 P,
taking values in L

2
(a, b), with (a, b) ✓ (0, T ). For each j = 1, . . . , s, the curve kriging method

provides an estimate of the error over (0, T ), for any new µ0 2 P, as a linear combination of the
reduction errors computed for the elements in the calibration set Scal, that is,

�̂

(j)
t (µ0) =

NcalX

q=1

�

(j)
q (µ0)�

(j)
t (µq), µ0 2 P, j = 1, . . . , s,

where the set of weights {�(j)
q (µ0)}

Ncal
q=1 are computed by requiring that �̂

(j)
t is the best linear

unbiased estimator of �(j)
t , see Appendix B for a detailed construction.

Since we are interested to embed the REM into the Kalman formula for the sequential update
of the ensemble on each window [⌧

(k)
, ⌧

(k+1)
), we need to build a curve kriging predictor �̂

(j)
t (µ)

for each j = 1, . . . , s, on each window [⌧

(k�1)
, ⌧

(k)
). As a matter of fact, our REM is given, for any

µ 2 P(k)
c by integrating over [⌧

(k�1)
, ⌧

(k)
) the kriging predictor, that is,

ˆ"(k)ROM(µ) : "̂

(k)
ROM,j(µ) =

Z ⌧ (k)

⌧ (k�1)

�̂

(j)
t (µ)dt. (32)

The corresponding trace-variances (see equation (49) and Appendix 2 for the definition of �t and
⌘)

�̂

2
�̂
(j)
t

(µ) =
NcalX

q=1

�

(j)
q (µ)

Z ⌧ (k)

⌧ (k�1)

�t(kµi � µk)� ⌘

allows to define the (diagonal) covariance matrix

ˆ�
(k)

ROM(µ) : (

ˆ�
(k)

ROM)jj(µ) = �̂

2
�̂
(j)
t

(µ). (33)
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The proposed REM thus yields an output correction "̂

(k)
ROM and an additional contribution ˆ�

(k)

ROM
to the Kalman gain – which have indeed to be evaluated for each k = 1, . . . , N⌧ and upon each
ensemble particle – thus leading to the following corrected Kalman formula to update the ensemble
P(k)
c :
"

µ(k+1)
c,q

u
(k+1)
c (µ(k+1)

c,q )

#
=

"
µ(k)

c,q

u
(k+1)
c (µ(k)

c,q )

#
+

"
C

(k+1)
µcsc

C
(k+1)
ucsc

#
(�+

ˆ�
(k+1)
ROM (µ(k)

c,q )+C(k+1)
scsc )

�1
(s(k+1)� s(k+1)

c (µ(k)
c,q )) (34)

where s
(k)
c (µ) represents the corrected output, i.e.

s(k)c (µ) = s(k)n (µ) + ˆ"(k)ROM(µ), µ 2 P;

the sample covariance C
(k)
scsc and cross-covariances C(k)

µcsc , C
(k)
ucsc are computed as in equations (12),

(13) and (14) by substituting sh, uh and P(k�1)
h with sc, uc and P(k�1)

c , respectively.
The use of our REM during the RB-EnKF thus only requires, at each iteration of the filtering

procedure, to solve s linear systems (see equation (45)) of small dimension (Ncal +1)⇥ (Ncal +1),
to get the weights {�(j)

q }Ncal
q=1 for each output component j = 1, . . . , s. A detailed description of the

corrected RB-EnKF algorithm is finally reported in Algorithm 2. The components appearing in
the matrix and the vector of system (45) are evaluated using the so-called semi-variogram function,
which is fitted on the calibration set Scal as shown in Appendix B.

Algorithm 2 Reduced basis Ensemble Kalman filter procedure
1: procedure RB-EnKF(+REM)
2: Initialization

3: {P(0)
c ,U (0)

c } sampling Ne vectors from ⇡prior

4: for k = 0 : N⌧ � 1 do

5: for j=1 : s do

6: sample the empirical semi-variogram {(�m, �̂(�m))}Mm=1, using (46)
7: fit the parametric semi-variogram model (47) on the sample {(�m, �̂(�m))}Mm=1

8: Prediction stage:
9: for [µ,u(k)

h (µ)]T 2 {P(k)
c ,U (k)

c } do

10: u
(k+1)
n (µ) solve forward problem (16) with initial datum u

(k)
n (µ)

11: for j=1 : s do

12: ˆ"(k+1)
ROM (µ) solve linear system (45)

13: (

ˆ�
(k+1)
ROM )jj  evaluate (49)

14: s
(k+1)
c (µ) = s

(k+1)
n (µ) + ˆ"(k+1)

