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Abstract

In chronic diseases like Heart Failure (HF), the disease course and asso-
ciated clinical event histories for the patient population vary widely. To
improve understanding of the prognosis of patients and enable health-care
providers to assess and manage resources, we wish to jointly model disease
progression, mortality and their relation with patient characteristics. We
show how episodes of hospitalisation for disease-related events, obtained
from administrative data, can be used as a surrogate for disease status. We
propose flexible multi-state models for serial hospital admissions and death
in HF patients, that are able to accommodate important features of disease
progression, such as multiple ordered events and competing risks. Markov
and semi-Markov models are implemented using freely available software
in R. The models were applied to a dataset from the administrative data
bank of the Lombardia region in Northern Italy, which included 15,298 pa-
tients who had a first hospitalisation ending in 2006 and 4 years of follow
up thereafter. This provided estimates of the associations of of age and
gender with rates of hospital admission and length of stay in hospital, and
estimates of the expected total time spent in hospital. For example, older
patients and men were readmitted more frequently, though the total time in
hospital was roughly constant with age. We also discuss the relative merits
of parametric and semi-parametric multi-state models, and assessment of
the Markov assumption.
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1 Introduction

Aging of the population and improved survival of cardiac patients due to modern
therapeutic innovations has led to an increasing prevalence of heart failure (HF).
Despite improvements in therapy, the mortality rate in patients with HF remains
high.1 The magnitude of the problem of HF is difficult to assess with precision
since there is no gold standard for the diagnosis of heart failure, and there has
been wide variation in the diagnostic criteria used in different studies.2 At least
six HF scoring systems based upon symptoms and signs have been developed to
assess the presence or severity of heart failure. Clinical diagnostic criteria for
heart failure have generally included history, physical examination, and chest
radiographs (see Mosterd et al.,3 Roger4 and references therein). Regardless
of the definition used, the prevalence of HF and left ventricular dysfunction
increases steeply with age (see, for example, Bleumink et al.5). In general HF is
a chronic disease (Chronic Heart Failure — CHF), caused by many conditions
that damage the heart muscle, including coronary artery disease, heart attack,
cardiomyopathy and conditions that overwork the heart (high blood pressure,
valve disease, thyroid disease, kidney disease, diabetes, or heart defects present
at birth). In addition, HF can occur in the presence of a combination of these
diseases. It is the leading cause of hospitalisation in people older than 65 years.
A 2010 update from the American Heart Association (AHA) estimated that there
were 5.8 million people with HF in the United States in 2006 (see McMurray et

al.6 and Lloyd-Jones et al.,7 among others). There are an estimated 23 million
people with HF worldwide. In the Lombardia district of Italy, which provides
our motivating example, the HF incidence over the last decade ranged between
25, 000 and 30, 000 cases per year in a population of 9.7 million inhabitants.8

In chronic diseases like CHF, clinical interest lies in both the final outcome
(death or survival time) and the dynamics of the process itself. To improve
understanding of prognosis and for healthcare providers to assess the impact
and costs of the disease, a comprehensive model should include both death and
non-fatal clinical events. There are several methodological approaches to the
modelling of times to multiple events per subject. Castaneda and Bart9 provide
an appraisal of several methods, highlighting that the standard Cox model is
not appropriate since observations are not independent. In order to overcome
this, they propose the use of marginal and multi-state models using a counting
process approach for the joint analysis of survival and time to disease-related
hospitalisations, allowing for population average estimates of treatment effects.
Several marginal models are adapted in order to account for intra-subject corre-
lation and competing risks. The models differ in the way they define the ”at-risk”
population at each time. However in these marginal models it is assumed that all
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events are identical and can be revisited at any time, with no recognition of the
serial nature of consecutive HF-hospitalisations. In their multi-state models, the
serial nature of the events is allowed, but hospitalisation and death are treated
as the same type of event, which, given their nature and severity, is unaccept-
able clinically. Thus, a multi-state model that represents multiple ordered events
per subject, accounts for competing risks, and distinguishes between death and
hospitalisation, is required.

A multi-state model is a stochastic process in which subjects occupy one
of a set of discrete states at any time. Multi-state models are convenient for
describing longitudinal data and/or repeated events. In Andersen and Keiding10

a counting process representation is stressed. In medical applications, the states
may represent healthy, different severities of disease, or periods in hospital, and
transition rates between states may be modelled in terms of covariates. See,
for example, Hougaard11 for a review, and Commenges,12 Cook,13 Putter et

al.,14 Sommen et al.,15 Sharples and Titman,16 Duffy et al.,17 Kay,18 Chen et

al.,19 Commenges and Joly20 for applications to many different diseases. In
Sutradhar et al.,21 multi-state models are developed, in order to compare trends
in hospitalisations among cancer survivors. Despite the importance of CHF both
in terms of incidence and related human and monetary costs (WHO22 defines
the rising incidence and prevalence of chronic diseases as one of the major global
concern), there are few examples in the literature of the application of multi-
state models to hospitalisation and death from CHF. Postmus et al.23 used
a three-state model representing in hospital, out of hospital or death for 1023
patients from a randomized controlled trial with heart failure.

