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Abstract

In this paper we propose a new algorithm to perform unsupervised classification of

multivariate and functional data when the difference between the two populations lies in

their covariances, rather than in their means. The algorithm relies on a proper quantification

of distance between the estimated covariance operators of the populations, and identifies as

clusters those groups maximising the distance between their induced covariances. The naive

implementation of such an algorithm is computationally forbidding, so we propose an heuristic

formulation with a much lighter complexity and we study its convergence properties, along

with its computational cost. We also propose to use an enhanced estimator for the estimation

of discrete covariances of functional data, namely a linear shrinkage estimator, in order to

improve the precision of the classification. We establish the effectiveness of our algorithm

through applications to both synthetic data and a real dataset coming from a biomedical

context, showing also how the use of shrinkage estimation may lead to substantially better

results.

1 Introduction

The goal of performing unsupervised classification of data, in order to outline groups of obser-
vations based on some notion of similarity, has been of primary interest in applied statistics
since ages. Literature is plenty of methods focusing their attention on the aggregation and
separation of a sample into groups depending on similarities in locations of data (e.g. hierarchical
clustering, k-means, PAM; see for instance [Har75]). To the best of our knowledge, almost nothing
can be found on methods attaining the classification entirely on the basis of differences in the
covariance structures of random models generating data. This target is not trivial, and less easy
to translate into practice, since it calls for a proper quantification of distances between covariances
of data. Nevertheless, it might happen to analyse data that are scarcely distinguishable in terms
of locations, while show differences in their variability. Examples can be found in the biostatistics
field where, for instance, the dichotomy between physiological and pathological features often
shows an interesting pattern in change of variability.
In this paper we introduce a new method developed in order to reach this goal. We focus on
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the specific case of a set of observations from two populations whose probability distributions
have the same mean but differ in terms of covariances. Our aim is to perform classification in an
unsupervised framework. The method we propose is general, therefore can be applied both to
the traditional case of random vectors, and to the recently developed setting of functional data,
arising as outcomes of infinite-dimensional stochastic processes (see, for instance, monographs
[HK12], [RS05]). We will introduce the method according to the latter case.
In particular, we first introduce a suitable notion of distance between covariance operators, i.e.
the functional generalisation of covariance matrices, which is the instrument we use to measure
dissimilarities. Then we make use of such distance to search, among partitions of data, the one
maximising the distance between the related covariances, under the assumption that, if the two
populations can be distinguished from their covariances, this would be the most likely subdivision
detecting the true groups.
A naive implementation of this algorithm, involving an exhaustive sampling strategy inside the
set of subsets of data, would face a combinatorial complexity with respect to the number of
observations, thus forbidding the analysis of datasets with common sizes. We therefore translate
the method into a heuristic, greedy algorithm, with greatly reduced complexity, which can be
efficiently implemented and effectively applied.
Due to its construction, our algorithm benefits from the accuracy of the estimation of covariances.
Owing to the typically large dimensionality (compared to the number of data available) of
discrete approximations of functional observations, covariance estimation through classical sample
estimators may be non-optimal. To remedy this shortcoming, we propose to replace standard
unbiased covariance estimator with a shrinkage estimator with enhanced accuracy properties (see,
for instance, [LW03; LW04] and [SS05]). We show through experiments that this choice leads to
a substantially improved classification.

The paper is organised as follows: in Section 2 we briefly recall some properties of covariance
operators for functional data. In Section 3 we introduce the new classification method for data
which differ in variance-covariance structures, we derive its heuristic formulation and describe the
shrinkage strategy we used to enhance the estimation performances. In Section 4 we assess the
classification performances through the application to both synthetic and real datasets. Discussion
and conclusions are presented in Section 5.

2 Covariance operators for functional data

Whenever our data can be interpreted as finite-dimensional samplings of quantities that, instead,
are intrinsically dependent on some continuous variable, such as time, we might be resorting to
the model of functional data (see, for instance [HK12] and [RS05]). At its core is the assumption
that data are sample measurements of trajectories of stochastic processes valued in suitable
function spaces.
Hereby we recall the definition of covariance operator for functional data, along with its most
important properties (for more details see, e.g., [Bos00]). Let X be a stochastic process taking
values in L2 (I;R), with I ⊂ R compact interval, having mean function E [X ] = µ and such that
E‖X‖20 < ∞, where we denote by ‖ · ‖0 the L2(I) norm induced by the scalar product 〈·, ·〉0.
Without loss of generality we can assume µ = 0 and define the following covariance operator:

C ∈ L
(
L2(I);L2(I)

)
: 〈y, C(x)〉0 = E [〈x,X〉0〈y,X〉0] , ∀x, y ∈ L2(I), (2.1)

2



C is a compact, self-adjoint, positive operator between L2(I) and L2(I). Therefore it can be
decomposed into:

C =

∞∑

k=1

λk ek ⊗ ek, (2.2)

where {ek}∞k=1 is the sequence of orthonormal eigenfunctions, forming a basis of L2(I), and
{λk}∞k=1 is the sequence of eigenvalues. We assume eigenvalues to be sorted in decreasing order,
so that:

λ1 ≥ λ2 ≥ . . . ≥ 0.