ROM (µ)

15: compute means s
(k+1)
c , u

(k+1)
c , µ(k+1)

c

16: compute covariance C
(k+1)
scsc

17: compute cross-covariances C
(k+1)
µcsc ,C(k+1)

ucsc

18: Update stage:
19: for [µ,u(k+1)

h (µ)]T 2 {P(k)
c } do

20: update each state/parameters particle using (34)

5.1 Effectivity of the proposed REM

We observe that the reduction error directly affects the quality of the likelihood function (9) from
which we have derived the updating formula of the Kalman filter (see Appendix A). By defining
the reduced likelihood as

⇡n

✓
s(k+1)

���


µ

Vu
(k+1)
n

�◆
= (2⇡)

(� s
2 )|�|� 1

2
exp{�1

2

ks(k+1) � s(k+1)
n k�},

and the corrected likelihood as

⇡c

✓
s(k+1)

���


µ

Vu
(k+1)
n

�◆
= (2⇡)

(� s
2 )|�+

ˆ�
(k)

ROM|� 1
2
exp{�1

2

ks(k+1) � s(k+1)
c k

�+�̂
(k+1)
ROM

},
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we can rely on the analysis provided in [27, Section 6] on the Kullback-Leibler (KL) divergence
between the likelihood function ⇡, ⇡n and ⇡c at each prediction-analyis step k = 1, . . . , N⌧ . To
this end, let us recall the notion of Kullback-Leibler (KL) divergence, which is a measure of the
difference between two probability distributions ⇡A and ⇡B :

DKL(⇡A||⇡B) =

Z
⇡A(z) log

✓
⇡A(z)

⇡B(z)

◆
dz.

In this case, we would obtain

DKL(⇡||⇡n) =
1

2

sX

j=1

 
(s

(k+1)
h (µ)� s

(k+1)
n (µ))2j

�jj

!

and

DKL(⇡||⇡c) =
1

2

sX

j=1

 
(s

(k+1)
h (µ)� s

(k+1)
n (µ)� ˆ"(k+1)

ROM (µ))2j

�jj + (

ˆ�
(k+1)

ROM )jj(µ)

+

�jj

�jj + (

ˆ�
(k+1)

ROM )jj(µ)
� 1� log

 
�jj

�jj + (

ˆ�
(k+1)

ROM )jj(µ)

!!
.

Thus, in order to ensure that the KL divergence DKL(⇡||⇡c) is smaller than DKL(⇡||⇡n), we require
that:

1. the REM correction is effective, that is

E[ks(k)h (µ)� s(k)c (µ)k] < E[ks(k)h (µ)� s(k)n (µ)k] 8k = 1, . . . , N⌧ , (35)

2. (

ˆ�
(k+1)

ROM )jj is sufficiently small compared to �jj , j = 1, . . . , s.

Note that by construction s
(k)
h (µ) � s

(k)
c (µ) = 0 and ˆ�ROM(µ) = 0 for each µ 2 Scal. Since the

noise is prescribed with a fixed covariance, the ROM and the REM construction can be suitably
performed in order to ensure both the previous assumptions.

Remark 4. Since the EnKF is based on a finite ensemble of particles, the distributions ⇡, ⇡n

and ⇡c are only approximated in the EnKF updating formula. It is sufficient to consider a large
ensemble in order to avoid the propagation of additional sources of error.

Note that the updating formula (34) could be derived using the corrected likelihood distribution
⇡c instead of ⇡ following the approach proposed in Appendix A. As a consequence, the updating
formula (34) is a good approximation of (15) if the REM is effective. Moreover, under the two
previous assumptions the corrected particle ensemble P(k)

c (and respectively U (k)
c ) is considerably

closer to P(k)
h (U (k)

h ) then P(k)
n (U (k)

n ). If we assume at each step k = 1, . . . , N⌧ to use as initial
datum (a priori information) the full-order ensemble P(k)

h (U (k)
h ), it is possible to prove that

E[DKL(⇡
(k)||⇡(k)

c )] < E[DKL(⇡
(k)||⇡(k)

n )]

where ⇡

(k), ⇡(k)
n and ⇡

(k)
c denote respectively the full-order, the reduced-order and the corrected

posterior distribution obtained by substituting the respective likelihood function ⇡, ⇡n and ⇡c in
(10); for further details see [27, Section 6.2].

