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Abstract

We consider the problem of quantitative non-destructive evaluation
of corrosion in a 2D domain representing a thin metallic plate. Corro-
sion damage is assumed to occur in an inaccessible part of the domain.
Reconstruction of the damaged profile is possible by measuring an electro-
static current properly induced by a potential in an accessible part of the
boundary (electrical impedance tomography). We present here numerical
methods and results based on a formulation of the problem introduced
and analyzed in Bacchelli-Vessella, Inverse Problems, 22 (2006), where
the corroded profile is represented by a polygonal boundary. We resort
in particular to the Landweber method and the Brakhage semi-iterative
scheme. Numerical results show the reliability of this approach in general
situations, including nongraph corroded boundaries.

In mathematical terms, it is assumed that electrostatic potential obeys to
a Laplace problem in the physical domain of the plate. Neumann boundary
conditions are associated with the current in the plate. From the knowledge
of the applied current and the potential on the accessible boundary, the un-
known boundary has to be identified. In [17] the authors proposed to repre-
sent the corroded boundary as a small perturbation of the undamaged profile,
mathematically described by a function in a proper coordinate reference sys-
tem. Theoretical foundation of the problem was given in [19]. By exploiting a
perturbation approach, Kaup et al in [21] provide a linearization of the prob-
lem leading to a direct differential problem in terms of the perturbed profile.
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Numerical discretization of this problem is presented too. Improvements in the
approximations behind this approach have been successively investigated in [20].
Moving from a similar perspective based on the representation of the damage as
a perturbation function, contributions both to the analysis and the numerical
solution of this problem have been given in [13, 14, 15, 10], and more recently
in [8]. In these works, boundaries are assumed to be conducting, leading to a
Robin condition for the Laplace problem, replacing the Neumann one. Coeffi-
cients in this condition are subject of evaluation too. Approximate formulation
of the problem affordable from the view point of numerical approximation are
presented in [10, 8]. In [10] problem is recasted in terms of a least squares
approach suitably smoothened with a Tikhonov regularization approach. A dif-
ferent approach used for corrosion detection is based on the Level Set method
(see e.g. [7]).

Figure 1: The metallic plate Ω has an inaccessible part of the boundary Σ to
be estimated.

Strategies based on perturbation theory suffer basically from two limitations:

1. linearization of the problem requires typically assumptions on the “small-
ness” of the damage;

2. representation in terms of a perturbation function assumes that the profile
is represented by a graph, which is not always the case (see Fig.2).

In this paper we face this problem from a different view point. The corroded
boundary is assumed to be polygonal. This allows nongraphs solutions and deep
corrosion. Mathematical characterization of the problem stated in these terms
has been introduced in a previous paper [2] and will be summarized in Sect. 1
(see also [11, 3]).
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Specific task of this work is to provide numerical evidence of effectiveness
of this approach. The problem has been numerically solved by means of the
iterative Landweber method (see [9, 18]). This method, summarized in Sect.
2, requires the definition of the adjoint tangent operator associated with the
problem. In turn this requires the solution of a set of appropriate Laplace
problems.

Numerical results presented in Sect. 3 on several test cases show actually
that this method can capture corroded piecewise linear profiles with good ac-
curacy. Two problems typically affects Landweber method, namely

1. impact of data noise;

2. convergence slowness.

In our case, the iterative process is perturbed by numerical errors associated
with the finite element solutions to Laplace problems. We will illustrate depen-
dence of the computed solution on the size of the mesh grids and its impact
on the convergence of the scheme on the basis of the well known discrepancy
principle. For issue (ii), we consider an accelerated version of the Landweber
method, introduced in [4] and analyzed in [12] for the linear case, illustrating
its effectiveness in the problem at hand.
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Figure 2: Domain Ω of the problem. Accessible part of the boundary is Γ.
The corroded and inaccessible part is denoted by Σ. In the perturbation ap-
proach (on the left), Σ is represented in terms of a small function εϑ(x) of
the reference (uncorroded) profile y = b. In the present approach (on the
right), corroded profile is given by a polygonal boundary described by vertices
pi (i = 0, 1, . . . , N + 1).

1 Formulation of the problem

Let Ω ⊂ R2 be a bounded simply connected domain whose boundary is com-
posed by two open portions Γ, Σ such that Γ ∪ Σ = ∂Ω, Γ ∩ Σ = {p0,pN+1},
with p0,pN+1 fixed points of R2. Suppose that Σ is unknown and inaccessible,
while Γ is known and accessible for measurements.

