
MOX–Report No. 24/2010

An Uzawa iterative scheme for the simulation of
floating boats

Lorenzo Tamellini, Luca Formaggia
Edie Miglio, Anna Scotti

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it



 



An Uzawa iterative scheme for the simulation of

floating boats ∗

Lorenzo Tamellini], Luca Formaggia], Edie Miglio], Anna Scotti]

July 5, 2010

] MOX– Modellistica e Calcolo Scientifico
Dipartimento di Matematica “F. Brioschi”

Politecnico di Milano
via Bonardi 9, 20133 Milano, Italy

lorenzo.tamellini@mail.polimi.it, luca.formaggia@polimi.it,
edie.miglio@polimi.it, anna.scotti@mail.polimi.it

Keywords: Floating body, Free surface flow, Inequality constrained optimiza-
tion, Uzawa method, Algebraic splitting scheme, Finite elements

AMS Subject Classification: 65K15,76M10, 76M30

Abstract

The numerical simulation of a floating boat requires to solve a complex
interaction between free surface flow and the dynamics of the boat. In this
work we focus on solution schemes with an explicit representation of the
fluid surface and on the specific problem of the imposition of the presence of
a floating object. The floating object represents an unilateral constraint on
the fluid surface, which cannot rise above a the level defined by the floating
object itself. We propose an Uzawa type iterative scheme for this type of
situations and we describe an efficient implementation in the context of a
particular finite element discretization and algebraic splitting procedure.

Introduction

The dynamics of a floating object like a boat involves a complex interaction
between the free surface flow and the intrinsic boat dynamics, the latter being
usually described as a rigid body motion.
∗This work has been prompted by a collaboration with Filippi Lido srl. The last three

authors acknowledge also the support of the Italian Ministry of Research, through PRIN 2007
and PRIN 2008 grants.
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In this field, simulations are often performed by adopting the Reynolds Av-
eraged Navier-Stokes (RANS) equations and Volume of Fluid (VOF) or similar
techniques [1, 2], where the free surface is captured as the interface between
two fluids, air and water. Special procedures and a good mesh refinement are
required to obtain a sharp interface, further increasing the already high compu-
tational cost of this approach.

To reduce the computational cost, simplified models have been proposed for
the study of the dynamics of rowing boats, which is the main target application
of the present work. In [3] the hydrodynamic problem is reduced to a complex
potential equation for the gravity waves radiated from the boat surface. Viscous
effects are accounted for by empirical formulae. This approach provides a very
efficient tool at the price of great simplifications on the hydrodynamics.

A different approach is possible when using models where the free surface is
described explicitly as a function η for the water elevation. Indeed, the presence
of the floating object may be introduced as a constraint on η, which cannot rise
above the external surface of the body (suitably extended to cover the region of
interest). This point of view permits to exploit efficient schemes for the simulaton
of free surface flow in shallow basins, like those developed in [4] and formerly
applied mostly to environmental problems. A main limitation of the approach
is that the wave cannot overturn, since it is described by a function. However,
this limitation is not relevant for a large class of applications, including the one
of our concern.

The general technique has been briefly presented already in [5]. In this work
we give more details on the derivation of the model and on the numerical scheme
used for its solution. We start the first Section by justifying the way we impose
the constraint using classic variational arguments. We then specialize the model
to the problem at hand. A key ingredient to the the efficient numerical imple-
mentation is the characteristic treatment of the time derivative, described in
Section 2, which provides an unconditionally stable time advancing scheme. At
each time step a weak formulation of the constrained equation is derived and
justified, then in Section 3 we present a scheme for its solution based on Uzawa
iterations. Another important key to an efficient numerical solution is the split-
ting of hydrostatic and hydrodynamic pressure. This leads to a fractional step
scheme similar to the Chorin-Temam method. The advantage is that the con-
straint on water elevation is resolved only at the predictor step. This splitting,
together with the finite elements used for the space discretization, is described
in Section 4. Finally, in Section 5 we provide some numerical results which show
the effectiveness of the proposed method.

1 The derivation of the model

Let us first introduce some of the notation that will be used throughout the
paper, and recall the basic derivation of the flow equations with no constraints
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on the free surface.
We consider a fluid filling at each time t ∈ (0, T ) a domain of the form

Ω(t) = {(x, y, z) : (x, y) ∈ ω, −h < z < η(x, y, t)}, (1)

where ω ⊂ R2 is a bounded, regular domain, h > 0 is the basin depth, which we
assume to be constant.

With η : ω× [0, T ]→ R we indicate the elevation of the free surface. We also
define the following portions of ∂Ω(t),

Γb = {(x, y, z) : (x, y) ∈ ω, z = −h}, (2)

Γl = Γl(t) = {(x, y, z) : (x, y) ∈ ∂ω, −h < z < η(x, y, t)}, (3)

and
Γs = Γs(t) = {(x, y, z) : (x, y) ∈ ω, z = η(x, y, t)}. (4)

We will address them as bottom, lateral and free surface, respectively. We
indicate with U = (u, w) = (ux, uy, w) the fluid velocity, where we have put into
evidence the horizontal components u and the vertical component w, while Π
indicates the fluid pressure. It is understood that they are functions of space
and time.