As a matter of fact ˆ"ROM and ˆ�ROM depend on either the number of basis functions and on the
calibration set dimension. For this reason, in the numerical results we compare the errors kˆµh�ˆµnk
and kˆµh � ˆµck between the sample means and the errors between the relative covariance matrices
k(Cµh,µh

)

1/2 � (Cµn,µn
)

1/2k and k(Cµh,µh
)

1/2 � (Cµc,µc
)

1/2k over the ensemble obtained with
the full-order Kalman filter (Ph), the RB-EnKF (Pn) and the corrected RB-EnKF (Pc) on varying
the the number of basis functions and on the calibration set dimension.
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6 Numerical results

We present some numerical results exploiting the proposed RB-EnKF procedure for the identifica-
tion of unknown parameters/fields in a FitzHugh-Nagumo and a Fisher-Kolmogorov model1; the
dynamics described by those two nonstationary nonlinear diffusion-reaction PDEs involve traveling
front.

6.1 Test case 1

We consider the FitzHugh-Nagumo (FN) equations [10], which model the activation/deactivation
dynamics of an excitable system, e.g., a neuron or a cardiac cell. In particular, we consider the
test case proposed in [3]: given the parameter vector µ = [µ1, µ2, µ3]

T , 8t 2 (0, T ), find the couple
[u(t;µ), w(t;µ)], x 2 ⌦ = (0, 1), such that:

8
>>>>>><

>>>>>>:

⌫ut(t;µ) = ⌫

2
uxx(t;µ) +N (u(t;µ))� w(t;µ) + µ2 x 2 ⌦, t 2 (0, T )

wt(t;µ) = µ1u(x, t)� �u(x, t) + µ2 x 2 ⌦, t 2 (0, T )

ux(t;µ) = �50000t

3
e

�15t
x = 0, t 2 (0, T )

ux(t;µ) = 0 x = 1, t 2 (0, T )

u(0;µ) = 0, w(0,µ) = 0 x 2 ⌦;

(36)

we define a cubic nonlinear term N (u) = u(u� 0.1)(1� u), and set � = 2,

✏ = 0.015(1� µ3) exp

✓
� (x� 0.6)

2

0.04

◆
.

The semi-discretized FE approximation of problem (36) based on a partition of ⌦ into 1024 elements
and linear finite elements yields an ODE system which can be written under the form (2). By
considering a time discretization based on Nt = 800 time-steps and the implicit Euler method, we
obtain the dynamical system under the form (3). Then, we consider as output the vector

s
(k+1)
h =

"R ⌧ (k+1)

⌧ (k) uh(t;µ)|x=0dtR ⌧ (k+1)

⌧ (k) uh(t;µ)|x=1dt

#
2 R2 8k = 0, . . . , N⌧ � 1.

The goal of the inverse problem is to estimate µ⇤ from a noisy output measurement s = sh(µ⇤
) +

"noise, with "noise ⇠ N (0,�

2
I) exploiting the RB-EnKF procedure detailed in the paper and

comparing the results obtained with the full-order EnKF. We take a Gaussian prior, so that
µ 2 N (µprior,⌃prior), with:

µprior =

2

4
0.7

0.07

0.76

3

5
, ⌃prior =

2

4
0.0004 0 0

0 0.00009 0

0 0 0.004

3

5
.

The discretized solution [uh,wh]
T of the forward problem for the optimal vector of parameters µ⇤

=

[0.6331, 0.0985, 0.7197] is represented in Fig. 2. This is hereon considered as the true parameter
vector value, which generate the data s.
We first solve the inverse problem with the full-order EnKF starting from data measurements
with different noise levels, in particular by considering � = 5�0 and � = �0, with �0 = 0.033. By
looking at the behavior of the estimate ˆµh in Fig. 3 for each component of the parameter vector, we
observe that a faster convergence of the estimate to the true parameter value during the inversion
procedure is achieved in the case of a smaller standard deviation (�0 with respect to 5�0) on the
noise.

Next, we compare the solutions of the inverse problem obtained by varying the window length
�⌧ and the noise standard deviation (see Fig. 4) taking mD = 15 DEIM elements and n = [7, 11, 15]

basis function on the RB approximation. As expected, the estimates improve if both the noise
1Computations have been run on a laptop with a 2,2 GHz Intel Core i7 processor and 8 GB of RAM.