In this study, the impact of CHF is assessed using data from administra-
tive databases, which provide information on the number and times of hospital
admissions and time to death (or administrative censoring). Administrative
databases play a central role in the evaluation of health-care systems, due to
their widespread diffusion and low cost of information. There is increasing
agreement among clinical epidemiologists on the validity of disease and inter-
vention registries based on administrative databases (see, for example, Barbieri
et al.,24 Wirhenetal25 and references therein). A key issue is the selection criteria
of the observation units: different criteria may result in different estimates of
prevalence or incidence of diseases (Saczynski et al.26). The use of prospective
patient management databases is of current interest (see, for example, Macchia
et al.,27 Au et al.,28 Aylin et al.,29 Philbin and DiSalvo30). The benefits of us-
ing these data for health system planning and evaluation are many: they are
population based, often combine information from multiple centres, capture real
health system use, are longitudinal and are relatively inexpensive to construct
and use. In addition, individual health administrative records can be linked to
other data (clinical registry, public health, socioeconomic etc.). The validity
of this approach is critically dependent on the reliability of the data and the
accuracy of disease coding in the administrative records, as shown, for exam-
ple, by Lee et al.31 and Saczynski etal.26 If search and data linkage strategies
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are not carried out rigorously, administrative data on hospital admissions can
be less complete and exhaustive than data from epidemiological cohort studies
and clinical trials. Despite issues surrounding data reliability, and the on-going
debate regarding their use in clinical research (see, for example, Quach et al.32),
significant improvements have been achieved in this area in the last decade, and
the use of administrative databases in clinical biostatistics has become an ac-
cepted practice (see, among others Schultz et al.,33 Muggah et al.,34 Iron et al.35

and references therein).
We propose a multi-state modelling strategy for the joint analysis of out-

comes and hospital admissions in CHF patients, whose data come from the
administrative database of an Italian regional district (Lombardia). Our aim is
to demonstrate a flexible approach that is able to capture important features of
disease progression, such as multiple ordered events and the competing risks of
death and hospitalisation, in a novel application. We go further than Postmus
et al.23 by using multiple states representing subsequent periods spent in and
out of hospital, in order to model how the risk of death and further hospitali-
sation changes through time and with disease progression. Analyses are carried
out using freely-available statistical software R.36 Specifically, the survival,37

mstate14 and msm38 packages are used to fit the multi-state models to the data.
This work will provide healthcare providers with an effective modelling tool, us-
ing hospital admissions to gain insights into the burden of heart failure, how it
relates to patient characteristics and how it changes over time.

We describe the data extraction and inclusion criteria in Section 2, and ex-
plain the multi-state modelling methods in Section 3. Key results from applying
these methods to the Lombardia HF admissions data are presented in Section
4. In Section 5 we end with a discussion of the strengths and challenges of
modelling disease progression through administrative data.

2 Study Cohort and Extraction Criteria

Within the Italian health-care regulation system, every hospital admission pro-
duces a record in the administrative database. These records are then collected
in an data warehouse called SDO (Scheda di Dimissione Ospedaliera, i.e., hos-
pital discharge paper) database. The SDO database has been interrogated to
identify heart failure episodes and subsequent hospitalisations. In addition, in-
formation both on patient (sex, date and place of birth, residence, . . . ) and
on hospitalisations (date of admission and discharge, diagnoses and procedures,
type of admission, type of discharge, vital status at discharge, . . . ) over time
can be retrieved.

For the current study we used data extracted for the project “Utilization

of Regional Health Service databases for evaluating epidemiology, short- and

medium-term outcome, and process indexes in patients hospitalised for heart

failure”. These data include cases of CHF in the administrative data warehouse
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of Regione Lombardia, the region in the northern part of Italy with capital Mi-
lan. The project aims to describe the epidemiology and natural history of HF
patients at regional levels, to profile health service utilisation (e.g. hospitalisa-
tions, cardiac rehabilitation, diagnostic tests, outpatient visits, etc.) over time,
and investigate variation in patient care according to geographic area, socio-
demographic characteristics and other clinical variables.

