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Abstract

Functional data are data that can be represented by suitable functions, such
as curves (potentially multi-dimensional) or surfaces. This paper gives an intro-
duction to some basic but important techniques for the analysis of such data,
and the techniques are applied to two datasets from biomedicine. One dataset
is about white matter structures in the brain in multiple sclerosis patients; the
other dataset is about three-dimensional vascular geometries collected for the
study of cerebral aneurysms. The techniques described are smoothing, align-
ment, principal component analysis, and regression.

Keywords: curve alignment; functional principal component analysis; functional
regression; smoothing.

1 Introduction

Functional data are generated from underlying continuous functions. Each obser-
vation consists of discrete measurements x1, . . . , xn taken at time or location points
s1, . . . , sn, but these data points are assumed to arise from a (smooth) function X
such that xj is an observation of X(sj). Interest is in the functions as such rather
than the individual measurements, and therefore differs from traditional multivariate
analysis in both conceptual framework and statistical tools used for analysis. For
example, the medical questions to be answered could be “How is the function x as-
sociated with the severity of a disease and with survival from the disease?”; “Which
subjects exhibit similar patterns of an expression profile and which subjects exhibit
different patterns?”; or “What is the general growth pattern of a tumor, and how do
we estimate an intrinsic time scale for each individual?” Functional data analysis
enables us to answer such questions regarding regression and prediction, clustering,
and variation in the time/space direction, as well as many others.

This paper is a review of some of the techniques developed for functional data.
It is built around two datasets from medical science: a dataset of three-dimensional
vascular geometries collected for the study of cerebral aneurysms, and a dataset on
white matter structures in the brain in multiple sclerosis patients.
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The illustrating datasets are just two among many examples of functional data in
the medical sciences. Technical development over the last few decades has resulted
in equipment that produces vast amounts of data that are functional in nature,
such as measurements over fine time or space grids and images with many pixels.
Examples include data on electrical activity of the heart (electrocardiography or
ECG), data on electrical activity along the scalp (electroencephalography or EEG),
continuous activity monitoring through accelerometers, motor control after stroke,
chromatograms and other spectral analysis, growth curves, data reconstructed from
medical imaging, expression profiles in genetics and genomics. Functional data are
also important in analytical chemistry, biomechanics, plant science, engineering and
many other fields.

Appropriate statistical methods have been developed along with the appearance
of functional data. Work was already initiated by the 60’s and 70’s, but development
accelerated in the 80’s and 90’s as functional data was more widely produced and
recognized. The first edition of [1] made the methods available to a larger audience
and has had an enormous impact on the spread of functional data analysis. The
book mainly covers parametric (and semi-parametric) approaches and explorative
methods, and has been accompanied by a more applied version covering roughly the
same topics [2]. Other important books are [3] and [4] on non-parametric methods,
and [5] with emphasis on hypothesis tests in models for functional data. In addition
to these monographs, is a vast quantity of scientific papers ranging from theoretical to
applied. Papers that are relevant for our applications will be mentioned in subsequent
sections.

The aims of a functional data analysis are generally the same as for other sta-
tistical analyses, and there exist functional versions of many standard statistical
methods. The challenges with functional data lie in the infinite-dimensional nature
of the data, the implicit assumption of smoothness, and the extra variability in the
time direction, among others. There are close connections to longitudinal data, since
in practice the data consists of repeated measures on each subject. Classical longi-
tudinal data analysis often models the expected values as explicit low-dimensional
functions of time (polynomial or non-linear), whereas functional approaches allow
for greater flexibility. Recent work has blurred the distinction between longitudi-
nal and functional data settings by considering the former as sparse observations of
continuous functions; such analyses are less flexible than for dense observations but
emphasize conceptually functional interpretations; see [6] and [7, Part III].

There are also close connections to analysis of high-dimensional data. A naive
approach for functional data would be to use functional values at a large number
of grid points as input to a multivariate analysis. However this would not take
the serial structure (of time or space) into account, and thus may lose power by
neglecting inherent structure or result in non-smooth estimates. Hence, methods
must be adapted to the functional setting.

