
MOX–Report No. 24/2012

hpVersion Composite Discontinuous Galerkin Methods
for Elliptic Problems on Complicated Domains

Antonietti, P.F.; Giani, S.; Houston, P.

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it





hp–Version Composite Discontinuous Galerkin Methods for

Elliptic Problems on Complicated Domains

Paola F. Antonietti♮, Stefano Giani♭, Paul Houston†

May 15, 2012

♮ MOX–Modeling and Scientific Computing, Dipartimento di Matematica,
Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy,

paola.antonietti@polimi.it.
♭ School of Mathematical Sciences, University of Nottingham, University Park,

Nottingham NG7 2RD, UK,
Stefano.Giani@nottingham.ac.uk.

† School of Mathematical Sciences, University of Nottingham, University Park,
Nottingham NG7 2RD, UK,

Paul.Houston@nottingham.ac.uk.

Keywords: Composite finite element methods, discontinuous Galerkin methods, hp–version
finite element methods

Abstract

In this paper we introduce the hp–version discontinuous Galerkin composite finite
element method for the discretization of second–order elliptic partial differential equa-
tions. This class of methods allows for the approximation of problems posed on com-
putational domains which may contain a huge number of local geometrical features, or
micro-structures. While standard numerical methods can be devised for such problems,
the computational effort may be extremely high, as the minimal number of elements
needed to represent the underlying domain can be very large. In contrast, the minimal
dimension of the underlying composite finite element space is independent of the number
of geometric features. The key idea in the construction of this latter class of methods is
that the computational domain Ω is no longer resolved by the mesh; instead, the finite
element basis (or shape) functions are adapted to the geometric details present in Ω. In
this article, we extend these ideas to the discontinuous Galerkin setting, based on em-
ploying the hp–version of the finite element method. Numerical experiments highlighting
the practical application of the proposed numerical scheme will be presented.

1 Introduction

The numerical approximation of partial differential equations (PDEs) posed on complicated
domains which contain ‘small’ geometrical features, or so-called micro-structures, is of vital
importance in engineering applications. In such situations, an extremely large number of
elements may be required for a given mesh generator to produce even a ‘coarse’ mesh which

1



Composite DG Methods 2

adequately describes the underlying geometry. With this in mind, the solution of the result-
ing system of equations emanating, for example, from a finite element discretization of the
underlying PDE of engineering interest on the resulting ‘coarse’ mesh, may be impractical
due to the large numbers of degrees of freedom involved. Moreover, since this initial ‘coarse’
mesh already contains such a large number of elements, the use of efficient multi-level solvers,
such as multigrid, or domain decomposition, using, for example, Schwarz-type precondition-
ers, may be difficult, as an adequate sequence of ‘coarser’ grids which represent the geometry
are unavailable.

In recent years, a new class of finite elements, referred to as Composite Finite Elements
(CFEs), have been developed for the numerical solution of partial differential equations, which
are particularly suited to problems characterized by small details in the computational domain
or micro-structures; see, for example, [11, 10], for details. This class of methods are closely
related to the Shortley-Weller discretizations developed in the context of finite difference
approximations, cf. [17]. The key idea of CFEs is to exploit general shaped element domains
upon which elemental basis functions may only be locally piecewise smooth. In particular, an
element domain within a CFE may consist of a collection of neighbouring elements present
within a standard finite element method, with the basis function of the CFE being constructed
as a linear combination of those defined on the standard finite element subdomains; see below
for further details. In this way, CFEs offer an ideal mathematical and practical framework
within which finite element solutions on (coarse) aggregated meshes may be defined. To date,
CFEs have been developed in the context of h–version conforming finite element methods.
In this article, we consider the generalisation of this class of schemes to the case when hp–
version discontinuous Galerkin composite finite element methods (DGCFEMs) are employed.
For simplicity of presentation, here we consider DGCFEMs as a numerical solver for a simple
second–order elliptic PDE posed on a computational domain which contains small details, or
micro-structures. The application of this approach within multi-level solvers will be considered
elsewhere. We point out that the general philosophy of CFE methods is to construct the
underlying finite element spaces based on first generating a hierarchy of meshes, such that the
finest mesh does indeed provide an accurate representation of the underlying computational
domain, followed by the introduction of appropriate prolongation operators which determine
how the finite element basis functions on the coarse mesh are defined in terms of those on
the fine grid. A closely related method based on employing a fictitious boundary approach is
developed by Larson & Johansson in [13]; cf., also the work presented in the series of articles
[6, 7, 8].

The structure of this article is as follows. In Section 2, we introduce the model problem
and state the necessary assumptions on the computational domain Ω. Section 3 introduces
the composite finite element spaces considered in this article, based on exploiting the ideas
developed in the series of articles [11, 10, 14]. In Section 4 we formulate the DGCFEM;
the stability and a priori analysis of the proposed method is then undertaken in Sections
5, 6, and 7. In Section 8 we briefly outline how the proposed DGCFEM may be efficiently
implemented. The practical performance of the DGCFEM for a range of two– and three–
dimensional problems is studied in Section 9. Finally, in Section 10 we summarize the work
presented in this paper and draw some conclusions.
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2 Model problem

In this article we consider the following model problem: given f ∈ L2(Ω), find u such that

−∆u = f in Ω, (1)

u = 0 on ∂Ω. (2)

Here, Ω is a bounded, connected Lipschitz domain in R
d, d > 1, with boundary ∂Ω; in

particular, it is assumed that Ω is a ‘complicated’ domain, in the sense that it contains small
details or micro-structures. With this in mind, throughout this article, we assume that Ω is
such that the following extension result holds.

Theorem 2.1. Let Ω be a domain with a Lipschitz boundary. Then there exists a linear
extension operator E : Hs(Ω) → Hs(Rd), s ∈ N0, such that Ev|Ω = v and

‖Ev‖Hs(Rd) ≤ C‖v‖Hs(Ω),

where C is a positive constant depending only on s and Ω.

Proof. See Stein [18, Theorem 5, p. 181]

Remark 2.2. We note the conditions on the domain Ω may be weakened. Indeed, [18] only
requires that Ω is a domain with a minimally smooth boundary; moreover, the extension
of Theorem 2.1 to domains which are simply connected, but may contain micro-scales, is
considered in [16].

3 Construction of the composite finite element spaces

In order to construct the CFE space, we proceed in the following steps; we point out that the
discussion presented in this section is based on the articles by Sauter and co-workers; see, for
example, [11, 10, 14]. In Section 3.1, we construct a hierarchy of finite element meshes which
can be used to describe a complicated domain Ω ⊂ R

d; for simplicity of presentation, we
assume that d = 2, though the general approach naturally generalizes to higher–dimensional
domains. Having constructed a suitable sequence of meshes, in Section 3.2 we introduce the
corresponding CFE space, which consists of piecewise discontinuous polynomials, defined on
‘generalized’ elemental domains.

3.1 Finite element meshes

In this section we outline a general strategy to generate a hierarchy of finite element meshes,
cf. [11]. We point out that any such hierarchy of meshes may be employed within this
framework.

To begin, we first need to construct a sequence of reference meshes, which we shall denote
by T̂hi

, i = 1, . . . , ℓ. We assume that the reference meshes are nested, in the sense that every
element κ̂i ∈ T̂hi

, i = 1, . . . , ℓ − 1, is a parent of a subset of elements which belong to the
finer mesh T̂hj

, where j = i+ 1, . . . , ℓ. To this end, we proceed as follows: we define a coarse

conforming shape–regular mesh T̂H = {κ̂}, consisting of (standard) closed disjoint elements κ̂.
By standard element domains, we mean quadrilaterals/triangles in two dimensions (d = 2),
and tetrahedra/hexahedra when d = 3. Here, we assume that T̂H is an overlapping mesh
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is the sense that it does not resolve the boundary of the computational domain Ω. More
precisely, we assume that T̂H satisfies the following condition:

Ω ⊂ ΩH =





⋃

κ̂∈T̂H

κ̂





◦

and κ̂◦ ∩ Ω 6= ∅ ∀κ̂ ∈ T̂H ,

where, for a closed set D ⊂ R
d, D◦ denotes the interior of D, cf. [14], for example. The finite

element mesh T̂H should be viewed as having a granularity that is affordable for which to
solve our underlying problem, though is far too coarse to actually represent the underlying
geometry Ω.