The free surface elevation obeys at any time the following kinematic condi-
tion,

Dη

Dt
= w ⇒ ∂η

∂t
+ (u ·∇)η − w = 0, on Γs(t). (5)

We assume that the density of the fluid ρ is constant, thus the continuity equation
gives

∇·U = ∇·u+
∂w

∂z
= 0 in Ω(t). (6)

Here and in the later sections of the paper we use the same symbols ∇ and
∇· to indicate the gradient and divergence operators in R3 as well as those in
R2, depending on the context, with the understanding that they act on the
corresponding space variables and vector components.

Finally, we consider the following conditions,

U ·N = 0 on Γl(t) (7)

where N = (n, nz) is the outward normal to ∂Ω(t) (slip condition), and

U = 0 on Γb. (8)

Other choices on Γb are possible and will be mentioned later.
The D’Alambert-Lagrange variational principle states that the fluid motion

obeys at any time the following equation,∫
Ω(t)

ρA · δP dΩ +
∫

Ω(t)
σ :∇δP dΩ−

∫
Ω(t)

Π∇·δP dΩ−
∫
∂Ω(t)

t · δP dγ =∫
Ω(t)

f · δP dΩ. (9)
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Here, A =
∂U

∂t
+ (U ·∇)U is the fluid acceleration, σ indicates the viscous

part of the Cauchy stress tensor, t and f are the surface stress and external
volume force, respectively, while δP is any allowable virtual displacement of a
fluid particle [6].

The constraints (8) and (7) impose that δP = 0 on Γb and δP ·N = 0 on
Γl. In the following we take f = ρg, where g = (0, 0,−g) is the gravitational
acceleration vector, of modulus g. It is well known that (9) is equivalent to the
momentum equation

ρ
DU

Dt
−∇ · σ +∇Π = ρg in Ω(t), (10)

complemented with relation σN −ΠN = t on ∂Ω(t). The latter, together with
the stated conditions on δP , implies that natural boundary conditions must be
applied on the tangential component of the stress on Γb and on the whole stress
on Γs(t). We choose here the following relations,

σN −ΠN = −ΠaN +W on Γs(t) (11)

and
T1 · σN = T2 · σN = 0 on Γl(t), (12)

where Πa is a constant reference pressure, W defines the tangential stresses,
possibly a given function of U , which accounts of external factors like the wind.
We have that W ·N = 0, while T1 and T2 indicate any two linearly independent
vectors tangent to Γl.

Equations (10) and (6) form the well known Navier-Stokes equations, com-
plemented with boundary conditions (7), (12), (8) and (11). Their solution
requires to set an initial condition on the velocity U at time t = 0.

1.1 The addition of the constraint

We now consider what happens when we add a unilateral constraint on the
surface elevation. More precisely, we impose that at any t ∈ (0, T )

η ≤ Ψ, in ω, (13)

where Ψ : ω × [0, T ]→ R is a given function that represents the position of the
floating body. We also make the following

Assumption 1. At any time t ∈ (0, T ) the set

γΨ(t) = {(x, y) ∈ ω : η(x, y, t) = Ψ(x, y, t)}

satisfies γΨ(t) ⊂⊂ ω.
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We also set ΓΨ(t) = {(x, y, z) : (x, y) ∈ γΨ(t), z = η(x, y, t)}. Clearly,
thanks to the given assumption, ΓΨ(t) ⊂⊂ Γs(t) during the motion.

To handle this unilateral constraint we introduce a Lagrange multiplier λ :
ω × (0, T )→ R which satisfies at any time

λ ≥ 0, λ(η −Ψ) = 0, in ω, (14)

and we add to the left hand side of (9) the term

−
∫

Γs

ρλN · δP dγ, (15)

to represent the virtual work associated with the action that enforces the con-
straint. We may note that the integral is effectively computed on ΓΨ. We note
also that on Γs the normal vector satisfies the relation

N = κ−1

(
−∂η
∂x
,−∂η

∂y
, 1
)T

,

with κ =
√
|∇η|2 + 1, while, thanks to (5), δη = −(δPx, δPy) ·∇η + δPz is the

change of η at a given point (x, y) associated to the virtual displacement δP .
Thus, the integral in (15) is in fact equivalent to

∫
ω ρλδη dxdy, which makes more

evident the nature of λ as a Lagrange multiplier associated to constraint (13).
The addition of the term (15) to the left hand side of (9) has the consequence
that in the differential setting the natural boundary condition on Γs changes
from (11) to

σN −ΠN = −ΠaN +W − ρλN . (16)

It is then convenient to introduce the following change of variable,

Π = ρq + ρg(η − z) + ρλ+ Πa, (17)

where q is called the hydrodynamic pressure. The Navier-Stokes problem with
constraints becomes

DU

Dt
− ρ−1∇ · σ +∇q + g∇̃η + ∇̃λ = 0

∇·U = 0
in Ω(t), (18)

where ∇̃ = ( ∂
∂x ,

∂
∂y , 0)T . Furthermore the following relations must hold on ω,

η −Ψ ≤ 0, λ ≥ 0, λ(η −Ψ) = 0,

and the boundary conditions read,

U = 0 on Γb,

U ·N = T1 · σN = T2 · σN = 0 on Γl(t),

ρ−1σN − qN + ρ−1W = 0 on Γs(t).