In order to include the vast majority of HF cases, any admission that ended
between 2000 and 2010 in Major Diagnostic Category (MDC) 01 (Nervous Sys-
tem), 04 (Respiratory System), and 05 (Circulatory System) in patients resident
in the Nothern Italy regional district of Lombardia has been considered. For
people who died by the end of the study, the date of death has been obtained
through database linkage with the Italian National Registry of deaths. A list of
ICD-9-CM codes relating to HF was created as the union of codes from “Heart
failure mortality rate” by AHRQ-IQI39 and from CMS-HCC40, 41 Model Cate-
gory 80. From this dataset admissions for HF were identified if any of the six
HF diagnosis fields of the SDO were recorded.

Starting from this population, patients whose first admission (incident event)
ended during 2006 were selected. The number of hospital admissions for HF and
the corresponding dates of admission and discharge were recorded over a 4-year
follow up (up to December 31th, 2010). Data were anonymised, labelling each
patient with an encrypted ID code.

The eligible cohort consisted of 15, 856 patients (corresponding to 36, 949
records). Among these, patients who were younger than 18 years at the first
hospitalisation time were excluded (62 pts., corresponding to 182 rows). Among
the remaining cohort, we also removed patients admitted and discharged on the
same day, i.e., patients whose length of stay (LOS) in hospital was zero (477 pts.,
corresponding to 2476 rows), or those having long-stay recovery (LOS greater
than 180 days, 19 pts., corresponding to 67 rows). Some other pre-processing
and cleaning operations were carried out, for example to check coherence in
patients’ time-line progressions and test for agreement in event indicators. There
were no missing data. The final dataset contained records from 15, 298 patients
(corresponding to 35, 224 records),

3 Multi-state Models for HF data

3.1 Definitions

To characterise the association between hospital admissions, mortality and pa-
tient characteristics, we adopt a multi-state model describing how an individual
moves between a series of discrete states in continuous time. Suppose an indi-
vidual is in state S(t) at time t. The next state to which the individual moves,
and the time of the change, are governed by a set of transition intensities qrs(t),
r, s = 1, . . . , R. The intensity, or hazard, represents the instantaneous risk of
moving from state r to state s. This may depend on the time t since the start of
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the process, patient characteristics z(t), and possibly also the “history” of the
process up to that time, Ht: the previous states visited by the individual and
the times spent in them. Therefore, for this patient,

qrs(t) = lim
δt→0

P(S(t+ δt) = s|S(t) = r)/δt

are then elements of a R × R matrix Q(t) whose rows sum to zero, so that the

diagonal entries are defined by qrr(t) = −
∑

r 6=s

qrs(t), and qrs(t) = 0 if a transition

from state r to state s is not allowed.

3.2 Model structure for HF hospitalisation

The 11 states and the 19 permitted transitions in our application are illustrated
in Figure 1. Each patient starts in state 1I , representing the first hospital admis-
sion. From there they can either be discharged from hospital, or die in hospital.
Once a patient is out of hospital, they can either be admitted again or die, and
once in hospital they can either be discharged or die. Death from any cause is
included. A maximum of 6 hospital admissions are modelled, and subsequent
admissions (but not deaths) are ignored, due to the sparsity of data from individ-
uals with more than 6 admissions (Table 1). Thus “greater than 5 admissions”
is considered as a clinically-important “severe” disease state.

Figure 1: The multi state model, describing jointly the length of stay in hospital, risk of
subsequent hospitalisation, mortality rates in and out of hospital, and how these change
with increasing numbers of hospital admissions.

Simplifications of this structure are possible. For example, we could have
only two living states, representing “in hospital” and “out of hospital”, with
transitions allowed between them in either direction. This would allow estima-
tion of the in-hospital and out-of-hospital mortality rate, and the average length
of stay in hospital, but it would then be awkward to model how these quantities,
or the probability of readmission, vary with the previous number of hospital
admissions. Alternatively, if length of hospital stay is not of interest, we could
omit the “discharge” states, and simply model the times between successive hos-
pital admission dates, jointly with mortality. This would assume, however, that
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the risk of death does not change when a patient is in hospital. Both of these
simplifications were investigated in exploratory work before deciding to use the
most flexible structure of Figure 1.

3.3 Data structure and time-to-event modelling

In our application, the state S(t) is known at all times for each patient, since
all dates of admission to, or discharge from, hospital, and all dates of death,
are known. We label these times t1, . . . , tn. t1 is the date of the first hospi-
tal admission. If the patient died, tn is the date of death, otherwise it is the
end of follow-up. Any intermediate times t2, . . . , tn−1 represent discharges and
subsequent admissions, if they occur.