We assume that Σ is a polygonal line of vertices p0,p1, ...,pN ,pN+1, that
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is, denoting by [p,q] the close segment with endpoints p,q

Σ =

N⋃

j=0

[pj ,pj+1]. (1)

Let Ω represent a thin homogeneous metallic plate, whose density is equal
to 1. Let γ be a connected subset of Γ such that γ ⊂ Γ; we apply on γ a voltage

potential f ∈ H
1/2
00 (γ) and suppose that Σ is connected to ground. Potential f

is assumed to be trivially extended to the entire Γ. For the easiness of notation,
we still denote by f the potential on Γ. Then the induced potential u in Ω
fulfills the following boundary problem





−△u = 0, in Ω(p),
u = 0, on Σ(p),
u = f, on Γ,

(2)

where p = (p1,p2, . . . ,pN ).
The output current g is measured on γ so we have

∂u

∂n
|γ = g, (3)

where g belongs to H−1/2(γ).
Our problem can be stated as follows. Let p0 and pN+1 be given and fixed,

we look for the coordinates of points p1, ...,pN such that (2), (3) hold, being f
and g known.

The weak formulation of the problem reads as follows. Let f̃ ∈ H1(Ω(p))

be an extension of f in Ω(p) such that f̃ = 0 in Ω \V , V being a neighborhood
of γ and

||f̃ ||H1(Ω(p)) ≤ C ‖f‖
H

1/2
00 (γ)

. (4)

Let û ∈ H1
0 (Ω(p)) be the solution to

∫

Ω(p)

∇û · ∇v =

∫

Ω(p)

∇f̃ · ∇v, for every v ∈ H1
0 (Ω(p)). (5)

We look for p such that:

∫

Ω(p)

∇(û + f̃) · ∇v =

∫

γ

gv, for every v ∈ H1
∂Ω(p)\γ(Ω(p)), (6)

where H1
∂Ω(p)\γ(Ω(p)) denotes the subspace of H1(Ω(p)) functions such that

their trace vanishes on ∂Ω(p) \ γ. Set u = û + f̃ ∈ H1(Ω(p)) and T : R2N →
H−1/2(γ) the non linear operator associated with (6), such that

T (p) =
∂u

∂n
(7)
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in the weak sense. The problem at hand reads: find p such that

T (p) = g. (8)

Some properties of T have been proved in [2]. The most relevant ones for
this paper are summarized as follows.

Let E, F, M, δ, ρ0 be assigned positive numbers and let N be a positive
assigned integer number. We assume that

i) Ω is a bounded simply connected domain in R2 such that

|Ω| ≤ Mρ2
0, ∂Ω is of Lipschitz class with constants ρ0, E, (9)

ii) we have
dist(pj ,pj+1) ≥ ρ0, j = 0, 1, ..., N, (10)

iii) denoting by ωj the angle ̂pj−1pjpj+1, j = 1, ..., N , interior to Ω

|ωj − π| ≥ δ, j = 1, ..., N, (11)

iv) we have

f ∈ H
1/2
00 (γ), f 6= 0,

‖f‖
H

1/2
00 (γ)

‖f‖L2(γ)

≤ F. (12)

Constants E, F, M, δ, ρ0 and N will be referred to as a priori data. Notice
that constant C in (4) depends only on the a priori data.

Let us define K the subset of R2N of all those p = (p1, ...,pN ) such that
Γ ∪ Σ is the boundary of a simple connected domain Ω of R2 satisfying i), ii),
iii).
Theorem Let T : K → H−1/2(γ) be the operator introduced in (7). If f fulfills
assumption (iv), then

a) T is injective and (T )
−1

is continuous;
b) T is Frechét differentiable, that is

∥∥T
(
p(2)

)
− T

(
p(1)

)
− < T ′

(
p(1)

)
,p(2) − p(1) >

∥∥
H−1/2(γ)

≤

C1

‖f‖
H

1/2
00

(γ)

ρ2
0

∥∥p(1) − p(2)
∥∥2

R2N ,
(13)

C1 depending on the a priori data only;
c) T ′ is Lipschitz continuous;
d) there exists d > 0 such that, if

∥∥p(1) − p(2)
∥∥

R2N ≤ d, the following
Lipschitz stability estimate holds

∥∥∥p(1) − p(2)
∥∥∥

R2N
≤ C2ρ0

∥∥∥∥
∂u1

∂n
− ∂u2

∂n

∥∥∥∥
H−1/2(γ)

, (14)

where ui (i = 1, 2) is the solution to problem (2), in correspondence
of the domain Ω(p(i)) featuring the boundaries Σ(p(i)). Here d and C2

depend only on the a priori data. ⋄
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An explicit representation of T ′(p) has been given in [2] and we briefly recall
it.