15



Figure 2: FE approximation of the forward problem for µ = µ⇤.
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Figure 3: Comparison between µ⇤ and {ˆµ(k)
h }N⌧

k=1 for � = 5�0 (left) � = �0 (right), using Nens =

500 particles. The lower the noise level, the faster the convergence to µ⇤ during the inverse
procedure (see e.g. the figures on the third line, related to the component µ

3).
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and �⌧ decrease. While the former is a datum of the problem, the latter can be properly tuned
(and reduced) to improve the estimation of the quantities of interest by slightly increasing the
computational costs of the inversion procedure.
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Figure 4: Comparison of the relative error on estimated parameter components |µ⇤ � µ̂

(k)
h |/|µ⇤| on

varying the updating time-disctetization (left) and on varying the noise standard deviation (right).
By considering different values of the updating time-step length �⌧ it is possible to improve the
accuracy of the estimated parameter values.

Then, we consider the solution of the inverse problem by exploiting the RB-EnKF not including
the REM correction. By looking at Fig. 5, we notice that the estimate ˆµn is not as accurate as
the FOM estimate ˆµh, except for the case of n = 15 and a noise variance of 5�0, because of the
propagation of the reduction error on the solution (see Fig. 5) and, consequently, on the measured
outputs sn. These numerical results empirically confirm the theoretical findings of Proposition 2
and Corollary 3 we have proven in Sect. 4.3.

The use of a REM thus proves to be mandatory in order to improve the accuracy of the estimates
when relying on the RB-EnKF: as a matter of facts the proposed REM based on curve kriging
allows us to improve the accuracy of parameter identification in our RB-EnKF even by two orders
of magnitude in some cases, as shown in Fig. 7.

More detailed results can be found in Table 1: for a noise level � = �0, the ROM affects the
accuracy of the identification for every choice of n, while for higher noise levels the estimation error
can be much smaller at least for larger RB dimensions (see e.g. the results obtained for n = 15).
This is motivated by the fact that the reduction error for n = 15 is considerably small, as we can
observe in Fig. 7.

We recall that REM construction is performed only once after the ROM has been built. Given
the reduction error �t(µ) for each µ 2 Scal, we check the assumptions of the functional kriging
interpolation (see Appendix B). As shown in Figure 8 for the case Ntrain = 80 and n = 11, the
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Figure 5: Error |uh(t;µ⇤
)�un(t;µ⇤

)| between the FOM and the ROM for different choices of the
RB dimension n = 7, 11, 15.
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Figure 6: Comparison of the relative error on estimated parameter components |µ⇤ � µ̂

(k)
n |/|µ⇤| on

varying the RB dimension n with |Strain| = 80. The performance of the filters clearly depends on
the relation between the ROM error sh(µ)� sn(µ) and the noise standard deviation �: the error
in the estimated parameter component is around 10% in the case where � = �0.
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Figure 7: Comparison of the relative error on estimated parameter components |µ⇤ � µ̂

(k)
c |/|µ⇤|

obtained by varying the dimension of the RB space for the corrected RB-EnKF with Scal = Strain

and |Strain| = 80. A noise variance of 5�0 (left) or �0 (right) is considered, �0 = 0.033. Relying
on the proposed REM we obtain a relevant improvement of the estimation in both cases.
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correlation between errors shows a dependency with respect to the parameter location: parameters
with small lag between each other present a smaller variability with respect to parameters with
a larger lag. Then we estimated the empirical semi-variogram {�̂(�1), . . . , �̂(�8)} using (46) at
8 discrete lags {�1, . . . , �8} for each component of the output and on each window (⌧

(k)
, ⌧

(k+1)
).

Through these estimated values the spherical semi-variogram model (47) is fitted and then used
to compute the corresponding matrix of the linear system (45). An example of empirical semi-
variograms and relative semi-variograms model is presented in Figure 9.
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Figure 8: Sample means and covariances of the errors on both output components evaluated over
samples N(�1) (left), N(�2) (right), �1 ⌧ �2.
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Figure 9: Estimated semi-variogram {�̂(�1), . . . , �̂(�8)} (red squares) and fitted spherical model �
for the two output components on the time interval (a, b) = (0, T )

The use of REM allows to improve the accuracy of ˆµc in any case, when both the RB dimension
n and the noise level � vary. In Fig. 7 we show the results obtained constructing a REM with
Ntrain = 80 and Ncal = 240 samples.
The quality of the REM yields significant improvements not only on the estimated means ˆµc, but
also on the covariance matrix of the parameter ensemble C(N⌧ )

µµ . If we compare the errors kˆµh� ˆµnk
and kˆµh � ˆµck between the estimates obtained with the full-order Kalman filter (ˆµh), the RB-
EnKF (ˆµn) and the corrected RB-EnKF (ˆµc), we find that kˆµh � ˆµck is smaller than kˆµh � ˆµnk
in all the considered cases, differing in some cases by more than two orders of magnitude. Even
more, also the error k(C(N⌧ )