Given T̂H , we may now construct a sequence of successively refined (nested) computational
meshes using the following algorithm.

Algorithm 3.1 (Refine Mesh).

1. Set T̂h1
= T̂H , and the mesh counter ℓ = 1.

2. Set T̂hℓ+1
= ∅.

3. For all κ̂ ∈ T̂hℓ
do

(a) If κ̂ ⊂ Ω then T̂hℓ+1
= T̂hℓ+1

⋃

{κ̂};

(b) Otherwise refine κ̂ =
⋃nκ̂

i=1 κ̂i; here, nκ̂ will depend on both the type of element
to be refined, and the type of refinement (isotropic/anisotropic) undertaken; for
the standard red refinement of a triangular element κ̂, we have that nκ̂ = 4. For
i = 1, . . . , nκ̂, if κ̂i ∩ Ω 6= ∅ then set T̂hℓ+1

= T̂hℓ+1

⋃

{κ̂i}.

4. Perform additional refinement of elements in T̂hℓ+1
to undertake appropriate mesh

smoothing; cf. Remark 3.2 below.

5. If the reference mesh T̂hℓ
is sufficiently fine, in the sense that it provides a good repre-

sentation of the boundary of Ω, then STOP. Otherwise, set ℓ = ℓ+ 1, and GOTO 2.

Remark 3.2. Mesh smoothing is undertaken to ensure that the resulting mesh T̂hi
, i =

1, 2, . . . , ℓ, is 1–irregular. We remark that additional refinement may also be undertaken to
ensure that so-called islands of unrefined elements are subsequently refined, for example. In
particular, near the boundary, we ensure that the elements are conforming in order to allow
for subsequent movement to the boundary, cf. below.

Remark 3.3. The termination condition in Algorithm 3.1 should be sufficient to guarantee
that nodes close to the boundary of Ω may be moved onto ∂Ω without destroying the logical
connectivity of the finest reference mesh T̂hℓ

, while, at the same time, not distorting the
elements too much, cf. below. For example, for each κ̂ ∈ T̂hℓ

satisfying κ̂∩∂Ω 6= ∅, we require
that for each vertex x̂v of κ̂, we have that dist(x̂v, ∂Ω) ≪ hκ̂, where hκ̂ denotes the granularity
of κ̂.

Remark 3.4. Algorithm 3.1 simply provides a prototype of a typical refinement algorithm
that could be employed to generate the sequence of nested reference meshes {T̂hi

}ℓi=1; we stress
that alternative sequences of grids may also be employed.
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(a) T̂H = T̂h1
(b) T̂h2

(c) T̂h3

(d) T̃H = T̃h1
(e) T̃h2

(f) T̃h3

(g) TCFE = Th1
(h) Th2

(i) Th3

Figure 1: Hierarchy of meshes: (a)–(c) Reference meshes; (d)–(f) Logical Meshes; (g)–(i)
Corresponding physical meshes.
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As an example, we consider the situation when Ω is a circular domain in R
2, with cen-

ter at the origin and radius 3/4. The sequence of reference grids {T̂hi
}ℓi=1, generated by

Algorithm 3.1, in the case when ℓ = 3, are depicted in Figures 1(a)–(c).
We recall that the reference meshes {T̂hi

}ℓi=1 are nested, cf. above. Formally, we write
this as follows: given κ̂i ∈ T̂hi

, for some i, where 2 ≤ i ≤ ℓ, the father element κ̂i−1 ∈ T̂hi−1

such that κ̂i ⊂ κ̂i−1 is given by the mapping

Fi
i−1(κ̂i) = κ̂i−1.

Thereby, the mapping
Fℓ
i = F

i+1
i ◦ Fi+2

i+1 ◦ . . . ◦ F
ℓ
ℓ−1,

provides the link between the father elements on the reference mesh T̂hi
, i = 1, . . . , ℓ−1, with

its children on the finest reference mesh T̂hℓ
. More precisely, given an element κ̂ℓ ∈ T̂hℓ

, the
father element κ̂i ∈ T̂hi

, i = 1, . . . , ℓ− 1, which satisfies κ̂ℓ ⊂ κ̂i is given by:

Fℓ
i(κ̂ℓ) = κ̂i.

We now proceed to define the sequence of logical and physical meshes T̃hi
and Thi

, i =
1, . . . , ℓ, respectively. To this end, we write N̂i to denote the set of nodal (mesh) points
which define the reference mesh T̂hi

, i = 1, . . . , ℓ, respectively. The finest physical mesh
Thℓ

is defined from the reference mesh T̂hℓ
by moving grid points x̂ ∈ N̂ℓ of T̂hℓ

which are
close to the boundary ∂Ω, i.e., points which satisfy dist(x̂, ∂Ω) ≪ hκ̂, for example. During
this process some elements of the reference mesh T̂hℓ

may end up lying completely outside
the computational domain; in this case, they are removed from the physical mesh Thℓ

. More
precisely, the process of moving nodes x̂ ∈ N̂ℓ onto the boundary naturally defines the bijective
mapping

Φ : N̂ℓ → Nℓ,

where Nℓ denotes the set of mapped vertex points.
With this construction, the mapping Φ can be employed to map an element κ̂ ∈ T̂hℓ

to a
so–called physical element κ. To simplify notation, we simply refer to this mapping as Φ as
well; thereby, we write

Φ(κ̂) = κ.

In this setting, Φ is bijective relative to the elements which are not removed from the mesh
under refinement. During the process of moving nodes onto the boundary ∂Ω, we noted that
some elements in the reference mesh T̂hℓ

may be removed. With this in mind we define the
finest logical mesh T̃hℓ

to be equal to the set of elements in the reference mesh T̂hℓ
which are

needed to construct the finest physical mesh Thℓ
. Thereby, T̃hℓ

⊆ T̂hℓ
; indeed, in the case

when Φ ≡ I (the identity operator), then clearly T̃hℓ
= T̂hℓ

. Given that any element κ̃ ∈ T̃hℓ

also satisfies κ̃ ∈ T̂hℓ
, we note that

Φ(κ̃) = κ,

for some κ ∈ Thℓ
.

With this notation the physical fine mesh Thℓ
may be defined as follows:

Thℓ
= {κ : κ = Φ(κ̃) for some κ̃ ∈ T̃hℓ

}.