For each permitted r → s transition in the multi-state model (19 in our
case) there is a corresponding time-to-event model, with cause-specific hazard
rates defined by qrs(t). To enable estimation of these hazards, the data are
expressed as a series of times to events which are potentially censored: dtj =
tj+1− tj : j = 1, . . . , n−1. For a patient who moves into state s at time tj, their
next event at tj+1 is defined by the model structure (Figure 1) to be one of a
set of competing events s∗1, . . . , s

∗
ns
.

For example, in state s = 1I (first hospital admission), the next state must
either be s∗1 = 1O (first discharge), or death (s∗2 = D) so ns = 2. The time of the
event which actually occurs at tj+1 is observed, and the times of the competing

events from this set (which have not occurred by this time) are censored. Each
dtj contributes an observed time to one of the 19 transition-specific models, and
a censored time to each of the models for the competing events. Therefore, stan-
dard tools for survival analysis can be used to estimate the qrs(t), independently
for each r → s transition, from this form of data. Additional software is re-
quired to deal with the multi-state structure when processing the data, making
predictions (Section 3.4) and presenting results.

We apply two alternative models using accessible R packages. The first is a
more flexible semi-Markov model based on semi-parametric Cox regressions for
each transition. The second is a simpler, fully-parametric Markov model. Age
(at the time of transition) and sex are included as covariates in both models, with
different hazard ratios exp(βrs) for each r → s transition. Age-sex interactions
were considered and judged not significant.

3.3.1 Semi-parametric, semi-Markov model

In this model,

qrs(t, z(t)) = q(0)rs (t) exp(β
′
rsz(t)) (1)

thus the hazards are proportional between patient groups or covariate values, in
other words the covariate value has a constant time-independent multiplicative
association with the hazard. If the covariates z(t) are time dependent, such as
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age in our example, they are assumed to be step functions which remain constant
between each tj and tj+1.

The baseline hazard q
(0)
rs (t) is left unspecified and estimated nonparametri-

cally using the Breslow estimator (as in De Wreede et al.50), and the βrs are

estimated by maximum partial likelihood. The dependence of q
(0)
rs (t) on time

could be modelled by expressing time t as the time since the start of the pro-
cess, in this case the date of the first hospital admission. We use an alternative
approach of defining t as the time spent by the individual in their current state.

Then the function q
(0)
rs (t) represents how the hazard changes after discharge from

hospital, or during a single hospital stay. This is a clock-reset or semi-Markov

model (see Putter at al.14 for further details).
We fit Cox semi-Markov models to the hospital admission data using the

survival package for R (Therneau and Grambsch42). The mstate package (De
Wreede et al.43) subsequently computes covariate-specific cumulative hazards
for each of the transition-specific Cox models.

3.3.2 Parametric Markov model

In a second, more parsimonious parametric model, the baseline hazard q
(0)
rs is

constant, and the hazard only varies with increasing patient age, included in
z(t). Covariates are again included through proportional hazards.

qrs(t, z(t)) = q(0)rs exp(β′
rsz(t)) (2)

Since age is piecewise-constant, the hazard is a step function of time, and the
sojourn time in each state r has a piecewise exponential distribution, with a
piecewise-constant rate qrr(t). This is a Markov model, since future evolution
only depends on the current state. That is, qrs(t, z(t),Ht) is independent of Ht.

Again, the q
(0)
rs and βrs are estimated by maximum likelihood, and standard

errors are obtained by standard asymptotic theory. Since the state is known to
be S(tj) from tj until the transition to state S(tj+1) at tj+1, the contribution of
each patient i to the likelihood is

Li(Q) =
∏

j

Lj =

ni∏

j

exp{−qS(tj)S(tj )(tj+1 − tj)}qS(tj)S(tj+1) (3)

where the qrs in this formula are evaluated for this patient’s covariates, assuming
their age is constant over this time interval. The complete likelihood L(Q) =∏

i Li(Q) is maximised in terms of log(q0rs) and βrs.
This model is fitted using the msm package for R (Jackson44). This class of

models may also be fitted to data where the exact times of transition between
states are unknown. This is common in situations where the states are levels of
severity of a disease, which may only be known at times of clinic visits (Jackson,38

Kalbfleisch and Lawless,44 Kay18).
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3.4 Prediction from multi-state models

