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Abstract

In clinical practice many situations can be modelled in the framework of recurrent events.
It is often the case where the association between the occurrence of events and time-to-event
outcomes is of interest. The purpose of our study is to enrich the information available for
modelling survival with relevant dynamic features, properly taking into account their possi-
bly time-varying nature, as well as to provide a new setting for quantifying the association
between time-varying processes and time-to-event outcomes. We propose an innovative
methodology to model information carried out by time-varying processes by means of func-
tional data. The main novelty we introduce consists in modelling each time-varying variable
as the compensator of marked point process the recurrent events are supposed to derive
from. By means of Functional Principal Component Analysis (FPCA), a suitable dimen-
sional reduction of these objects is carried out in order to plug them into a survival Cox
regression model. We applied our methodology to data retrieved from the administrative
databases of Lombardy Region (Italy), related to patients hospitalized for Heart Failure
(HF) between 2000 and 2012. We focused on time-varying processes of HF hospitalizations
and multiple drugs consumption and we studied how they influence patients’ long-term sur-
vival. The introduction of this novel way to account for time-varying variables allowed for
modelling self-exciting behaviours, for which the occurrence of events in the past increases
the probability of a new event, and to make personalized predictions, quantifying the effect
of personal behaviours and therapeutic patterns on survival.

Key-words: Functional data analysis; Survival models; Marked point processes; Recurrent event pro-
cesses; Administrative databases; Heart failure
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1 Introduction
In clinical practice many situations can be modelled in the framework of recurrent events, i.e.
the repeated occurrence of the same type of events for the same patient over time. Chronic
patients are usually involved in long-term therapies, that are often characterized by repeated
situations like office visits, subsequent drugs assumption, hospital admissions and many others.
Examples include recurrences in breast cancer,1 asthma attacks in asthma,2 episodic relapses
of follicular lymphoma,1 readmission after colorectal cancer,3 epileptic seizures in epilepsy4 or
re-hospitalizations in Heart Failure (HF),5–7 which will be the context considered for the present
work. Heart Failure (HF) is a major and growing public health issue, characterized by high costs,
steep morbidity and mortality rates.8 Despite the advances in the understanding the pathophys-
iology of chronic HF and the improvement of therapy, HF mortality and morbidity rates remain
high.9,10 However, different studies proved that a proper and monitored drug intake in HF pa-
tients could improve their clinical status, functional capacity and quality of life, prevent hospital
admission and reduce mortality.11 HF patients are usually in a polytherapy, i.e. they usually take
multiple drugs at the same time. Since models capable of simultaneously treating multiple drugs
have not been well developed in pharmacotherapy, it could be interesting to concomitantly anal-
yse more than one medication at the same time. Repeated clinical events of any type constitute
the patient’s clinical history and carry out information that may be related to patient’s health
status, disease progression and prognosis. Representing the whole evolution of patients’ clinical
history through dynamic processes, properly taking into account their time-varying nature, is
then the natural and most appropriate way to look at these events. Moreover, it is often the
case where the association between the occurrence of clinical events and time-to-event outcomes
(e.g. time to treatment failure or death) is of interest. Interests lie both in the dynamics of
time-varying recurrent processes themselves and in the final outcome. Studying their relation-
ship could also offer new insights into the direction of personalised treatment, representing a
challenging task both for clinical and statistical research.

In biostatistical, epidemiological and medical literature, several approaches to analyse recur-
rent event data have been proposed.12–14 Different methods differ in the assumptions and in the
interpretation of the results, but they all take into account the correlation between repeated
events regarding the same individual. The most frequently applied method for recurrent event
data is the model by Andersen-Gill (AG),15 which is an extension of the Cox proportional-hazard
model.16 The AG model introduces the counting process formulation in terms of increments in
the number of events along time. It assumes that the correlation between event times for an
individual can be explained by past events, which share a common baseline hazard. In this way,
the dependence could be captured by appropriate specification of time-varying covariates which
are functions of the realisation of past events, such as the number of previous occurrences. This
model is usually indicated for analysing data when correlations among events for each individual
are induced by measured covariate and the interest lies in the overall effect on the intensity of the
occurrence of the event.12 Another approach is the Prentice-Williams-Peterson (PWP) model,17
which incorporates the order of events. The PWP model17 analyses multiple events ordered by
stratification, based on the prior number of events during the follow-up period. It can incorporate
both overall and event-specific effects for each covariate. However, it can give unreliable esti-
mates for higher order of events.12 As a further alternative, Cox’s model can be extended using
frailty models,18–21 in which a random covariate that induces dependence among the event times
is introduced. This approach assumes that recurrent event times are independent conditional on
the covariates and random effects, and it is used to model individual patients’ heterogeneity in
the baseline hazards. In addition, models able to connect several event processes (recurrent and
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fatal/non-fatal ones) have been proposed.13 Among others, multi-state models21,22 can be used
to model several event time processes and are fully characterised through estimation of transi-
tion probabilities between states. Therefore, the choice of the proper approach for the analysis
of recurrent event data will be determined by many factors, including among others, number of
the events, relationship between subsequent events and biological processes.12

Aforementioned methods are used to analyse single or several event processes, possibly con-
necting them to another event of interest. However, none of these approaches has been used to
extrapolate information from repeated events in the form of dynamic functional covariates, and
then study how these covariates affect other specific events, such as patient’s death. Information
related to the dynamic history of patient’s recurrent events could be obtained exploiting vari-
ous sources, including administrative databases. In fact, in recent years the use of computers,
mobile devices, wearables and other biosensors allowed to gather and store huge amounts of
health-related data, which are collected in administrative healthcare databases. Administrative
data address ’operational’ goals, since they are collected mainly for managerial and economic
purposes, but are increasingly used also for clinical and epidemiological purposes.23 In particular,
they allow to reconstruct patients’ clinical history, leading to a new kind of epidemiological re-
search based on real-time availability and low-cost data,24 often referred as "Real-World Data".
However, the validity of using administrative databases is critically dependent on the reliability
of the data, the accuracy of disease coding in the administrative records and the possible oc-
currence of mismatches or incoherences during linkage strategies,24–26 Nevertheless, in the last
decade significant improvements have been gained in administrative databases, and their use in
clinical biostatistics has become an accepted practice, representing a great challenge for statistics
and related modelling.24