Let us introduce the functions bj : ∂Ω(p) → R, j = 1, 2, . . . , N , so defined

bj(q) =





|q − pj−1|
|pj − pj−1|

, q ∈ [pj−1,pj ],

1 − |q − pj |
|pj+1 − pj |

, q ∈ [pj ,pj+1],

0, elsewhere on Γ ∪ Σ(p).

(15)

Given a vector µ = (µ1, µ2, ..., µN ) ∈ R2N , we denote by w the weak solution
to the following Dirichlet boundary value problem





−△w = 0, in Ω(p),
w = 0 , on Γ,

w = −∇u ·
N∑

j=1

bjµj , on Σ(p),
(16)

where u is the solution to (2). By exploiting the linearity of problem (16), w
can be obtained by superposition of the 2N solutions to the following Dirichlet
boundary problems, j = 1, 2, ..., N





−△w1
j = 0, in Ω(p),

w1
j = 0, on Γ,

w1
j = − ∂u

∂x1
bj, on Σ(p),





−△w2
j = 0, in Ω(p),

w2
j = 0, on Γ,

w2
j = − ∂u

∂x2
bj , on Σ(p),

(17)

so that, denoting µj = (µ1
j , µ

2
j), j = 1, 2, . . . , N, we get

w =

N∑

j=1

(µ1
jw

1
j + µ2

jw
2
j ). (18)

The Frechét derivative T ′(p) : R2N → H−1/2(γ) is given by (see [2])

T ′(p)µ =
∂w

∂n
|γ . (19)

2 Landweber method

Numerical solution to non linear problems almost invariably resorts to iterative
methods. Given a proper initial guess p0, an iterative method for solving the
equation T (p) = g computes the sequence of iterations

pk+1 = pk + S(pk)(g − T (pk)), k = 0, 1, .... (20)

where S is an appropriate operator. In the Landweber method we take S = (T ′)∗

where (·)∗ denotes the adjoint operator.
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In our problem, (T ′)∗ is as follows. For every ϕ ∈ H−1/2(γ), (T ′(p))∗ :
H−1/2(γ) → R2N is such that

(T ′(p))∗ϕ = η (21)

where η = (η1, η2, ...ηN ) ∈R2N

ηj =

(
(ϕ,

∂w1
j

∂n
)H−1/2(γ),(ϕ,

∂w2
j

∂n
)H−1/2(γ)

)
, (22)

being w1
j , w2

j , j = 1, 2, ..., N, the solutions to (17).
Operator (T ′(p))∗ is Lipschitz continuous as well and more precisely it can

be proved that for every ϕ ∈ H−1/2(γ) and p(1), p(2) ∈ K

||(T ′(p(1)))∗ϕ−(T ′(p(2)))∗ϕ||R2N ≤ C

ρ2
0

||ϕ||H−1/2(γ)||f ||H1/2(Γ)||p(1)−p(2)||R2N

(23)
where C depends only on the a priori data.

Convergence properties of the Landweber method have been analyzed in [18]
(see also [9]). We recall in particular the following result.
Theorem Let F : D(F) ⊂X → Y be an operator between two Hilbert spaces
X, Y and let g ∈ Y be given. Let z0 ∈ D(F) and let r > 0 such that Br(z

0) ⊂
D(F). Suppose that

i) F is Frechét differentiable,
ii) ‖F ′ (z)‖ ≤ 1, for every z ∈ Br(z

0),
iii) ‖F (z̃) −F (z)− < F ′(z), z̃ − z >‖ ≤ 1

4 ‖F(z̃) −F(z)‖ , for every z,
z̃ ∈ Br(z

0).
Then, if the equation

F(z) = g (24)

has solution in Br/2(z
0), Landweber sequence

zk+1 = zk +
(
F ′ (

zk
))∗

(g −F
(
zk
)
), k = 0, 1, ... (25)

converges to a solution z ∈ Br/2(z
0) of (24). ⋄

In order to exploit the previous result, let us consider a scaling of the problem
at hand, namely for λ a real number 6= 0

λT (p) =λg, (26)

so that Landweber scheme reads

pk+1 = pk + λ2(T ′(pk))∗(g − T (pk)), k = 0, 1, .... (27)

From Theorems 2.1 and 3.1 we get the following Corollary.
Corollary 1 Let p be the solution of the problem

T (p) = g, (28)
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with T defined by (7), g ∈ H−1/2(γ) given. Let p0 ∈ K and let r > 0 such that

Br(p
0) ⊂ K. Denote by d = 1

2 min{r, d
2 , ρ0

8C1C2‖f‖
H1/2(Γ)

}, d, C1, C2 being the

constants in Theorem 2.1.
Then, if

∥∥p0 − p
∥∥

R2N ≤ d, the scaled Landweber method (27) with λ small

enough (i.e. such that ‖λT ′(p)‖ ≤ 1 in Br(p
0)) converges to p for k → +∞.