To predict the probability of occupying a particular state at a fixed time in the
future, we calculate the transition probability matrix P (u, t+u), where the (r, s)
entry of P (u, t+ u), prs(u, t+ u), is the probability of being in state s at a time
t + u, given the state at time u is r. Given Q(t), this is the solution to the
Kolmogorov differential equations (see Cox and Miller45 for further details). For
the semi-Markov model, this can be calculated by simulating a large number of
individual state histories from the multi-state model given the covariate-specific
cumulative hazards, and this can be done by the mstate package.43

In the parametric model, if the transition intensity matrix Q is constant,
given the values of covariates, over the interval (u, t+u), then P (u, t+u) = P (t).
In this case, the transition probability matrix can be calculated directly from the
matrix exponential of the scaled transition intensity matrix Q scaled by the time
interval, i.e., P (t) = Exp(tQ). The transition probability matrix over intervals
where Q is piecewise-constant is then calculated as a matrix product of terms
like these.

The P (t) can be used to predict the expected total time spent in a state s

over a given period of time (0, T ), as Es =
∫ T

0 prs(t)dt, given that a patient is in
state r at time 0. In this study we predict the total time spent in hospital from
the first admission until death, a quantity of interest to healthcare providers.

For the parametric model, we can calculate standard errors or confidence

intervals for quantities such as these, which are functions of q
(0)
rs and βrs, by

simulating from the assumed asymptotic normal distribution of the estimators

of q
(0)
rs and βrs, and recalculating the quantities of interest.46 Under the semi-

Markov model, however, since simulation is required to calculate P (t), a second
level of simulation to obtain an accurate confidence interval would be unfeasible.

4 Analysis and Results

4.1 Descriptives

The study cohort consists of 15, 298 patients whose first HF admission ended
in 2006. Patients were followed up to December 31st, 2010. Among these in-
dividuals, 6, 646 (43.44%) died (from any cause) by the end of the study. The
proportion of patients who died during a hospital admission was 8.26%.

Patient age at the time of the first hospitalisation ranged from 18 to 103 years,
with mean age (SD) 75.6 (12.6) years. The age of patients at the time of the final
discharge ranged from 19 and 105 years, with mean (SD) 76.7 (12.5) years. In
the cohort there are 7, 184 (46.96%) males and 8, 114 (53.04%) females. Women
were older than men: mean (SD) ages 79.6 (11.4) and 71.5 (12.88), respectively.

The number of admissions to hospital per patient (Table 1) ranged between
1 and 24 (mean = 2.31, median = 2, quantiles 1 and 3). There was no significant
difference between men and women in the number of hospitalisations.
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Hospitalizations during follow up

1 2 3 4 5 > 5
Number of pts. 15,298 8,891 4,836 2,604 1,492 855

% 100% 58.12% 31.61% 17.02% 9.75% 5.59%

6 7 8 9 10 > 10
Number of pts. 855 514 302 175 97 56

% 5.59 3.36% 1.97% 1.14% 0.63% 0.37%

Table 1: Distribution of number of admissions to hospital for chronic HF between HF
patients and percentage of patients who entered each stage during the 5-year follow up.

Table 2 shows summary statistics for time from the previous discharge to
each subsequent admission, for those patients experiencing them. The mean (and
median) time to the next hospitalisation decreases as the number of readmissions
increases.

pts. mean (sd) median 1Q 3Q min max
(1st adm) 15298 — — — — — —

to 2nd adm 8891 369.5 (422.4) 180 57.9 558.5 3 1820

to 3rd adm 4836 308.7 (348.81) 160 55 443.3 3 1738
to 4th adm 2604 279.4 (313.13) 154 59 384 4 1691

to 5th adm 1492 238.5 (266.54) 140 50 331 3 1499

to > 5th adm 855 197.5 (216.52) 118 46.5 266 4 1284

Table 2: Summary statistics for times to readmission to hospital for HF-patients.

The overall mean (standard deviation) LOS in hospital is 13.2 (13.9) days
(min = 1, median = 9, first and third quantiles respectively equal to 5 and 16,
max = 180 days). There is a slight difference between mean LOS of male and
female patients (12.9 male vs 13.5 female) and there is no significant difference
in LOS among subsequent hospitalisations.

4.2 Multi-state models

The multi-state models described in Section 3 are fitted to the HF data. Table 3
shows the total number of observed transitions for each state. In-hospital mor-
tality increases from 7.16% (first admission in-hospital death rate) up to 9.99%
(fifth admission in-hospital death rate), probably due to the aging population
and the increasing severity of the HF.
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to r − th discharge to death to (r + 1) − th admission to death
F
ro

m
r
−

t
h

a
d
m

is
si
o
n r = 1 14,203 1,095

F
ro

m
r
−

t
h

d
is
c
h
a
rg

e r = 1 8,891 1,750
r = 2 8,145 746 r = 2 4,836 980
r = 3 4,383 453 r = 3 2,604 488
r = 4 2,378 226 r = 4 1,492 236
r = 5 1,343 149 r = 5 855 132
r = 5+ - 394

Table 3: Transitions for the multi-state model in (2) fitted to HF data.