For all these reasons, within this study we aim to analyse the impact of re-hospitalizations,
which usually herald a substantial worsening of the long-term prognosis, and subsequent con-
sumption of different drugs regarded as time-varying covariates on the time to death of the pa-
tients, that is the time-to-event outcome of interest. Data are retrieved from the administrative
databases of Regione Lombardia - Healthcare Division,27 within the research project described
in Mazzali et al.28 A key characteristic of HF is that it is a pathology that alternates phases of
stability to sudden worsening of the patient’s condition. For this reason, it is not possible to
assume a stationary pattern for critical events, as also underlined by Baraldo et al.6 Our idea
is to look at time-varying recurrent events for a set of individuals as particular non-stationary
stochastic counting processes which can depend on their past marks, i.e., marked point processes.
Exploiting aforementioned models for recurrent events, we take into account many aspects that
influence the event risk and we compute the realized trajectories of the cumulative hazard func-
tions underlying the event processes. Cumulative hazard functions, also called compensators of
the stochastic processes, can be then though as positive non-decreasing L2-functions over the
temporal domain. Therefore, we can make use of Functional Data Analysis29 to extract and
summarize their main features with the aim of enriching the information available for modelling
survival with relevant dynamic features, as well as to provide a new setting for quantifying the
association between time-varying processes and patients’ long-term survival.

In this work we then propose a new methodology able to effectively extract and resume in-
formation from (possibly multivariate) functional data, intended as trajectories of compensators
representing recurrent events, which could influence the time-to-event outcome of interest, plug-
ging them into a suitable functional Cox’s regression model.30 Our procedure can be divided
into two phases, the first concerning the representation of time-varying covariates and the sec-
ond related to the modelling of such covariates in a time-to-event framework. Firstly, patients’
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clinical history data retrieved from administrative database are used to model the cumulative
hazard functions related to the processes of HF hospitalization and drugs purchase as a proxy of
drugs intake. In particular, among the aforementioned methods to deal with recurrent events,
we model the cumulative hazard functions through AG Cox models for counting processes.15
The main novelty we introduce in this work consists in modelling each longitudinal process as
the compensator of a marked point process the recurrent events are supposed to derive from.
In this first part we end up with time-varying covariates representing the dynamic evolution of
the events risk, which can be though as positive non-decreasing L2-functions over the temporal
domain and are therefore smoothed accordingly. The second phase is motivated by the pur-
pose of enriching the information available for modelling survival with these dynamic features.
Therefore, we apply Functional Principal Component Analysis (FPCA)29 in order to perform a
dimensionality reduction and summarise information emerging from the functional compensators
to a finite set of covariates, while loosing a minimum part of the information. Scores resulting
from FPCA are then included into a predictive functional Cox’s model for long-term survival,
adjusting for patients’ baseline characteristics. In doing so, we also provide a new setting for
quantifying the association between time-varying processes and patients’ long-term survival.

The remaining part of the paper is organized as follows. Section 2 describes the real admin-
istrative HF database analysed within this work. Section 3 presents the methodology, with a
detailed description of the reconstruction of compensators related to suitable marked point pro-
cesses for recurrent events in Section 3.1. Section 4 reports the application of the methodology
proposed in Section 3 to HF administrative database. Finally, Section 5 contains some conclud-
ing remarks, discussion of strengths and limitations of the proposed approach and opportunities
for future works. All the analyses are carried out using the software R.31

2 Dataset
In this section we describe the real case-study analysed within this work. In Section 2.1 we
introduce the administrative data sources. In Section 2.2 we describe the study design and the
outcome measure.

2.1 Administrative data sources
The project database was built for non-paediatric (age ≥ 18 years) patients living in Lombardy
(one of the biggest and most populated Italian region, accounting for 10 million residents) hos-
pitalized with a principal diagnostic code of HF between January 2000 and December 2012.28
Data were provided by Regione Lombardia - Healthcare Division,27 within the research project
described in Mazzali et al.28 Enrolment occurred from the date of discharge of the first HF
hospitalization (i.e. the index date). In order to protect privacy, information retrieved from the
different databases were linked via a single anonymous ID (identification) code. Details regarding
data extraction and selection are discussed in Mazzali et al.28

Patients’ clinical history of hospitalizations or drugs assumption could be reconstructed using
data related to i) patient admission to hospital (Hospital Discharge Charts - HSC), which contain
data related to hospital admissions and time to death (or administrative censoring), ii) pharma-
ceutical purchases, which provide information on the number and times of drug purchases. Since
data on drugs prescriptions were nor publicly available neither accessible, the approximation of
drug consumption with drug purchase was the only viable option. Examples and limitations of
using this approach into a pharmacoepidemiological setting are discussed by Spreafico et al.32
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Each record in the dataset was therefore related to an hospitalization or a drug purchase of a
given patient. With regard to ordinary hospital admission, the date of discharge from hospi-
tal and the length of stay in hospital were retrieved. For drug purchases, identified by their
Anatomical Therapeutic Chemical (ATC) codes (WHO Collaborating Centre for Drug Statistics
Methodology website: https://www.whocc.no.), the date of purchase and the number of days
of treatment covered by the prescription, based on the number of boxes and the Defined Daily
Dose (DDD)33 for that specific medicinal product, were retrieved. Among the disease-modifying
drugs for HF patients,11,34,35 we focused on Angiotensin-Converting Enzyme (ACE) inhibitors,
Beta-Blocking (BB) agents and Anti-Aldosterone (AA) agents.

2.2 Study design and outcome measure
In this work we focused on a representative sample of the administrative database of Lombardy
Region related to patients with their first HF discharge between January 2006 to December 2012,
excluding subjects who died during the index hospitalization. A 5-years pre-study period from
2000 to 2005 (Figure 1) was used in order to consider only "incident" HF patients, i.e. patients
with no contacts with healthcare system in the previous five years due to HF. The study-period
started from the first discharge for HF (index time Tstart in Figure 1) and was divided into
the observation period (365 days from the index discharge date), used for the compensators re-
construction, and the follow-up period, used for the survival analysis, whose starting time was
T0 = Tstart + 365. The modelling of the compensators related to the stochastic processes of
interest regarded the time interval [Tstart;T0] in Figure 1. Therefore, only patients alive at the
end of the observation period were selected in the study cohort and followed up to observe sur-
vival outcomes. We underline that this choice, necessary for the reconstruction of compensator
trajectories, could imply a survival bias in case of the exclusion of too many early dying patients
(that is not our case since only 6.8% of patients died during the observation period).

