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Abstract

This pilot study is a product of the AneuRisk Project, a scientific pro-
gram that aims at evaluating the role of vascular geometry and hemody-
namics in the pathogenesis of cerebral aneurysms. By means of functional
data analyses, we explore the AneuRisk dataset to highlight the relations
between the geometric features of the internal carotid artery, expressed by
its radius profile and centerline curvature, and the aneurysm location. Af-
ter introducing a new similarity index for functional data, we eliminate

This research has been carried out within AneuRisk Project, a joint research program in-
volving MOX Laboratory for Modeling and Scientific Computing (Dipartimento di Matematica,
Politecnico di Milano), Laboratory of Biological Structures (Dipartimento di Ingegneria Strut-
turale, Politecnico di Milano), Istituto Mario Negri (Ranica), Ospedale Niguarda Ca’ Granda
(Milano), and Ospedale Maggiore Policlinico (Milano). The Project is supported by Fondazione
Politecnico di Milano and Siemens-Medical Solutions, Italia. We are especially grateful to
Edoardo Boccardi (Ospedale Niguarda Ca’ Granda), who provided the 3D-angiographies and
motivated our reaserch by posing fascinating medical questions, and to Luca Antiga and Marina
Piccinelli (Istituto Mario Negri), who performed the image reconstructions.
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ancillary variability of vessel radius and curvature profiles, through an iter-
ative registration procedure. We then reduce data dimension by means of
functional principal components analysis. Finally a quadratic discriminant
analysis of functional principal components scores allows to discriminate
patients with aneurysms in different districts.

1 Introduction

Cerebral aneurysms are deformations of cerebral vessels characterized by a bulge
of the vessel wall. This is a common pathology in adult population, usually
asymptomatic and not disrupting: epidemiological statistics (Rinkel et al. 1998)
suggest that between 1% and 6% of adults develop a cerebral aneurysm during
their lives. On the other hand, the rupture of a cerebral aneurysm, even if
quite uncommon - about 1 event every 10000 adults per year - is usually a
tragic event. Unfortunately, rupture preventing therapies, both endovascular
and surgical treatment, are not without risks; this adds to the fact that in
clinical practice general indications about rupture risk are still missing.

Even the origin of the aneurysmal pathology is still unclear. Possible expla-
nations, discussed in the medical literature, focus on the interactions between
biomechanical properties of artery walls and hemodynamic factors, such as wall
shear stress and pressure; the hemodynamics is in turn strictly dependent on vas-
cular geometry. See e.g. Hoi et al. (2004), Hassan et al. (2005), Castro, Putman,
and Cebral (2006). The study of these interactions is the main goal of AneuRisk
Project, a scientific endeavor which joins researchers of different scientific fields
ranging from neurosurgery and neuroradiology to statistics, numerical analysis
and bio-engineering.

Arteries are basically hollow cylindrical pipes, featuring three-dimensional
bends, branchings, bifurcations and progressive narrowing (“tapering”) from
proximal district (heart) to distal districts (peripheral circulation). Impact of
morphology on fluid dynamics has been largely investigated (see e.g. Berger,
Talbot, and Yao (1983)). An adimensional index, called Dean Number D, has
been proposed in order to describe different possible flow situations. D depends
on blood viscosity and density (quite easy to measure), mean velocity (to be
computed by numerical simulations) and on two geometric quantities: vessel
radius and curvature. Hemodynamics induced by these features is supposed to
play a relevant role in aneurysmal pathogenesis.

The present work stems from a conjecture grounded on practical experience
of neuroradiologists at Niguarda Ca’ Granda Hospital (E. Boccardi, personal
communication): cerebral arteries of patients with an aneurysm at the terminal
bifurcation of the Internal Carotid Artery (ICA), or after it, show peculiar geo-
metrical features. We support this conjecture through the exploration, by means
of functional data analysis tools, of the relations between aneurysm location and
the radius and curvature of the ICA, for the 65 patients included in AneuRisk
dataset. In brief: we highlight significant differences in the geometry of the
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last 3 cm of ICA of patients with an aneurysm located at or after the terminal
bifurcation of the ICA with respect to patients having an aneurysm before the
terminal bifurcation or healthy. The former patients have significantly wider,
more tapered and less curved ICA’s. Moreover within this group there is a lower
variability of radius and curvature of the ICA.