By expressing X with respect to the eigenfunctions basis, X =
∑∞

k=1 ξkek, it holds

λk = 〈ek, C(ek)〉0 = E
[
ξ2k
]
,

thus, the covariance operator is nuclear, meaning that

E‖X‖2 =
∞∑

k=1

λk =

∞∑

k=1

|λk| < ∞.

C is also a Hilbert-Schmidt operator (see, for instance, [Bos00]), since it holds:

∞∑

k=1

λ2
k < ∞. (2.3)

We equip the space of Hilbert-Schmidt operators with the Hilbert-Schmidt norm, defined as
‖U‖2S =

∑∞
k=1 λ

2
k, where {λk}∞k=1 are the eigenvalues of U . This is induced by the following scalar

product:

〈U ,V〉S =
√

Tr (U − V) (U − V)∗, (2.4)

where Tr(·) denotes the trace operator, and U∗ is the Hilbertian adjoint of U , i.e.

〈U(x), y〉0 = 〈x, U∗(y)〉0 ∀x, y ∈ L2(I).

The space of Hilbert-Schmidt operators on L2(I), endowed with the scalar product (2.4) and the
associated norm, becomes a separable Hilbert space itself.
Within this theoretic framework, a natural definition of dissimilarity between Hilbert-Schmidt
operators (among which are covariance operators) may be the Hilbert-Schmidt distance:

d (U ,V) = ‖U − V‖S =
∞∑

k=1

η2k. (2.5)

where {ηk}∞k=1 is the sequence of eigenvalues of U − V.

3 Covariance based classification

We face now the problem of classifying observations belonging to two different functional popula-
tions. Let X be a stochastic process on L2(I) generated by the law PX , and Y a likewise process
generated according to PY . We imagine to have a set of N data in some dataset D generated
according to these two populations in a balanced proportion, i.e:

[D]i = Xi ∼ PX , ∀i = 1, . . . ,K

[D]j = Yj ∼ PY , ∀j = K + 1, . . . , N
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with K = N/2.
We introduce the following quantities:

µ1 := E [Xi] , C1 := E [Xi ⊗Xi] , ∀ i = 1, . . . ,K,

µ2 := E [Yj ] , C2 := E [Yj ⊗ Yj ] , ∀ j = K + 1, . . . , N.

Let us consider the vector of indexes of units constituting the two populations in D:

I(0) =
( I

(0)
1︷ ︸︸ ︷

1, 2, . . . ,K,

I
(0)
2︷ ︸︸ ︷

K + 1, . . . , N
)
. (3.1)

which is unique, provided we don’t distinguish among permutations of sub-intervals I
(0)
1 and I

(0)
2 .

In the following we shall consider recombinations of these indexes:

I(i) = RiI
(0) =

[
I
(i)
1 ; I

(i)
2

]
, i ∈ {1, . . . , NC} , (3.2)

where I(i) denotes the i-th combination out of NC =
(
N
K

)
, however enumerated, and Ri is the

recombination matrix realising it.
The sample estimators of means and covariance operators induced by this subdivision are indicated,

respectively, with µ̂
(i)
1 , µ̂

(i)
2 and Ĉ(i)

1 , Ĉ(i)
2 . We point out that, when i = 0, we recover the estimators

of µ1, µ2 and C1 and C2. For this reason we rename the latter quantities as µ
(0)
1 , µ

(0)
2 , and C(0)

1 , C(0)
2 .

Our classification method is based on the following, crucial assumption:

Hypothesis (H). We assume that observations drawn from families PX and PY constituting the

dataset D may be distinguished on the basis of their covariances, but not from their means, i.e.:

C(0)
1 6= C(0)

2 , =⇒ d(C(0)
1 , C(0)

2 ) ≫ 0,

µ
(0)
1 = µ

(0)
2 , =⇒ ‖µ(0)

1 − µ
(0)
2 ‖0 = 0. (H)

As a consequence of this hypothesis we conveniently center data and assume they have zero means.