The aim of this paper is to make researchers in the medical sciences aware of
the challenges of and possibilities for functional data. It is intended for researchers
who are familiar with classical statistical disciplines like regression, classification,
principal component analysis, but who do not necessarily have experience with func-
tional data. Sections 2–5 cover important themes in functional data analysis. Our
selection of topics has been motivated by the two illustrative datasets, and is by no
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means exhaustive. In each section, the challenges and possible analysis techniques
are outlined, and the methods are applied to one or both datasets. There are few
mathematical and technical details, but references are given to appropriate papers
with more detailed information.

Section 2 is about smoothing, which brings discrete data to functional form.
Section 3 is about curve alignment (also called warping or registration), i.e. methods
for separating phase and amplitude variation. Section 4 describes the functional
version of principal component analysis used to extract the leading components of
the data. Functional regression, describing the association between variables some
of which are functional, is the topic of Section 5. In the end, there is a short section
on software (Section 6) and some concluding remarks (Section 7).

1.1 DTI tract profile data

Our first motivating dataset comes from a neuroimaging study of multiple scle-
rosis (MS) patients. MS is an immune-mediated inflammatory disease marked by
symptomatic attacks that are associated with the demyelnating lesions. These le-
sions can affect white-matter tracts, which are bundles of myelinated axons (the
projections of nerve cells that propagate electrical signals). Damage to the myelin
sheath protecting white matter axons disrupts the transmission of signals in the
central nervous system and can result in severe patient disability. To noninvasively
quantify white matter microstructure we use diffusion tensor imaging (DTI), an MRI-
based modality that traces the diffusion of water in the brain [8, 9, 10]. Specific white
matter tracts, such as the corticospinal tracts (which connect the motor cortex to the
body) and the corpus callosum (which connects the two hemispheres of the brain),
can be identified and studied using full-brain DT images.
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Figure 1: DTI data. Left: Position of the corticospinal tracts (blue) in the brain.
Right: Fractional anisotropy tract profiles for the right corticospinal tract, with two
subjects highlighted.

For several major white-matter tracts, we have one-dimensional functional sum-
maries called tract profiles. These profiles localize white matter properties as mea-
sured by water diffusion along the anatomical path of the tract through the brain.
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In this data set, tract profiles form the basis of our analysis. Figure 1 shows the posi-
tion of the corticospinal tracts in the brain, as well as the fractional anisotropy tract
profiles for the right corticospinal tract with two subjects highlighted. Fractional
anisotropy measures how strongly directional is the diffusion of water, with values
near one indicating complete anisotropy and values near zero indicating completely
isotropic diffusion.

Our dataset consists of measurements on 150 MS patients and 36 control subjects,
obtained under an institutional review board-approved protocol. For each subject
we observe tract profiles as described above and MS case status; additional scalar
measures of cognitive performance are observed for MS patients only. Two major
problems arise in analyzing this dataset: 1) data compression, keeping in mind po-
tential issues with respect to measurement error and missing data (some subjects are
missing up to 20% of the tract profile, as shown in Figure 1); and 2) scalar-on-function
regression to understand associations between anatomical structures summarized in
tract profiles and both case status and cognitive performance.

1.2 AneuRisk65: three-dimensional vascular geometry data

The second illustrative dataset, AneuRisk65, comes from the AneuRisk project1,
a scientific endeavor that has gathered together researchers of different scientific
fields, ranging from neurosurgery and neuroradiology to statistics, numerical analysis
and bio-engineering, with the aim of studying the pathogenesis of cerebral aneurysms.
These are deformations of the cerebral arteries (see Figure 2, left panel), rather fre-
quent in the adult population and normally not disrupting. On the other hand,
rupture of a cerebral aneurysm is a rare event, but with very high mortality. Cere-
bral aneurysms of the vessels are believed to be caused by complex interactions
between the biomechanical properties of artery walls and effects of hemodynamical
forces exerted on the vessel walls, such as wall shear stress and pressure; the hemody-
namic forces in turn depend on the vessel morphology itself. In particular, it has been
conjectured that the pathogenesis of these deformations is influenced by the morpho-
logical shape of cerebral arteries, through the effect that the morphology has on the
hemodynamics. For this reason, one of the main goals of the AneuRisk project has
been the study of relationships between vessel morphology and aneurysm presence
and location. See the AneuRisk webpage http://mox.polimi.it/it/progetti/aneurisk/
and references therein.