(19)
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This set of equations will form the starting point of our analysis.
We remark that with this model we are in fact assuming a simple impenetra-

bility condition (slip condition) on ΓΨ(t). Indeed from the kinematic relation for
η and the definition of N we have U ·N = ∂η

∂t ez ·N , ez being the z-coordinate
Cartesian versor, while no a-priori restriction is imposed on the tangential com-
ponent of the velocity. In the case of viscous fluids it would appear that a no-slip
condition that imposes the equality of the fluid velocity with that of the floating
surface be more sound from a physical point of view. However, it is well known
that this condition is incompatible with a correct evolution of ΓΨ(t). Neverthe-
less, with our model we may partially account for the viscous effects by setting
W as

W =

{
W1 on Γs(t) \ ΓΨ(t)
W2 on ΓΨ(t)

(20)

where W1 accounts for the possible action of the wind on the part of the free
surface not in contact with the body, while W2 = W2(U) may account for the
viscous effects as a friction term. In this work, however, we have simply set
W = 0 on the whole Γs(t), thus effectively using a slip condition on ΓΨ(t) and
assuming no wind action, yet for the sake of completeness we will continue to
indicate W in our formulation.

1.2 Specialising the model

It is well known that for a Newtonian incompressible fluid σ = µ
(
∇U +∇UT

)
,

where µ is the dynamic viscosity tensor accounting for different viscosity coeffi-
cients in the horizontal (denoted by µh) and vertical direction (µv) (for further
details see [7, 8]).

This in turn implies that the term ρ−1∇ · σ in (18) is equivalent to ∇ ·[
ν
(
∇U +∇UT

)]
, where ν = 1

ρµ is the kinematic viscosity tensor.
However, in our model we neglect the horizontal components of this term and

consider only the vertical term
∂

∂z

(
ν
∂U

∂z

)
(where for the sake of simplicity, from

now on, ν will denote the kinematic viscosity in the vertical direction). This is
a common choice in hydrodynamic calculations in relatively shallow basins, like
the one of our interest [9, 10], and it allows to adopt efficient numerical schemes,
as the one detailed later. However, we wish to point out that the analysis and the
techniques for the imposition of the constraint illustrated in this paper extend
directly to the general case.

As a consequence, the condition on the free surface Γs(t) becomes

ν
∂U

∂z
− qN + ρ−1W = 0. (21)

On Γb the adoption of the homogeneous Dirichlet condition U = 0 would
imply to resolve the boundary layer, which is not of interest for the present
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application. Therefore, we replace it with an impenetrability condition coupled
with an empirical relation that accounts for the friction with the bottom surface.
We also assume, for the sake of simplicity, that h is constant. We have thenU ·N = 0⇒ w = 0

ν
∂u

∂z
=
|u|u
C2
D

,
on Γb, (22)

where CD is the so-called Chezy coefficient (see for instance [11]).
Moreover, we operate on the kinematic condition (5), to get an expression

that is more convenient for the discretization. Namely, we integrate the conti-
nuity equation (6) along the vertical direction and we exploit (5) and (22) to
obtain to the so-called integral condition for the free surface, that is

∂η

∂t
+∇·

∫ η

−h
u dz = 0.

To summarize, we consider the following system of equations, at each time
t ∈ (0, T ),

Du

Dt
− ∂

∂z

(
ν
∂u

∂z

)
+ g∇η +∇λ+∇q = 0,

Dw

Dt
− ∂

∂z

(
ν
∂w

∂z

)
+
∂q

∂z
= 0,

∇·u+
∂w

∂z
= 0,

in Ω(t), (23)


∂η

∂t
+∇·

∫ η

−h
u dz = 0,

λ(η −Ψ) = 0, λ ≥ 0, η −Ψ ≤ 0
in ω(t), (24)

provided with boundary conditions (7), (22) and (21).

2 Time discretization and weak formulation

Time discretization is performed via characteristics. We subdivide the time
interval [0, T ] into N sub-intervals of width ∆t and denote with the subscript n
the approximation at t = tn of the various time-dependent quantities. For the
sake of simplicity, yet with no loss of generality, we are assuming a constant time
step.

Let Xn = X(x, tn+1; tn) be the position at time tn of the material point that
is located in x at time tn+1. The method of characteristics consists in performing
the following approximation,

DU

Dt
(x, tn+1) ' U(x, tn+1)−U(Xn, tn))

∆t
, (25)
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where Xn is computed by solving the following time backward differential prob-
lem for each x ∈ Ω(t),
dX

dτ
(x, tn+1; tn+1 − τ) = −U(X(x, tn+1; tn+1 − τ), tn+1 − τ), τ ∈ (0,∆t),

X(x, tn+1; tn+1) = x.