µh,µh
)

1/2 � (C
(N⌧ )
µc,µc

)

1/2k between the square roots of covariance matrices
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is considerably smaller than the error on the mean kˆµ(N⌧ )
h � ˆµ(N⌧ )

c k, as we can observe in Table
1. In other words, the correction introduced by the REM is able to correct the bias yielded by
the propagation of the reduction error, without modifying substantially the distribution of the
ensemble particles. This means that the ensemble P(N⌧ )

c resulting from the application of the
corrected RB-EnKF is closer to P(N⌧ )

h , the ensemble given by the full-order EnKF, than P(N⌧ )
n ,

the ensemble given by the RB-EnKF, as we have proven in Sect. 5.1.

� n = 7 n = 11 n = 15

5�0 0.0442 (1.49 · 10�4
) 0.0365 (2.01 · 10�4

) 0.0054 (3.11 · 10�5
)

RB-Enkf 2.5�0 0.1594 (6.11 · 10�5
) 0.0488 (2.37 · 10�4

) 0.0070 (3.47 · 10�5
)

�0 0.1779 (4.09 · 10�5
) 0.0708 (2.59 · 10�5

) 0.0613(2.04 · 10�5
)

5�0 0.0148 (3.37 · 10�4
) 0.0265 (1.01 · 10�3

) 0.0073 (2.25 · 10�4
)

RB-Enkf(+REM) 2.5�0 0.0175 (1.24 · 10�4
) 0.0226 (9.63 · 10�4

) 0.0117 (2.84 · 10�4
)

�0 0.0058 (1.95 · 10�4
) 0.0108 (5.85 · 10�4

) 0.0059 (2.82 · 10�4
)

Table 1: Comparison of the error kˆµh � ˆµnk ( k(C(N⌧ )
µh,µh

)

1/2 � (C
(N⌧ )
µn,µn

)

1/2k ) and kˆµh � ˆµck (
k(C(N⌧ )

µh,µh
)

1/2 � (C
(N⌧ )
µc,µc

)

1/2k ) on varying the dimension n of the RB space and noise variance �.
Our REM considerably improves the accuracy of the estimated parameter: kˆµh � ˆµnk decreases
by an order of magnitude for n = 7 whereas the error on the covariance matrices k(C(N⌧ )

µh,µh
)

1/2 �
(C

(N⌧ )
µn,µn

)

1/2k is still negligible with respect to the error kˆµh � ˆµnk.

Ncal = 0 Ncal = 24 Ncal = 80 Ncal = 240

n = 7 0.6669 0.1490 0.0250 0.0361
Ntrain = 24 n = 11 0.0465 0.0337 0.0152 0.0140

n = 15 0.0385 0.0118 0.0161 0.0082
n = 7 0.1594 � 0.0218 0.0175

Ntrain = 80 n = 11 0.0488 � 0.0398 0.0226
n = 15 0.0070 � 0.0075 0.0117

Table 2: Comparison of the error kµ⇤ � ˆµck/kˆµk on varying the dimension Ntrain = |Strain|,
Ncal = |Scal| of the training set and of the calibration set. The error decreases as soon as the
calibration and the training sample have a large dimension. The case with Ncal < Ntrain is
meaningless, since we would ignore part of the already computed data within the training set.

As we can observe in Table 3, building a RB approximation of small dimension n over a training
set with dimension Ncal = 24 (resp. Ncal = 80) requires an offline CPU time of 16 min (resp
53 min), which is small compare to the 387 min requested by the full-order EnKF procedure.
In this setting, the calibration of the REM over sets of comparable dimension (Ncal = 24 and
Ncal = 80) can be performed in few seconds. On the other hand, considering a calibration sample
of large dimension Ncal = 240 yields better results in terms of estimation accuracy, however
entailing a remarkable increase of the calibration costs. The solution of the inverse problem using
the corrected RB-EnKF entails only 11 min: by comparing the whole procedures, in the worst
case scenario we are saving 219 min, i.e. more than the 55% of the total computational cost. We
also pointed out that the computational saving is even larger if more than one inverse problem has
to be solved, for instance on varying the noisy data s: in this case the basis computation and the
calibration must not be run again, and the only additional costs are given by the execution of the
filtering procedure.