Let us pretend the true covariance operators C(0)
1 and C(0)

2 are known. Then, for the generic
i-th recombination of data, we define the quantity:

ρi =
Card

(
I
(i)
1 ∩ I

(0)
1

)

K
∈ [0, 1] , i ∈ {1, . . . , NC} , (3.3)

that measures the proportion of indexes of data from the first population that are fixed under
the i-th recombination.
Then, if we consider the sample estimators of covariance operators for the generic i-th recombina-
tion:

Ĉ(i)
1 =

1

K


 ∑

l∈L(1,1)

Xl ⊗Xl +
∑

l∈L(1,2)

Yl ⊗ Yl


 , L(1,1) = I

(i)
1 ∩ I

(0)
1 , L(1,2) = I

(i)
1 ∩ I

(0)
2

Ĉ(i)
2 =

1

K


 ∑

l∈L(2,1)

Xl ⊗Xl +
∑

l∈L(2,2)

Yl ⊗ Yl


 , L(2,1) = I

(i)
2 ∩ I

(0)
1 , L(2,2) = I

(i)
2 ∩ I

(0)
2
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by exploiting (3.3), it holds:

C(i)
1 := E

[
Ĉ(i)
1

]
= ρi C(0)

1 + (1− ρi) C(0)
2 ,

C(i)
2 := E

[
Ĉ(i)
2

]
= (1− ρi) C(0)

1 + ρi C(0)
2 ,

then:
d
(
C(i)
1 , C(i)

2

)
= (2ρi − 1)2 d

(
C(0)
1 , C(0)

2

)
. (3.4)

The last identity confirms the natural idea that, if hypothesis (H) is true, the distance between the
induced covariance operators reaches its maximum at the labelling expressing the true subdivision
of data.
Nevertheless, in real applications the true indexing I(0) = [I

(0)
1 ; I

(0)
2 ] is typically unknown and an

estimate of it is required. If (H) holds true, by looking at (3.4), a natural way to recover the
true indexing may be to find the recombination of data in two groups maximising the distance
between the induced covariance operators, i.e. to solve the optimization problem:

[I∗1 ; I
∗
2 ] = argmax

i∈J

{
d
(
C(i)
1 , C(i)

2

)}
, J = {1, 2, . . . , NC} . (P)

Identity (3.4) assures that either I∗1 = I
(0)
1 and I∗2 = I

(0)
2 , or I∗1 = I

(0)
2 and I∗2 = I

(0)
1 . The double

solution is due to the symmetry of (3.4), yet the groups represent the same partition of data,
therefore in the following we will not distinguish between them.

Practically, only approximate estimates of C(i)
1 and C(i)

2 are available, thus we must recast problem
(P) into: [

Î∗1 ; Î
∗
2

]
= argmax

i∈J

{
d
(
Ĉ(i)
1 , Ĉ(i)

2

)}
, J = {1, 2, . . . , NC} , (P̂)

The method we propose coincides with finding a solution to problem (P̂).

In general Î∗1 and Î∗2 may differ from I
(0)
1 and I

(0)
2 , since they are determined based on estimates

of covariance operators. Indeed, provided that the chosen distance is capable of emphasizing
the actual differences between covariances of the two populations, results could be improved by
enhancing the accuracy of estimators. In Subsection 3.2 we will address the former issue.

3.1 Greedy formulation

In order to solve problem (P̂), it would be required to test each of the NC recombinations

of indexes in order to find the desired pair Î∗1 and Î∗2 . Of course, the number of tests to be
performed, NC =

(
N
K

)
, with K = N/2, undergoes a combinatorially-fast growth, as N increases.

Thus, unless we have only a small number of observations in our dataset, the naive approach
of performing an exhaustive search in the set of recombinations is not feasible. This calls for
a proper complexity-reduction strategy, aimed at restraining the complexity and enabling the
application of our classification method also to datasets with a common size.

Max-Swap algorithm: We propose to rephrase problem (P̂) into a greedy algorithm, with a

greatly reduced complexity. The driving idea is to interpret d(Ĉ(i)
1 , Ĉ(i)

2 ) as an objective function
of i, and, starting from an initial guess (I01 , I

0
2 ), to iteratively increase it by allowing exchanges of

units between the two groups. The exchange of data must preserve the total number of units

5



inside each group, so each group discards and receives an equal number of units, say up to J per
group.
We propose to choose the swapping units in such a way that the distance between the estimated
covariance operators at the next step be strictly higher than the previous one and, heuristi-
cally, the highest possible. Convergence is reached when no further swap can increase that distance.

When searching the best swap of size up to J , we must explore a number of permutations of the

current groups equal to
∑J

i=1

(
K
i

)2
. Therefore it is evident that J affects both the computational

effort and the robustness of our algorithm: the lower is J , the less permutations we have to search
among to find the optimal swap; the greater is J , the more likely we are to detect and exchange
at once a block of truly extraneous units. We point out that, for J = K we recover the original
complexity of solving problem (P̂) in just one step, since it holds:

(
N

K

)
=

K∑

i=1

(
K

i

)2

.