More details on this technique may be found in [4] or in [12]. The time discretised
equations now read

un+1 − un(Xn)
∆t

− ν ∂u
n+1

∂z
+ g∇ηn+1 +∇λn+1 +∇qn+1 = 0,

wn+1 − wn(Xn)
∆t

− ν ∂w
n+1

∂z
+
∂qn+1

∂z
= 0,

∇·un+1 +
∂wn+1

∂z
= 0,

in Ωn+1,

ηn+1 − ηn

∆t
+∇·

∫ η4

−h
un+1 dz = 0,

λn+1(ηn+1 −Ψn+1) = 0, λ ≥ 0, ηn+1 −Ψn+1 ≤ 0,
in ω,

(26)
where quantities at time tn are assumed to be known from the previous compu-
tation for n = 1, 2, . . ., and given by the initial data for n = 0 and η4 is a suitable
approximation of ηn+1, introduced to avoid solving a non-linear problem.

From now on and for the sake of notation we omit the superscript n+ 1 for
the unknown quantities at the n-th time step. Furthermore, we choose η4 = ηn,
which introduces a truncation error of the first order in time. Another possibility,
leading to a second order error, would be to set η4 = 2ηn − ηn−1, using linear
extrapolation.

2.1 Weak formulation setting

We have reduced our time dependent problem to a sequence of (coupled in time)
elliptic problems (26), for which we now seek a convenient weak formulation.

At every time step tn+1, we set Ω = ω × (−h, ηn) and we look for a solution
U = (u, w)T ∈ U = Uu ⊗ Uw where

Uu =
{
v ∈

[
L2(ω)

]2 : ∇·v ∈ L2(ω),v · n = 0
}
×H1(−h, ηn(x, y)),

Uw = L2(ω)×
{
φ ∈ H1(−h, ηn(x, y)), φ = 0 on z = −h

}
.

Here L2(Ω) denotes the usual Sobolev space of square integrable functions on
the domain Ω, and H1(Ω) the space of L2(Ω) functions whose partial derivatives
still belong to L2(Ω) [13].

We seek w in Uw rather than the usual H1(Ω) space, since our treatment of
the Cauchy stress tensor allows a weaker regularity in the x and y coordinates.
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Furthermore, we seek the hydrodynamic pressure q in L2(Ω), and η and λ in
L2(ω).

Let V = (v, z)T ∈ U be a test function for the velocity. We define the
following bilinear forms,

a(U ,V ) =
∫
ω

∫ ηn(x,y)

−h

1
∆t
U · V dωdz + ν

∫
ω

∫ ηn(x,y)

−h

∂U

∂z
· ∂V
∂z

dωdz,

d(U , q) = −
∫
ω

∫ ηn(x,y)

−h
q∇·Udωdz,

b(U , λ) = −
∫
ω
λ

(
∇·
∫ ηn(x,y)

−h
udz

)
dω.

The bilinear form b(U , λ) results from the fact that∫
ω

∫ ηn(x,y)

−h
∇̃λ ·Udωdz =

∫
ω

∫ ηn(x,y)

−h
∇λ · udωdz =

∫
ω
∇λ·

(∫ ηn(x,y)

−h
udz

)
dω =

∫
∂ω
λn ·

∫ ηn(x,y)

−h
udz︸ ︷︷ ︸

0,u·n=0

−
∫
ω
λ

(
∇·
∫ ηn(x,y)

−h
udz

)
dω = −

∫
ω
λ

(
∇·
∫ ηn(x,y)

−h
udz

)
dω = b(U , λ),

while the same procedure leads to∫
ω

∫ ηn(x,y)

−h
g∇̃η ·Udωdz = g b(U , η).

In conclusion, the weak formulation of the momentum equation is: find U ∈
U and q ∈ L2(Ω) such that

a(U ,V ) + g b(V , η) + b(V , λ) + d(V , q) = F (V ), ∀V ∈ U

where F (V ) is the linear functional that takes in account the boundary condi-
tions on the free surface and on the bottom,

F (V ) =
∫

Γs

ρ−1W · V dγs −
∫
ω

|un|un

C2
D

· vdω +
1

∆t

∫
ω

∫ ηn(x,y)

−h
Un · V dωdz

As for the free surface equation, we first rewrite it more conveniently as

η = ηn + ∆t∇·
∫ ηn

−h
udz. (27)

We introduce a test function χ in L2(ω) and denote by (·, ·)ω the scalar product
in L2(ω). With this notation, the weak formulation of (27) is given by

(η, χ)ω = (ηn, χ)ω +
∫
ω

∆t
(
∇·
∫ ηn

−h
udz

)
χdω = (ηn, χ)ω −∆t b(U , χ), (28)
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for all χ ∈ L2(ω).
We point out that the equation for the free surface (both in its strong form

(27) and in the weak form (28)) gives in fact an explicit dependence of η with
U , i.e. we may formally write η = η(U). This fact will be exploited in the next
section.