The deformation of the vessel wall may originate along one of the Internal Carotid
Arteries (ICA, in short), two large arteries bringing blood to the brain, or at or after
the terminal bifurcation of the ICA, in the so-called Willis Circle. Each of the two
ICAs sits for most of its length outside the skull, along the neck, surrounded by
muscle tissues; just before its terminal bifurcation it enters inside the skull, passing
through a dural ring (i.e., a hole in the skull bone). Arteries downstream of ICA
terminal bifurcation float in the brain humor, inside the skull. For this reason,
aneurysms located at or after the ICA terminal bifurcation are more life-threatening;

1The project involved MOX Laboratory for Modeling and Scientific Computing (Dip. di Matem-
atica, Politecnico di Milano), Laboratory of Biological Structure Mechanics (Dip. di Ingegneria
Strutturale, Politecnico di Milano), Istituto Mario Negri (Ranica), Ospedale Niguarda Ca’ Granda
(Milano) and Ospedale Maggiore Policlinico (Milano), and has been supported by Fondazione Po-
litecnico di Milano and Siemens Medical Solutions Italia.
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Figure 2: AneuRisk65 data. Left: Three-dimensional image of an Internal Carotid
Artery (ICA) with an aneurysm (subject 1), obtained from an angiography via the
reconstruction algorithm coded in the Vascular Modeling ToolKit VMTK (see Sec-
tion 2). The black line inside the vessel is its reconstructed centerline. Right: Radius
profile (top) and curvature profile (bottom) of the ICA. The curvature is computed
using the smoothing technique described in Section 2.4. Location s along the ICA
centerline is measured as a curvilinear abscissa that goes from the terminal bifurca-
tion of the ICA towards the heart (measured in mm).

the rupture of one such aneurysm is fatal in most cases.
The AneuRisk65 dataset is based on a set of three-dimensional angiographic

images taken from 65 subjects who were suspected of being affected by cerebral
aneurysms. Most of the subjects were in fact found to have an aneurysm at or after
the terminal bifurcation of the ICA, or along the ICA; only a small subgroup had no
visible aneurysms. The statistical analyses conducted within the AneuRisk project
have focused on the geometrical features of the ICA, which is clearly recognizable in
each of the 65 angiographies, in particular on the ICA radius and curvature profiles
(see Figure 2, right panel). Radius and curvature are in fact known to highly in-
fluence the local hemodynamics, and hence, through this effect, they may influence
aneurysms’ pathogenesis. See, e.g., [11, 12, 13].

2 From discrete-time measurements to functions

Functional data analysis deals with data where each sample unit is thought of as
a function. In practice, however, the data consist of discrete-time measurements or
measurements on a grid, and the sequence of observed values are commonly observed
with noise. Hence, one step in a functional data analysis often consists of converting
the discretely observed data to smooth functions. Moreover, it is often of interest to
study also the derivatives of the functional data; in some cases, the derivatives are
themselves objects of analysis, while in other cases estimates of curve derivatives may
be of help for further processing of the data, such as in curve alignment procedures
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(see Section 3). In this section we discuss methods that bring the data from discrete
to functional form; the resulting curves are used as input to subsequent analyses.

2.1 Smoothing with least squares and penalized least squares

Let us consider data from I subjects. For subject i, we observe Wij with j =
1, . . . , ni and Wij corresponding to time/location point sij . that all tij ∈ [0, 1].
Notice the flexibility in the set-up: the number of measurements as well as the
observation points may differ between subjects (not all ni are the same, and sij
may differ from si′j); the measurements are not necessarily measured at equidistant
points; and the data could be sparse or dense at the subject level. Additionally, a
common assumption in functional data analysis is that Wij is a noisy observation of
Xi(sij):