We propose to set J = 1, in order to save computations, and to choose the units to be exchanged
by exploring the K2 swaps of one unit from the first group with another unit of the second
group. Then we select the one yielding the maximum increment in the distance. The complete
formulation of our Max-Swap algorithm is summarised in Algorithm 1. In the following we will
denote the estimated set of indexes at step k of algorithm with the apex k without brackets, (Ik1 ,
Ik2 ).

Convergence We turn now to the study of the convergence of our proposed algorithm. With
reference to the notation of Algorithm 1, it is easy to prove that

Proposition 1. The monotonicity constraint:

(∆d)
k
> 0 ∀k ≥ 1, (3.5)

ensures that convergence always happens, at least to a local maximum of d(Ĉ(i)
1 , Ĉ(i)

2 ).

Proof. As a simple consequence of (3.5), the list of intermediate indexings:

(
I01 , I

0
2

)
,
(
I11 , I

1
2

)
, . . . ,

(
Ik1 , I

k
2

)
, . . .

does not have cycles (a contiguous sub-sequence with equal extrema). In fact, let there be a cycle
of minimal period L starting at iteration k0, then it should hold:

0 = dk0+L − dk0 =
L∑

j=1

(∆d)
j+k0 > 0,

which is a contradiction. Thus each element in the list is unique and contained in the set of all
the possible recombinations of data:

(I
(0)
1 , I

(0)
2 ), (I

(1)
1 , I

(1)
2 ), . . . , (I

(NC)
1 , I

(NC)
2 )

which has a finite number of elements. Therefore the algorithm, however initialised, converges.

Now that convergence has been established, we can formulate the following proposition:
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Algorithm 1: Max-Swap algorithm

Input: Initial guess:
(
I01 , I

0
2

)

Output: Estimated indexing
(
Î∗∗1 , Î∗∗2

)

1 Compute
(
Ĉ0
1 , Ĉ0

2

)
induced by

(
I01 , I

0
2

)
;

2 d0 = d
(
Ĉ0
1 , Ĉ0

2

)
;

3 k = 1;

4 (∆d)k = 1;

5 while (∆d)k > 0 do
6 for s ∈ 1, . . . ,K do
7 for t ∈ 1, . . . ,K do

8 Swap in first group: Ĩ1 =
⋃

p 6=s I
k−1
1 (p) ∪ Ik−1

2 (t);

9 Swap in second group: Ĩ2 =
⋃

q 6=t I
k−1
2 (q) ∪ Ik−1

1 (s);

10 Compute
(
C̃1, C̃2

)
induced by (Ĩ1, Ĩ2);

11 Ds,t = d
(
C̃1, C̃2

)
;

12 (s∗, t∗) = argmaxs,t Ds,t;

13 dk = Ds∗,t∗ ;

14 (∆d)k = dk − dk−1;

15 Ik1 =
⋃

p 6=s∗ I
k−1
1 (p) ∪ Ik−1

2 (t∗);

16 Ik2 =
⋃

q 6=t∗ I
k−1
2 (q) ∪ Ik−1

1 (s∗);

17 k = k + 1;

18 d∗∗ = dk−1;

19 I∗∗1 = Ik−1
1 ;

20 I∗∗2 = Ik−1
2 ;

Figure 1: Pseudo-code of the Max-Swap algorithm.

Proposition 2. When estimates of covariance operators, Ĉ1 and Ĉ2, are exact, i.e., when Ĉ1 = C1
and Ĉ2 = C2, the greedy algorithm converges to the exact solution (I∗1 , I

∗
2 ) of problem (P) in at

most K/2 steps.

Proof. This is a consequence of Proposition 1 and the convexity of the objective function

d(C(i)
1 , C(i)

2 ) showed in (3.4), making it impossible that local maxima exist.

A direct consequence of Proposition 1 is that in general (I∗∗1 , I∗∗2 ) 6= (Î∗1 , Î
∗
2 ), since the algo-

rithm may converge only to a local maximizer of the covariances’ distance. This is a well-known
drawback affecting greedy methods for optimization problems based on local-search patterns
and the development of possible remedies is a very active research field in algorithmics and
optimization disciplines.
However, Proposition 2 assures that the algorithm converges to the exact solution, provided that
we have a thorough knowledge of covariance operators. Therefore, the possible non-convexity of

the objective function d(C(i)
1 , C(i)

2 ), being the reason why local maxima exist, would be a direct
consequence of the finite precision in estimating covariances.
Under this light, we can rephrase the problem of enhancing our method from finding an
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algorithmics-like remedy to the aforementioned drawback, to the study of accuracy proper-
ties of covariance estimators. This will be the focus of Subsection 3.2. Another possibility to
reduce the risk of selecting only local maximisers, which we don’t investigate in the following,
would be to assess the stability of the maximiser found when running a standard Max-Swap
algorithm by running a general version of Max-Swap with J > 1.