In Section 2, we briefly describe the dataset and its elicitation. In Section 3,
we present a data registration procedure that enables meaningful comparisons
across patients. In Section 4, we find the main uncorrelated modes of variabil-
ity of registered radius and curvature profiles, by means of functional principal
component analysis. In Section 5, a quadratic discriminant analysis of principal
components scores identifies the optimal number of principal components that
discriminate at best the patients with an aneurysm located at or after the ter-
minal bifurcation of the ICA from the remaining patients. Moreover this allows
to select representative geometries for numerical simulations. Conclusions are
drawn in Section 6.

2 Data Capture and Elicitation

The dataset of AneuRisk project is based on three-dimensional angiographies
of 65 patients hospitalized at the Neuroradiology Department of Niguarda Ca’
Granda Hospital, Milano, from September 2002 to October 2005. Some of these
patients are affected by an aneurysm along the left or right ICA, other patients
have an aneurysm at the terminal bifurcation of the ICA or after it; finally, a
few patients are healthy. None of the patients has other severe diseases affecting
the cerebral vascular system, apart for the possible aneurysm. Percentages of
females and males and of right and left ICA’s do not differ significantly from 1/2
(the p-values of the test for equal proportions are respectively 14% and 78%).
Ages - except for a superior outlier - appear normally distributed (the p-value
of Shapiro-Wilk test is 29%). Gender, ICA side and age (Figure 1) will not be
included in the statistical analysis because they are supposed to be related to
the aneurysmal pathology only through their effect on geometry.

The Integris Philips Allura Biplanar Unit (year 2001) working at the Neu-
roradiology Department of Niguarda Ca’ Granda Hospital produces for each pa-
tient a three-dimensional array of gray-scaled pixels: lighter pixels show pres-
ence of flowing blood in the related volume while darker pixels show absence of
flowing blood. This array is automatically generated by back-projection of 100
bi-dimensional angiographies (of 512× 512 pixels) taken spanning a total angle
of 240o, facing the patient, in a period of less than 5 seconds. During image
acquisition, 18 ml of nonionic hydrosoluble contrast agent is injected in the ICA
at a rate of 4 ml/s.

The reconstruction algorithm, devised and implemented at the Mario Negri
Institute, identifies the lumen of the ICA (the volume occupied by flowing blood).
The main geometrical features of the lumen are then described by means of the
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Figure 1: Left: barplots of relative frequencies of females and males, and of right
and left ICA’s. Right: boxplot of age for the 65 patients.

three spatial coordinates of its centerline, computed as the set of centers of
maximal spheres that can be inscribed in the vessel lumen, and by the radius of
lumen sections, computed as the radius of the maximal inscribed spheres (Figure
2). Details about the elicitation of these features are in Antiga, Ene-Iordache,
and Remuzzi (2003) and Piccinelli et al. (2007).

Hence, the i-th patient is represented by the function:

fi : Si ⊂ R −→ R4

s 7−→ fi(s) = (xi(s), yi(s), zi(s), Ri(s)) .

The abscissa parameter s measures an approximate distance along the ICA, from
its terminal bifurcation towards the heart. For conventional reasons, this abscissa
parameter takes negative values, to highlight that the direction is opposite with
respect to blood flow. Functions xi(s), yi(s) and zi(s) map s into the left-right,
up-down and front-back coordinates of the corresponding point of the centerline.
Note that these coordinates are not absolute but relative to the cubic volume
analyzed during the angiography. Moreover left carotids are left-right reflected
to make all ICA’s comparable. Finally, Ri(s) is the radius of the maximal
inscribed sphere centered in (xi(s), yi(s), zi(s)). The reconstruction algorithm
provides centerlines and radius only on a fine grid of points. Moreover, data are
affected by acquisition and reconstruction errors. Hence, regression techniques
are necessary to obtain continuous and differentiable estimates of the centerline
functions and thus to estimate their curvature profiles. Here we use kernel
polynomial regression, with fourth degree polynomials and gaussian kernel with
bandwidth equal to 3. A different approach, based on free knot regression splines,
is explored in Sangalli et al. (2007).