The newly created finest physical mesh Thℓ
is a standard boundary conforming mesh upon

which standard finite element/finite volume methods may be applied. In the current context,
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we assume that the geometry is complicated in the sense that Thℓ
is too fine to undertake

computations. Instead, we wish to only use Thℓ
to create a coarse composite finite element

mesh TCFE upon which numerical simulations will be performed.
With this construction, we may now naturally create a hierarchy of logical and physical

meshes {T̃hi
}ℓi=1 and {Thi

}ℓi=1, respectively, by simply coarsening T̃hℓ
and Thℓ

, respectively.
In order to ensure that these meshes are nested, the element domains within these meshes
may consist of general polygons; this is in contrast to the construction outlined in [11] where
sequences of non-nested meshes consisting of standard element types are defined. To this end,
we write

T̃hi
= {κ̃ : κ̃ = ∪κ̃ℓ, κ̃ℓ ∈ T̃hℓ

, which share a common parent from mesh level i, i.e.,

Fℓ
i(κ̃ℓ) is the same for all members of this set},

Thi
= {κ : κ = ∪κℓ, κℓ ∈ Thℓ

, which share a common parent from mesh level i, i.e.,

Fℓ
i(Φ

−1(κℓ)) is the same for all members of this set},

i = 1, . . . , ℓ − 1. Returning to the above example, when Ω is a circular domain in R
2, the

sequence of logical and physical grids {T̃hi
}ℓi=1 and {Thi

}ℓi=1, respectively, in the case when
ℓ = 3, are depicted in Figures 1(d)–(f) and Figures 1(g)–(i), respectively. We refer to the
coarsest level physical mesh Th1

to as the composite finite element mesh; in particular, we
denote this by TCFE, i.e., TCFE = Th1

.
With this notation the mapping Φ may be employed to transform an element κ ∈ TCFE to

the corresponding element κ̃ ∈ Th1
; here, we denote the restriction of Φ to κ by Φκ such that

Φκ(κ̃) = κ. Since only nodes close to the boundary are moved, we assume that the element
mapping Φκ defines the shape of κ, without any significant rescaling. With this in mind, we
assume that the element mapping Φκ is close to the identity in the following sense: the Jacobi
matrix JΦκ of Φκ satisfies

C−1
1 ≤ ‖det JΦκ‖L∞(κ) ≤ C1, ‖J−⊤

Φκ
‖L∞(κ) ≤ C2, ‖J−⊤

Φκ
‖L∞(∂κ) ≤ C3 (3)

for all κ in TCFE uniformly throughout the mesh for some positive constants C1, C2, and C3.
This will be important as our error estimates will be expressed in terms of Sobolev norms
over the element domains κ̃.

3.2 Finite element spaces

Corresponding to the meshes {Thi
}ℓi=1, we define the corresponding sequence of discontinuous

Galerkin (DG) finite element spaces V (Thi
, p), i = 1, . . . , ℓ, respectively, consisting of piecewise

discontinuous polynomials of degree p. For simplicity of presentation, we first assume that
the polynomial degree is uniformly distributed over the mesh Thℓ

; the extension to variable
polynomial degrees follows in a natural fashion, cf. below. With this in mind, we write

V (Thi
, p) = {u ∈ L2(Ω) : u|κ ∈ Pp(κ) ∀κ ∈ Thi

},

i = 1, . . . , ℓ, where Pp(κ) denotes the set of polynomials of degree at most p ≥ 1 defined over
the general polygon κ.

With this construction, noting that the meshes {Thi
}ℓi=1 are nested, we deduce that

V (Th1
, p) ⊂ V (Th2

, p) ⊂ . . . ⊂ V (Thℓ
, p).
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The classical prolongation (injection) operator from V (Thi
, p) to V (Thi+1

, p), 1 ≤ i ≤ ℓ− 1 is
denoted by

P i+1
i : V (Thi

, p) → V (Thi+1
, p), i = 1, . . . , ℓ− 1.

Thereby, we may define the prolongation operator from V (Thi
, p) to V (Thℓ

, p), 1 ≤ i ≤ ℓ− 1,
by

Pi = P ℓ
ℓ−1P

ℓ−1
ℓ−2 . . . P i+1

i .

With this notation, we may write V (Thi
, p), 1 ≤ i ≤ ℓ− 1, in the following alternative form

V (Thi
, p) = {u ∈ L2(Ω) : u = P⊤

i φ, φ ∈ V (Thℓ
, p)}, (4)

where the restriction operator P⊤
i is defined as the transpose of Pi.

Remark 3.5. The use of the prolongation operator Pi within the definition of the finite
element spaces V (Thi

, p), i = 1, . . . , ℓ, given in (4) allows for the introduction of different
spaces, depending on the specific choice of Pi. Indeed, here the finite element spaces are
constructed in such a manner that on each (composite) element κ ∈ Thi

, i = 1, . . . , ℓ, a the
restriction of a function v ∈ V (Thi

, p) to κ is a polynomial of degree p. This is in contrast to
the construction considered in [11]; indeed, [11] employs basis functions which are piecewise
polynomials on each composite element domain. Note also, that [11] employs finite element
spaces consisting of continuous, rather than discontinuous, piecewise polynomials.

We now refer to V (Th1
, p) as the composite finite element space V (TCFE, p), i.e., V (TCFE, p) =

V (Th1
, p). The use of a variable polynomial degree on each composite element κ ∈ TCFE may

now be admitted in a natural fashion. Indeed, writing p to denote the composite polynomial
degree vector, such that p|κ = pκ, we define the corresponding composite finite element space
V (TCFE,p). In this setting, it is implicitly assumed that the children of the element κ ∈ TCFE
all have the same polynomial degree pκ.

4 Composite discontinuous Galerkin finite element method

In this section, we introduce the hp-version of the (symmetric) interior penalty DGCFEM
for the numerical approximation of (1)–(2). To this end, we first introduce the following
notation.

We denote by FI
CFE

the set of all interior faces of the partition TCFE of Ω, and by FB
CFE

the
set of all boundary faces of TCFE. Furthermore, we define F = FI

CFE
∪ FB

CFE
. The boundary

∂κ of an element κ and the sets ∂κ \ ∂Ω and ∂κ ∩ ∂Ω will be identified in a natural way
with the corresponding subsets of F . Let κ+ and κ− be two adjacent elements of TCFE, and
x an arbitrary point on the interior face F ∈ FI

CFE
given by F = ∂κ+ ∩ ∂κ−. Furthermore,

let v and q be scalar- and vector-valued functions, respectively, that are smooth inside each
element κ±. By (v±,q±), we denote the traces of (v,q) on F taken from within the interior
of κ±, respectively. Then, the averages of v and q at x ∈ F are given by

{{v}} =
1

2
(v+ + v−), {{q}} =

1

2
(q+ + q−),

respectively. Similarly, the jumps of v and q at x ∈ F are given by

[[v]] = v+ nκ+ + v− nκ− , [[q]] = q+ · nκ+ + q− · nκ− ,
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respectively, where we denote by nκ± the unit outward normal vector of ∂κ±, respectively.
On a boundary face F ∈ FB

CFE
, we set {{v}} = v, {{q}} = q, and [[v]] = vn, with n denoting the

unit outward normal vector on the boundary ∂Ω.
With this notation, we make the following key assumptions:

(A1) For all elements κ ∈ TCFE, we define

Cκ = card
{

F ∈ FI
CFE

∪ FB
CFE

: F ⊂ ∂κ
}

.

In the following we assume that there exists a positive constant CF such that

max
κ∈TCFE

Cκ ≤ CF ,

uniformly with respect to the mesh size.

(A2) Inverse inequality. Given a face F ∈ FI
CFE

∪ FB
CFE

of an element κ ∈ TCFE, there exists a
positive constant Cinv, independent of the local mesh size and local polynomial order,
such that

‖∇v‖2L2(F ) ≤ Cinv
p2κ
hF

‖∇v‖2L2(κ)

for all v ∈ V (TCFE,p), where hF is a representative length scale associated to the face
F ⊂ ∂κ.

(A3) We assume that the polynomial degree vector p is of bounded local variation, that is,
there is a constant ρ ≥ 1 such that

ρ−1 ≤ pκ/pκ′ ≤ ρ,

whenever κ and κ′ share a common face ((d− 1)–dimensional facet).