Wij = Xi(sij) + ǫij ,

most often with the implicit assumption that ǫijs are iid N(0, σ2).
Our problem is to estimate or reconstruct the true functions Xi (i = 1, . . . , I)

from the observed data Wij (i = 1, . . . , I, j = 1, . . . , ni). One popular solution
described in this section is to use basis expansions and impose smoothness either by
restricting the basis or through explicit smoothness constraints. A basis expansion
is a linear combination of known basis functions; hence we choose K basis functions
ψ1, . . . , ψK and consider estimates of the form

X̂i(s) =
K
∑

k=1

ĉikψk(s), (1)

The coefficients ĉi1, . . . , ĉiK are estimated from the data as described below, and the
basis functions ψ1, . . . , ψK can potentially differ between subjects. Notice that X̂i

is defined for all s, not only those where observations are available. The expansion
also provides expressions of the derivatives (X̂ ′

i, X̂
′′

i , etc.) in terms if the derivatives
of the basis functions; for example, the first and second order derivatives are

X̂ ′

i(s) =
K
∑

k=1

ĉikψ
′

k(s), X̂ ′′

i (s) =
K
∑

k=1

ĉikψ
′′

k(s). (2)

Common choices of bases are Fourier bases and polynomial spline bases, both illus-
trated in Figure 3 (see also, e.g., [1]). Notice that Fourier basis functions (left plot)
are periodic, which makes them particularly useful for periodic data, and that spline
basis functions (right plot) can be chosen to have local support, which makes them
computationally very efficient and good at capturing local features of the functional
data.

The estimation problem amounts to choosing the coefficients, cik. For a fixed i,
letWi = (Wi1, . . . ,Wini

)T be the column of observations, and Ψi be the ni×K matrix
with entry (j, k) equal to ψk(sij). For a column of coefficients ci = (ci1, . . . , ciK) the
j’th element of Ψici is equal to X̂i(sij) from (1). Hence, the sum of squared errors is

SSEi =

ni
∑

j=1

(

Wij − X̂i(sij)
)2

= (Wi −Ψici)
T (Wi −Ψici),
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Figure 3: Left: Fourier basis with K = 7 basis functions (one of them constant and
equal to 1). Right: B-spline basis of order 4 (cubic polynomials) with K = 13 basis
functions; the vertical lines show the 9 equally spaced interior spline knots.

and the least squares solution to the estimation problem is the well-known c̃i =
(

ΨT
i Ψi

)

−1
ΨT
i Wi. If it is not reasonable to assume that the measurement errors ǫij

are independent, or that they have the same variance, then a weight matrix should
be incorporated in the expression for SSEi in the usual way.

The degree of smoothness in the preceding is implicitly controlled by the number
of basis functions, K. If K is too small, then some of the features in X̂i will be
smoothed away, whereas if K is too large, then the least squares prediction will
overfit the data, and find features that have only occurred by chance and are thus
not reproducible. Thus the least squares prediction is quite sensitive to the choice
of K as well as to the type of basis functions used.

In order to address these problems, a roughness penalty may be introduced. A
typical choice for this regularizing term involves the curvature of the function. Let
λ > 0, and consider the penalized sum of squared errors

SSEi,λ = SSEi + λ

∫

(

X̂ ′′

i (s)
)2
ds = SSEi + λcTi Rψci. (3)

Here, Rψ is the K × K matrix with entry (k, l) equal to
∫

ψ′′

k(s)ψ
′′

l (s) ds. When
estimation of some curve derivative is also of interest, it is common to consider
roughness penalties involving derivatives of order higher than two, and use a basis
with higher regularity (for instance, polynomial spline bases with higher order); see
Section 2.4. For a given λ, the value of SSEi,λ is minimized by

ĉi(λ) =
(

ΨT
i Ψi + λRψ

)−1
ΨT
i Wi. (4)

In particular, notice that the solution is still explicit and depends on λ. For large
values of λ wigglyness of X̂i is heavily penalized so X̂i is quite smooth; for small values
of λ the estimation X̂i is more similar to unpenalized least squares estimate and thus
potentially wiggly if K is large. In other words, penalization imposes smoothness on
X̂i and therefore implicitly reduces the space of admissible functions. The effective
number of estimated parameters is df(λ) = trace

(

Ψi(Ψ
T
i Ψi + λRψ)

−1ΨT
i

)

which is
decreasing in λ and equal to K for λ = 0 (corresponding to least squares). With an
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appropriate value of λ, we can use a rich basis — with a number of basis function
as large as ni — without affecting the prediction X̂i much [14]. Moreover, as long
as the bases are chosen rich enough, predictions computed with penalization are
quite robust against the type of basis functions (e.g. Fourier and splines), the exact
placement of knots in a spline basis, etc. Altogether penalization reduces the impact
of the choice of basis.