Associations with age and sex

Figures 2 and 3 show maximum likelihood estimates of the hazard ratios for
the effects of age and sex, both for semi-parametric (black) and parametric
(red) specifications of the model in (2). An increase of 5 years in age has only
a very small effect on readmission and discharge times, decreasing the chance
of discharge and increasing the risk of readmission slightly. These estimates
are very precise due to the large sample, though are unlikely to hold clinical
significance. There is evidence, as expected, that increasing patient age increases
the death hazard from all the states. This effect appears to slightly decrease
with the number of hospitalisations. This may be due to the fact that as the
population ages, it tends to shrink toward more homogeneous and ”robust”
behaviour (”survival of the fittest”), reducing the apparent contrasts between
patients.

In general the gender effect is smaller than the age effect, with few significant
hazard ratios. In the earlier stages, women are less likely to change state (die,
be admitted or discharged from hospital) than are men. The lower hazard for
transitions to death may reflect the longer life-expectancy for women, which the
age effect in the model may not have fully adjusted for. These data suggest that
there may be a reluctance to admit to hospital women with symptoms of HF
in the early stages. Once admitted, women in the early stages of HF were less
likely to be discharged early. However once disease severity has reached the later
stages, reflected by several admissions, progression through stages and survival
is the same for both sexes.

There were some differences between point estimates calculated from the
semi-parametric and parametric models although the patterns through the pro-
cess were similar, and estimates of precision are comparable. The paramet-
ric model resulted in an increased effect of age on death out of hospital, and
a slightly bigger effect of age on readmission rates, particularly in the early
stages of disease. Note the hazards for the parametric model are assumed to
be constant within each state. The disagreement between the parametric and
semi-parametric models is greatest for the transitions which take place over long
periods of time (discharge to readmission or death) for which the hazard may not
be constant and there is heavy censoring. The parametric and semi-parametric
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0.6 0.8 1.0 1.2 1.4 1.6 1.8

Hazard ratios for 5 years of age

1st admission
2nd admission
3rd admission
4th admission
5th admission
Discharge from hospital

After 1st discharge
After 2nd discharge
After 3rd discharge
After 4th discharge
After 5th discharge
Readmission to hospital

1st admission
2nd admission
3rd admission
4th admission
5th admission
Death in hospital

After 1st discharge
After 2nd discharge
After 3rd discharge
After 4th discharge
After 5th discharge
Death outside hospital
Death after 5th admission time

Semi−parametric
Parametric

Figure 2: Hazard ratios for a five year increase in age, on each of 21 hospital admission,
discharge or death events.

estimates agree for the transitions from admission to discharge or death in hos-
pital, since the hazard is more likely to be constant over the relatively short
times spent in hospital, and there is minimal censoring.

Expected survival and time in hospital

Using the methods described in Section 3.4, we estimated the restricted mean
survival, and total time spent in any of the five hospital states, over 5 years
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0.4 0.6 0.8 1.0 1.2 1.4

Hazard ratios for women

1st admission
2nd admission
3rd admission
4th admission
5th admission
Discharge from hospital

After 1st discharge
After 2nd discharge
After 3rd discharge
After 4th discharge
After 5th discharge
Readmission to hospital

1st admission
2nd admission
3rd admission
4th admission
5th admission
Death in hospital

After 1st discharge
After 2nd discharge
After 3rd discharge
After 4th discharge
After 5th discharge
Death outside hospital
Death after 5th admission time

Semi−parametric
Parametric

Figure 3: Hazard ratios for a female patient relative to male, on each of 21 hospital
admission, discharge or death events.

from the first HF admission. These are shown in Table 4. The mean times
spent in hospital for HF treatment, up to the 6th admission, are consistent with
just over 2 admissions per patient. A small proportion of patients, 5.6%, will
have more than 5 admissions. An advantage of the parametric models is that
measures of uncertainty for these estimates are easily available. We expect that
the semi-parametric estimates would have similar precision to the parametric
estimates, since the confidence intervals for the covariate effects were of similar
width (Figures 2 and 3).
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Parametric Semi-parametric