Remark 4.1. We remark that in the case when κ is a ‘standard’ (isotropic) element in
the sense that κ = κ̂ ∈ T̂H , for example, the inverse inequality stated in Assumption (A2)
immediately follows from [9, 4], for example, with hF = hκ. Moreover, [9] also considers the
case when the underlying mesh consists of anisotropic elements; loosely speaking, in this latter
setting, hF must be chosen to be the dimension of the element κ in the orthogonal direction to
the face F under consideration. For general composite elements, which intersect the boundary
of the computational domain, the above inverse inequality is expected to hold with hF ≈ hℓ,
where hℓ ≈ hκ/2

ℓ−1.

With this notation, we consider the (symmetric) interior penalty DGCFEM for the nu-
merical approximation of (1)–(2): find uh ∈ V (TCFE,p) such that

BDG(uh, v) = Fh(v) (5)

for all v ∈ V (TCFE,p), where

BDG(u, v) =
∑

κ∈TCFE

∫

κ
∇u · ∇v dx−

∑

F∈FI
CFE

∪FB
CFE

∫

F

(

{{∇hv}} · [[u]] + {{∇hu}} · [[v]]
)

ds

+
∑

F∈FI
CFE

∪FB
CFE

∫

F
σ [[u]] · [[v]] ds,

Fh(v) =

∫

Ω
fv dx.
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Here,∇h denotes the elementwise gradient operator. Furthermore, the function σ ∈ L∞(FI
CFE

∪ FB
CFE

)
is the discontinuity stabilization function that is chosen as follows: we define the function
p ∈ L∞(FI

CFE
∪ FB

CFE
) by

p(x) :=

{

max(pκ, pκ′), x ∈ F ∈ FI
CFE

, F = ∂κ ∩ ∂κ′,

pκ, x ∈ F ∈ FB
CFE

, F ∈ ∂κ ∩ ∂Ω,

and set
σ|F = γp2h−1

F , (6)

with a parameter γ > 0 that is independent of hF and p.

5 Stability analysis

Before embarking on the error analysis of the hp–version DGCFEM (5), we first derive some
preliminary results. Let us first introduce the DG–norm ||| · |||DG by

||| v |||2
DG

=
∑

κ∈TCFE

‖∇v‖2L2(κ)
+

∑

F∈FI
CFE

∪FB
CFE

‖σ
1/2[[v]]‖2L2(F ). (7)

For a given face F ∈ FI
CFE

∪ FB
CFE

, such that F ⊂ ∂κ for some κ ∈ TCFE, we write F̃ to
denote the respective face of the mapped element κ̃ based on employing the element mapping
Φκ. More precisely, we write F̃ = Φ−1

κ (F ). Further, we define mF and mF̃ to denote the

(d− 1)–dimensional measure (volume) of the faces F and F̃ , respectively. In view of (3), we
note that there exists a positive constant C4, such that

C−1
4 mF̃ ≤ mF ≤ C4mF̃ (8)

for every face F ∈ FI
CFE

∪ FB
CFE

. Moreover, the surface Jacobian SF,F̃ arising in the transfor-

mation of the face F to F̃ may be uniformly bounded in the following manner

‖SF,F̃ ‖L∞(F̃ ) ≤ C5 (9)

for all faces F ∈ FI
CFE

∪ FB
CFE

, where C5 is a positive constant.

Lemma 5.1. With σ defined as in (6), there exists a positive constant C, which depends only
on the constants CF and Cinv, cf. Assumptions (A1) , (A2) and (A3) above, respectively,
such that

BDG(v, v) ≥ C||| v |||2
DG

∀v ∈ V (TCFE,p), (10)

provided that the (positive) constant γ arising in the definition of the discontinuity penalization
parameter σ is chosen sufficiently large.

Proof. For v ∈ V (TCFE,p), we note that

BDG(v, v) =
∑

κ∈TCFE

‖∇v‖2L2(κ)
− 2

∑

F∈FI
CFE

∪FB
CFE

∫

F
{{∇v}} · [[v]] ds+

∑

F∈FI
CFE

∪FB
CFE

‖σ
1/2[[v]]‖2L2(F ),

≡ I + II + III. (11)
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In order to bound term II, we first note that for F ∈ FI
CFE

, we have that
∫

F
{{∇v}} · [[v]] ds ≤ ‖σ−1/2{{∇v}}‖L2(F )‖σ

1/2[[v]]‖L2(F )

≤
1

2

(

‖σ−1/2∇v+‖L2(F ) + ‖σ−1/2∇v−‖L2(F )

)

‖σ
1/2[[v]]‖L2(F )

≤ ǫ
(

‖σ−1/2∇v+‖2L2(F ) + ‖σ−1/2∇v−‖2L2(F )

)

+
1

8ǫ
‖σ

1/2[[v]]‖2L2(F );

here, we have employed the Cauchy–Schwarz inequality, together with the arithmetic–geometric
mean inequality. Employing the inverse inequality stated in Assumption (A2), together with
(A3), we deduce that

∫

F
{{∇v}} · [[v]] ds ≤ Cinvǫ

(

p2κ+

hF
‖σ−1/2∇v‖2L2(κ+) +

p2κ−

hF
‖σ−1/2∇v‖2L2(κ−)

)

+
1

8ǫ
‖σ

1/2[[v]]‖2L2(F )

≤
Cinvρ

2

γ
ǫ
(

‖∇v‖2L2(κ+) + ‖∇v‖2L2(κ−)

)

+
1

8ǫ
‖σ

1/2[[v]]‖2L2(F ), (12)

where we have used the definition of the interior penalty parameter σ, cf. (6).
In an analogous fashion, for F ∈ FB

CFE
, we have that

∫

F
{{∇v}} · [[v]] ds ≤

Cinv

γ
ǫ‖∇v‖2L2(κ+) +

1

4ǫ
‖σ

1/2[[v]]‖2L2(F ). (13)

Thereby, exploiting Assumption (A1) above, inserting (12) and (13) into (11) gives

BDG(v, v) =

(

1−
CinvCFρ

2

γ
ǫ

)

∑

κ∈TCFE

‖∇v‖2L2(κ)
+

(

1−
1

4ǫ

)

∑

F∈FI
CFE

∪FB
CFE

‖σ
1/2[[v]]‖2L2(F ).

Thereby, the bilinear form BDG(·, ·) is coercive over V (TCFE,p) × V (TCFE,p), assuming that
ǫ > 1/4 and γ > CinvCFρ

2ǫ.

6 Approximation results

In this section we develop the approximation results needed for the forthcoming a priori error
estimation developed in Section 7. To this end, given κ ∈ TCFE, we write κ̃ ∈ T̃h1

to denote
the corresponding element from the logical mesh T̃h1

which satisfies Φ(κ̃) = κ. Moreover, we
write κ̂ ∈ T̂h1

to denote the element in the reference mesh T̂h1
such that κ̃ ⊆ κ̂.

With this notation, we now recall the following approximation result.

Lemma 6.1. Suppose that κ̂ ∈ T̂h1
is a d–simplex or d–parallelepiped of diameter hκ̂. Suppose

further that v|κ̂ ∈ Hkκ̂(κ̂), kκ̂ ≥ 0, for κ̂ ∈ T̂h1
. Then, there exists Π̂pv in Ppκ̂(κ̂), pκ̂ =

1, 2, . . . , such that for 0 ≤ m ≤ kκ̂,

‖v − Π̂pv‖Hm(κ̂) ≤ C
hsκ̂−m
κ̂

pkκ̂−q
κ̂

‖v‖Hkκ̂ (κ̂),

where 1 ≤ sκ̂ ≤ min{pκ̂+1, kκ̂}, pκ̂ ≥ 1, for κ̂ ∈ T̂h1
, and C is a positive constant, independent

of v and the discretisation parameters.
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Proof. For the proof, see Lemma 4.5 in [5] for d = 2; when d > 2 the argument is completely
analogous.