3 Data Registration

Centerline coordinates xi(s), yi(s) and zi(s) depends on the location of the
scanned volume. This nuisance could be simply removed by considering the first
derivatives x′i(s), y′i(s) and z′i(s), instead of xi(s), yi(s) and zi(s), the only infor-
mation lost being, in fact, the location of the scanned volume. Looking at first
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Figure 2: Example of a reconstructed vessel with an aneurysm. The transparent
grid represents the reconstructed surface, the colored lines represent the recon-
structed centerlines (with color referring to the maximal inscribed sphere radius)
and the main cube represents the scanned region.

derivatives (Figure 3) it becomes apparent that data display two types of vari-
ability: a phase variability and an amplitude variability. The former is strongly
dependent on the dimensions and proportions of patients skulls. In order to
make correct comparisons among the features fi, observed in different patients,
we need to separate these two types of variability (Ramsay and Silverman 2005),
and look for a new parameterization of each of the n = 65 centerlines. This can
be achieved by means of a registration procedure that, optimizing a similar-
ity criterion, finds 65 warping functions hi of the abscissa, leading to the new
registered feature functions f̃i:

f̃i = fi ◦ h−1
i ∀i = 1, . . . , n = 65 (1)

or equivalently:

f̃i ◦ hi = fi ∀i = 1, . . . , n = 65. (2)

Note that the registered features f̃i are obtained by moving the observed features
fi(s) to their “correct” location hi(s). The registration procedure thus separate
the amplitude variability, captured by the 65 registered functions f̃i, from the
phase variability, captured by the 65 warping functions hi, without loss of in-
formation. The function f̃i will be the main object of our study since we will
show that the information captured by the warping functions hi(s), i.e. phase
variability, is ancillary with respect to the scope of our analyses.
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Figure 3: The 65 first derivatives x′i(s), y′i(s) and z′i(s) before registration (left)
and the 65 first derivatives x̃′i(s), ỹ′i(s) and z̃′i(s) after registration (right). Solid
black lines are Loess estimates of the mean curves.

Following Ramsay and Silverman (2005), the 65 warping functions hi will
be elicited by maximizing, with respect to hi, a similarity index ρ between each
centerline and a reference centerline. It will be clear from the following discussion
that the choice of the similarity index ρ and that of the class W the warping
functions hi(s) belong to are intrinsically connected and that the couple ρ and
W jointly defines what is meant by phase variability.

3.1 Similarity Index

Two centerlines will be here asserted to have maximal similarity if they are
identical except for a shifting and/or a dilation along the main axes x, y and z.
Since location of the scanned volume and proportions of the skull change across
patients, different shifting and/or dilation for each axis must be admissible for
centerlines to have maximal similarity.

A similarity index for two parametric curves in R, namely two functions
from R in R, will be now introduced. This index will be later generalized for the
evaluation of the similarity between two parametric curves in R3, i.e. functions
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from R in R3.
Let gi ∈ L2(Si ⊂ R;R) and gj ∈ L2(Sj ⊂ R;R) be differentiable with

g′i ∈ L2(Si ⊂ R;R) and g′j ∈ L2(Sj ⊂ R;R), and let the domains Si ⊂ T
and Sj ⊂ T be closed intervals included in R such that Sij = Si ∩ Sj has
positive Lebesgue measure. Note that Sobolev imbedding theorem (Adams 1975)
guarantees that gi ∈ C0(Si ⊂ R;R) and gj ∈ C0(Sj ⊂ R;R). Assuming that
||g′i||L2(Sij) 6= 0 and ||g′j ||L2(Sij) 6= 0, the similarity index between gi and gj is
defined as:

ρ(gi, gj) =

∫
Sij

g′i(s)g
′
j(s)ds

√∫
Sij

g′i(s)2ds
√∫

Sij
g′j(s)2ds

. (3)

This is the cosine of the angle θij between first derivatives of the functions gi

and gj , when the inner product
∫
Sij

g′i(s)g
′
j(s)ds is introduced. Index (3) can

also be interpreted as a continuous version of Pearson’s uncentered correlation
coefficient for first derivatives.

The following useful properties of the similarity index ρ hold for any gi, gj ,
Si and Sj for which ρ(gi, gj) is defined:

(i) From Cauchy-Schwartz inequality it follows that:

|ρ(gi, gj)| ≤ 1.

(ii) Moreover:

ρ(gi, gj) = 1
m

∃A ∈ R+, B ∈ R : gi = Agj + B.

(iii) For all invertible affine transformations of gi and gj , say r1 ◦gi = A1gi +B1

and r2 ◦ gj = A2gj + B2 with A1, A2 6= 0,

ρ (gi, gj) = signum(A1A2) ρ (r1 ◦ gi, r2 ◦ gj) .