Study outcome of interest was patient’s death for any cause. Deaths were collected from the
Hospital Discharge Forms Database (for in-hospital deaths) or Vital Statistics Regional Dataset
(for out-hospital deaths). For the survival analysis, each patient was followed from the end of the
observation period until the end of the study or the date of death (see Figure 1). Hence, the long
term survival of each patient was measured on the time interval [T0;Tend]. The administrative
censoring date was December 31st, 2012.

Figure 1: Study design for a HF patient of the study cohort. The pre-study period is used to defined
"incident" HF patients. The observation period is used for the selection of patient’s clinical history and
the compensators reconstruction. The follow-up period is used for survival analysis. Tstart is the time
instant the patient is discharged by her/his first hospitalization and enrolled into the current study.
T0 = Tstart + 365 is the starting time of the follow-up. Tend is the minimum between the death or the
administrative censoring (December 31st, 2012).
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3 Statistical Methodologies
We now introduce and describe the methodology of our work declined on the case study of
interest. In Section 3.1 we focus on the main novelty introduced by the present work, i.e., the
idea of representing the compensators of suitable marked point processes for recurrent events as
functional covariates possibly affecting the outcome process of interest. In Section 3.2 we resume
the entire procedure of our analysis.

3.1 Marked point process formulation for recurrent events
Let’s consider a set H recurrent events for a set of n individuals as stochastic processes. Let’s
use marked point process for recurrent events,36 where a jump mark m

(h)
i,j is associated to each

jump time t(h)i,j , where h ∈ H, i ∈ {1, ..., n} and j ∈
{

0, 1, ..., n
(h)
i

}
are respectively the process,

the subject and the jump indices and n(h)i is the total number of events of type h experienced by
the i-th subject. The observations (possibly censored) may be considered as the realisation of
N

(h)
1 , ..., N

(h)
n processes, where N (h)

i is the stochastic process which counts the observed events
(or jumps) of the process h in the life of the i-th individual (in our case during the observation
period). According to the Doob-Meyer (D-M) decomposition theorem,37 each counting process
N

(h)
i (t) can be seen as:

N
(h)
i (t) = M

(h)
i (t) + Λ

(h)
i (t) = M

(h)
i (t) +

∫ t

0

λ
(h)
i (s)ds (1)

where M (h)
i (t) is a zero-mean uniformly integrable martingale which represents the residual of

the process, and Λ
(h)
i (t) =

∫ t
0
λ
(h)
i (s)ds is a unique predictable, non-decreasing, cadlag (right-

continuous with left limits) and integrable process, i.e. the compensator (or cumulative hazard).
This compensator may be thought as a positive non-decreasing L2-function over the temporal
domain and will be the core of our modelling effort.

A counting process where jumps may have different size can be modelled as a point process,
assuming that a given distribution regulates the size of the jumps. A marked point process is
then the couple of processes describing the behaviour of jumps and marks, and it is usually
modelled through the conditional intensity function λ(h)

(
t,m(h)

∣∣F (h)
t

)
, i.e. the expected rate

of event h at time t with marks m(h):

λ(h)
(
t,m(h)

∣∣F (h)
t

)
= λ(h)g

(
t
∣∣F (h)
t

)
f (h)

(
m(h)

∣∣F (h)
t

)
(2)

where h is the process of interest, F (h)
t is the filtration of the process itself and it is interpreted

as the history of realisations of the process itself, λ(h)g is the intensity process of the counting
process, also called ground intensity, and f (h) is the multivariate density of the marks m(h).
Using this formulation, conditional independence of jump times and marks is assumed.

To handle recurrent events and allow predictors to change over time, we use the counting
process formulation of the Cox model for recurrent events introduced by Andersen and Gill15 and
we assume a particular distribution for the marks in order to ease computations. Under these
hypotheses, for each event h the conditional intensity function λ(h)i (t) of patient i in Equation
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(2) takes the form:

λ
(h)
i (t) = Y

(h)
i (t)λ

(h)
0 (t) exp

{
β(h)T x

(h)
i (t)

}
exp

{
γ(h)T z

(h)
i (t)

}
= Y

(h)
i (t)λ

(h)
0 (t) exp

{
β(h)T x

(h)
i (t) + γ(h)T z

(h)
i (t)

} (3)

where x
(h)
i (t) is the possibly time-dependent vector of covariates of the i-th individual, z(h)i (t)

is the time-dependent vector of covariates related to the marks m(h)
i of the i-th individual, β(h)

and γ(h) are fixed vectors of coefficients, λ(h)0 is the underlying hazard function shared across
patients, and Y (h)

i is a predictable process taking values in {0, 1}. Whenever Y (h)
i = 1, the i-th

individual is under observations, i.e. Y (h)
i takes the role of the censoring variable.

The estimation of the parameters β(h) and γ(h) is based on a partial likelihood function,16 and
maximised by applying the Newton-Raphson iterative procedure.38 ∀h ∈ H the baseline cumula-
tive hazard Λ

(h)
0 (t) =

∫ t
0
λ
(h)
0 (s)ds can be estimated using the Breslow estimator39 Λ̂

(h)
0 (t), which

returns step-function. However, since true underlying functions Λ
(h)
0 (t) are absolutely continu-

ous, we smooth the estimates using the approach adopted in Baraldo et al,6 obtaining regularised
version of Λ

(h)
0 (t), namely Λ̃

(h)
0 (t).