Given the operator Π̂p defined in Lemma 6.1, we define the projection operators Π̃p and
Πp on κ̃ and κ, respectively, by the relations

Π̃pṽ = Π̂p(Eṽ)|κ̃, Πpv = (Π̃p(v ◦ Φ)) ◦ Φ
−1,

where E denotes the extension operator defined in Theorem 2.1. With this notation, we state
the following approximation result.

Lemma 6.2. Given κ ∈ TCFE, let F ⊂ ∂κ denote one of its faces. For a function v ∈ Hkκ(κ),
the following bounds hold

|v −Πpv|Hm(κ) ≤ C
hsκ−m
κ

pkκ−m
κ

‖Eṽ‖Hkκ (κ̂), (14)

|v −Πpv|Hm(F ) ≤ C
1

h
1/2
F

hsκ−m
κ

p
kκ−m−1/2
κ

‖Eṽ‖Hkκ (κ̂), (15)

where 0 ≤ m ≤ kκ, 1 ≤ sκ ≤ min{pκ + 1, kκ}, pκ ≥ 1, and C is a positive constant,
independent of v and the discretisation parameters.

Proof. The proof is based on exploiting a scaling argument together with (3) and Lemma 6.1.
To this end, we have

|v −Πpv|
2
Hm(κ) ≤ ‖ det JΦκ‖L∞(κ) ‖J

−⊤
Φκ

‖2mL∞(κ) |ṽ − Π̃pṽ|
2
Hm(κ̃)

≤ C1(C2)
2m|Eṽ − Π̂p(Eṽ)|

2
Hm(κ̂)

≤ C
h
2(sκ−m)
κ

p
2(kκ−m)
κ

‖Eṽ‖2Hkκ (κ̂), (16)

which gives (14). To prove (15), we first recall the multiplicative trace inequality

‖v‖2L2(F ) ≤ C(‖∇v‖L2(κ)‖v‖L2(κ) + h−1
F ‖v‖2L2(κ)

), (17)

where C is a positive independent of the meshsize. We remark, cf. Remark 4.1, that hF
appears in (17) rather than hκ due to the general shape of the element κ. Employing (17),
together with (3), (9), (8) and (14) we immediately deduce (15).

7 A priori error analysis

In this section we derive an a priori error bound for the interior penalty DGCFEM introduced
in Section 4. To this end, we decompose the global error u− uh as

u− uh = (u−Πpu) + (Πpu− uh) ≡ η + ξ , (18)

where Πp denotes the projection operator introduced in Section 6. With these definitions we
have the following result.
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Lemma 7.1. For u ∈ H3/2+ǫ(Ω), ǫ > 0, the functions ξ and η defined by (18) satisfy the
following inequality

||| ξ |||DG ≤ C||| η |||∗
DG
,

where

||| η |||∗
DG

=





∑

κ∈TCFE

‖∇η‖2L2(κ)
+

∑

F∈FI
CFE

∪FB
CFE

(

‖σ−1/2{{∇η}}‖2L2(F ) + ‖σ1/2[[η]]‖2L2(F )

)





1/2

and C is a positive constant that depends only on the dimension d.

Proof. This result follows from application of the Galerkin orthogonality of the DGCFEM,
together with the inverse inequality in Assumption (A2); for details, see [12, 19].

With this result, we now proceed to prove the main result of this section.

Theorem 7.2. Let Ω ⊂ R
d be a bounded polyhedral domain, and let TCFE = {κ} be a sub-

division of Ω as outlined in Section 3.1, where κ has diameter hκ. Let uh ∈ V (TCFE, p) be
the composite discontinuous Galerkin approximation to u defined by (5) and suppose that
u|κ ∈ Hkκ(κ) for each κ ∈ TCFE for integers kκ ≥ 1. Then, the following error bound holds

|||u− uh |||
2
DG

≤ C
∑

κ∈TCFE

h2sκκ

h2F

1

p2kκ−3
κ

‖Eũ‖2Hkκ (κ̂),

for any integers sκ, 1 ≤ sκ ≤ min(pκ+1, kκ), and pκ ≥ 1. Here, C is a positive constant that
depends only on the dimension d and the shape-regularity of T̂H .

Proof. Decomposing the error u− uh as in (18), and exploiting Lemma 7.1, we deduce that

|||u− uh |||DG ≤ ||| η |||DG + C||| η |||∗
DG

≤ (1 + C)||| η |||∗
DG
. (19)

Employing Lemma 6.2, together with the definition of the interior penalty parameter (6), we
deduce that

||| η |||∗
DG

≤ C

[

∑

κ∈TCFE

(

h
2(sκ−1)
κ

p
2(kκ−1)
κ

+
h
2(sκ−1)
κ

p2kκ−1
κ

+
h2sκκ

h2F

1

p2kκ−3
κ

)

‖Eũ‖2Hkκ (κ̂)

]1/2

, (20)

where C is a positive constant, which is independent of the mesh parameters. Inserting (20)
into (19) gives the statement of the Theorem.

Remark 7.3. We note that since the fine mesh Thℓ
is fixed, we have that

hF ≥
hκ
2ℓ−1

.

Thereby, the a priori error bound derived in Theorem 7.2 may be rewritten in the following
form:

|||u− uh |||
2
DG

≤ C ′
∑

κ∈TCFE

h
2(sκ−1)
κ

p2kκ−3
κ

‖Eũ‖2Hkκ (κ̂),
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where C ′ = C 2ℓ−1. Moreover, for uniform orders pκ = p ≥ 1, sκ = s, 2 ≤ s ≤ min(p+ 1, k),
k ≥ 1, and h = maxκ∈TCFE hκ, we get the bound

|||u− uh |||DG ≤ C
hs−1

pk−3/2
‖ũ‖2Hk(Ω);

here, we have employed Theorem 2.1. This bound is optimal in h, suboptimal in p by p1/2,
and coincides with estimates derived in [12] and [15] for so-called standard DG methods.

8 Implementation

In this section we discuss several aspects concerning the implementation of the DGCFEM.
To this end, we first write

ACFExCFE = fCFE

to denote the linear system of equations stemming from the discretization of (1)–(2), based
on employing the DGCFEM (5), which utilizes the CFE finite element space V (TCFE,p).
Similarly, we write

Ahℓ
xhℓ

= fhℓ

to denote the linear system of equations which arise from the standard DGFEM discretization
of problem (1)–(2) based on employing the (standard) finite element space V (Thℓ

, p) consisting
of discontinuous piecewise polynomials of degree p. The entries of the matrix ACFE and those
of the vector fCFE for the CFE method are computed in a different manner to the those for
the standard DG method. Indeed, the sparsity of the matrix ACFE reflects the topology of the
mesh TCFE; thereby, the actual values of the entries in both the matrix ACFE and vector fCFE
are computed based on aggregating the appropriate entries of Ahℓ

and fhℓ
, respectively. The

construction of the CFE space, as described in Section 3, implies that even when the mesh
TCFE contains just a small number of elements, the supports of the corresponding composite
finite element basis functions φCFE which belong to the space V (TCFE,p) accurately reflect the
complexity of the geometry of the underlying computational domain Ω

There are two key aspects related to the construction of the matrix and right-hand side
vector ACFE and fCFE, respectively. Firstly, any basis function φCFE which belongs to the
space V (TCFE,p) also belongs to the polynomial space Pp(κCFE), where κCFE is the composite
finite element domain over which φCFE is defined. Thereby, in case when p = 1 and d = 2,
there are three basis functions φCFE,i, i = 1, . . . , 3, associated to the element κCFE; here, the
index i denotes a local ordering of the basis functions related to κCFE. Secondly, any basis
function φCFE,i, i = 1, . . . , dim(V (TCFE,p)), where i now denotes the global ordering of the
basis functions, can be constructed as a linear combination of the basis functions φhℓ,j of
V (Thℓ