(iv) Any invertible affine transformation of the abscissa s, say r(s) = ms + p
with m 6= 0, does not affect the similarity index, i.e.:

ρ (gi, gj) = ρ (gi ◦ r, gj ◦ r) .

Remark. The similarity index ρ(gi, gj) can also be interpreted as a modified
version of the eigenvalue criterion used in Ramsay and Silverman (2005). Note
that here, differently from Ramsay and Silverman (2005), the maximal value of
the similarity index between two functions gi and gj is always 1 and it is not
increasing with the measure of Sij , or the magnitude of the observed features
(properties (i) and (ii)). This is crucial in our analysis because the functions
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fi have different domains, and the measure of these domains is modified by the
registration procedure.

For our purposes, a suitable generalization of the similarity index (3), for
two vectorial functions gi and gj from R into R3, is:

ρ(gi,gj) =
1
3
· [ρ(gxi, gxj) + ρ(gyi, gyj) + ρ(gzi, gzj)] . (4)

Properties (i) and (iv) still hold. Properties (ii) and (iii) hold with respect to a
different affine transformation on each component. In particular (ii) becomes:

(ii)’

ρ(gi,gj) = 1

m

∃A ∈ (R+)3,B ∈ R3 :





gxi = Axgxj + Bx

gyi = Aygyj + By

gzi = Azgzj + Bz

Note that (ii)’ holds for any vectorial generalization of the index (3) which
depends on gi and gj only through ρ(gxi, gxj), ρ(gyi, gyj) and ρ(gzi, gzj), and is
equal to 1 if and only if ρ(gxi, gxj), ρ(gyi, gyj) and ρ(gzi, gzj) are all equal to 1.
This property, instead, does not hold for the natural generalization:

∫
Sij
〈g′i(s);g′j(s)〉 ds

√∫
Sij
〈g′i(s);g′i(s)〉 ds

√∫
Sij
〈g′j(s);g′j(s)〉 ds

(5)

where brackets 〈 〉 refer to the euclidean inner product in R3. Indeed in this
case, property (ii)’ would hold if Ax = Ay = Az, i.e. if the dilation factor is the
same along all three axes. As explained at the beginning of this section, this is
not appropriate for our problem.

3.2 Registration Criterion

The ICA centerline of the i-th patient is a curve in R3 that is described by
the function ci(s) = (xi(s), yi(s), zi(s)). Since centerlines are regular curves in
Si, namely ci ∈ C1(Si ⊂ R;R3), and ||x′i||L2(Sj), ||y′i||L2(Sj) and ||z′i||L2(Sj) are
different from zero, the similarity index between two ICA centerlines is always
computable. The similarity index between each of the 65 ICA centerlines, and
a reference ICA centerline, will be now used in order to find the 65 warping
functions hi.

Assume the existence of a reference ICA centerline c0, defined on the interval
S0 =

⋃n
i=1 Si. In such hypothetical situation, the registration procedure would

8



consist in finding, for each patient i, the function hi, in a class W of warping
functions, that maximizes:

ρ(c̃i, c0) (6)

with c̃i = ci ◦ h−1
i . The choice of the class W must be consistent with the

similarity index ρ, in the sense that for each h ∈ W , if the warping function h
is applied to two different curves ci and cj , leading to ci ◦ h−1 and cj ◦ h−1, the
similarity index must not change:

ρ (ci, cj) = ρ
(
ci ◦ h−1, cj ◦ h−1

) ∀h ∈ W.

Property (iv) assures that this holds if W is the two-dimensional functional
convex space of strictly increasing affine functions. We will thus take:

W = {h : h(s) = ms + p with m ∈ R+, p ∈ R} (7)

so that the 65 optimal warping functions hi have the form:

hi(s) = mis + pi with mi ∈ R+ and pi ∈ R. (8)

Moreover the group structure of W , in particular the fact that W is closed with
respect to composition, supports the iterative procedure presented in the next
section.

3.3 Iterative Procedure

As suggested in Ramsay and Silverman (2005), since no reference ICA centerline
is in fact available, both the reference centerline c0 and the 65 warping functions
hi will be estimated by means of a Procrustes fitting criterion, implemented by
alternating expectation and maximization steps:

1. Expectation step:
The reference curve is estimated using all the curves obtained at the pre-
vious iteration. A new reference curve is obtained.