It remains to select the smoothing parameter λ. Low values of λ result in model
overfit while high values result in oversmoothing; our goal is to balance these com-
peting effects. It is most common to rely on goodness-of-fit criteria such as the
generalized cross-validation criterion (GCV) or Akaike’s criterion (AIC). GCV mea-
sures goodness-of-fit by the ability to predict left-out observations, see [15] and [1],
whereas AIC measures goodness-of-fit by the log-likelihood (assuming iid Gaussian
error terms) penalized by the effective number of estimated parameters, df(λ). An-
other option is to treat the coefficients cik as random variables with λ as a variance
parameter, and use maximum likelihood (ML) or restricted maximum likelihood
(REML) for estimation of λ; see [16] and [17]. Simulation studies in [17] suggest
that the ML/REML approach is less prone to overfit the data and has better nu-
merical properties compared to the AIC/GCV approach, but the predicted functions
corresponding to the optimal λ from the different criteria are most often comparable.
Prediction of X̂i is rarely the aim of the study, and our experience is that the final
results are not very sensitive towards the selection approach.

2.2 Selection of basis functions and estimation approach

So far we have considered known basis functions, selected before the analysis, in
combination with penalization. As an alternative, it is possible to select the basis
adaptively to the data. Within the spline field, this can for instance by attained
by free-knot regression splines; see, e.g., [18] and references therein. An example in
this direction is given in Section 2.4. Other basis systems that are naturally locally-
adaptive are provided by wavelets, which are particularly well suited for data with
spikes or other strongly localized features; see [19] for an overview. Finally, one may
use an empirical basis computed from the eigenfunctions of the empirical covariance
operator, i.e., the principal components; see Section 4 below and [20]. In this latter
case, smoothing becomes in fact a more integral part of the analysis.

While many smoothing methods are available, features of a particular dataset
or analysis will influence which approach is most appropriate. For instance, spline-
based approaches (including low-dimensional, penalized, and free-knot methods) are
very appealing when derivatives are of interest, because derivatives of spline basis
functions are often directly available. The flexibility of penalized splines may be
detrimental if functional data are sparsely observed, as in traditional longitudinal
studies. Instead, low-dimensional splines or parametric forms may be better suited:
although they are more restrictive, given only a few data points for each curve these
methods can be more stable than a penalized approach. Alternatively, functional
principal components methods (discussed in Section 4) provide a data-driven collec-
tion of basis functions. FPCA can be used for dense or sparse data and are well-suited
for dimension reduction, but lack easily computed smooth derivatives.
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2.3 Illustrating penalized spline smoothing with the DTI data

The DTI data illustrated in Figure 1 exhibit a roughness that is unlikely to
represent true underlying anatomical features: fractional anisotropy in the right cor-
ticospinal tract is smooth along the axis of the tract. Noise in the tract profiles
has several potential sources, ranging from measurement error in image acquisition
to registration errors in defining anatomical structures to generate the profiles. Re-
gardless of the source, it is necessary to smooth observed curves prior to further
analysis; here we discuss a penalized spline approach for smoothing functional data.
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Figure 4: DTI data. Left: The GCV curve over a fine grid of tuning parameters
λ. Right: Observed data for a single subject, as well as fitted curves for several
tuning parameters. The colors of the fitted curves in the right panel correspond to
the tuning parameter values in the GCV curve at left.