6.2 Test case 2

As second test case, we consider the Fisher-Kolmogorov-Petrovski-Piskunov (FKPP) reaction-
diffusion equation, which models the dynamics of patterns in reactive media e.g. arising in com-
bustion, spreading of epidemics and transport of chemicals in cells (see, e.g. [39, 29] for further
details). Here we consider a two dimensional domain ⌦ ⇢ R2 and formulate the forward problem
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RB FE
n = 7 n = 11 n = 15 Nh = 1024

dof reduction 99.3% 98.9% 98.5% 0%

Forward solution 0.6 s 0.7 s 0.8 s 40 s
|Strain| = 24

ROM construction 16 min 16 min 16 min
REM cal. Ncal = 24 15.1 s 17.4 s 18.73 s
REM cal. Ncal = 80 37 min 37.1 min 37.3 min
REM cal. Ncal = 240 139.2 min 139.3 min 139.4 min
|Strain| = 80

ROM construction 53 min 53 min 53 min
REM cal. Ncal = 24 15.1 s 17.4 s 18.73 s
REM cal. Ncal = 80 49.8 s 53.8 s 59.7 s
REM cal. Ncal = 240 103.3 min 103.4 min 103.5 min
Inverse problem
EnKF time 6 min 6.3 min 6.9 min 387 min
EnKF REM Ncal = 24 7.7 min 8.2 min 8.6 min
EnKF REM Ncal = 80 8.9 min 9 min 9.4 min
EnKF REM Ncal = 240 10.9 min 11.1 min 11.4 min

Table 3: Test case 1: computational performances of the proposed framework (offline construction
and online inversion stages) and comparison with the FOM case.

as: find u = u(t;µ) s.t.
8
>><

>>:

@u

@t

� div(⌫(x;µ)ru) +N (u) = 0 x 2 ⌦, t 2 (0, T )

ru(t;µ) · n = 0 x 2 @⌦, t 2 (0, T )

u(0;µ) = e

�((x1�1.5)2+50x2
2)) x 2 ⌦,

(37)

where N (u) = 75u(1� u) and the spatial domain ⌦ is given

⌦ =

⇢
(⇢,#) 2 (1, 1.5)⇥

⇣
0,

⇡

2

⌘
: ⇢ =

q
x

2
1 + x

2
2, # = arctan

✓
x2

x1

◆�
.

This particular shape of ⌦ imposes a preferential propagation of the front modeled by (37) along
the tangential component of the arc. The semi-discretized FE approximation of problem (37) based
on a partition of ⌦ using Nh = 2768 mesh nodes and linear finite elements yields a system of ODEs
like the one in (2). By considering a partition of the time interval (0, T ) into Nt = 140 time-steps
(�t = 1.1 · 10�3) and the implicit Euler method, we obtain the dynamical system (3). Then, we
consider eight outputs of the form:

sj(t) =

Z

⌦

1

0.05⇡

exp

✓
� (x1 � xcj)

2
+ (x2 � ycj)

2

2(0.025)

2

◆
u(t;µ)d⌦ j = 1, . . . , 8,

being (xcj , ycj) = (⇢ cos ✓, ⇢ sin ✓) given by all the possible combinations between ⇢ = {1, 1.5} and
✓ = {⇡/6,⇡/4,⇡/3,⇡/2}. These eight components of the output vector represent approximated
pointwise measurements of the quantities of interest u(t;µ).

To show the reliability of our procedure in the solution of large-scale parameter identification
problems, we consider a parametric field description of the diffusion coefficient ⌫ appearing in (37)
of the form

⌫(x,µ) = 1+

dX

i=1

µi

p
�i⇠i (38)

where µi, 1  i  d play the role of identifiable parameters, and ⇠1, ⇠2, . . . , ⇠d are the d most rel-
evant (independent) eigenmodes corresponding to the largest eigenvalues of the covariance matrix
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C, whose components are chosen as

Cij = a exp

✓
�kx(i) � x(j)k

2b

2

◆
+ c�ij 8i, j = 1, . . . , Nh,

being a, b, c > 0 and {x(i)}Nh
i=1 the nodes of the computational mesh. The parametric field (38)

is nothing but the Karhunen-Loève expansion (up to term d) of the Gaussian random field ⌫ ⇠
N (0, C), where the prescribed covariance matrix C describes the spatial smoothness of the random
field ⌫.

Figure 10: First d = 20 most relevant field modes of the Karhunen-Loève expansion of ⌫(x,µ).

The goal of the inverse problem is to estimate µ⇤ from noisy data with "noise ⇠ N (0,�

2
I).

The prior distribution of µ is assumed to be Gaussian, µ 2 N (µprior,⌃prior), with µprior = 0 and
⌃prior = I. The reference field ⌫(x;µ⇤

) and the solution of the inverse problem ⌫(x; ˆµh) obtained
with the full-order EnKF, relying on the FOM, are represented in Fig. 11.