◦
This result guarantees that for an appropriate choice of the initial guess,

solution is captured by the iterative scheme. In the practical application of the
method there are however two main drawbacks that deserve to be addressed.

Numerical errors. Each iteration requires to solve problems (2) and (17) in
the current domain Ω(pk). This in general can be achieved numerically.
Numerical errors associated with the numerical solution inevitably pollute
the whole sequence. We analyze this circumstance in Sect. 2.1.

Convergence acceleration. Convergence rate of Landweber scheme can be by far
slow, requiring a high number of iterations, both for linear and non-linear
problems. This is essentially related to the ill-posedness of the problems at
hand. Speed up techniques can be pursued for improving the convergence.
In Sect. 2.2 we advocate a method based on polynomial acceleration (see
[12]).

2.1 Numerical errors and the discrepancy principle

We distinguish two source of errors affecting the numerical iterative scheme.
Both the contributions addressed hereafter depend on the size of the mesh,
represented by the parameter h, the largest dimension of the finite elements of
the discretization.

1. Datum g is projected onto the finite dimensional space of piecewise poly-
nomial (linear) functions. If δ(h) = g − gh is the approximation error,
classical results of numerical analysis (see e.g. [16]) state that

||δ||H−1/2(γ) ≤ Ch2.

2. Applications of operators T and (T ′(·))∗ require to solve Dirichlet prob-
lems for the Laplace operator in nontrivial domains. As pointed out previ-
ously, these problems are solved numerically, by means of piecewise linear
finite elements. This kind of approximation basically relies on the replace-
ment of the infinite dimensional functional spaces of the solution of the
differential problems with finite dimensional subspaces (piecewise linear
functions in our case).

More precisely, if uh(p) denotes the finite element solution to problem (2),
we set

Thp =
∂uh(p)

∂n
|γ .
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Similarly, if w1
j,h(p), w2

j,h(p), j = 1, 2, ..., N, denote the finite elements solutions

to the Dirichlet problems (17), we set, for every ϕ ∈ H−1/2(γ),

(T ′
hp)∗ϕ = η = (η1, η2, ..., ηN ) (29)

where

ηj =

(
(ϕ,

∂w1
j,h

∂n
)H−1/2(γ),(ϕ,

∂w2
j,h

∂n
)H−1/2(γ)

)
, j = 1, 2, . . . , N. (30)

The generic iteration (27) (where we set for the sake of simplicity λ = 1)
is therefore solved in an approximate way, so that we resort to the numerical
iteration

pk+1
h = pk

h +
(
T ′

h(pk
h)
)∗ (

gh − Thp
k
h

)
, (31)

with p0
h = p0.

In order to investigate the impact of these numerical errors on the conver-
gence of the Landweber sequence, it is worth to introduce the following auxiliary
sequence

pk+1
a = pk

a +
(
T ′(pk

a)
)∗ (

gh − T pk
a

)
, (32)

with p0
a = p0, where the exact operators T and (T ′(·))∗ are retained and the

only source of perturbation is the approximation gh of g. Noisy Landweber
iterations in the form (32) have been extensively investigated in [18] in the
framework of the so-called Morozov discrepancy principle. In particular, Mo-
rozov stopping criterion for (32) states that iterations should be stopped for
k♯ = k♯(δ(h)) such that

||gh − T (pk#

)|| ≤ τδ(h) < ||gh − T (pk)|| for 0 ≤ k < k#(δ(h)), (33)

with an appropriate value of τ (> 5 in our case).
Under suitable assumptions on p0 and T ′ it has been proven in [18] (see

(3.1) and (3.2) in Theorem 3.1) that, if p is the convergence solution of the
exact Landweber method, then for δ → 0

||pk♯(δ)
a − p|| ≤ C

√
δ, (34)

i.e. for h → 0
||pk#(δ(h))

a − p|| ≤ Ch. (35)

Let us consider now the errors introduced by the finite element solutions
of the Dirichlet problems for the Laplace operator. More precisely, we give an
estimate for a given iteration index k of the difference pk+1

h − pk+1
a . Setting

ek
h,a = pk

h − pk
a by subtracting (32) to (31) we get

ek+1
h,a = ek

h,a +
(
T ′

h(pk
h)
)∗ (Thp

k
h − gh

)
−
(
T ′(pk

a)
)∗ (T pk

a − gh

)
=

ek
h,a +

(
T ′

h(pk
h)
)∗ (Thp

k
h − T pk

a

)
+((

T ′
h(pk

h)
)∗ −

(
T ′(pk

a)
)∗) (T pk

a − gh

)
.