Rate of convergence and complexity Max-Swap algorithm increases the objective function
starting from an initial guess, (I01 , I

0
2 ). In general, we have no prior knowledge on the distribution

of true groups among the dataset, then we should choose the initial guess at random, and in
particular by drawing from the set of indexes without replacement, assigning equal probability
to each outcome. This strategy causes the quantity ρ in (3.3) to follow a scaled hypergeometric
distribution:

ρK ∼ Hyper(N,K,K),

i.e:

P (ρ = h) =

(
K
Kh

)(
K

K−Kh

)
(
N
K

) , E [ρK] =
K

2
,

with typically large values of N and K = N/2. Owing to the fast decay of hypergeometric mass
function away from its mean, we can presume that the random initial draw will cause ρ to be
most likely in some neighbourhood of K/2 (we imagine K to be even).
Let us assume that hypotheses of Proposition 2 are true, then if we consider a mixing proportion ρ
resulting from the initial guess, the number of iterations to convergence is Nit = ρK, corresponding
to ρK consecutive and correct swaps.
Then, by initialising at random the algorithm:

E [Nit] =
K

2
.

If we summarise the complexity of solving problem (P̂) with the number of combinations Ncomb

processed to recover the estimated groups (I∗1 , I
∗
2 ), and we compare our proposed method (MS)

with the naive, exhaustive strategy (N), we have:

E
[
NMS

comb

]
= K2

E [Nit] =
K3

2
, NN

comb =

(
N

K

)
,

where the multiplicative factor K2 in E
[
NMS

comb

]
accounts for the number of combinations searched

for to find the best swap at each step of Max-Swap algorithm.
This shows how Max-Swap algorithm entails a far lower complexity than the brute force approach.

3.2 Shrinkage estimation of covariance

In this subsection we consider the problem of improving the estimation of covariance operators,
so that classification be more accurate.

Let us consider a generic family of functional data X ∼ PX , such that E [X ] = 0, E‖X‖20 < ∞.

We denote its covariance with C and we imagine to estimate it with Ĉ. Our purpose is to find the
best possible approximation, or saying it otherwise, being:

MSES(Ĉ) := E ‖Ĉ − C‖2S
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our measure of the estimation error of Ĉ, to solve the following estimation problem (E):

Ĉ∗ = argmin
Ĉ

MSES(Ĉ) = argmin
Ĉ

E‖Ĉ − C‖2S , (E)

where the minimum is sought among all possible estimators Ĉ of C. We point out that in MSES

we use our selected distance to measure the discrepancy of estimation.
Of course, from a practical viewpoint, only a finite dimensional estimation of C can be attained,
given data. In addition, functional data are often available from sources as discrete measurements
of a signal over some one dimensional grid. Let us indicate by Xi the i-th (out of N) sample
realisation of process X , i.e:

Xi = {Xi(tj)}Pj=1 , Ih = [t1, . . . , tP ] , ti+1 − ti = h > 0, i = 1, . . . , N. (3.6)

where, for the sake of simplicity, we have imagined the grid Ih to be regularly spaced (although
this is not mandatory). A crucial point when analysing functional data is to reconstruct functions
from scattered measurements Xi, which requires the use of some proper smoothing technique.
Furthermore, the so called phase variability of reconstructed signals, involving the dispersion
of features along the grid axis, can be separated from amplitude variability, appearing as the
dispersion of magnitudes of values of Xi. This process is known as registration (see, for instance,
[RS05]). Once data have been smoothed and registered, they can be re-evalued onto another one
dimensional grid. To save notation we will assume that discrete representations in (3.6) have
already been preprocessed.

It is clear that, within this habit, covariance estimators of C are discrete, matrix-type
approximations constructed starting from pointwise observations Xi. For instance, standard
sample covariance estimator for zero-mean data is:

S =
1

N

N∑

i=1

Xi X
T
i . (3.7)

If we denote the true, discrete covariance structure related to each Xi by C the discrete version
of problem (E) is:

C∗ = argmin
Ĉ

E‖Ĉ−C‖2F , (Ê)

where the minimum is sought inside the set of symmetric and positively defined matrix-type
estimators of dimension P . We point out that the subscript F in (Ê) indicates the Frobenius
norm, that is the finite-dimensional counterpart of the Hilbert-Schmidt norm for operators.