, p), i.e.,

φCFE,i :=
∑

j=1,...,dim(V (Thℓ ,p))

αi,jφhℓ,j , (21)

where αi,j are real coefficients which determine how the CFE space V (TCFE,p) is constructed
from the standard finite element space V (Thℓ

, p). This representation follows immediately,
since it is assumed the meshes are nested and that all the children elements of a CFE el-
ement κCFE have the same polynomial degree as κCFE; indeed, we have that V (TCFE,p) ⊂
V (Thℓ

, p). Writing Λ to denote the set of all coefficients αi,j , we deduce from (21) that
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♯Λ = dim(V (Thℓ
, p)) × dim(V (TCFE,p)). A straightforward consequence of (21) is that any

entry ACFE[i, r] of the matrix ACFE is simply a linear combination of the entries of Ahℓ
; indeed,

we note that

ACFE[i, j] = BDG(φCFE,i, φCFE,j) :=
∑

m,n=1,...,dim(V (Thℓ ,p))

αi,mαj,nBDG(φhℓ,m, φhℓ,n)

=
∑

m,n=1,...,dim(V (Thℓ ,p))

αi,mαj,nAhℓ
[m,n] . (22)

Similarly, the entries present in the vector fCFE may be defined in an analogous fashion:

fCFE[i] = Fh(φCFE,i) :=
∑

j=1,...,dim(V (Thℓ ,p))

αi,jFh(φhℓ,j)

=
∑

j=1,...,dim(V (Thℓ ,p))

αi,jfhℓ
[j] . (23)

Remark 8.1. From (22) and (23) it is clear that in order to construct ACFE and fCFE, it is
not necessary to store Ahℓ

and fhℓ
, which would potentially require a large amount of memory;

indeed, it is possible to directly construct both ACFE and fCFE from the entries of Ahℓ
and fhℓ

,
respectively, using the above linear combinations determined by the coefficients αi,j. In this
way, the amount of memory required to construct the linear system of equations stemming
from the CFE method is essentially just the memory needed to store ACFE and fCFE (which
are generally small, compared to Ahℓ

and fhℓ
) and the coefficients αi,j. However, the CPU

time needed to construct the CFE linear system is clearly dependent on the dimension of the
underlying finite element space V (Thℓ

, p).

As already stated above, the role of the coefficients αi,j is to provide information con-
cerning how the basis functions φCFE,i present in the coarse space V (TCFE,p) are defined in
terms of the basis functions defined on the finer space V (Thℓ

, p). We remark that this con-
struction is element-wise in the sense that for each element κ ∈ V (Thℓ

, p), there is a subset
of coefficients Λκ ⊂ Λ, such that the corresponding linear combination of the basis functions
defined on κ, reconstruct the restriction of the basis functions defined on the father element
κCFE to κ. Repeating this process for all children κ of κCFE, we are able to entirely reconstruct
the basis functions of the coarse space defined on κCFE. Since it is assumed that the same
order of polynomials p are used on both κ and its father, we have that ♯Λκ = n2

κ, where nκ

denotes the dimension of the local polynomial space on element κ; i.e., nκ = pκ(pκ + 1)/2 in
the case when triangular elements are used in two–dimensions, for example. An interesting
property of these coefficients αi,j is that they are completely independent of the underlying
PDE problem at hand, but only depend on the two finite element spaces V (TCFE,p) and
V (Thℓ

, p). We write φCFE,κCFE,i, i = 1, . . . , dim(Pp(κCFE)), to denote the basis functions defined
over element κCFE ∈ TCFE; similarly, φhℓ,κ,j , j = 1, . . . , dim(Pp(κ)), denotes the corresponding
set of basis functions associated with element κ ∈ Thℓ

. Given that κCFE ∈ TCFE is defined as
the union of their child elements present in Thℓ

, the intersection between the support of a
basis function φCFE,κCFE,i defined over κCFE and a basis function φhℓ,κ,j defined on κ ∈ Thℓ

is
zero unless the element κ is a child of κCFE; if this latter condition is not satisfied, then clearly,
the corresponding coefficients present in αi,j be identically equal to zero. This observation
dramatically reduces the number of coefficients that need to be computed; indeed, we may
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characterize the coefficients that may be non-zero as follows

Λ0 :=
⋃

κ∈Thl

Λκ , Λ0 ⊂ Λ ,

which implies that ♯Λ0 =
∑

κ∈Thl
n2
κ < ♯Λ.

The most general way to compute the coefficients Λ0 is by solving a family of square linear
systems R. The family R can be split in subfamilies Rκ, one for each element κ ∈ Thℓ

. All
the linear systems in the same subfamily Rκ are characterized to have the same matrix, but
a different right-hand side. This can be exploited, for example, when an LU decomposition
is used to solve all the linear systems in the family, since even if there are as many linear
systems to solve as the number of elements in Thℓ

times the dimension of the space V (TCFE,p),
only as many LU decompositions as the number of elements in Thℓ

are needed. Denoting by
κCFE the father of an element κ, and by {αi,j} the set of coefficients corresponding to the basis
functions of the two elements, we have that the linear systems in the subfamily of κ have the
form

Cκακ,i = φκ,i ,

where ακ,i is the vector containing the unknown coefficients Λκ to reconstruct the basis
function φCFE,κCFE,i on the support of κ, the matrix Cκ is the same for any φCFE,κCFE,i and φκ,i

depends on the restriction of φCFE,κCFE,i to κ. The dimension of the linear systems in the
subfamily is equal to the number of basis functions of the element κ, which is the same as
the number of basis functions of its father element κCFE, due to the constraint on the choice
of polynomial orders we imposed between the two meshes.

In order to define the matrices Cκ and vectors φκ,i, we need do define a set of points Qκ,p,
for each element κ, whose cardinality depends on the order of the approximating polynomial
p on the element. As an example, let κref be the reference triangle with vertices (0, 0), (1, 0)
and (0, 1); moreover let Qs, with s ∈ R+, be the set of all points q in the real plane such that
q := (nse1,mse2), with n,m ∈ N and e1, e2 is the canonical basis of R2. Then the set Qκ,p

is defined as:
Qκ,p := Aκ(Q1/p ∩ κref) ,

where Aκ is the affine transformation which maps κref into κ. The points present in Qκ,p,
define where the basis functions φCFE,κCFE,i, φhℓ,κ,j are evaluated in order to assemble the
matrices Cκ and the vectors φκ. Indeed, for any κ and any φCFE,κCFE,i the vector φκ is given
by

φκ,i[j] := φCFE,κCFE,i(qj) ∀qj ∈ Qκ,p .

Similarly, for any κ, the matrix Cκ is defined as

Cκ[r, j]; = φhℓ,κ,r(qj) ∀qj ∈ Qκ,p ∀φhℓ,κ,r .

The computation of the solutions of all these linear systems can be quite expensive; how-
ever, this process may be undertaken in a more efficient manner. To this end, suppose for
the moment that both finite element spaces V (TCFE,p) and V (Thℓ

, p) employ a set of nodal
Lagrange basis function on each element. Then, it follows straightforwardly, from the prop-
erties of the nodal basis functions and the definitions of the sets Qκ,p, that all matrices Cκ

reduce to the identity matrix. Thereby, in this case, we conclude that

ακ,i ≡ φκ,i ;
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in this case the computation of the coefficients in Λ0, simply requires the evaluation of the
basis functions φCFE,i at the nodes determined by the sets Qκ,p. With this observation, more
general modal bases may be considered, with only a small computational overhead. Indeed,
suppose that for any p, Bp is the matrix that transforms the nodal polynomial basis for
Pp into an alternative basis which spans the same polynomial space, such as a modal basis,
for example. Since these matrices Bp are invariant under affine transformations, they can
be computed just for the reference element in advance and stored. Now, if for the example
when modal basis functions are employed within both finite element spaces V (TCFE,p) and
V (Thℓ

, p), then the components of the systems C̃κα̃κ,i = φ̃κ,i for the modal basis functions
are equivalent to the components of the systems for the nodal basis functions in the following
manner:

Cκ ≡ B−1
p C̃κBp , φκ,i ≡ B−1

p φ̃κ,i ,

i.e., α̃κ,i := Bpακ,i. This approach is extremely cheap, since it does not require the inversion
of a linear system of equations; indeed, the matrices Bp can be all precomputed and stored,
since they are independent of the underlying PDE problem.