(36)
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Assume that Ω(pk
h) and Ω(pk

a) satisfy assumptions (9), (10), (11) for each k.
Here and in the sequel C denotes a constant depending only on the a priori
assumptions (not necessarily the same at each occurrence).

Observe that

T (pk
a) − Th(pk

h) = T (pk
a) − T (pk

h) + T (pk
h) − Th(pk

h). (37)

The following inequality

||T (pk
a) − T (pk

h)||H−1/2(γ) ≤ C||ek
h,a|| (38)

stems from the Lipschitz continuity of T . We recall that

||T (pk
h) − Th(pk

h)|| = ||∂(u − uh)(pk
h)

∂n
||H−1/2(γ). (39)

The term on the right hand side depends on the finite element approximation
of the problem. Usual finite element estimates cannot be applied in this case
since the domain in general features re-entrant corners. This problem has been
investigated in [5], when it is proven that, if ω is the maximum internal corner
in the domain, the error between the exact solution u of a Laplace problem and
the linear finite element one uh is such that

||u − uh||H1 ≤ Chq||∇f̃ ||L2 , where q =
π

ω
− ε, (40)

being ε > 0 arbitrary. From the trace Theorem for Sobolev space (see e.g. [6])
we have:

||∂u

∂n
||H−1/2(γ) ≤ C||u||H1(Ω), (41)

yielding

||T (pk
h) − Th(pk

h)|| ≤ Chqk , with qk =
π

ωk
− ε, (42)

being ωk the maximum inner corner of the domain Ω(pk
h). The a priori assump-

tions (9), (10), (11) ensure that qk ≥ 1

2
. In fact, we have ωk ≤ π + 2arctanE

(see [2], Remark 3); then π
ωk

− ε ≥ 1
2 , from the arbitrariness of ε.

Collecting (37), (38) and (42) we get

||Thp
k
h − T pk

a||H−1/2(γ) ≤ C
(
||ek

h,a|| + hqk
)
. (43)

By exploiting similar arguments for the operator T ′(·)∗ it is possible to prove
that

||
((

T ′
h(pk

h)
)∗ −

(
T ′(pk

a)
)∗) (T pk

a − ga

)
|| ≤ C

(
||ek

h,a|| + hqk
)
, (44)

still with qk ≥ 1/2.
With a recursive argument, for k♯ = k♯(h) from (36), (43) and (44) it follows

||ek♯

h,a|| ≤ Ch1/2, (45)
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where C depends only on the a priori assumptions.
By exploiting (35), we can therefore conclude that

||pk♯(h)
h − p|| ≤ ||ek♯(h)

h,a || + ||pk♯(h)
a − p|| ≤ Ch1/2. (46)

This estimate proves that, if the discrepancy principle is used as stopping
criterion, the convergence rate is O(h1/2), when h → 0. Even if in practice
the stopping index k♯(h) cannot be explicitly determined, considerations above
clearly state that iterations should be stopped after an appropriate number of
iterations (see Sect. 3).

Finally, it is worth pointing out that estimate (46) is not sharp in general,
since we needed to retain the most pessimistic estimate for qk. If ω⋆ is the
largest interior angle associated with the solution p, estimate (46) for h small
enough can be heuristically replaced by

||pk♯

h − p|| ≤ Chq, (47)

with q ≈ min
( π

ω⋆
− ε, 1

)
. This is actually confirmed by numerical results

presented in the next Section.

2.2 Semi-iterative method

Basic idea of semi-iterative methods is to accelerate the convergence of an itera-
tive scheme by linearly combining a proper number of available approximations.
In the problem at hand, this yields the following s-step method

pk+1 = β0,kp
k + β1,kp

k−1 + . . . + βs−1,kp
k−s+1 + ωk

(
T ′(pk)

)∗ (
g − T pk

)
,

(48)
with

s−1∑

j=0

βj,k = 1, ωk 6= 0, k ≥ 0, 1 ≤ s < k + 1.