Let’s now consider t(h)i,0 < t
(h)
i,1 < ... < t

(h)

i,N
(h)
i (τ)

the realised jump times of process N (h)
i (t),

with τ equal to the censoring time (possibly equal for all individuals or not), t(h)i,0 = 0 ∀h, i and
n
(h)
i = N

(h)
i (τ)∀h, i. In our case, τ is the censoring time of the observation period, i.e. T0 in

Figure 1. We can express the realisations of each compensator Λ
(h)
i (t) for the process h of the

i-th patient as a function of Λ
(h)
0 (t), β(h) and γ(h):

Λ
(h)
i (t) =

∫ t

0

λ
(h)
i (s)ds =

∫ t

0

Y
(h)
i (s)λ

(h)
0 (s) exp

{
β(h)T x

(h)
i (s) + γ(h)T z

(h)
i (s)

}
ds

=

N
(h)
i (t)∑
j=1

∫ min
(
t
(h)
i,j ,t

)
t
(h)
i,j−1

λ0(s) exp
{
β(h)T x

(h)
i (tj−1) + γ(h)T z

(h)
i (tj−1)

}
ds

=

N
(h)
i (t)∑
j=1

exp
{
β(h)T x

(h)
i (tj−1) + γ(h)T z

(h)
i (tj−1)

}[
Λ
(h)
0

(
min

(
t
(h)
i,j , t

))
− Λ

(h)
0

(
t
(h)
i,j−1

)]
(4)

An estimate of the compensator in Equation (4) can be then obtained as:

Λ̂
(h)
i (t) =

N
(h)
i (t)∑
j=1

exp

{
β̂
(h)T

x
(h)
i (tj−1) + γ̂(h)T z

(h)
i (tj−1)

}[
Λ̃
(h)
0

(
min

(
t
(h)
i,j , t

))
− Λ̃

(h)
0

(
t
(h)
i,j−1

)]
(5)

where β̂
(h)

and γ̂(h) are the estimated vectors of coefficients and Λ̃
(h)
0 (t) is the smoothed estimate

of the cumulative baseline hazard.

To check the fitting of Λ̂
(h)
i (t), we have to verify whether the estimates of martingale residuals

M
(h)
i (t) involved in the D-M decomposition (1), i.e. the residuals40 given by

M̂
(h)
i (t) = Λ̂

(h)
i (t)−N (h)

i (t), (6)
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may be effectively considered as realisations of zero-mean martingales. In order to do so, we can
plot the residuals evaluated in the whole observation period and check if the average residual
curve M̄ (h)(t) = 1

n

∑n
i=1 M̂i

(h)
(t) is approximately close to 0 over time.

This formulation extends the one proposed in Baraldo et al,6 allowing the counting processes
to depend on their marks and setting up a framework for multiple processes to be considered.
In fact, applying this procedure ∀h ∈ H, we end up with a multivariate time-dependent data
for each patient, characterizing her/his recurrent events dynamics during the the observation
period T0 − Tstart. These compensator trajectories may be thought as patient-specific time-
varying covariates and, mathematically speaking, as positive non-decreasing L2-functions over
the temporal domain [Tstart;T0].

3.2 Methodological procedure
The entire procedure may be resumed in four steps. Steps 1 and 2 are devoted to reconstruct the
compensators of suitable marked point processes as time-varying (functional) covariates. Steps
3 and 4 set up a suitable framework for including such time-varying covariates in a time-to-event
model.

1. Data preprocessing & clinical history
We first select the cohort of patients being part of the analysis, i.e. incident patients
survived at least for one year. Then we identify the set H of longitudinal events of interest
to be modelled as marked point processes for recurrent events. In particular, we select only
events happened during observation period, i.e. the events related to the clinical history of
each patient.

2. Modelling compensators of marked point processes
For each event h ∈ H, we reconstruct the compensator trajectories of the marked point
processes for recurrent events through Equation (5), applying the theoretical and mathe-
matical formulation introduced in Section 3.1.

3. Summarize compensators through FPCA
The compensator trajectories computed at Step 2 may be thought as patient-specific time-
varying covariates and, mathematically speaking, as positive non-decreasing L2-functions
over the temporal domain [Tstart;T0]. Therefore, we apply Functional Principal Component
Analysis (FPCA)29 in order to perform a dimensionality reduction and summarise infor-
mation emerging from the functional compensators to a finite set of covariates (scores) to
be plugged into a model for patients’ survival.

4. Predictive survival Cox’s model
We apply 10-fold cross validation to select the best set of covariates among patients’ baseline
characteristics and scores resulting from the FPCA on compensators, according to the
highest Concordance Index.41 Finally, we fit a functional Cox regression model30 in order
to quantify the association between time-varying processes and patients’ long-term survival.

4 Application and Results
We now proceed with the application of the four steps to the administrative database of Lombardy
Region, in order to study how processes like re-hospitalizations and multiple drugs consumption
affect long-term survival in HF patients.
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4.1 Step 1: Data preprocessing & clinical history
We focused on a representative sample of the administrative database of Lombardy Region re-
lated to 4,872 patients with their first HF discharge between January 2006 to December 2012.
Excluding patients who died during the observation period, a final cohort of n = 4, 541 (93.2%)
patients was selected. Overall, at index hospitalization, mean age of the study cohort was 73.98
years (s.d. = 11.37) with a percentage of male patients equal to 54.4% (2,466 patients). The
median value of long-term survival was 37.32 (IQR 20.53-54.93) months. At administrative cen-
soring date 1,200 patients (26.4%) were dead and 3,341 (73.6%) were censored.

We identified four types of stochastic processes of interest: hospitalizations due to HF, pur-
chases of ACE, BB and AA drugs, identified by their ATC codes. Hence, the set of recurrent
events of interest was H = {h : ACE,BB,AA,HF hosp}. In particular, we selected only events
within the observation period (censoring time τ = T0). For each patient i ∈ {1, . . . , n = 4, 541},
repeated events of process h were modelled as a marked point process N (h)

i (t), with jump times
t
(h)
i,j equal to event times (i.e. date of j-th admission in hospital or date of j-th drug purchase)
and jump marks m(h)

i,j equal to the length of stay in hospital or the duration of drug coverage

respectively, where j ∈
{

0, 1, . . . , N
(h)
i (τ)

}
. Figure 2 shows the counting processes N (h)

i (t) de-
scribing ACE purchase (top-left panel), BB purchase (top-right panel), AA purchase (bottom-left
panel) and HF hospitalization (bottom-right panel) for a sample of 500 HF patients belonging
to the administrative database. As expected, they are non-decreasing step functions over the
observation period. Overall, at the end of the observation period (time t = τ = T0), the most
frequent events were ACE and BB purchases: 2,916 patients (64.2%) purchased ACE at least
once with a median of 7 purchases (IQR = [4;10]), and 2,890 patients (63.6%) purchased BB at
least once with a median of 7 purchases (IQR = [4;9]), where the median number of events h at
time τ is given by mediani∈{1,...,n}N

(h)
i (τ). Purchase of AA and hospitalization due to HF were

less frequent: 2,007 patients (44.2%) purchased AA at least once with a median of 5 purchases
(IQR = [3;7]) and 2,699 patient (59.4%) were re-hospitalized due to HF, with a median of 2 HF
hospitalizations (IQR = [1;3]).