Figure 11: Reference (left) and estimated (right) field using the full-order EnKF.

In this case, the identification problem is even more challenging than in the test case 1: the
inverse problem solution with the full-order EnKF requires more than 38 hours of CPU time and
constructing the ROM is very expensive due to the higher dimension of the parameter space and
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the complex nonlinear dynamics. For these reasons, the REM will play a key role in balancing
performance and accuracy of the proposed framework. Therefore, we compare the results obtained
by solving the inverse problem when relying on a reduced EnKF taking mD = 300 DEIM elements,
n = [115, 150, 185] basis functions and by considering a REM built upon a calibration sample
Scal = Strain of dimension Ntrain = 420. As shown in Fig. 12, the uncorrected RB-EnKF fails
in the identification of the unknown field for n = [115, 150], that is, if the RB approximation is
too coarse. For each choice of n, we recover more accurate reconstructions of the field using the
corrected RB-EnKF with respect to the uncorrected procedure (the error |⌫(x; ˆµc) � ⌫(x; ˆµh)| is
reduced by at least an order of magnitude with respect to |⌫(x; ˆµn) � ⌫(x; ˆµh)|, without extra-
costs due to the calibration procedure. As shown in Table 4, the ROM construction requires several
hours to be performed, but the online costs of the reduced EnKF are considerably smaller with
respect to ones obtained using the full-order EnKF. The extra costs of the corrected RB-EnKF
are negligible with respect to the entire procedure: this fact, as well as the improved accuracy
in the estimation, clearly motivate the introduction of a REM in the solution of complex inverse
problems. We finally point out that developing efficient ROMs for problems involving traveling
fronts is still an open issue; we remark that the proposed framework to solve Bayesian inverse
problems is rather general and can be integrated within any choice of surrogate or reduced-order
models.

Figure 12: Errors between reference and identified fields for different ROM dimension n =

115, 150, 185, without (top) and with (bottom) REM correction. This latter clearly yields a relevant
improvement in the estimated field.

RB FE
n = 115 n = 150 n = 185 Nh = 2768

dof reduction 95.8% 94.5% 93.3% 0%

Forward solution 2.7 s 3.9 s 5 s 279 s
|Strain| = 420

ROM contruction 31 h 31 h 31 h
Inverse problem
EnKF time 25 m 34 m 46 m 38 h 50 m
EnKF REM Ncal = 420 54 m 62 m 76 m

Table 4: Test case 2: computational performances of the proposed framework (offline construction
and online inversion stages) and comparison with the FOM case.
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Conclusions

The RB-EnKF approach proposed in this paper allows to speed up the solution of state/parameter
identification problems without affecting the accuracy of the computed estimates. Since the EnKF
requires repetitive evaluations of solutions (and outputs) of the nonlinear dynamical system, in
order to reduce the cost of the inversion procedure we can replace the forward map µ ! sh(t;µ)
with the less expensive one µ ! sn(t;µ) obtained using a RB method instead of a full-order model.
Our numerical results confirm that a considerable speedup is achieved when using the RB-EnKF
instead of the full-order EnKF: the computational speedup in performing the filter goes from 55⇥ to
64.5⇥ for the first test case and from 50⇥ to 93⇥ in the second one. Nevertheless, the propagation
of the reduction errors during the inversion procedure leads to biased estimates of the unknown
state/parameter, as underlined also by our error analysis. The RB-EnKF has to be equipped with
a statistical REM in order to recover unbiased output evaluation and consequently to guarantee the
accuracy of the overall filtering technique. Moreover, the additional costs introduced by the REM
are negligible: in the worst case scenario the computational time required by the corrected RB-
EnKF is twice the uncorrected RB-EnKF, ensuring anyway a considerable speed up with respect
to the full-order EnKF.
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A Derivation of the Kalman update formula

In this section we provide the detailed derivation of the Kalman update formula (15) for the analysis
stage. We will extend to our state/parameter case the derivation proposed for the state filter in
[24, Chapter 4]. For simplicity we show the derivation procedure for the output

s
(k+1)
h (µ) = Hu

(k+1)
h (µ),

the more general case of (5) being essentially very similar to deal with. By assuming that the prior
and the likelihood are multivariate Gaussian distributions, we can rewrite (10) for each element of
the ensemble as

exp

0

@�1

2

�����

�����


µ
u

�
�
"

µ(k+1)
q

u
(k+1)
h (µ(k+1)

q )

#�����

�����

2

Ch

1

A

/ exp

0

@�1

2

���
���s(k+1) � s

(k+1)
h (µ)