Because the placement and number of knots does not greatly affect overall fit
when explicit penalization is used, we choose a rich cubic B-spline basis consisting
of 35 functions. For a given value of the tuning parameter λ we use equation (4)
to explicitly estimate the basis coefficients and, therefore, the expansion of each
curve in our dataset. In this example we choose λ using GCV; similar results are
obtained using REML. The left panel of Figure 4 evaluates GCV(λ) for a dense grid
of potential λ values, and from this we choose the minimum λ ≈ e−12. Estimates
for a single tract profile using several values of λ, including that chosen by GCV,
are shown in the right panel with colors corresponding to the value of λ in the left
panel. The chosen fit preserves the major structures and many details of the tract
profile while removing minor deviations that do not represent anatomical features.

2.4 Illustrating curve derivatives estimation with the AneuRisk65

data

We here use the AneuRisk65 data to illustrate curve fitting when estimation of
the curve derivatives is also of interest.

As mentioned in the introduction, the analysis of the AneuRisk project focused
on the ICA, the artery with aneurysms possibly developing along or downstream
of it. The vessel is clearly identifiable for each patient and is reconstructed from
the angiographic image using the reconstruction algorithm coded in the “Vascular
Modeling ToolKit” VMTK [21, 22]. In particular, for every subject i, VMTK recon-
struction includes the three spatial coordinates of the vessel centerline (Xij , Yij , Zij)
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for each point sij on a fine grid along a curvilinear abscissa that goes from the ter-
minal bifurcation of the ICA towards the heart (measured in mm). The left panel
of Figure 2 shows the reconstruction of the ICA of the first subject in the dataset,
with the reconstructed vessel centerline, and the top panels of Figure 5 display the
three spatial coordinates of the centerline versus the approximate curvilinear abscissa
(grey dots behind the solid curves). The reconstruction also provides, for each grid
point sij , the radius Rij of the vessel lumen section; the reconstructed radius profile
for the first patient was shown in Figure 2 (top right panel).
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Figure 5: AneuRisk65 data. Top: Penalized spline estimates of ICA cen-
terline for the first patient, i.e., X̂1(s), Ŷ1(s), Ẑ1(s), superimposed to raw data
(s1j , X1j), (s1j , Y1j), (s1j , X1j) in grey. Center: Corresponding first derivatives X̂ ′

1(s),
Ŷ ′

1(s) and Ẑ ′

1(s) superimposed to first central differences in grey. Bottom: Corre-
sponding second derivatives X̂ ′′

1 (s), Ŷ
′′

1 (s) and Ẑ ′′

1 (s) superimposed to second central
differences in grey.

Besides the radius, another geometrical feature that has been studied within the
project is the vessel curvature, identified by the curvature of the vessel centerline.
Reconstructed ICA centerlines are of course affected by measurement and recon-
struction errors. To compute their curvature it is hence necessary to obtain accurate
estimates of the centerlines themselves as well as of their first two derivatives. Since
we need smooth estimates of second derivatives, we here use splines with an higher
order than those used for DTI data; we can for instance employ order five polynomial
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Figure 6: AneuRisk65 data. First and second derivatives (only first space coordinate)
of estimated ICA centerline for the first patient, i.e., X̂ ′

1 and X̂ ′′

1 . The figure display
the derivatives of the estimates of the ICA centerline obtained by penalized splines
with effective number of estimated parameters equal to 20 (black) and with effective
number of estimated parameters equal to 30 (green), and by free-knot splines with 20
basis functions (red). The estimates are superimposed to central differences (grey).

splines and penalize the third derivative, minimizing an SSEλ defined analogously to
(3). Also in this case we use a rich basis. The estimates of each space coordinate,
X̂i(s), Ŷi(s) and Ẑi(s), are shown as solid black lines in the top panels of Figure 5, su-
perimposed to raw data, displayed in grey (almost completely hidden by estimates).
The effective number of estimated parameters is 20.

Differentiating these estimates as described in (2), we obtain estimates of first and
second derivatives; X̂ ′

i(s), Ŷ
′

i (s), Ẑ
′

i(s) and X̂ ′′

i (s), Ŷ
′′

i (s), Ẑ
′′

i (s), respectively; these
estimates are shown as solid black lines in the central and bottom panels of the same
figure. The estimates are superimposed to central differences (displayed in grey)
that are rough estimates of first and second derivatives computed at each grid point
as normalized differences of data values at nearby grid points. The higher order
of the polynomial spline basis (order five) and the higher order of the derivative in
the roughness penalty (derivative of order three), used here to fit the reconstructed
centerline, ensure smooth estimates not only of the curve itself but also of its first and
second derivatives, that in this example are respectively splines of order four (cubic
splines), and splines of order three (quadratic splines). The estimated derivatives
can hence be used to compute an estimate of the curvature of the vessel centerline,
that is of interest in the study.