Finally, we derive the weak formulation for the buoyancy constraint by in-
serting (27) into the unilateral constraint η ≤ Ψ, obtaining∫

ω

(
∇·
∫ ηn

−h
udz

)
χdω ≤

(
Ψ− ηn

∆t
, χ

)
ω

,

for all χ ∈ L2(ω), that is −b(U , χ) = G(χ), having set G(χ) =
(

Ψ−ηn

∆t , χ
)
ω
.

We are now in the position to state the following

Weak formulation 1. Find U ∈ U , η, λ ∈ L2(ω) and q ∈ L2(Ω) such that

a(U ,V ) + g b(V , η) + b(V , λ) + d(V , q) = F (V ), ∀V ∈ U
d(U , r) = 0, ∀r ∈ L2(Ω)

(η, χ)ω = (ηn, χ)ω −∆t b(U , χ), ∀χ ∈ L2(ω)

−b(U , χ) ≤ G(χ) ∀χ ∈ L2(ω)

with λ ≥ 0 such that (λ, η −Ψ)ω = 0.

3 Iterative solution by Uzawa method

We may interpret weak formulation 1 as the optimality conditions of a con-
strained optimization problem. We exploit this fact to solve our problem via
duality techniques by applying the Uzawa algorithm to the dual problem. We
follow closely the theoretical setting illustrated in [14, Chapter V].

To this aim, let us go back to the pressure splitting (17). We collect all
pressure terms apart from λ into a single term p, i.e. we set ρp = ρq + ρg(η −
z) + Πa. The pressure splitting becomes Π = ρp+ ρλ, and the weak formulation
is rewritten as

Weak formulation 2. find U∗ ∈ U , η∗, λ∗ ∈ L2(ω), p∗ ∈ L2(Ω) such that

a(U∗,V ) + b(V , λ∗) + d(V , p∗) = F (V ), ∀V ∈ U
d(U∗, r) = 0, ∀r ∈ L2(Ω)

−b(U∗, χ) ≤ G(χ) ∀χ ∈ L2(ω)

with λ∗ ≥ 0 such that (λ∗, η∗ −Ψ)ω = 0 and (η∗, χ)ω = (η∗,n, χ)ω −∆t b(U∗, χ)
∀χ ∈ L2(ω).
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Exploiting relation (27), we can read this formulation as the KKT conditions
for the saddle point of the Lagrangian functional

L(U , p, λ) = J(U) + d(U , p) +
∫
ω
λ

(
η(U)−Ψ

∆t

)
dω (29)

where J(U) = 1
2a(U ,U) + F (U). The Lagrangian functional L is associated to

the following constrained optimization problem,

find U∗ : J(U∗) = min
U∈U

J(U) (30)

subject to ∇·U∗ = 0,

and
η(U∗)−Ψ

∆t
≤ 0.

We recognize λ as the Lagrange multiplier for the floating constraint, in the very
same way as p is the Lagrange multiplier for incompressibility constraint. From
here on we refer to problem (30) as primal problem.

Note that the incompressibility constraint is an equality constraint, therefore
the corresponding Lagrange multiplier p can be chosen in L2(Ω). On the con-
trary, the floating constraint is an inequality constraint, hence the corresponding
Lagrange multiplier has to be non-negative.
It is possible to show (Prop. 1.1 [14]) that the primal problem (30) is equivalent
to the so-called minimax problem:

find (U∗, p∗, λ∗) : L(U∗, p∗, λ∗) = inf
U∈U

sup
p∈L2(Ω)

sup
λ∈Λ

L(U , p, λ) (31)

Note that the minimax point is not necessarily a saddle point 1. The crucial
point is that if one can show that L has a saddle point in (U∗, p∗, λ∗), then it
holds that (prop. 1.2 [14])

inf
U∈U

sup
p∈L2(Ω)

sup
λ∈Λ

L(U , p, λ) = L(U∗, p∗, λ∗) = sup
λ∈Λ

sup
p∈L2(Ω)

inf
U∈U

L(U , p, λ) (32)

For our Lagrangian functional, the existence of a saddle point is guaranteed by
the application of the Ky-Fan and Sion Theorem [14, Theorem 3.1].

We define the dual function as

w(λ) = sup
p∈L2(Ω)

inf
U∈U

L(U , p, λ)

and the dual problem as

find λ∗ : w(λ∗) = sup
λ∈Λ

w(λ). (33)

1A saddle point for L is defined as ( bU , p̂, λ̂) : L( bU , p, λ) ≤ L( bU , p̂, λ̂) ≤ L(U , p̂, λ̂)
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Then, thanks to the strong duality theorem (prop. 1.4 [14]), if (U∗, λ∗, p∗) is a
saddle point for L, then U∗ is solution of the primal problem and λ∗ is solution
of the dual problem. This means that we can obtain the solution of (30) by
solving the dual problem instead, which is much more appealing since the only
constraint is here the positivity of λ, which can be treated easily by a numerical
algorithm.