2. Maximization step:
Each curve is shifted and dilated in order to maximize its similarity with
the estimated reference curve. New curves are obtained.

The warping functions hi (Figure 4) are simply given by the composition of the
optimal warping functions found at each iteration:

hi = hiiterK ◦ . . . ◦ hiiter2 ◦ hiiter1 .

Technical details about the iterative procedure are reported in the last part of
this section.

The registration allows to obtain high value of the similarity index (4) for each
of the patients (Figure 4). The sample mean of the similarity index, between
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Figure 4: Left: similarity index between the 65 curves and the reference curve,
after each iteration step. Boxplots of the distribution of the similarity index
before registration and after 5 iterations are superimposed. Right: optimal
warping functions hi(s), each represented only on the respective domain Si.
The identity function is plotted in black.

patients centerlines and the estimated reference curve, increases from 0.80 to
0.93; moreover, its standard deviation decreases from 0.11 to 0.03. The fact
that, for each centerline, by means of a unique warping function of the abscissa
it is possible to simultaneously and effectively align its three spatial coordinates,
is strong evidence that the registration procedure is sound.

Visual inspection of first derivatives before and after registration (Figure 3)
confirms the fact that registered curves are much more similar than unregistered
ones. A more accurate look at Figure 3 shows that the variability in c̃′i is mostly
concentrated in the interval between values of abscissa -50 and -20. The presence
of very different behaviors in this region agrees with the fact (Krayenbuehl et al.
1982) that some patients have ICA’s with two siphons (S-shape ICA), others
with only one (Ω-shape ICA), and others with no siphon at all (Γ-shape ICA).
Here, a siphon is defined as a segment of the ICA included between two points
of approximately zero curvature of the centerline.

3.4 Technical details

During each expectation step, local second order polynomial regressions with
adaptive gaussian kernel with span 0.2 is used to estimate the first derivatives of
the reference centerline. An adaptive fitting method has been preferred in order
to keep the variance of the estimate as constant as possible along the ICA.

Note that the computation of the index ρ(c̃i, c0) does not require a new
differentiation of the warped function c̃i, since this can be simply obtained by
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the identity:

c̃′i(s) = c′i(h
−1
i (s))

1
mi

.

For ease of computation, during each maximization step curves are con-
strained to be shifted forward/backward no more than ±5 mm and to be in-
flated/deflated no more than ±10%. In any case, these constraints do not affect
the final optimum.

After each maximization step, a global affine transformation is applied to all
warping functions in order to have:

∑n
i=1 hi(s)

n
= s (9)

or equivalently:
∑n

i=1 mi

n
= 1

∑n
i=1 pi

n
= 0.

The reason for this rescaling is that, since no absolute reference curve exists, no
global drift, in terms of shifting and dilating, is desirable. Note that property
(iv) guarantees that the similarity between pairs of curves does not change as
long as the 65 curves are shifted and dilated all together with the constraint (9).

The iterative algorithm is stopped when the increments of the 65 similarity
indexes are all lower than 0.01 in the maximization step; from (i) this corresponds
to 1% of the achievable maximum for each index. This occurred after 5 iterations
of the algorithm (Figure 4).

4 Data Analysis

The following analyses will involve maximal inscribed sphere radius functions R̃i

and centerline curvature function C̃i obtained after registration of the original
functions Ri and Ci along to the optimal warping functions hi shown in Figure
4:

R̃i(s) = Ri(h−1
i (s))

C̃i(s) = Ci(h−1
i (s))

The curvature Ci(s) is computed as follows:

Ci(s) =
||(x′i(s) y′i(s) z′i(s))× (x′′i (s) y′′i (s) z′′i (s))||

||(x′i(s) y′i(s) z′i(s))||3

where the symbol × refers to the vector product in R3 and || || is the euclidean
norm in R3. Note that the registered curvature C̃i can be obtained either by
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tively before (left) and after (right) the registration procedure. Black lines show
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warping along hi the curvature of the centerline ci, or by computing the curva-
ture of the registered centerline c̃i.