Figure 6 compares estimates of the first and second derivative of the first space
coordinate, Xi, obtained from different smoothing procedures. First, consider pe-
nalized spline estimates with effective number of estimated parameters equal to 20
(shown in black, and identical to the center left and bottom left panels of Figure 6)
and with effective number of estimated parameters equal to 30 (shown in green). By
using a larger effective number of estimated parameters, penalized spline estimates
can better capture the local features of the curve, such as the peaks and troughs in
the first and thus subsequent derivatives, but at the price of being more wiggly over
the whole range, as is apparent in the second derivative. This must be avoided to
obtain sensible estimates of curvature profiles. Figure 6 also displays estimates ob-
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tained via the multi-dimensional free-knot spline technique detailed in [13]. Instead
of using a rich spline basis system and penalizing some curve derivative, free-knot
splines select and use only a few basis functions, chosen adaptively to the data. In
particular, the selection of the basis from a rich basis system is driven by the min-
imization of a penalized sum of squared errors criterion, where the penalty term is
now proportional to the number Ki of chosen basis, SSEi + λKi; see [18] for details.
In [13] this technique is extended to multidimensional curves, taking into account
simultaneously all the space coordinates of the multidimensional curve in the basis
selection. Thanks to their adaptivity to data, free-knot splines estimates are able to
better detect salient localized features. Figure 6 shows the estimated first and second
derivatives of Xi obtained from the free-knot spline estimate of order five with 20
basis functions (red). Comparing the different estimates in Figure 6, it is clear that
free-knot splines estimates exhibit more clear-cut peaks and troughs; yet smoothness
is maintained. The profile of the centerline curvature shown in the bottom right
panel in Figure 2 is computed from these estimates.

3 Phase variation and alignment

With replications of functional data there are two important types of variation
between curves: amplitude variation and phase variation. Phase variation — or curve
misalignment — refers to the phenomenon that different curves exhibit more or less
the same features, but that these features occur at different times or space locations
for different subjects. Misalignment arises naturally for many reasons, including
changes in data observation and recording, differences in the timing of disease onset
and progression, and natural variation in the size and shape of anatomical struc-
tures. An illustration of misaligned data using the AneuRisk65 dataset is provided
in Figure 7. In particular, the left panels of this figure display the first derivatives
of the estimated ICA centerlines for the 65 subjects, in the X, Y and Z direction,
respectively. It is apparent that the three-dimensional centerlines display a consider-
able misalignment. This misalignment is the expression of a strong phase variability
present among the subjects, largely due to the different dimensions of the ICA across
subjects. If not taken properly into account, the misalignment acts as a confound-
ing factor and may blur subsequent analyses. For example, the mean curve will
not exhibit features as clearly as the original curves when they occur at different
time/location points. This is clearly illustrated in the left panels of Figure 7, where
the mean curves are indicated as black solid lines.

It is thus often essential to include alignment (also called registration or warping)
of the curves as part of the analysis.

3.1 Landmark alignment and continuous alignment

The idea is to find transformations hi such that the transformed curves

X̃i(s) = Xi ◦ hi(s) = Xi(hi(s))

are “as similar as possible”. The functions hi are called warping functions and should
be increasing. These warping functions capture the phase variability; amplitude
variability, on the other hand, is the remaining variability in vertical direction among
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Figure 7: AneuRisk65 data. Left: First derivatives X ′

i(s), Y
′

i (s) and Z ′

i(s) of es-
timated ICA centerlines, before alignment. The superimposed solid black lines are
average curves (estimated as local means). Right: First derivatives X̃ ′

i(s), Ỹ
′

i (s) and
Z̃ ′

i(s) of estimated ICA centerlines, after alignment. The superimposed solid black
lines are the first derivatives of the reference centerline (estimated as local means).

the aligned curves. In some cases time or location is merely shifted from curve to
curve, for example because the measurements are started at random time points. For
these situations it is natural to use hi(s) = s+δi. In other situations phase variation
is a matter of dilation, in which case hi(s) = ais is a natural choice of warping
function. In yet other situations the time or space deformation is more complex.
In any case, the warping functions must be estimated from the data. Registration
is a very active field of research and the subject of a large literature; see, e.g., the
literature review in [23].