Men Women Men Women

Age Restricted mean survival (years) over five years

65 4.32 (4.28, 4.34) 4.44 (4.40, 4.47) 4.33 4.42
70 4.01 (3.97, 4.04) 4.18 (4.14, 4.21) 4.06 4.19
75 3.59 (3.54, 3.63) 3.81 (3.77, 3.85) 3.71 3.84
80 3.06 (3.01, 3.12) 3.33 (3.29, 3.37) 3.24 3.42
85 2.44 (2.38, 2.51) 2.75 (2.70, 2.79) 2.59 2.86

Expected days spent in hospital over five years

65 33.74 (33.06, 34.46) 32.36 (31.52, 33.10) 29.97 30.43
70 33.66 (32.98, 34.30) 32.61 (31.92, 33.32) 30.73 29.98
75 32.69 (31.97, 33.36) 32.10 (31.43, 32.74) 30.59 29.82
80 30.63 (29.95, 31.35) 30.60 (29.97, 31.24) 29.01 28.95
85 27.49 (26.69, 28.25) 28.01 (27.37, 28.62) 26.33 26.57

Table 4: Expected survival over five years, and time spent in hospital over five
years, by age and sex, under parametric and semi-parametric multi-state models,
with 95% confidence intervals where available.

Another advantage of the parametric model is that the mean sojourn times
in each state may be estimated. These are the expected times from state entry
until transition to another state. Estimates are reported in Table 5 for men and
women aged 76 years (the mean population value). Under the semi-parametric
model, the hazards are only estimated within the five-year follow-up period of
the data, therefore to estimate the mean sojourn times we would need additional
parametric assumptions for the hazards beyond that period.

Periods in hospital Subsequent periods out of hospital
Male Female Male Female

1st
13.6 13.8

1st
676 820

(13.4, 14.0) (13.5 ,14.1) (662, 696) (802, 842 )

2nd
12.3 13.7

2nd
568 657

(12.0, 12.7) (13.3 ,14.1) (548, 589) (639, 681)

3rd
12.2 13.6

3rd
508 555

(11.7 ,12.7) (13.2 ,14.2) (483, 522) (531, 574)

4th
12.3 13.3

4th
419 434

(11.6 ,12.8) (12.5 ,14.0) (396, 452) (399, 462)

5th
12.8 13.9

5th
340 346

(12.0 ,13.7) (13.2 ,15.0) (317, 360) (313, 369)

Table 5: Estimated mean sojourn times, in days, for each transient state of the para-
metric multi-state model, with 95% confidence intervals. Age on state entry is set to
the mean population value (76 years).

This table shows that mean stay in hospital does not change substantially as
the number of admissions increases. However the times between admissions
do decrease, reflecting an acceleration in the disease process once it has been
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diagnosed and has resulted in an initial admission. Mean sojourn times for
women were slightly longer, consistent with the hazard ratios which showed
that women were less likely to change states than men. We could hypothesise
that women are more likely to have carer commitments at home and so may
only be admitted for more severe HF episodes, resulting in slightly longer stay.
This and other hypotheses could be examined in future clinical studies.

4.2.1 Model assessment

Since every transition time is known, we can calculate Kaplan-Meier estimates
of the time from state entry until the next transition for particular age-sex sub-
groups. Estimates from the fitted models for the corresponding covariate cat-
egory can be compared with these to assess model fit (as discussed by Titman
and Sharples.16 For patients in hospital, both the semi-parametric and para-
metric models give good predictions of the probability of remaining in hospital
for a 76 year old patient (Figure 4). This is consistent with the agreement of
the corresponding covariate effects between the models in Figure 2. Figure 5
shows that the semi-parametric model accounts better for the decrease in the
hazard of readmission (or death) since the time of last discharge. This is because
the parametric assumptions for the hazards are likely to be reasonable over the
short times spent in hospital, but not over longer periods. The parametric model
assumes the hazards vary only with age, whereas the semi-parametric model re-
laxes the Markov assumption by also modelling the hazards as non-parametric
functions of the time spent in the current state.

For out-of-hospital starting states, the extent of censoring and the sparsity
of data at later times increases with the number of admissions, therefore any
visible discrepancy between the Kaplan-Meier and fitted curves at these times
is less likely to be significant. Any remaining lack of fit of the semi-parametric
model may result from non-proportional hazards. A test of the correlation of
the Schoenfeld residuals with the Kaplan-Meier estimates at the corresponding
time showed that hazards were only significantly non-proportional for two out
of the 19 transition-specific Cox models, and then only for the age effect. Since
the sizes of these effects (discharge after 1st admission, and readmission after
1st discharge in Figure 2) are not clinically significant, this is not a concern.