Figure 5 shows the tapering of the ICA, i.e. the progressive reduction of the
average radius of the carotid toward the end (values of the abscissa roughly
greater than −30). Moreover, it shows that two peaks of curvature (the siphon
centers), are usually present at values of the abscissa of about −35 and −20. The
same figure also displays a gaussian kernel estimate of the probability density
function of aneurysms location along the ICA: most aneurysms are clustered in
two groups, both located in the terminal part of the ICA, where tapering is evi-
dent, and one located just after the last peak of curvature. These results provide
evidence of a link between morphology and aneurysms onset, likely induced by
hemodynamics.

We now analyze the autocovariance of radius profiles and of curvature pro-
files, in order to more deeply investigate their variability structure. The auto-
covariance function ΣG of a generic process G is defined as:

ΣG(t, s) = E [ (G(t)−E [G(t)]) (G(s)−E [G(s)]) ]

when the expected value exists. Since the 65 curves are known on different
intervals of the abscissa, the following analyses will focus on the interval where all
curves are available, i.e.for values of the abscissa between−33.7 and−8.0. Figure
6 shows the sample autocovariance function (separated in sample autocorrelation
and sample standard deviation) of registered radius profiles Σ̂ eR and registered
curvature profiles Σ̂ eC :

Σ̂ eR(t, s) =
1

n− 1

n∑

i=1

[
(R̃i(t)− R̃(t))(R̃i(s)− R̃(s))

]

Σ̂ eC(t, s) =
1

n− 1

n∑

i=1

[
(C̃i(t)− C̃(t))(C̃i(s)− C̃(s))

]
.

Some details of the structure of the radius sample autocovariance function
are amenable of an anatomical interpretation. First of all, the local minimum
of the variance of the radius near the value of the abscissa −13, and the weak
correlation of the radius measurements in close opposite neighborhoods of this
point (blocks structure), suggest that this is the average position of the dural
ring the ICA goes through before its terminal bifurcation. This is coherent with
the presence of two clusters of aneurysms locations along the ICA, before and
after this point, as evidenced in Figure 5. Note that this ring cannot be directly
detected through angiographies. Moreover, sample autocorrelation functions of
radius and curvature show that close points of the ICA have a weaker correlation
of the curvature than of the radius. Finally, there is negative correlation of the
curvature between points in proximity of the last peak of curvature and points
in the region of lower curvature between the two peaks. This means that, if
there is a segment of the certerline with very low curvature, a marked elbow is
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likely to occur just afterward, in order to enable the correct positioning of the
final bifurcation of the ICA. The registration procedure thus enables to highlight
some physical features common throughout the patients.

The autocovariance structure of radius and curvature profiles have been sep-
arately explored by means of Functional Principal Component Analysis (FPCA)
(Ramsay and Silverman 2005) in order to estimate the main uncorrelated modes
of variability of these two geometric quantities, and to find their effective dimen-
sionality. In this work, the main purpose of FPCA is dimension reduction, hence
an analysis based on the autocovariance function is preferred to the alternative
analysis based on the autocorrelation function.

The notations β̂Gk and λ̂Gk will respectively indicate the estimate of the k-
th eigenfunction and of the k-th eigenvalue of the autocovariance function ΣG.
The score corresponding to the i-th observed curve gi and the k-th estimated
eigenfunction β̂Gk is defined as the component along β̂Gk, of the i-th observed
curve gi centered around the sample mean g:

∫

S
(gi(s)− g(s)) β̂Gk(s)ds.

From now on, the analysis will focus only on the first and the second eigen-
functions of radius and curvature autocovariances. The reason for this choice is
related to the Quadratic Discriminant Analysis (QDA) that will be presented in
the next section. Figure 7 shows the estimates of the first and second eigen-
functions of radius and curvature. As suggested in Ramsay and Silverman
(2005), the eigenfunctions are not directly plotted; instead, sample means of
radius and curvature are plotted (solid lines), together with two curves obtained
by adding/subtracting, to the sample means, the estimated normalized eigen-
functions multiplied for the estimated standard deviation of the corresponding
scores. The first and second eigenfunctions for radius profiles β̂R1 and β̂R2, ex-
plain respectively 65.6% and 13.0% of the total variance (cumulative 78.6%).
The first and second eigenfunctions for curvature profiles β̂C1 and β̂C2, explain
respectively 33.4% and 18.2% of the total variance (cumulative 51.6%).