The dual function w associates to any feasible λ the solution of the corre-
sponding Navier-Stokes problem with free surface and boat pressure profile λ.
Of course, it is impossible to have an explicit expression of such a function.
Therefore, we resort to the well known Uzawa algorithm [15], which may be
stated in the following form,

Algorithm 1 (Uzawa Method). given two tolerances ε1 > 0 and ε2 > 0 and
starting from λ(0) = 0, for k = 0, 1, . . . compute η(k) ∈ L2(ω), U(k) ∈ U and
q(k) ∈ L2(Ω) such that

a(U(k),V ) + b(V , λ(k)) + g b(V , η(k)) + d(V , q(k)) = F (V ), ∀V ∈ U
d(U(k), r) = 0, ∀r ∈ L2(Ω)(
η(k), χ

)
ω

= (ηn, χ)ω −∆t b(U(k), χ), ∀χ ∈ L2(ω),

and update λ according to the rule

λ(k+1) = max
(
λ(k) + α(k)

η(k) −Ψ
∆t

, 0
)
, (34)

α(k) being a parameter suitably chosen to assure convergence. The sequence is
stopped when |

(
λ(k), η(k) −Ψ

)
ω
| ≤ ε1 and Ψ − η(k) > −ε2. We use the last

computed quantities as the approximation of U∗, p∗, η∗ and λ∗ at the given time
step. Here, F (V ) accounts for all the known terms and we have expanded back
the pressure term p to put into evidence the role of η and the hydrodynamic
correction q.

The convergence of the Uzawa method in Sobolev spaces is ensured by The-
orem 3.3 in [14], which states that the sequence {(U(k), p(k)), k = 0, 1, . . .} con-
verges strongly to the (unique) solution of the primal problem, and any cluster
point of the sequence {λ(k), k = 0, 1, . . .} is a solution for the dual problem.

4 Finite element implementation

We will now introduce the finite element scheme we have adopted for the space
discretization, We also describe a fractional step method for the solution of the
resulting algebraic system that allows an efficient implementation of the Uzawa
iterations just presented. For a more detailed description of the finite element
scheme and fractional step methods for free surface flows see [4, 16].
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The domain is subdivided along the z-axis into Nl layers and a triangular
grid for the xy plane is replicated at the midpoint of each layer, leading in fact
to a prismatic grid.

We indicate with Nt and Ne the number of triangles and the number of
edges in the xy plane mesh, respectively. The horizontal velocity is approximated
combining the lowest order Raviart-Thomas elements (RT0) in the xy plane with
the P1 elements along the vertical direction, that is the approximated velocity
uh may be expressed as

uh(x, y, z) =
Nl∑
j=1

Ne∑
e=1

Uj,eτe(x, y)ϕj(z), (35)

where Uj,e is the generic degree of freedom associated to the lateral face defined
by the edge e and the layer j, while {τe, j = 1, . . . , Nl} and {ϕj , j = 1, . . . , Ne}
are the canonical basis of RT0(ω) and P1(−h, ηn), respectively. For the definition
of this finite element spaces and their approximation properties the interested
reader may refer to [17, 18]. As for the vertical velocity w, we use piecewise
constant elements (P0) in the horizontal plane and linear finite elements in the
z direction, that is the approximated vertical velocity may be expressed as

wh(x, y, z) =
Nl∑
j=1

Nt∑
i=1

wj,iχi(x, y)ϕj(z), (36)

where {χi, i = 1, . . . , Nt} is the canonical basis for the finite element space
P0(ω), and wj,i the degree of freedom associated to triangle i and layer j. Fi-
nally the elevation and the Lagrange multiplier are approximated using piecewise
constant functions, i.e. the approximating functions ηh and λh read

ηh(x, y) =
Nt∑
i=1

ηiχi(x, y), λh(x, y) =
Nt∑
i=1

λiχi(x, y), (37)

while the hydrodynamic pressure is approximated with piecewise constant func-
tions on each prism,

qh(x, y, z) =
Nl∑
j=1

Nt∑
i=1

qj,iχi(x, y)ξj(z), (38)

{ξj , j = 1, . . . , Nl} being the basis of the P0(−h, ηn) finite element space built on
the vertical grid defined by the layers. Here λi, ηi and qj,i indicate the degrees
of freedom for the Lagrange multiplier, the elevation, and the hydrodynamic
pressure, respectively. More details about this particular discretization may be
found in [4]. Here we just mention that even if the domain shape changes in
the z direction, since ηn is indeed a function of (x, y) varying at each time step,
the actual implementation is done on a fixed grid whose vertical extension is
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sufficient to accommodate all the expected variations of the free surface, and the
“dry” elements are not taken into account in the construction of the final linear
system.

If we consider now the discretization of a generic iteration k of Algorithm 1
we obtain an algebraic system of the form:[

A DT

D 0

] [
V

Q

]
=

 F̂(k)

0

 , (39)

where V = (U(k),H(k),W(k))T is the vector collecting the degrees of freedom
for the horizontal components of the velocity, the elevation and the vertical ve-
locity respectively, Q = Q(k) indicates the vector of the degrees of freedom for
the hydrodynamic pressure and F̂(k) = (F̂u,(k), F̂η, F̂w)T accounts for bound-
ary conditions, the terms arising from the time derivative and the Lagrange
multiplier, that is

Fu,(k) =
1

∆t
Un(X)− BTΛ(k), Fη =

1
∆t
Hn, Fw =

1
∆t
W n(X).