Scaled Landweber method corresponds clearly to set s = 1, β0,k = 1 and ωk = λ2

for all k ≥ 0. In (48) the number of steps and the coefficients βj,k and ωk have
to be properly selected for speeding up the convergence. In particular, referring
to the orthogonal polynomial theory, the following method for s = 2 has been
proposed in [4] and analyzed for the linear case in [12]:

β0,k = 1 +
(k − 1)(2k − 3)(2k + 2ν − 1)

(k + 2ν − 1)(2k + 4ν − 1)(2k + 2ν − 3)
, β1,k = 1 − β0,k,

ωk = 4
(2k + 2ν − 1)(k + ν − 1)

(k + 2ν − 1)(2k + 4ν − 1)
, β0,1 = 1, ω1 =

4ν + 2

4ν + 1
.

(49)

Here ν is a positive parameter to be fixed a priori. In the case of linear prob-
lems, it is possible to prove that Landweber method converges with rate at most
O(k−1/2), while Brakhage method can converge with optimal rate O(k−2ν), if
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the exact solution is smooth enough. It is worth pointing out that convergence
results similar to the ones for Landweber method still apply to the Brakhage
scheme for noisy data when the discrepancy principle is used as stopping crite-
rion.

Although these results hold only for the linear case, numerical results pre-
sented in the next section show that heuristic extension to out nonlinear problem
sometimes yields a relevant speed up in convergence.

3 Numerical results

In this section we present several test cases in order to demonstrate effectiveness
of our formulation and the Landweber and Brakhage schemes. Results have been
obtained by using linear finite elements implemented in the FreeFem code (see
[1]) on unstructured grids with size h. In all the cases presented, input gh has
been computed by solving the Laplace problem (2) on the corroded domain
Ωexact that is given. At each step k, residual is ||gh − Thp

k
h||H−1/2(γ).

In the sequel, index i stands for initial, index e for exact and index f for
final.
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Figure 3: First test case. Left: initial solution (xi = 0.1, yi = −0.2). Right:
final solution (exact solution: xe = 0, ye = 0).

3.1 An analytic test case

In this first test case, we refer to a domain Ω described in polar coordinates
by 0 ≤ ρ ≤ 1, 0 ≤ ϑ ≤ 3

2π. The accessible boundary Γ is represented by
ρ = 1, 0 ≤ ϑ ≤ 3

2π. Corroded boundary is given by the two straight lines for

ϑ = 0 and ϑ = 3
2π. The potential is analitically given by u = 2

3ρ2/3 sin(2
3ϑ)

corresponding to f = 2
3 sin(2

3ϑ). Polygonal boundary features only one point
(N = 1) placed in the origin. In Fig. 3 we illustrate the initial guess and
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the final solution obtained with the Landweber method after 12 iterations. In
Fig. 4 we illustrate a different initial guess and the corresponding final solution.
In this case the solution is obtained with Brakhage method after 8 iterations.
Landweber method obtains a similar result in 12 iterations. It is worth pointing
out that in this case the large interior angle at the first iteration does not prevent
the convergence.
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Figure 4: First test case. The analytical potential in this case is known. On the
left the initial guess. On the right the final solution.

Fig. 5 highlights the impact of the numerical discretization on the perfor-
mances of the method. A quite typical dynamics is evident, where the resid-
ual stains after a first strong reduction phase. On the left we illustrate the
residual associated with the Landweber method for four different mesh sizes
(h = 1/5, 1/10, 1/20, 1/40). At the centre, we show a detail at iteration 30 of
the picture on the left for h = 1/5, 1/10, 1/20. For h = 1/40 Landweber itera-
tion stopped at iteration 13, being below the fixed tolerance of 2 × 10−3. For
h → 0 residual tends to 0, as predicted in Sect. 3.1. Picture on the right illus-
trates results obtained with the Brakhage method, that are quite similar, since
the numerical error preventing the convergence depends on the mesh size and
not on the iteration scheme. On the basis of estimate (46) we expect that the
error ratio between the solution computed with a mesh size h and a mesh size
h

2
is greater than

√
2 ≈ 1.4142. Actually, in our case, assuming that k♯ = 10 is

the iteration indicated by the discrepancy principle, we have

error(h = 0.2, k = 10)

error(h = 0.1, k = 10)
= 1.71,

error(h = 0.1, k = 10)

error(h = 0.05, k = 10)
= 1.85.

As expected, our estimate is not sharp. If we replace (47) to (46), with ω⋆ =
3

2
π,

we get an error estimate with q = min(
2

3
− ε, 1) =

2

3
− ε. This means that when

13



h is halved, error is expected to be asymptotically reduced by a factor ≃ 1.5874,
which is closer to our numerical findings.
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Figure 5: Residual stagnation induced by the numerical errrors in computing
the Landweber iterations. On the left the overall picture, in the centre a detail
at the 30th iteration (Landweber). On the right the same for the Brakhage
method.