In order to proceed with the analyses and model the compensators of the longitudinal pro-
cesses, we finally had to reformat the administrative data in four different dataset, one for each
process h, as explained in Appendix A. Once the four datasets have been prepared, we can now
reconstruct the compensators of these longitudinal processes.

4.2 Step 2: Modelling compensators of marked point processes
We can now reconstruct the compensators of the marked point processes for recurrent events,
as explained in Section 3.1. For each process h ∈ {ACE,BB,AA,HF hosp}, we first select the
best set of features for the Cox’s model of recurrent events using 10-fold cross validation and
we estimate the selected coefficients on the whole dataset. Then, we fit and smooth cumulative
baseline hazard using the constrained B-spline smoothing algorithm introduced by He and Ng.42
Finally, we reconstruct the compensator trajectories as functions of the estimated coefficients
and of the smoothed estimate of the cumulative baseline hazard using Equation (5).
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Figure 2: Representation of counting processes N (h)
i (t) related to purchases of ACE inhibitors (top-

left panel), BB agents (top-right panel), AA (bottom-left panel) and HF hospitalizations (bottom-right
panel) during the observation period for a sample of 500 HF patients belonging to the administrative
database. Each non-decreasing step function is related to a different patient.

4.2.1 Features selection and coefficients estimation

For each process h ∈ {ACE,BB,AA,HF hosp}, we used as covariates z
(h)
i (t) of patient i: the

number of events related to process h occurred in the past Nm(h)
i (t) and the sum of the corre-

sponding marks y(h)i (t). Also the logarithmic transformations (shifted away from 0) of the same
variables, i.e., log(Nm

(h)
i (t)+1) and log(y

(h)
i (t)+1), and respective interactions, were considered.

Adjustments for age and gender at baseline were performed. The vector of all the covariates
considered for the model is indicated by x

(h)
i (t). In particular, for each process h we performed

a 10-fold cross-validation to determine the best sets of features according to the lowest Mean
Absolute Martingale Residual (MAMR) (see Appendix B for details regarding MAMR and its
estimation). Once covariates were selected, we fitted four Cox models, one for each process h,

using the selected features on the entire dataset to estimate coefficients β̂
(h)

and γ̂(h).

In Table 1 selected features, hazard ratios and corresponding 95% CI are reported. Among all
the models tested through the cross-validation procedure, features related to Nm(h)(t), y(h)(t)
and their interaction were selected and their coefficients were always significantly different from
0. Furthermore, the signs of the fitted coefficients relative to these three types of features were
consistent throughout the four processes, allowing us to give similar interpretations. On one
hand, considering processes related to drug purchases h ∈ {ACE,BB,AA}, we observed that
the HRs related to the number of past events log(Nm(h)(t)+1) and to the sum of the past marks
log(y(h)(t)+1) were greater than 1. This could be interpreted as a “self-exciting” behaviour: many
drug purchases in the past and the purchase of big quantities of drug both increase the risk of a
new purchase. Moreover, HR related to the interaction terms log(Nm(h)(t)+1)× log(y(h)(t)+1)
were lower than 1, meaning that the increase in risk is softened in case of several drug purchases
and/or a great quantities of drug purchased. For ACE and BB purchases, younger patients
were most likely to buy medication than older ones [HRs<1], and gender was not selected as
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predictive feature. Differently, for AA purchases females were most likely to buy AA agents
than males [HR<1] and age variable was not selected through cross-validation. On the other
hand, considering HF hospitalization process h = HF hosp, we observed that the procedure
selected the original features Nm(h)(t), y(h)(t) and Nm(h)(t)×y(h)(t) instead of their logarithmic
transformations. This was probably due to the fact that hospitalizations were rarer than drug
purchases, so they might have a greater effect in increasing the risk of experiencing a new event.
We found that the HRs related to Nm(h)(t) and y(h)(t) were greater than 1, indicating again
a “self-exciting” behaviour: being hospitalised often in the past, and having spent long periods
of time at the hospital both increase the risk of a new hospitalization. Moreover, HR for the
interaction term Nm(h)(t) × y(h)(t) was lower than 1, meaning that the increase in risk was
softened in case of many hospitalizations and/or in the case of a long time spent at the hospital
in the past. Finally, we observed that variables related to both age [HR<1] and gender [HR>1]
were selected and statistically significant: younger (or male) patients were most likely to be
re-hospitalized than older ones (or females).

Process h Selected features HR CI (2.5%) CI (97.5%)
ACE age 0.9967 0.9957 0.9978

log(Nm(ACE)(t) + 1) 4.5216 4.1633 4.9107
log(y(ACE)(t) + 1) 1.1036 1.0872 1.1202
log(Nm(ACE)(t) + 1)× log(y(ACE)(t) + 1) 0.9141 0.9025 0.9258

BB age 0.9928 0.9917 0.9939
log(Nm(BB)(t) + 1) 5.5360 5.2147 5.8770
log(y(BB)(t) + 1) 1.1340 1.1144 1.1540
log(Nm(BB)(t) + 1)× log(y(BB)(t) + 1) 0.8283 0.8161 0.8406

AA gender (Male) 0.9435 0.9073 0.9811
log(Nm(AA)(t) + 1) 9.8781 8.6116 11.3310
log(y(AA)(t) + 1) 1.2023 1.1722 1.2332
log(Nm(AA)(t) + 1)× log(y(AA)(t) + 1) 0.7780 0.7561 0.8005

HF hosp age 0.9957 0.9934 0.9979
gender (Male) 1.1510 1.0854 1.2207
Nm(HF hosp)(t) 1.4319 1.3809 1.4848
y(HF hosp)(t) 1.0083 1.0051 1.0116
Nm(HF hosp)(t)× y(HF hosp)(t) 0.9976 0.9968 0.9985

Table 1: Selected features, Hazard Ratios and corresponding 95% CI of the Cox models for recurrent
events for the stochastic processes describing the purchase of ACE inhibitors, BB agents, AA agents and
the HF hospitalizations.