We have indicated with Λ(k) the vector of discrete Lagrange multipliers at the
k-th Uzawa iteration, and with BT the algebraic operator associated to the
bilinear form b(V , λ). The term (X) indicates that the corresponding degrees of
freedom have been computed by extrapolation at the foot of the characteristics,
in according to the adopted discretization of the time derivative.

The matrices A and D can be further expanded as follows

A =


1

∆t
Mu + Ku gBT 0

B
1

∆t
Mη 0

0 0
1

∆t
Mw + Kw

 , DT =


DT
xy

0

DT
z

 ,

where Mu, Mη, Mw are the mass matrices for the corresponding components
of the unknowns, Ku, Kη and Kw are the corresponding stiffness matrices, and
finally D is the discrete 3D divergence operator. In this algebraic setting, if we
indicate with Ψ the vector containing the value of Ψ at each triangle barycenter,
the convergence test becomes

||Λ.∗(H(k) −Ψ)|| ≤ ε1 and min(Ψ−H(k)) > −ε2, (40)

where .∗ indicates the element-by-element product, and the update of the mul-
tiplier

Λ(k+1) = max
(
Λ(k) +

α(k)

∆t
(
H(k) −Ψ

)
,0
)
. (41)

We may note that only Fu depends on the Uzawa iteration k, an important
fact that will be exploited in the following fractional step splitting.
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4.1 A fractional step scheme

System (39) implies a solution for all the unknowns of the problem at each Uzawa
iteration, a rather costly operation for realistic problems where the number of
degrees of freedom may be rather large.

In [16] some fractional step schemes have been proposed to ease the compu-
tations. We will now show that one of those schemes, which is akin to the well
known Chorin-Temam splitting for Navier-Stokes problems, will also allow an
efficient implementation of the Uzawa iterations.

Let us consider the updating rule (34) for λ in more detail. It states that
the only quantity needed for the Uzawa iterations is η. This means that all the
other variables computed at each Uzawa iteration are unnecessary, and it would
be possible to reduce greatly the computation time if one can find a fractional
step scheme where the updating of η is less costly.

With a fractional step scheme we split the solution of Navier Stokes equa-
tions into an hydrostatic step and an hydrodynamic correction. The hydrostatic
step computes the elevation η and an approximation of velocity, while the hy-
drodynamic correction computes the hydrodynamic pressure q and modifies the
value of U , but does not affect η. Therefore, the hydrostatic step is the only one
required for the Uzawa iterations, with great saving of computational time.

The procedure is then described by the following algorithm.

Algorithm 2 (Fractional step scheme). At each time step the computations
involve four steps.

Hydrostatic step and Uzawa iterations

Starting from a given Λ(0), for k = 0, 1, . . . we solve
(

1
∆t

Mu + Ku

)
Ũ(k) + gBTH(k) =

1
∆t

MuU
n(X)− BTΛ(k),

BŨ(k) +
1

∆t
MηH(k) =

1
∆t

MηH
n,

(42)

and update Λ according to (41) until the stopping criteria (40) is reached. We
indicate with Ũ , H, and Λ the converged degrees of freedom for the horizontal
velocity, elevation and multiplier.

Intermediate vertical velocity component evaluation

We compute W̃ by solving the system(
1

∆t
Mw + Kw

)
W̃ =

1
∆t

MwW
n(X).
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Hydrodynamic pressure computation

−∆t
[
DxyM−1

u Dxy
T + DzM−1

w Dz
T
]
Q = −

(
DxyŨ + DzW̃

)
. (43)

Hydrodynamic correction on the velocity components

 U = Ũ −∆tM−1
u DT

xyQ,

W = W̃ −∆tM−1
w DT

zQ.
(44)

As was already stated, the hydrodynamic correction step does not affect the
computation of the elevation η. Moreover, thanks to the special structure of the
mass and stiffness matrices, with some algebraic manipulations it is possible to
modify the hydrostatic step to eliminate the computation of the velocity Ũ(k)

and solve just for H(k). The horizontal velocity degrees of freedom are then
calculated only after the convergence of the Uzawa iterations. This technique
saves further computational time for the Uzawa iterations.

5 Numerical Results

5.1 Fluid-Body Coupling

The main goal of our simulations is to describe the dynamic of a rowing scull,
taking into account its secondary motions as pitching and sinking. For a de-
scription of the problem the reader may refer to [3, 19].

Since in this work we are concerned mainly in describing the method rather
than in the applications, we consider here a simplified dynamics for the boat. It
is determined fully by the external forces acting on the scull given by the weight
of the boat and the pressure λ.

The position at time t of the boat is described by six degrees of freedom (the
x, y and z coordinates of a given point of the boat and three angles that define
its angular position, e.g. roll φ, yaw ψ and pitch θ), and the complete dynamic
is tracked with six equations, one for each degree of freedom.