At the top of Fig. 6 we report the errors of the Landweber method (left)
and of the Brakhage one (on the right) for different sizes h of the mesh.

At the bottom of Fig. 6 we illustrate a comparison between Landweber
and Brakhage methods in terms of residual (on the left) and real error (on the
right) evolution, both for h = 1/20. Real error is computed as the distance of
the current guess from the origin (exact solution). Figures higlight the speed
up induced by the two-steps method. Similar results are obtained by selecting
different initial guesses.

Effectiveness of the two-steps method is also put in evidence by another
similar test case, still on a partially circular domain with N = 1, such that the
exact position of the polygon vertex this time does not correspond to the origin.
In particular, we have xe = 0.3, ye = −0.3. In Fig. 7 we illustrate the starting
guess and the final solution obtained with the Brakhage method. Comparison
with the Landweber method is reported too. Speed up induced by the two steps
method is still evident.

3.2 A two damaged zones test case

In this test case, we consider a rectangular domain where the upper bound is
damaged as illustrated in Fig. 8. On γ ≡ {0 ≤ x ≤ 2} we assume the potential
to be given by f = x(2 − x), extended by 0 on Γ \ γ ≡ {x = 0, 0 < y < 1} ∪
{x = 2, 0 < y < 1}.

The depths of the corroded parts are 0.25 and 0.125 respectively. This
case is similar to the one proposed in [17]. Exact boundary Σ is determined
by 7 points, namely p1e = (0.125, 1), p2e = (0.25, 0.75), p3e = (0.75, 0.75),
p4e = (0.875, 1.), p5e = (1.25, 1.), p6e = (1.5, 0.875), p7e = (1.75, 1.). Assume
the initial configuration of Σ to be the horizontal segment, that is yji = 1,
xji = xje for j = 1, 2, . . . , 7 (no erosion is assumed). Brakhage solution after
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Figure 6: Top: Error for Landweber (left) and Brakhage (right) methods. Bot-
tom: Comparison of the evolution of residual (left) and error (right) associated
with the Landweber and Brakhage methods (h = 1/20).
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Figure 7: A test case with an exact solution different from the origin. On the
left the initial guess, in the centre the final solution (obtained with the Brakhage
method), on the right the residual associated with the Landweber and Brakhage
method.
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148 iterations is illustrated in Fig. 9 (right). It is worth pointing out how the
presence of the two holes is qualitatively identified, having N = 7 points for the
identification of the damage (corresponding to 14 scalar degrees of freedom),
even if the initial guess is quite far from the exact solution. In Fig. 10 we
illustrate the estimates of the depth of the two damaged zones. The good
accuracy for the depth of the left hole (error less than 7%) is remarkable.

Obviously, better results are obtained by starting from a better initial guess.
Furthermore, if we assume to add information on the end points of the two
holes and, for instance, to fix y1 = y4 = y5 = y7 = 1 (so that we have 10
scalar degrees of freedom) the final solution dramatically improves. After 75
Landweber iterations for instance we get the solution

x1f = 0.117367 y1f = 1
x2f = 0.235924 y2f = 0.770033
x3f = 0.779409 y3f = 0.76744
x4f = 0.88397 y4f = 1
x5f = 1.24062 y5f = 1
x6f = 1.50133 y6f = 0.83888
x7f = 1.7603 y7f = 1

(50)

Actually, the depth of the holes are estimated with an error inferior to 2.5%
the left one and to 5% the right one.

3.3 A nongraph solution

In this case, we assume that the exact corroded domain is the one of Fig. 11 (left,
top), with p1e = (0.5, 1), p2e = (0.4, 0.75), p3e = (0.75, 0.5), p4e = (1.25, 0.5),
p5e = (1.6, 0.75), and p6e = (1.5, 1). On Γ we assume the same potential f as
in Sect. 3.2. Observe that the profile Σ is not a graph.

Starting from the initial points (see Fig. 11 top, right) p1i = (0.5, 1), p2i =
(0.5, 0.8), p3i = (0.8, 0.5), p4i = (1.2, 0.5), p5i = (1.5, 0.8), and p6i = (1.5, 1)
after 101 iterations (mesh with h=1/320, tolerance=0.00125) we get

x1f = 0.496335 y1f = 0.985879
x2f = 0.428203 y2f = 0.72529
x3f = 0.788482 y3f = 0.495723
x4f = 1.21865 y4f = 0.499341
x5f = 1.5684 y5f = 0.714707
x6f = 1.504 y6f = 0.9857

(51)

On the bottom of Fig 11 the 5th (left) and the 50th (right) iterations are illus-
trated. In Fig. 12 we report the evolution of the residual along the iterations.