4.2.2 Fit and smooth cumulative baseline hazard

Once we estimated the coefficients β̂
(h)

and γ̂(h) of each Cox model for recurrent events of type
h, we computed the estimated cumulative baseline hazards Λ̂

(h)
0 (t) using the Breslow estimator.

Since this procedure provide a step function
(

Λ̂
(h)
0 (t)

)
, we smoothed them using the constrained

B-spline smoothing algorithm introduced by He and Ng42 with increasing monotone constraints
and no roughness penalties. In particular, we used 20 knots for the B-spline basis and we as-
sumed that Λ̃

(h)
0 (tstart) = 0.
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Figure 3: Cumulative baseline hazards of the Cox models for recurrent events describing the stochastic
processes of purchases of ACE inhibitors (top-left panel), BB agents (top-right panel), AA (bottom-left
panel) and of HF hospitalizations (bottom-right panel), fitted with the Breslow estimator Λ̂

(h)
0 (t) (dashed

blue lines) and smoothed Λ̃
(h)
0 (t)(t) according to the procedure described in Baraldo et al6 (solid red

lines).

Figure 3 shows both the estimates obtained with the Breslow estimator Λ̂
(h)
0 (t) (dashed blue

lines) and the corresponding smoothed estimates Λ̃
(h)
0 (t) (solid red lines) for the four stochastic

processes describing ACE purchase (top-left panel), BB purchase (top-right panel), AA purchase
(bottom-left panel) and HF hospitalization (bottom-right panel). We observed that ∀h ∈ H
we obtained monotonically increasing estimates Λ̃

(h)
0 (t) of the cumulative baseline hazards with

Λ̃
(h)
0 (tstart) = 0.

4.2.3 Reconstruct compensators

At this point, we could reconstruct the trajectories of the compensators Λ̂
(h)
i (t) of the four con-

sidered stochastic processes for all the patients, exploiting Equation (5). The trajectories of
compensators Λ̂

(h)
i (t) constitute our functional data. Figure 4 shows the compensators of the

stochastic processes describing ACE purchase (top-left panel), BB purchase (top-right panel),
AA purchase (bottom-left panel) and HF hospitalization (bottom-right panel) of the same sample
of 500 HF patients mentioned above. We observed that the trajectories Λ̂

(h)
i (t) are monotonically

non-decreasing and take value 0 at time tstart, as did the smoothed baseline cumulative hazards
Λ̃
(h)
0 (t). The large variability of the compensators across different patients reflects the variability

of the realizations of their recurrent events.

Finally, we had to check for adequate fitting of the procedure. In order to do so, we controlled
if the fitted residuals M̂i

(h)
(t) in Equation (6) may be effectively considered as realisations

of martingales. For each process of interest, we plotted the residuals evaluated in the whole
observation period and we checked graphically that their means M̄ (h)(t) were approximately
equal to 0. Figure 5 show the fitted residuals M̂ (h)

i (t) for each process for the sample of the 500
patients mentioned above (ACE : top-left; BB : top-right; AA: bottom-left; HF hosp: bottom-
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right). The black line in each panel corresponds to the temporal average residual curve M̄ (h)(t),
computed using all the n = 4, 541 patients. From the Figure we observed that the time-varying
means were approximately a constant equal to zero for all the considered processes. Hence, we
might conclude that we succeeded in fitting the compensators of the stochastic processes.

Figure 4: Compensators Λ̂
(h)
i (t) of the marked counting processes of purchases of ACE inhibitors (top-

left panel), BB agents (top-right panel), AA (bottom-left panel) and of HF hospitalizations (bottom-right
panel) fitted using Equation (5) for a sample of 500 HF patients belonging to the administrative database.
Each line is related to a different patient. Note that in HF hospitalizations the ordinate axis range is
smaller than the other ones due to less number of hospitalization events with respect to drugs purchases.

Figure 5: Residuals M̂ (h)
i (t) of the compensators of the stochastic process describing the purchase

of ACE inhibitors (top-left panel), BB agents (top-right panel), AA (bottom-left panel) and the HF
hospitalization (bottom-right panel) for a sample of 500 HF patients belonging to the administrative
database, computed according to Equation (6). Each line is related to a different patient. Solid black
lines represent the temporal average residual curve M̄ (h)(t) computed using all the n = 4, 541 patients.
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For each patient i ∈ {1, . . . , 4, 541}, we ended up with a four-variate time-varying data given
by the compensator trajectories

(
Λ̂
(h)
i (t), h ∈ H = {ACE,BB,AA,HF hosp}

)
, which could be

though as positive non-decreasing L2-functions over the temporal domain [Tstart;T0]. We can now
work on functional compensators Λ̂

(h)
i (t), applying methods Steps 3 and 4 of our methodology

as described in Section 3.

4.3 Step 3: Summarize compensators through FPCA

Once computed the functional trajectories of the compensators Λ̂
(h)
i (t), we performed FPCA in

L2 [Tstart;T0] in order to summarise information emerging from the time-varying compensators
to a finite set of covariates while loosing a minimum part of the information. Although it was
no longer guaranteed that the functions reconstructed through FPCA were positive and non-
decreasing, for each process h we observed that two Principal Components (PCs) were enough
to have a L2-reconstruction error lower than 1%.

Figure 6 and Figure 7 show results of FPCA on functional compensators and are related
to first PCs φ(h)1 (t) and second PCs φ(h)2 (t), respectively (top panels). In both figures, each
column is related to a different type of process (ACE : first column; BB : second column; AA:
third column; HF hosp: fourth column). Bottom panels report the average compensators curves

µ(h)(t) = 1
n

∑n
i=1 Λ̂

(h)
i (t) (black lines) and µ(h)(t)± ck

√
ν
(h)
k φ

(h)
k (t) (red ’+’ and blue ’−’ respec-

tively) where ν(h)k is the eigenvalues related to the k-th component, ck are constants and k = 1, 2.
We observe that PCs across the four processes types h ∈ {ACE,BB,AA,HF hosp} have similar
shapes (see top panels). The first components φ(h)1 (t) distinguish patients with different risks.
In particular, a patient with a high score on the first PC is likely to experience more events than
a patient with a low score. The second components φ(h)2 (t) distinguish patients with different
time distribution of the events. In particular, a patient with a high score on the second PC is
likely to experience more events in the first months of the observation period and less events in
the last months of the observation period than a patient with a low score.