Eigenfunctions and corresponding scores can be interpreted as follows. Scores
corresponding to β̂R1 quantify the overall width of the ICA: lower values are
associated to wider ICA’s, and higher values to narrower ICA’s. Scores corre-
sponding to β̂R2 quantify the tapering effect: lower values are associated to more
tapered ICA’s, and higher values to less tapered ICA’s. Scores corresponding
to β̂C1 quantify the curvature of the ICA in proximity of the last peak of cur-
vature: lower values are associated to less curved siphons, and higher values to
more curved siphons. Finally scores corresponding to β̂C2 quantify the curva-
ture along the segment of the ICA between the two peaks of curvature: lower
values are associated to less curved segments, and higher values to more curved
segments.
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Figure 7: Estimates of the first (left) and the second (right) eigenfunctions for
radius (top) and curvature (bottom), and boxplots of the corresponding scores
for the two groups (red for Lower group and blue for Upper group).

5 Data Classification and Selection

We now focus on discriminating and characterizing, by means of the geometrical
features of the ICA, patients with an aneurysm located at or after the terminal
bifurcation of the ICA (Upper group) and patients with an aneurysm located
before the terminal bifurcation of the ICA or healthy (Lower group).

It is evident from inspection of the boxplots in Figure 7 that, for all four
eigenfunctions, the distributions of scores have different means and/or variances
in the two groups. This is confirmed by the F-tests for equal variances and T-
tests for equal means (degrees of freedom are computed according to Welch ap-
proximation and normality assumptions are verified by means of Shapiro tests).
Figure 7 reports the p-values of these tests. In particular, except for β̂C2, vari-
ances of scores of the Upper group are significantly lower than the ones of the
Lower group. Moreover, mean values of scores corresponding to β̂R1, β̂R2 and
β̂C2 are significantly lower in the Upper group than in the Lower group.

According to the proposed interpretations for the eigenfunctions β̂R1, β̂R2,
β̂C1 and β̂C2, these difference can be interpreted as follows:

1. The geometrical features described by β̂R1, β̂R2, β̂C1 and β̂C2 have smaller
variances in the Upper group than in the Lower group.

2. Patients in the Upper group tend to have on average wider and more
tapered ICA’s than those in the Lower group. Moreover they present a
less curved ICA between the two peaks of curvature.

Some of the differences detected through the analysis of FPCA scores can be
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Figure 8: Radius (top) and curvature (bottom) profiles for the 32 patients of the
Lower group (left) and for the 33 patients of the Upper group (right). Point-
wise sample medians (black lines) and the pointwise sample interquartile region
(colored regions) are superimposed.

roughly retrieved by visual inspection of the different distributions of radius and
curvature profiles illustrated in Figure 8.

We now perform a Quadratic Discriminant Analysis (QDA) (Hand 1981)
of FPCA scores, in order to investigate the relationship between geometrical
features and membership to the two groups.

Many aspects have to be taken into account when selecting the eigenfunctions
whose scores will be considered in the QDA:

1. A small value of the Actual Error Rate - the probability for a new case to
be misclassified - is required.

2. Variances of scores are monotonically decreasing with respect to the index
of eigenfunctions.

3. The efficiency of the estimates of the eigenfunctions and of the correspond-
ing scores is decreasing with respect to the index of eigenfunctions (Monte
Carlo simulations, not reported here, suggest that this phenomenon, al-
ready known for PCA, is also true for FPCA). This means that estimates
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Figure 9: L1ER (left) and APER (right), as function of kR and kC . Restrictions
for kR = kC are superimposed.

of the eigenfunctions and of the corresponding scores become progressively
worse as the index of eigenfunctions increases.

Hence, it is natural to select the optimal eigenfunctions set to be used for QDA,
among those of the form:

(β̂R1, β̂R2, . . . , β̂RkR
, β̂C1, β̂C2, . . . , β̂CkC

)

with kR and kC small enough.
In Figure 9, the effectiveness of the prediction rule induced by QDA is shown

as function of kR and kC . For kR = 2 and kC = 2, the minimum of the Leave-
One-Out Error Rate (L1ER) is reached and a marked elbow is also present in
the Apparent Error Rate (APER). These make kR = 2 and kC = 2 the joint
optimal choice for kR and kC . This corresponds to using, in QDA, only the
scores relative to the first and second eigenfunctions for radius and curvature.
According to L1ER, if kR = kC = 2 are used, 21.54% of the new patients would
be misclassified; hence, the number of misclassified patients, using the prediction
rule induced by QDA, is estimated to be less than half the number of patients
that would be misclassified by randomly assessing patients to the Lower or Upper
group without taking into account FPCA scores.