3.4 Heuristic calculation of N

Our method assumes the a priori knowledge of the exact number N of the points
determining Σ. This is in principle a weak point of the method, since it is not
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Figure 9: Second test case with two distincts damaged zones. On the left the
initial (uncorroded) guess. On the right the final solution.
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Figure 11: Domain Ω for the test case of a non-graph solution (top, left), ini-
tial solution (top, right), solution after 5 iterations (bottom, left) and after 50
iterations (bottom, right) for the non graph boundary case.
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after 900 iterations (left, bottom) and final solution (right, bottom) for the test
case of Sect. 3.4.
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Figure 17: Error for the test case of Sect. 3.5 when the residual tolerance is
fixed as a function of the interior angle.

easy to find a reliable guess for N . However, let us consider the following test
case. Suppose that the exact solution is the domain depicted in Fig. 13. The
exact solution is given by p1e = (1, 0.5). On Γ we assume the same potential
profile f as in Sect. 3.2.

Actually, N = 1 is enough for computing the corroded profile. However, we
assume to start with the initial configuration in Fig. 14 (top, left), where N = 2
and the two initial points are p1′i = (0.75, 0.5) and p1′′i = (1.25, 0.5).

Numerical simulations show that the algorithm is able to find the coincidence
of the two redundant points (see Fig. 14 and Fig. 15). This suggests a possible
“trial and error” algorithm for computing a good guess of N . Basically, we
could:

1. solve the problem with an overestimated N ;

2. check if some points after an appropriate number of iterations are “close”
(in a way to be defined);

3. eliminate the redundant points and restart with the new value of N .

Observe that the analysis of the problem requires that the distance between
two consecutive vertices is large enough (see assumption (10)). This presumably
has an impact on the convergence rate, that in this case is remarkably slow. A
deep analysis of this approach is however beyond the aim of the present paper
and will be carried out elsewhere.
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3.5 Impact of the polygonal angle

As already observed, in the estimate (14) constant C2 depends on the a priori
assumptions i), ii), iii), iv) in Theorem 2.1, in particular on the Lipschitz
constant E. This constant (see Remark 3 in [2]) plays the role of a positive
lower bounds for the angles ωj , that is

ω = inf
j=1,2,...N

ωj ≥ π − 2 arctanE > 0. (52)

As ω decreases, also E decreases and at the same time constant C2 increases.
This implies that when the residual

∥∥T pk − g
∥∥

H−1/2(γ)
is fixed at a given toler-

ance, nevertheless the real error (that is the distance of the approximate vertexes
of Σ from the exact ones) gets worse when ω decreases. In order to verify this ef-
fect, we consider the domain represented in Fig. 16. Boundary Σ is determined
by three points

p1e =

(
3

2
− 3

n
,
1

2

)
, p2e =

(
3

2
− 2

n
, 1

)
, p3e =

(
3

2
− 1

n
,
1

2

)
, (53)

where n is a suitable integer parameter. On Γ we assume the same potential
profile f as in Sect. 3.2.

We have ω = arctan(0.5
n ). In the tests we considered n = 30, 40, 50, 60. The

initial guess is

p1i = (x1e,
3

4
), p2i = (x2e, 1), p3i = (x3e,

3

4
), (54)

the mesh h = 1
320 , the tolerance 0.0025.

After 40 iterations in all the cases the tolerance is satisfied. In Fig 17 on
the x-axis we have the minimum angle, on the y-axis the real error, that is the
distance between the vertices of the exact solution and those of the approximate
solution at the end of the iterative process. As expected, the real error increases
when the angle decreases. We point out that in this case when ω decreases,
ω ≡ maxj ωj increases correspondingly and the accuracy of the finite elements
computations is affected as stated in (40).

4 Conclusions

Polygonal representation of corrosion is an effective way for formulating the
problem of damage detection by electrical impedance tomography. After the
analysis carried out in [2], numerical results presented here, obtained with the
Landweber and Brakhage methods, show that this is an affordable approach
from the quantitative view point. In particular, large displacements and non-
graph corrosion profiles are detected. On the other hand, some drawbacks are
still present. Convergence can be quite slow, in particular when the domain fea-
tures small angles or a vertex close to its adjacent. Related to the latter problem
is the effective guess of the number of vertices. Finally, computational cost can
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be an issue for larger problems, being 2N differential problems to be solved at
each Landweber iteration. Comparison with other methods, and in particular
with the level set, is in order. However, results presented here are promising
and the polygonal modeling in our opinion deserves further investigations.
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