Once summarised the information emerging from the functional compensators, we can now
use the FPC scores to enrich information for modelling patients’ long-term survival through a
predictive Cox’s regression model.

4.4 Step 4: Predictive survival Cox’s model
At this point we wanted to quantify the association between time-varying processes and patients’
long-term survival. In order to do so, firstly we applied 10-fold cross validation to select the best
set of covariates among all the possible combinations of patients’ baseline characteristics age,
gender and the scores resulting from the FPCA on compensators, i.e. score

(h)
k with k = 1, 2

and h ∈ {ACE,BB,AA,HF hosp}. According to the highest median Concordance Index,41 we
selected all the covariates except the score related to the second PC of ACE process and the
score related to the first PC of AA process. Then, we fitted the Cox’s regression model with that
choice of covariates on the whole data:

λi(t|xi) = λ0(t) exp
{
β1agei + β2genderi + β3score

(ACE)
1,i + β4score

(AA)
2,i +

β5score
(BB)
1,i + β6score

(BB)
2,i + β7score

(HF hosp)
1,i + β8score

(HF hosp)
2,i

}
.

(7)
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Figure 6: First functional Principal Components (PCs) of the compensators of the stochastic
processes describing the purchase of ACE (first column), BB (second column), AA (third col-
umn) and HF hospitalization (fourth column). Upper panels show the first PCs φ(h)

1 (t) with h ∈
H = {ACE,BB,AA,HFhosp}. Lower panels report the average compensators curves µ(h)(t) =

1
n

∑n
i=1 Λ̂

(h)
i (t) (black lines) and µ(h)(t) ±

√
ν
(h)
1 φ

(h)
1 (t) (red ’+’ and blue ’−’ respectively) where ν(h)1

are the eigenvalues related to the first PCs. Note that in HF hospitalizations the ordinate axis range is
smaller than the other ones due to less number of hospitalization events with respect to drugs purchases.

Figure 7: Second functional Principal Components (PCs) of the compensators of the stochas-
tic processes describing the purchase of ACE (first column), BB (second column), AA (third col-
umn) and HF hospitalization (fourth column). Upper panels show the second PCs φ

(h)
2 (t) with

h ∈ H = {ACE,BB,AA,HFhosp}. Lower panels report the average compensators curves µ(h)(t) =

1
n

∑n
i=1 Λ̂

(h)
i (t) (black lines) and µ(h)(t) ± 3

√
ν
(h)
2 φ

(h)
2 (t) (red ’+’ and blue ’−’ respectively) where ν(h)2

are the eigenvalues related to the second PCs. Note that in HF hospitalizations the ordinate axis range is
smaller than the other ones due to less number of hospitalization events with respect to drugs purchases.
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Table 2 reports the summary of the fitted model (7). All the covariates resulted statistically
significant at confidence level 5%, except for score(AA)

2 and score(BB)
2 . Elder patients coherently

have a higher risk of dying [HR = 1.0656] and being a male corresponds to 1.2-times faster
experience of the event [HR = 1.2317]. The HR relative to the scores of the first PCs for ACE
and BB processes, i.e. score(ACE)

1 and score(ACE)
2 , are lower than 1, indicating that a proper

ACE/BB drug intake is correlated to longer life expectancy. On the contrary, the HR related
to score(HF hosp)1 is greater than 1, standing as a proxy of patients’ critical conditions: patients
experiencing many hospitalizations in the past present a higher risk of dying. Interestingly,
even if the second PC of compensators related to HF hosp process concerned only the 2% of
the total explained variance of the original data, score(HF hosp)2 is strongly significant with HR
= 0.7539 < 1 (95% CI = [0.7256; 0.8253]). This means that patients with many hospitalizations
at the beginning of the observation period and few hospitalizations in the end have higher survival
probability, since they probably correspond to the ones who had already experienced a critical
phase of the disease and survived from it.

Covariates HR CI (2.5%) CI (97.5%) p-values
age 1.0656 1.0577 1.0736 < 0.001
gender (Male) 1.2317 1.0892 1.3928 < 0.001

score
(ACE)
1 0.9977 0.9962 0.9992 0.003

score
(AA)
2 0.9949 0.9781 1.0121 0.561

score
(BB)
1 0.9965 0.9945 0.9984 < 0.001

score
(BB)
2 1.0071 0.9911 1.0234 0.385

score
(HF hosp)
1 1.0158 1.0047 1.0269 0.005

score
(HF hosp)
2 0.7739 0.7256 0.8253 < 0.001

Table 2: Hazard ratios (HRs) with 95% Confidence Intervals (CI) and p-values of the final Cox’s model
for overall long-term survival fitted on the whole cohort using the covariates selected through 10-fold
cross-validation.

5 Discussion and Conclusions
In this work, a novel approach to reconstruct the compensators of suitable marked point pro-
cesses of interest as time-varying covariates has been proposed in order to exploit this approach
for enriching information to be plugged into a survival model. The development of this procedure
is due to the need of effectively describing and resuming information from dynamic processes af-
fecting an outcome of interest, with the purpose of obtaining deeper insight on the patient’s
health status using administrative databases. This methodology extends the one proposed in
Baraldo et al,6 allowing the counting processes to depend on their marks. From the study on
the administrative database of Lombardy Region, we observed that modelling patient’s clinical
history in terms of compensators of suitable stochastic processes as time-varying covariates and
plug them into a survival model represents an effective, interpretative and forecasting approach
for exploring the effects of these processes on patients’ survival. The marked point process for-
mulation is a natural way of representing the occurrence of hospitalizations or drugs purchases
over time. The use of FPCA allowed to extract additional information contained in the functions,
representing a powerful exploratory and modelling technique for highlighting trends and varia-
tions in the shape of the processes over time. The introduction of this novel way to account for
time-varying variables by means of compensators allowed for modelling self-exciting behaviours,
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for which the occurrence of events in the past increases the probability of a new event. This
enabled us to include a large piece of information contained in the administrative data to describe
the patient’s clinical history. Furthermore, our approach was able to take into account the fact
that HF patients usually assumes different types of drugs at the same time, representing a nov-
elty for clinical and pharmacological research in the direction of properly treating multimorbidity
patients and polypharmacy. The presented methodology, involving database integration, marked
point process modelling of critical events and FDA techniques, can be applied to the study of
many different pathologies characterized by complex data sources, thanks to its flexibility. The
procedure is very general and allows for a handleable and relatively simple analysis of the results,
describing complex dynamics in an easily interpretable form. To the best of our knowledge, our
approach represents the first attempt in literature of merging potential of FDA and survival
analysis.