Estimated membership probabilities for the 65 patients using kR = kC = 2
are reported in Figure 10. Patients in the dataset are sorted according to group
membership probabilities. Different colors refer to the real membership of the
patients. Some facts have to be noticed:

1. Estimated Lower group membership probabilities, for the 32 Lower group
patients, range from 1 to almost 0. This means that a patient in the
Lower group may have geometrical features similar to those characterizing
the Upper group.
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L1ER = 21.54% APER = 15.38%

Abs. Lower Upper
Lower 23 9
Upper 5 28

Abs. Lower Upper
Lower 23 9
Upper 1 32

Rel. Lower Upper
Lower 35.38% 13.85%
Upper 7.69% 43.08%

Rel. Lower Upper
Lower 35.38% 13.85%
Upper 1.54% 49.23%

Cond. Lower Upper
Lower 71.88% 28.12%
Upper 15.15% 84.85%

Cond. Lower Upper
Lower 71.88% 28.12%
Upper 3.03% 96.97%

Table 1: Absolute, relative and conditional Confusion Matrices estimated ac-
cording to L1ER (left) and to APER (right). Rows labels refer to true classes,
column labels refer to predicted classes. L1ER and APER are also reported on
top.

2. Estimated Upper group membership probabilities for the 33 Upper group
patients are all, but one, greater than 0.5. This means that (nearly) no Up-
per group patient has geometrical features similar to those characterizing
the Lower group.

3. Many Lower group patients have an estimated Lower group membership
probability approximately equal to 1, while no Upper group patient has
such a high Upper group membership probability.

In terms of geometrical characterization of the two groups, these facts show that
the Lower group patients are more spread in the scores space, whereas the pa-
tients in the Upper group are concentrated in a smaller region, nested within the
region covered by the Lower group (Figure 11). Upper group patients can thus
be interpreted as a subpopulation characterized by better defined geometrical
features.

These conclusions are confirmed by inspection of the conditional error rates
(Table 1): according to L1ER, predicting correctly a Lower group patient is more
difficult than predicting correctly an Upper group patient; in fact the probability
of misclassifying a patient belonging to the Lower group (28.12%) is nearly twice
as big as the probability of misclassifying a patient belonging to the Upper group
(15.15%).

Estimated membership probabilities to the two groups are also used to se-
lect patients whose ICA’s evidence those features that better distinguish them
from the other group. The ICA geometries of these patients will be used for
fluid-dynamic numerical simulations in order to investigate the impact of mor-
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Figure 10: Estimated Lower/Upper group membership probabilities for the 65
patients. Red empty dots refer to the healthy patients of the Lower group.

phological features on hemodynamics.
Finally, T-tests, F-tests and a Linear Discriminant Analysis (Hand 1981),

are used to analyze stretching factors mi and shifting factors pi determined in
the registration phase of the analysis, as described in Section 3. The results of
these analyses show that no significant difference exists between the two groups,
relative to means and variances of stretching factors mi and shifting factors pi.
Hence, the information captured by warping functions is ancillary to the problem
of classification, confirming the effectiveness of the registration procedure.

6 Conclusions

The statistical analysis highlights significant differences in the the geometry of
the last 3 cm of Internal Carotid Arteries of patients with an aneurysm located at
or after the terminal bifurcation of the ICA (Upper group) and patients with an
aneurysm located before the terminal bifurcation of the ICA or healthy (Lower
group). These differences refer to both radius and curvature of the ICA. The
Upper group patients present significantly wider and more tapered ICA’s than
the patients of the Lower group; the segment of ICA between the two peaks of
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Figure 11: Scatterplot of FPCA scores (red for the Lower group and blue for
the Upper group).

curvature is less curved in patients of the Upper group than in patients of the
Lower group. Moreover variability related to geometrical features is much lower
within the Upper group than within the Lower group. Geometrical features
are well synthesized through projections on the first two functional principal
components of radius and curvature. A Quadratic Discriminant Analysis of
principal components scores allows to select cases for numerical simulations.

The results presented here, if confirmed on a larger dataset, can support
clinical practice. Indeed, they could be appropriately included in the output
generated by the image acquisition device, providing immediate decision support
to medical doctors.
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