���
���
2

�
� 1

2

�����

�����


µ
u

�
�
"

µ(k)
q

u
(k+1)
h (µ(k)

q )

#�����

�����

2

Ch
prior

1

A
(39)

where Ch
prior is the covariance matrix of the parameter-state vector, given by

Ch
prior =

"
C

(k+1)
µµ C

(k+1)
µuh

C
(k+1)
uhµ C

(k+1)
uhuh

#
.

We recall that, in order to solve the inverse problem, we need to identify the unknown posterior
mean [µ(k+1)

q ,u
(k+1)
h (µ(k+1)

q )]

T and the unknown covariance Ch of the posterior pdf. By requiring
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that the means and the covariances of the quantities appearing in (39) are equal, we derive two
equations to be satisfied by the unknown mean and covariance:
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From (40), by applying the Woodbury matrix identity (see e.g. [24, Chapter 4]), we get
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substituting this last expression in (41) we obtain:
"

µ(k+1)
q

u
(k+1)
h (µ(k+1)

q )

#
= Ch

 
(Ch

prior)
�1

"
µ(k)

q

u
(k+1)
h (µ(k)

q )

#
+


0
H

�
�

�1s(k+1)

!

=

 
I � Ch

prior


0
H

�
(�+C(k+1)

shsh
)

�1


0
H

�T!"
µ(k)

q

u
(k+1)
h (µ(k)

q )

#
+ Ch


0
H

�
�

�1s(k+1)
.

By observing that
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we easily obtain the system (15) for the Kalman update. The generalization of the updating
formula to the case of a different output, like the one expressed by (5), can be obtained in a very
similar way by considering as prior mean

h
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and as output operator
⇥
0 �t!KH · · · �t!K�1H · · · �t!1H

⇤T , and following the same
approach of the proof reported above.

B Construction of a functional kriging interpolant

Assume that the error {�t(µ), µ 2 P} is a (functional) random field, that is, a set of (functional)
random variables indexed by µ 2 P, taking values in L

2
(a, b), with (a, b) ✓ (0, T ). We assume

that �t(µ) is a second-order stationary and isotropic random process, that is:

1. the mean and the variance are constant with respect to µ 2 P,

E[�t(µ)] = m�(t), V ar[�t(µ)] = �

2
�(t), t 2 (a, b);

2. the covariance depends only on the lag � = kµ↵ � µ�k,

Cov(�t1(µ↵),�t2(µ�)) = ct1,t2(µ↵,µ�) = ct1,t2(�), µ↵,µ� 2 P, t1, t2 2 (a, b);

moreover, if t1 = t2 = t, we denote by ct(�) = ct1,t2(�).
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Given a sample of known functions of the random process {�t(µq)}
Ncal
q=1 , the best linear unbiased

predictor (BLUP) of {�t(µ0)}, for each new µ0 2 P, is given by the linear combination

�̂t(µ) =
NcalX

q=1

�q(µ)�t(µq) 8µ 2 P

whose weights are obtained by imposing that the mean square error of �̂t(µ0) is minimized, i.e.,
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under the constraint that �̂t(µ0) is unbiased, that is

E[�̂t(µ0)� �t(µ0)] = 0 (43)

Finding the BLUP thus yields a constrained quadratic program to be solved (for each µ0): indeed,
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the Lagrangian functional associated to problem (42)–(43), we get the following linear system to
be solved, for each µ0:
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Thanks to assumption 2, ct(µq,µp) = Cov(�t(µq),�t(µp)) = ct(kµq � µpk) so that, by denoting

�t(�) = ct(0)� ct(�),

the previous linear system can be equivalently rewritten as:
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(45)
To compute the components appearing in the matrix and the vector of system (45), we estimate
the so-called (theoretical) semi-variogram
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with an empirical semi-variogram

�̂(�) =

1

2|N(�)|
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(�t(µi)� �t(µj))
2
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being N(�) = {(µi,µj) : kµi � µjk = �}. In practice, the empirical semi-variogram is estimated
at M discrete lags {�1, . . . , �M}. Through these estimated values {�̂(�1), . . . , �̂(�M )}, a parametric
semi-variogram model (e.g. spherical, exponential or gaussian) is fitted using a least squares
approach. In this paper we consider the spherical parametric semi-variogram model, that is
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where c, d are the two parameters identified by fitting this model on the finite set of points
{(�m, �̂(�m))}Mm=1.

Finally, we define the prediction trace-variance �̂
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�(µ0) of the functional ordinary kriging as
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