When the sample size N is low compared to the number of features P , sample covariance may loose
in accuracy, meaning that the actual estimate might be quite distant from the true covariance C
(this can be seen as a consequence of the so-called Stein’s phenomenon, [Ste56]).
A typical remedy to the poor performances of sample covariance, often used in the setting of
Large P - Small N problems, is to replace it with a biased, shrinkage estimator. Other solutions
might be jacknife or bootstrap, but their computational cost renders them practically useless in
our classification algorithm, which requires to repeatedly estimate covariance matrices. Shrinkage
estimation has been explicitly applied to the context of large covariance matrices in [LW03; LW04]
and [SS05], turning out in a sufficiently lightweight procedure. In those works, authors start from

problem (Ê) and build an estimator that is asymptotically more accurate and better conditioned
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than sample covariance. We follow [LW04] and consider the class of linear shrinkage estimators
of the form:

Ĉ = µγ I+ (1− γ)S, (3.8)

where I is the P × P identity matrix and γ ∈ [0, 1], µ ∈ R
+ and S is the sample covariance

estimator. Obviously, the class contains the sample covariance estimator itself. Then (Ê) is solved
with respect to the optimal values of µ and γ:

(µ∗, γ∗) = argmin
µ,γ

E
‖C− µγI− (1− γ)S‖2F

P
. (3.9)

If we introduce the quantities:

α2 =
‖C− µI‖2F

P
, β2 =

E ‖S−C‖2F
P

, δ2 =
E ‖S− µI‖2F

P
, (3.10)

and note that these are subjected to α2 + β2 = δ2, we can perform the explicit minimization in
equation (3.9). The expressions of µ∗ and γ∗ are:

µ∗ =
〈C, I〉F

P
=

Tr (C)

P
, γ∗ =

β2

δ2
, (3.11)

where we have used µ = µ∗ in the computation of β and δ. The desired shrinkage estimator
becomes:

S∗ = µ∗ β
2

δ2
I+

α2

δ2
S. (3.12)

Of course, estimator (3.12) depends on the unknown exact covariance matrix C, even though only
through four scalar functions. In [LW04] authors solve this problem by proposing the following
estimators for α, β and δ:

µ̂∗ =
Tr (S)

P
, δ̂2 =

‖S− µ̂∗I‖2F
P

, β̂2 = min

(
δ̂2;

1

N2

N∑

k=1

‖Xk XT
k − S‖2F
P

)
(3.13)

and α̂2 = δ̂2 − β̂2.
Then, the actual shrinkage estimator is:

Ŝ∗ = µ̂∗ β̂
2

δ̂2
I+

α̂2

δ̂2
S (3.14)

In [LW04] they show how estimates (3.13) are consistent, in the sense that they converge to
the exact values in quadratic mean, under the general asymptotic limits of P and N , i.e. when
both P and N are allowed to go to infinity but there exists a c ∈ R independent on N such
that P/N < c (see [LW04] and references therein for theoretical details on general asymptotics).

Moreover, estimator Ŝ∗ is an asymptotically optimal linear shrinkage estimator for covariance
matrix C with respect to quadratic loss.
Besides its asymptotic properties, extensive use in applications shows that the accuracy gain
resulting from Ŝ∗ in terms of decrease in MSE is substantial also in many finite sample cases,
and that standard covariance is almost always matched and often outperformed by Ŝ∗.
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4 Case studies

In this section we provide three simulations involving our proposed classification method. In
Subsection 4.1 we show a first example, regarding standard bivariate data, in order to give a
clear geometric idea of classification based on covariance structures. In Subsection 4.2 we show
an application to synthetic functional data. In these former two examples the true subdivision
of samples is known, so the goodness of the classification arising from Max-Swap algorithm is
assessed against the true identities of data. In Subsection 4.3, instead, we apply the classification
algorithm in a truly unsupervised way on real functional data expressing the concentration of
deoxygenated hemoglobin measured in human subjects’ brains.

4.1 Multivariate data

This test is meant to provide a first, visual example of the features of the classification arising
from using Max-Swap algorithm. In order to ease the geometrical interpretation, we chose to
focus on two bivariate datasets, composed of simulated data with a-priori designed covariances.
Indeed, by representing bi-dimensional data we are able to support our considerations with a
clear graphical counterpart.
We exploit two reference datasets having the same means but different variance-covariance
structures. In particular, a generic classification based on locations run on these data is meant to
fail. The first set of data, hereafter hourglass data, has covariances whose difference lies in the
directions along which variability expresses. We generated it according to the following laws:

X =
(
ρx cos θx, ρx sin θx

)
, ρx ∼ U [−1, 1] , θx ∼ U

[
π
12 ,

5π
12

]
,

Y =
(
ρy cos θy, ρy sin θy

)
, ρy ∼ U [−1, 1] , θy ∼ U

[
7π
12 ,

11π
12

]
,

where the four random variables, ρx, ρy, θx, θy are independent. Simple calculations reveal that
E [X] = 0 and E [Y ] = 0, while covariances are:

Cx =

(
1/6

√
3/4π√

3/4π 1/6

)
, Cy =

(
1/6 −

√
3/4π

−
√
3/4π 1/6

)
.