9 Numerical experiments

In this section we present a series of computational examples to numerically investigate the
asymptotic convergence behaviour of the proposed DGCFEM for problems where the underly-
ing computational domain contains micro-structures. Throughout this section the DGCFEM
solution uh defined by (5) is computed with the constant γ appearing in the interior penalty
parameter σ defined by (6) equal to 10. All the numerical examples presented in this section
have been computed using the AptoFEM package (www.aptofem.com); here, the resulting
system of linear equations is solved based on employing the Multifrontal Massively Parallel
Solver (MUMPS), see [1, 2, 3].

9.1 Two–dimensional domain with a complicated boundary

In this first example, we consider a computational domain with a complicated boundary; to
this end, we let Ω be the unit square in two–dimensions, where a series of tiny ‘finger–like’
cuts have been removed from the right-hand boundary, i.e., where x = 1, 0 ≤ y ≤ 1. More
precisely, the right-hand side boundary of the domain possesses 64 equidistributed tiny ‘gaps’;
cf. Figure 2. In this example, we select the right-hand side forcing function f and appropriate
inhomogeneous boundary condition u = g on ∂Ω, so that the analytical solution to (1)–(2) is
given by u = tanh(2x).

In order to compute the numerical approximation to (1)–(2) using the DGCFEM defined
in (5), we first construct a sequence of meshes based on employing Algorithm 3.1. To this
end, the coarsest mesh reference mesh T̂H is selected to be a uniform triangular mesh; in
particular, the coarsest mesh is constructed from a uniform 2× 2 square mesh by connecting
the north east vertex with the south west one within each mesh square, cf. Figure 2(a).
This mesh is then subsequently adaptively refined in order to generate a fine reference mesh
consisting of 20160 triangular elements, which precisely describes the computational domain
Ω. Here, we point out that the choice of the initial triangulation and the definition of Ω have
been selected so that Ω may be exactly triangulated using Algorithm 3.1, without the need
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(a) (b)

Figure 2: Example 1: (a) Initial composite finite element mesh. The colour blue denotes
elements present in the fine level mesh (which consists of 20160 triangular elements); elements
plotted in black form the coarse level mesh (containing 8 elements); finally, the domain Ω is
shown in yellow. (b) Zoom of (a).

to move any nodal points in the finest reference mesh. Thereby, in this setting, the respective
hierarchy of logical and physical meshes are both identical.

Eles Dofs ‖u− uh‖L2(Ω) k |u− uh|1,h k |||u− uh |||DG k

8 24 2.498E-02 - 3.122E-01 - 4.334E-01 -

32 96 6.336E-03 1.98 1.461E-01 1.10 1.693E-01 1.36

128 384 1.615E-03 1.97 7.207E-02 1.02 7.825E-02 1.11

512 1536 3.914E-04 2.04 3.582E-02 1.01 3.801E-02 1.04

2048 6144 1.038E-04 1.91 1.788E-02 1.00 1.885E-02 1.01

8192 24576 2.592E-05 2.00 8.944E-03 1.00 9.313E-03 1.02

Table 1: Example 1: Convergence of the DGCFEM on a sequence of uniform triangular
composite elements with p = 1.

We now investigate the asymptotic convergence of the proposed DGCFEM on a sequence
of successively finer uniform triangular meshes, starting with TCFE consisting of 8 composite
elemental domains, for p = 1, 2; see Tables 1 & 2, respectively. In each case we show the
number of elements (Eles) and number of degrees of freedom (Dofs) in the composite finite
element space V (TCFE,p), the L2(Ω), the broken H1(Ω)-semi-norm (denoted by | · |1,h) and
the DG–norm of the error u−uh, together with their respective rates of convergence, denoted
by k in each case. We remark that none of the (composite) finite element meshes employed
here are fine enough to exactly represent the computational domain Ω.

From Tables 1 & 2, we observe that both the L2(Ω) norm and broken H1(Ω) seminorm of
the error converge at the expected optimal rate, even in the presence of such micro-structure
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Eles Dofs ‖u− uh‖L2(Ω) k |u− uh|1,h k |||u− uh |||DG k

8 48 4.744E-03 - 4.998E-02 - 7.600E-02 -

32 192 5.870E-04 3.01 1.553E-02 1.69 2.038E-02 1.90

128 768 7.512E-05 2.97 3.924E-03 1.98 4.754E-03 2.10

512 3072 1.228E-05 2.61 9.881E-04 1.99 1.119E-03 2.09

2048 12288 1.108E-06 3.47 2.446E-04 2.01 2.717E-04 2.04

8192 49152 1.398E-07 2.99 6.124E-05 2.00 6.598E-05 2.04

Table 2: Example 1: Convergence of the DGCFEM on a sequence of uniform triangular
composite elements with p = 2.

present in the boundary of the computational domain Ω. More precisely, we observe that
‖u− uh‖L2(Ω) and |u− uh|1,h converge to zero like O(hp+1) and O(hp), respectively, for each
fixed p, as h tends to zero. In terms of the convergence of the DGCFEM with respect to
the DG–norm, we observe the convergence rate O(hp), as h tends to zero, for each fixed
p; this corresponds to the expected rate of convergence of the so-called standard DGFEM,
cf. [4], for example, in the absence of micro-structures. The observed rate of convergence
of the DGCFEM with respect to the DG–norm is in accordance with Theorem 7.2, since
most elements κ in the composite finite element mesh TCFE are ‘standard’ element domains
(triangles in this case), except for a relatively small number which lie in the vicinity of the
right-hand side boundary of the domain Ω; thereby, for such elements, we have hF = hκ.

9.2 Two–dimensional domain with micro-structures

(a) (b)

Figure 3: Example 2: (a) Initial composite finite element mesh. The colour blue denotes
elements present in the fine level mesh (which consists of 85500 triangular elements); elements
plotted in black form the coarse level mesh (containing 8 elements); finally, the domain Ω is
shown in yellow. (b) Analytical solution.

In this second example, we consider the case when the computational domain Ω contains
a large number of small geometric features. To this end, we set Ω to be the unit square (0, 1)2

in two-dimensions, which has had a series of uniformly spaced circular holes removed; here, we
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consider the case where 256 small circular holes are removed from (0, 1)2, see Figure 3(a). In
this example, we select the right-hand side forcing function f and appropriate inhomogeneous
boundary condition u = g on ∂Ω, so that the analytical solution to (1)–(2) is given by
u = sin(πx) cos(πy), cf. Figure 3(b).

As in the previous example, we first define the coarsest reference mesh T̂H to be a uniform
triangular mesh consisting of 8 elements. This mesh is then refined to generate a sequence
of reference meshes according to Algorithm 3.1. Given that the underlying geometry cannot
be exactly represented by such a sequence of refined meshes, nodes close to the boundary are
moved in order to provide an accurate description of the computational domain. Thereby, in
this setting the corresponding sequence of physical meshes differ from their respective logical
and reference meshes. Here, the fine mesh consists of 85500 triangular elements; in particular,
edges of elements present in the fine mesh which have nodes on one of the circular holes are
curved using a local quadratic representation of the edge. We remark that, to avoid ‘cracks’
appearing in the finest mesh in the vicinity of the holes present in Ω when nodes are locally
moved, additional refinement has been undertaken near the circular boundaries.