Some limitations of the present study have to be mentioned. Firstly, the use of a pre-defined
observation period could lead to survival bias due to cohort selection. Indeed, it is necessary
that patients survived for a period at least equal to the length of the period used to compute the
functional compensators trajectories. This could imply a survival bias in case of the exclusion
of too many early dying patients. This is softened if low-rate short-term mortality diseases are
considered. Moreover, FPCA was performed in L2 [Tstart;T0] and not in the subspace of positive
non-decreasing L2-functions. In this way, we obtained a good reconstruction of compensators
approximated using PCs but it was no longer guaranteed that these functions were positive and
non-decreasing. Other limitations are mainly due to the use of secondary databases in the real
case-study. In fact, in the administrative database the number of days of drug coverage, that
represent the jump marks in case of processes related to ACE, BB and AA purchases, was based
on the number of boxes and the Defined Daily Dose (DDD). The use of theoretical DDD instead
of Prescribed Daily Doses (PDD) could reflect a bias in the computation of coverage days, i.e.
of jump marks, if the underlying PDD/DDD ratio is different from 1.32,33 Therefore, it could
be interesting to explore, whenever the linkage is possible, databases with information about
dosages prescribed by doctors, in order to obtain a more realistic analysis of coverage periods.
Furthermore, the use of administrative databases allowed to use drugs purchases as proxy of
drugs intake with a big limitation: we were not able to assert if the patient was currently con-
suming the dispensed drug. These issues are related to the nature of administrative data: they
address ’operational’ goals, i.e. they are collected with no clinical question in mind and mainly
for managerial and economic purposes, and the validity of using these kind of data is critically
dependent on the reliability of the data. Nevertheless, they are population based, comprehen-
sive, capture real health system use, longitudinal and can be linked to other data, representing
a valuable clinical research resource.

Despite the aforementioned limitations, our approach opens doors for many further develop-
ments, both in the fields of statistical methods and clinical research. The proposed predictive
models could be enriched by considering other relevant clinical information as covariates, and en-
larging the cohort of patients. In the end, our approach constitutes a really flexible methodology
that can be used to make personalized predictions, quantifying the effect of personal behaviours
and therapeutic patterns on survival. Its possible generalization to many different settings, added
to a cooperation with medical staff, could lead to improvements in the definition of a useful tool
for health care assessment and treatment planning.
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A Data Preparation
Once selected the cohort of patients being part of the analysis and identified the events related
to each patient’s clinical history (Section 4.1 - Step 1 of the procedure), we had to reformat
the administrative data building four different datasets, one for each process h ∈ H = {h :
ACE,BB,AA,HF hosp}, in the form required by coxph function for recurrent events of survival
R package.43 Table 3 shows an example of reformatted dataset related to HF hospitalization
process for a random patient with three hospitalizations due to HF during the observation period.
In the Table, status is the event indicator (0 if censored, 1 otherwise), start indicates the time of
the patient’s previous event (equal to −0.5 if it is the first event), stop is the time of the current
event (equal to 365.5 if it is the censoring event), Nm(h)(t) is the number of events related to
process h occurred in the past and y(h)(t) is the sum of the corresponding marks. In particular,
the choice to consider the time limits at −0.5 and 365.5 was made in order to not have events
at time t = 0 or at censoring time t = 365. Hence, for each process h we ended up with a long-
format dataset with multiple rows for each patient (specifically the number of patient’s events
of type h during the observation period plus one). In particular, in the first row of each patient
Nm(h)(t) and y(h)(t) are always 0 and in the last one status is always equal to 0.

ID status start stop gender age Nm(h)(t) y(h)(t)
id 1 −0.5 30 Female 79 0 0
id 1 30 52 Female 79 1 21
id 1 52 52 Female 79 2 35
id 0 76 365.5 Female 79 3 59

Table 3: Example of reformatted dataset related to HF hospitalization process for a random patient
with three hospitalizations due to HF during the observation period.
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B Mean Absolute Martingale Residual
Given two or more Cox models for recurrent events in Equation (3) fitted using different sets of
covariates, we need a metric to evaluate the goodness of fit of each model and select the best set
of features. Since we are dealing with stochastic processes and recurrent events, we cannot rely
on standard regression metrics, like mean squared error. A possible way is given by functions of
the residuals in Equation (6): smaller residuals correspond to a greater predictive power of the
model. Therefore, to compare models fitted with different features, for each process h we would
like to use the Mean Absolute Martingale Residual (MAMR):

MAMR(h) =

n∑
i=1

∫ T
0
|M̂ (h)

i (s)|ds
T

(8)

where T represents the length of the observation period. Using this indicator, smaller the MAMR,
better the model.

To correctly compute the MAMR, we should first compute the compensators using Equation
(5) and then evaluate the residuals on a grid of points. Since we want to use this quantity only to
rank models fitted with different sets of predictors, to avoid high computational costs we decided
to rely on the following estimate:

M̂AMR
(h)

=
1∑n

i=1 n
(h)
i

n∑
i=1

n
(h)
i∑
j=1

| ˆ̂
M

(h)
i (t

(h)
i,j )| (9)

where i and h are respectively the patient and event indices, ˆ̂
M

(h)
i is the residual obtained by

fitting the compensator without smoothing the baseline hazard, i.e. using Λ̂
(h)
0 instead of Λ̃

(h)
0

in Equation (5), n(h)i is the total number of events of type h experienced by the i-th patient and
t
(h)
i,j is the time instant in which patient i experienced the j-th event of type h.
This estimate is not accurate since the residuals are evaluated only when events happen (rather
than on the continuous interval corresponding to the one year observation period) and because
the estimate is done by reconstructing the compensators without the smoothing of the baseline
hazard. However, it allows to rank models while limiting computational needs (refer to residuals
function of survival R package43).
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