Note that X and Y differ only in their covariances. Moreover, since only off-diagonal terms of C1

and C2 are different (and indeed opposed), the two families have the same kind of variability,
only expressed along orthogonal directions in the plane. We generate a dataset D of N = 400
data, according to the previous laws, made up of K = 200 samples from X and K = 200 samples
from Y , which are displayed in Fig. 2.
We considered also another dataset, referred to as bull’s eye, whose features are somehow
complementary to the ones of hourglass, since variabilities of bull’s eye sub-populations express
along the same directions, though with different magnitudes. In particular, we considered the
following laws:

X =
(
ρx cos θx, ρx sin θx

)
, ρx ∼ U

[
0, 1

2

]
, θx ∼ U [0, 2π] ,

Y =
(
ρy cos θy, ρy sin θy

)
, ρy ∼ U

[
2, 5

2

]
, θy ∼ U [0, 2π] ,

where, still, the four random variables ρx, ρy, θx, θy are independent. This leads to covariances:

Cx =
1

24
I, Cy =

61

24
I,

11
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Figure 2: Hourglass dataset used in the first
multivariate experiment, collecting N = 400
points subdivided into family X (K = 200
points, marked by +) and family Y (K = 200
points, marked by ×).
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Figure 3: Bull’s eye dataset used in the second
multivariate experiment, collecting N = 400
points subdivided into family X (K = 200
points, marked by +) and family Y (K = 200
points, marked by ×).

Hourglass Bull’s eye

X (true) Y (true) X (true) Y (true)

X (estimated) 197 3 200 0
Y (estimated) 3 197 0 200

Misclassification 1.5% 0%

Table 1: Misclassification table for the experiment on hourglass and bull’s eye datasets.

that clearly differ only in terms of their variability’s magnitude. Bull’s eye dataset is generated
according to these laws for an overall cardinality of N = 400 data subdivided in two groups of
size K = 200 each, and it is shown in Fig. 3.
We point out that, in order to improve the robustness of results with respect to the chance of
selecting only a local maximiser of the distance between variance-covariance structures, Max-Swap
algorithm has been run for 10 times, keeping the result for which the objective function was
highest. We summarize the results of both the experiments in Tab. 1. Since the number of data
in each sub-population, K, is high with respect to their dimensionality, P = 2, we used Max-Swap
algorithm in combination with the standard sample estimator of covariance, S.

4.2 Synthetic functional data

In this subsection we apply our classification algorithm to functional data. We use a dataset
composed of two populations of functions, X and Y, with null means and covariance operators:
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Figure 4: Contour plot of covariances Cx and Cy for the experiment with synthetic functional data.
The different scales of contour plots show that the difference between the variance-covariance
structures is only in magnitude.

Cx =

L∑

i=1

σi ei ⊗ ei, Cy =

L∑

i=1

ηi ei ⊗ ei, (4.1)

where {ei}Li=1 are the first L elements of the orthonormal Fourier basis on the interval I, save for
the constant, i.e.:

e2k−1 =

√
I

2
sin

(
2kπx

I

)
, e2k =

√
I

2
cos

(
2kπx

I

)
, k = 1, . . . , L/2

and the eigenvalues are:

σi = 1, ηi =
σi

4
, ∀ i = 1, . . . , L, (4.2)

In what follows we considered I = [0, 1] and L = 40. A visual representation of the related
covariance functions is in Fig. 4. It is clear from (4.1) and from Fig. 4 that covariances Cx and Cy
are different only in terms of variability’s magnitudes, while their eigenfunctions are the same.
We generated several sets of the following synthetic families of gaussian functional data having
covariances like in (4.1):

Xi =

L∑

j=0

ξij
√
σj ej , Yi =

L∑

j=0

ζij
√
ηj ej , i = 1, . . . ,K, (4.3)

where ξij
i.i.d∼ N (0, 1), and are independent from ζij

i.i.d.∼ N (0, 1). Each synthetic functional unit
has been evaluated on a grid of P = 100 points, evenly spaced on I. The different sets have
been generated choosing K ∈ {20, 25, 40, 35, 40, 45, 50}, corresponding to total cardinalities of
N ∈ {40, 50, 60, 70, 80, 90, 100}.
We applied our classification algorithm to each synthetic dataset. The different values of K (i.e.
of N) allow to study the performances of classification as the sample size increases. This is of
interest since our method relies on the estimation of covariance matrices, thus we expect that
when the number of data increases the classification tends to improve.
We used Max-Swap algorithm both with the standard sample covariance estimator, S, and with
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Sample covariance (S) Shrinkage estimator (Ŝ∗)

N K Miscl. (1,2) Err. Miscl. (1,2) Err.