Eles Dofs ‖u− uh‖L2(Ω) k |u− uh‖1,h k |||u− uh |||DG k

8 24 7.320E-02 - 1.186 - 31.500 -

32 96 2.120E-02 1.78 7.051E-01 0.75 8.314 1.92

128 384 6.214E-03 1.77 3.903E-01 0.85 1.639 2.34

512 1536 2.834E-03 1.13 2.144E-01 0.86 3.342E-01 2.29

2048 6144 4.427E-04 2.68 1.020E-01 1.07 1.201E-01 1.48

Table 3: Example 2: Convergence of the DGCFEM on a sequence of uniform triangular
composite elements with p = 1.

Eles Dofs ‖u− uh‖L2(Ω) k |u− uh|1,h k |||u− uh |||DG k

8 48 1.699E-02 - 4.089E-01 - 13.447 -

32 192 2.477E-03 2.78 1.078E-01 1.92 1.941 2.79

128 768 5.734E-04 2.11 3.739E-02 1.53 3.159E-01 2.62

512 3072 1.531E-04 1.91 1.288E-02 1.54 3.208E-02 3.30

2048 12288 1.088E-05 3.81 2.212E-03 2.54 2.515E-03 3.67

Table 4: Example 2: Convergence of the DGCFEM on a sequence of uniform triangular
composite elements with p = 2.

In Tables 3 & 4 we investigate the asymptotic convergence of the proposed DGCFEM on
a sequence of successively finer uniform triangular meshes, starting with TCFE consisting of 8
composite elemental domains, for p = 1, 2, respectively. As in the previous example, we com-
pute the L2(Ω), the broken H1(Ω)-semi-norm and the DG–norm of the error u−uh, together
with their respective rates of convergence. For this example, the rates of convergence are less
consistent than those reported in the previous example. For both p = 1 and p = 2, the quan-
tities ‖u − uh‖L2(Ω) and |u − uh‖1,h appear to convergence slightly sub-optimally, excluding
on the last mesh, relative to what we would expect. In order to assess the quality of the com-
puted DGCFEM solution, in Figure 4 we compare the proposed DGCFEM with the standard
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DGFEM; in the latter case, we simply compute the numerical solution on the unit square
(0, 1)2 without any holes. Here, we now observe that the accuracy and rate of convergence of
the DGCFEM, which takes into account the holes present in the computational domain, is
very similar to the standard DGFEM which cannot treat the micro-structures present in Ω on
such coarse meshes. Indeed, this clearly illustrates that the presence holes/micro-structures
in the computational domain does not lead to a degradation in the quality of the computed
solution when the DGCFEM is exploited. Finally, Tables 3 & 4 indicate that the DG-norm
of the error in the DGCFEM solution converges to zero at a faster rate than we would expect
for the standard DGFEM. This is in accordance with Theorem 7.2, due to the definition of
hF ; indeed, as noted in Remark 4.1, hF may be selected to be equal to the element dimension
only on ‘standard’ element domains, while on composite element domains, we must select hF
to be equal to the size of the elements present in the fine mesh. For this latter choice, hF
is effectively fixed as the composite finite element mesh is refined; thereby, the order of con-
vergence of the DGCFEM with respect to the DG-norm may exceed the standard predicted
order of O(hp), cf. Theorem 7.2.
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Figure 4: Example 2. Comparison between the DGCFEM and the standard DGFEM (com-
puted without any holes): (a) ‖u− uh‖L2(Ω); (b) |u− uh|1,h.

9.3 Three–dimensional domain with micro-structures

In this final example, we consider a three–dimensional problem which contains a number of
holes. More precisely, we let Ω to be the unit cube (0, 1)3 which has had 16 rectangular sections
removed; cf. Figure 5. We point out that the holes only go to a depth of a half of the domain
width. We select the right-hand side forcing function f and appropriate inhomogeneous
boundary condition u = g on ∂Ω, so that the analytical solution to (1)–(2) is given by
u = sin(πx) cos(πy) sin(πz).

Here, the coarsest mesh reference mesh T̂H is selected to be a uniform tetrahedral mesh;
in particular, the coarsest mesh is constructed from a uniform 2 × 2 × 2 hexahedral mesh
by subdividing each hexahedral element into 6 tetrahedra. This mesh is then subsequently
adaptively refined in order to generate a fine reference tetrahedral mesh consisting of 21504
elements, which precisely describes the computational domain Ω. Here, we point out that
the choice of the initial mesh and the definition of Ω have been selected so that Ω may be
exactly triangulated using Algorithm 3.1, without the need to move any nodal points in the
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Figure 5: Computational domain Ω.

Eles Dofs ‖u− uh‖L2(Ω) k |u− uh|1,h k |||u− uh |||DG k

48 192 8.826E-02 - 1.315 - 5.875 -

384 1536 2.905E-02 1.60 8.624E-01 0.61 1.927 1.61

3072 12288 8.664E-03 1.75 4.270E-01 1.01 6.194E-01 1.64

21504 86016 2.582E-03 1.75 2.168E-01 0.98 2.540E-01 1.29

Table 5: Example 3: Convergence of the DGCFEM on a sequence of uniform triangular
composite elements with p = 1.

Eles Dofs ‖u− uh‖L2(Ω) k |u− uh|1,h k |||u− uh |||DG k

48 480 2.707E-02 - 5.577E-01 - 2.931 -

384 3840 5.075E-03 2.42 1.770E-01 1.66 4.557E-01 2.69

3072 30720 5.983E-04 3.08 4.288E-02 2.05 6.015E-02 2.92

21504 215040 7.401E-05 3.01 1.076E-02 1.99 1.250E-02 2.27

Table 6: Example 3: Convergence of the DGCFEM on a sequence of uniform triangular
composite elements with p = 2.
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finest reference mesh. The asymptotic convergence of the proposed DGCFEM on a sequence
of successively finer uniform tetrahedral meshes, starting with TCFE consisting of 48 composite
elemental domains, for p = 1, 2 is investigated Tables 5 & 6, respectively. Here, we observe
that the L2(Ω)–norm of the error converges at a slightly sub-optimal rate for p = 1, though
|u − uh|1,h tends to zero at roughly the optimal rate of O(hp), for each fixed p, as the mesh
is uniformly refined. As in the previous example, the DG–norm of the error again converges
to zero, as the mesh is refined, at a slightly faster rate compared to the expected rate when
the standard DGFEM is employed, cf. Theorem 7.2.

10 Concluding remarks

In this article we have considered the extension of the composite finite element technique,
originally developed for the standard Galerkin finite element method, to the case when dis-
continuous finite element spaces are employed. This new class of methods are very attractive
as they allow for the numerical approximation of PDE problems posed on complicated do-
mains which contain local geometrical features in an efficient manner. In this article we have
undertaken the a priori error analysis of the proposed DGCFEM, based on generating a hier-
archy of meshes, such that the finest mesh does indeed provide an accurate representation of
the underlying computational domain. The finite element spaces can then be defined in a very
natural manner, based on employing appropriate prolongation operators. The approach here
is to recover finite element spaces, such that on each composite element the numerical solution
is a polynomial; by selecting alternative prolongation operators, cf. [11], for example, finite
element basis functions which are piecewise polynomial on each composite element may also
be defined. Numerical experiments highlighting the application of the proposed DGCFEM
for a range of two– and three–dimensional problems have been presented. Future work will
be concerned with the a posteriori error analysis of DGCFEMs, as well as the application of
DGCFEMs within two–level Schwarz–type preconditioners.
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