5 Conclusions

Contemporary administrative health care databases allow for a new kind of epi-
demiological research, based on real-time availability and low-cost data. Despite
the issues surrounding the reliability of such data, in the last decade significant
improvements have been obtained in this area, and the use of administrative
databases in clinical biostatistics has become an accepted practice. The benefits
of using these data for health system planning and evaluation go far beyond
the fact that they are cheap and quickly available: they are population based,
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comprehensive, capture real health system use, longitudinal, and can be linked
to other data. Even if it can be difficult to properly define a population of inter-
est starting from these databanks, administrative databases represent a valuable
clinical resource. At the same time, they represent a great challenge for statistics
and statistical models.

In this work we focused on the use of administrative data for gaining insights
into the impact of heart failure. We used multi-state models to simultaneously
predict survival, time to the next hospitalisation and total time spent in hospital,
and how these depend on age, gender and hospitalisation history.

For a chronic disease, such as CHF, in-hospital states are heavily controlled
by the health care provider and assumptions of constant hazards and propor-
tional hazards for these states are likely to be valid. However the out of hospital
state is determined by a range of influences including the underlying progression
of the disease, comorbidities and the ageing of the population. These factors are
not adequately modelled using a parametric model based on constant hazards,
although the bias in estimates of the hazard ratios was not large in this popu-
lation. Thus if the focus is on estimation of covariate effects, constant hazards
may be an adequate approximation, but for studies that focus on assessment of
time to readmission, and associated health care consumption, it is not a reliable
approach.

We were able to show that times between hospital admissions decreased as
the number of admissions increased, reflecting HF progression, and to quantify
expected times between admissions. As might be expected, patients who were
older at first admission were readmitted more frequently, as were men (compared
with women) in the earlier stages of HF. However, the number of admissions and
associated time spent in hospital, over this 5 year period was roughly constant
with age, decreasing only for age of onset of around 85 years. For example, as
a proportion of the restricted mean survival time over 5 years, time in hospital
ranged from about 1.9% for 65 year old patients to 2.5% for 85 year old women.

Due to the size of the Lombardia administrative databases it is possible to
study a range of factors influencing health care consumption, through jointly
modelling hospital admissions and death. This has resulted in precise estimates
of expected survival times, times spent in hospital and covariate effects. Addi-
tionally there is sufficient power to investigate interactions between covariates,
which has not been possible with smaller data registries. In this study there
were no significant interaction effects between age and sex on model parameters,
and the size of the dataset ensures that we can be confident in this assertion.

Multi-state models are effective in describing clinical processes as discrete
states. Nevertheless, due to the difficulty in inference for some types of data,
strong assumptions on the process dynamics and on covariate effects are often
applied. As pointed out in Titman and Sharples,16 it is difficult to make univer-
sally valid recommendations on model checking as often the model assumptions
depend on the particular application. For example, the Markov assumption
claims that given the present state, the future evolution of the process (hospi-
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talisations as a proxy for HF progression, in the case of interest) is independent
of the states previously visited and the transition times among them. This as-
sumption is often restrictive and when it fails the model may provide inconsistent
estimates. In this work we checked this assumption through informal diagnos-
tic plots. Rodriguez-Girondo and De Una-Alvarez,47 proposed a formal test
for the Markov assumption in the illness-death model, based on measuring the
future-past association over time through generalisations of Kendall’s τ , but no
solutions are present, to the best of our knowledge, for more general multi-state
models.

Despite these restrictive assumptions, Markov models are often a convenient
starting point for jointly modelling hospital admissions and death. The msm

package in R, among others, has made implementation straightforward for a
wide range of model structures, and in particular for intermittently-observed
multi-state data where the exact times of transition are unknown. In addition,
estimates of covariate effects were only slightly biased in our application. For
situations such as the fitting of serial hospitalisation, in which transitions be-
tween states are fully observed, the mstate package implements more flexible
semi-parametric and/or semi-Markov models. These models provide less biased
estimates of sojourn times and covariate effects, but require computationally-
expensive simulations from the fitted model to provide estimates of quantities of
interest. Another advantage of parametric models is to estimate quantities that
require extrapolation beyond the time horizon of the data, such as (unrestricted)
mean survival, or mean sojourn times in our example.
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Figure 4: Kaplan-Meier (black) curves of time to discharge or death, from each in-
hospital starting state, and estimated probabilities of remaining in that state from
parametric (red) and semi-parametric (blue) models, for women and men aged 76 years
at day 0.
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Figure 5: Kaplan-Meier (black) curves of time to readmission or death, from each out-
of-hospital starting state, and estimated probabilities of remaining in that state from
parametric (red) and semi-parametric (blue) models, for women and men aged 76 years
at day 0.
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