Let us focus on the sinking (similar calculations can be performed for each
secondary motion). Denoting with z(t) the vertical position of the bottom of
the scull, the corresponding Cauchy problem reads:

z̈ = −g + Fz(λ,t)
m

z(0) = z0

ż(0) = 0

(45)

where z0 is the initial position of the scull and Fz(λ, t) is the vertical pro-
jection of the pressure force F performed by the boat, calculated as F (λ, t) =∫
λdΨ(t), that can be computed numerically.

At each time step, given z(t) and ż(t) = v(t), one calculates:
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1. the scull position, i.e. the constraint Ψ(t);

2. λ(t), by solving the Navier-Stokes equations;

3. the overall acceleration at time t, z̈(t) = a(t) = −g + F (λ,t)
m .

Next one performs time integration for (45). Notice that it is not possible to use
any implicit method with reasonable computational cost, since it is not possible
to know F (t+∆t) before z(t+∆t). We consider two different integration schemes

1. Quasi Explicit Euler :{
v(t+ ∆t) = v(t) + a(t)∆t
z(t+ ∆t) = z(t) + v(t)∆t+ 1

2a(t)∆t2
(46)

2. Quasi Newmark : in this case we use an approximation of a(t+ ∆t), a∗(t+
∆t) = 2a(t)− a(t−∆t), and then write:

v(t+ ∆t) = v(t) +
(
a(t) + a∗(t+ ∆t)

2

)
∆t

z(t+ ∆t) = z(t) + v(t)∆t+
1
2

(
a(t) + a∗(t+ ∆t)

2

)
∆t2

(47)

5.2 Sinking motion test

In this section we perform several sinking motion experiments, as described in
equation (45). We want to test if the algorithm is able to predict correctly the
stationary regime and the stationary pressure on the scull; we also want to assess
the accuracy of the several time integration schemes we proposed. We can easily
check whether the results are reasonable, since we can exactly calculate the final
values for z and Fz by Archimedes’ Principle.

The tests are performed with a boat whose dimensions are 8 × 0.8 × 0.6 m
(length × width × height), with weight 400 kg, over a 20× 12× 36 m grid. We
define the z coordinate in (45) as the non-wet portion of the boat, and we set
the initial position of the scull z0 as z0 = 0.6, so that at the initial time the
boat is out of the water, touching the free surface η(0) only at its bottom. By
Archimedes’ Principle, the steady value for z is 0.32 m.

Results are shown in figure 1. First of all, we notice that a reasonable time
step is ∆t ≈ 0.02 s; the results obtained with bigger time steps are affected by
oscillations (or do not converge at all, e.g. if ∆t = 0.1 s).

The different schemes reasonably converge to the same solution for ∆t ≈ 0.02,
as shown in figure 2, and all the stationary regimes adequately agrees with the
predicted one. However, the Quasi Explicit Euler method overestimates the
undershooting, whereas the Quasi Newmark appears to be the most physically
reasonable, because of the rebound predicted at t ≈ 0.5 s (see figure 2-right).
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Figure 1: Comparison for different ∆t: Quasi Explicit Euler (left) and Quasi
Newmark (right)
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Figure 2: Comparison of different methods: whole dynamic (left) and zoom on
the undershooting (right)

Another interesting comparison is between the hydrostatic and hydrody-
namic simulations: in general, the hydrostatic approximation seems to be quite
inaccurate, since it shows wider and persisting oscillations, see figure 3.

6 Conclusions

In this work we have proposed a novel approach to handle the buoyancy of
boats, and in general floating objects by enforcing an inequality constraint over
the elevation of the free surface η. Despite the fact that this approach is limited
to situations where the wave do not overturn, many problems can be addressed
with this method. It represent an alternative to volume of fluid or level-set
methods.

We have presented an implementation of the imposition of the constraints
which is rather efficient and it exploits the algebraic structure resulting from the
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Figure 3: Comparison between hydrostatic and hydrodynamic solutions for dif-
ferent time steps

choice of a particular finite element representation.
We have demonstrated the effectiveness of the method on some simple cases,

since this work is more focused on the methodological aspects than applications.
Yet, some preliminary results on the hydrostatic system, presented in [5], show
how the method is effective to solve the fluid-structure interaction problems,
where the position of the floating object is governed by its own dynamics. In
this context, the Lagrange multiplier provide information on the force acting on
the body.

There are still some open problems which are subject to current investiga-
tions. The first is the necessity of replacing the slip condition on the boat surface
with a relation accounting for the viscous effects. For slender body it is possible
to foresee the interaction with a simplified model for the boundary layer able to
characterize the term that has been generically indicated with W in Section 1.

The second concerns the optimal choice for the parameter α(k). So far we
have used some heuristics derived from the theory of unconstrained optimization.
A more in depth analysis is in principle possible, leading to optimal convergence
rates.

The simplified form for the Cauchy stress tensor has helped to reduce the
computational effort, since it has allowed to adopt rather simple finite elements
(we mention in passing that the scheme can be easily implemented on parallel ar-
chitectures). However, the general technique for the imposition of the constraint
does not depend on this choice, even if so far, at the best of our knowledge, there
have been no attempts in this direction.
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