40 20 6 (3, 3) 15% 0 (0, 0) 0%
50 25 6 (3, 3) 12% 0 (0, 0) 0%
60 30 4 (2, 2) 6.67% 0 (0, 0) 0%
70 35 4 (2, 2) 5.71% 0 (0, 0) 0%
80 40 4 (2, 2) 5% 0 (0, 0) 0%
90 45 4 (2, 2) 4.4% 0 (0, 0) 0%
100 50 0 (0, 0) 0% 0 (0, 0) 0%

Table 2: Classification results for the application with synthetic functional data.

the shrinkage covariance estimator Ŝ∗.

We report the results of the classification procedure in Tab. 2. Similarly to the case of multivariate
synthetic data of Subsection 4.1, each of them is related to the one trial in a pool of 10 for which
the distance between covariances was highest; this was done in order to take account of the
heuristic component of the algorithm.
Results undoubtedly highlight that covariance-based classification is utterly effective, yielding
misclassification error rates always lower than 15% also for challenging cases of scarce data
and, for reasonable sample sizes (K ≥ 30), always lower than 6.67%. In addition, we notice
that misclassification rate decreases as the number of data increases. The results are even more
satisfactory if related to the dimension of the covariance matrices of these data, i.e. P = 100,
since a successful classification may be carried out with only 25-30 units per family.
If we compare the performances gained when using S with those attained by using Ŝ∗, we see that
a substantial improvement in accuracy has been achieved, being the classification in the second
case, in practice, always perfect. Moreover, in this experiment the performances of Max-Swap
combined with Ŝ∗ were more stable across the trials, and almost always close to the best one for
all trials. This may be an advantage with respect to S, which in turn gave results more variable
from trial to trial. On the contrary, from a computational point of view, resorting to S leads to
faster simulations, while using Ŝ∗ requires higher effort, especially when K is large.

4.3 Deoxygenated hemoglobin data

In this Subsection we apply our classification method to a real dataset belonging to a biomedical
context. In particular, we deal with measurements along time of the concentration of deoxygenated
hemoglobin in the brain of a group of six subjects, while they are carrying out a certain task.
The measures of each subject were made on eight different points of the brain, four located
in the central part of the left hemisphere and another four located in the central part of the
right hemisphere. The measurement and preprocessing techniques as well as the experimental
instruments used to collect data are described in [Tor+14; Zuc+13; Re+13].

Each statistical unit of the dataset consists of a sampling along 40 seconds of deoxygenated
hemoglobin’s concentration at the related location on the brain. Our classification purpose
is to recognize the signals of patients whose trends in hemoglobin’s concentration show wide
fluctuations across their mean profiles from signals where the concentration varies little. This
difference in dispersion has a clear counterpart in terms of difference in covariance operators, thus
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Figure 5: Deoxygenated hemoglobin’s concentration data. In the left panel are represented the
preprocessed data on which the classification is carried out. In the right panel is shown the output
of classification.

we wish to apply our classification algorithm in order to detect the two clusters.
In a pre-processing stage, signals affected by artefacts due to the measurement procedure were
removed, while the other were detrended and smoothed thanks to a B-Spline smoothing basis.
At the end of the pre-processing stage, a set of N = 30 signals, subdivided into two groups of
K = 15 are available with a sampling rate of 1s, so that P = 40. These data are depicted in Fig. 5.

We run the Max-Swap classification algorithm on these data to perform an unsupervised classifi-
cation, both using S and Ŝ∗ estimators, finding equal partitions of initial data. The results are
shown in Fig. 5, and highlight how the algorithm is able to answer to our request, i.e. to detect
two clusters of functions that are well distinguishable in terms of their different variability. We
interpret these as different intensities in the reaction to the experiment.

5 Conclusions

In this paper we have studied the problem of performing an unsupervised classification on data
whose difference lies in their variance-covariance structures rather than in their means. We
have formulated it according to the general statistical framework of functional data, yet it can
be of interest also in other contexts, such as for multivariate data. We have shown how the
naive classification strategy is computationally intractable and we have proposed a new heuristic
algorithm to override such issue. The algorithm is based on a proper quantification of the distance
between estimates of covariance operators, which we assumed to be the natural Hilbert-Schmidt
norm, and seeks for the partition of data producing the highest possible distance among estimated
covariances. The partition is sought by modifying two initial guesses of the true groups with
subsequent exchanges of units, in order to maximise the distance between estimated covariances.
We have given its pseudo-code formulation and studied its convergence properties and complexity.
A crucial point of the algorithm is the estimation of covariance operators, which can be done by
standard sample covariance, but we have proposed a variant involving a linear shrinkage estimator,
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which promises to be at least as accurate as sample covariance, and often better in terms of mean
square error. By means of some examples we have collected empirical evidence to prove that
the algorithm is able to solve suitably the classification problem, both when the variabilities are
different in their magnitudes or in their directions. We compared the performances gained on
functional data under the use of the sample estimator and of the linear shrinkage one, and found
that both of them give definitely satisfactory results and that the use of linear shrinkage may
provide a substantial improvement in terms of misclassification error.
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