There are two main strategies for aligning observed functions. If the curves ex-
hibit well-defined features or landmarks, such as peaks or valleys, one option is to
warp the curves such that the features occur at the same time or location for all
curves; this process is referred to as landmark registration; see e.g., [1, 24]. This
approach is used in the DTI dataset, in which white matter tracts exhibit unique
lengths, shapes, and trajectories across subjects. A trained neuroradiologist iden-
tified seven anatomical landmarks using the full-brain DT images; these landmarks
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were then used to register curves. Thus the tract profiles shown in Figure 1 are
observed on the same domain across subjects and major features are aligned. While
landmark-based registration can be accurate, it may also require significant user in-
put and can be sensitive to the accuracy of the landmark identification. In some
applications it is not possible to identify well-defined features that can be taken as
landmarks, and landmark registration is of course not suited to these situations.

An alternative strategy consists in the so-called continuous registration; see, e.g.,
[1, 25, 26, 27, 28], with examples of registration of children growth curves. Various
approaches have been proposed in this context. A common one is based on the def-
inition of a suitable distance (or closeness) measure between curves, that measures
dissimilarity (or similarity) between curves. The curves are thus aligned by warp-
ing their time or space abscissa parameters choosing the optimal warping function
in some class of admissible warping functions in order to minimize the final dis-
tance among the curves or, equivalently, maximize their final similarity. Note that
this problem is not univocally defined as different measures of distance or similar-
ity between curves can be considered (see, e.g., [3] for examples of various distance
measures), as well as different classes of admissible warping functions (e.g., simple
translations or dilations, increasing linear transformations or more complex increas-
ing transformations), leading to different registration results. In fact, the choice
of the couple formed by distance measure and admissible warping functions defines
the distinction between phase variability and amplitude variability in the specific
problem under analysis. This choice must thus be problem specific.

How is alignment performed in practice? If there is a reference curve, X0, then
each of the observed curves X1, . . . , Xn could be registered to X0 by landmark or
continuous registration, as described above. Most often, however, there is no such
reference curve. Then iterative procrustes procedures may be used, see, e.g., [1]. Such
procedures alternate between “reference estimation steps”, where a reference curve
is estimated using all the curves obtained at the previous iteration, and “alignment
steps”, where each curve is aligned to the reference curve estimated at the previous
step.

It should be noticed that both the phase variation and/or the amplitude variation
may be associated to the phenomenon (for instance, the pathology) under study. It
is thus necessary to study both types of variations to see how they relate to the
problem being investigated.

3.2 Illustrating alignment with the AneuRisk65 data

To enable meaningful comparisons across subjects in the AneuRisk study, it is
necessary to first efficiently decouple the phase and the amplitude variability. In this
application phase variation is mainly due to differences in the dimension of carotids
among subjects, whereas the amplitude variation is mainly due to differences in the
vessel morphological shapes. The right panels of Figure 7 show the aligned first
derivatives of the vessel centerlines, obtained by the continuous alignment technique
detailed in [12] and [28]. The procedure has removed most of the phase variation,
making it easier to compare curves from different subjects. Notice also that the
mean curves of aligned data, drawn as black solid lines (right panels), represent the
features of the individual curves far better than the mean curves of data that are
not aligned (left panels). The variability captured by the optimal warping functions
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Figure 8: AneuRisk65 data. Top: ICAs radius profiles for all subjects before align-
ment (left) and after alignment (right); the superimposed solid black line is the
average radius profile estimated by local means. Center: ICAs curvature profiles for
all subjects before alignment (left) and after alignment (right); the superimposed
solid black line is average the curvature profile estimated by local means. Bottom:
Estimates of the probability density function of the location of aneurysms along the
ICA or at its terminal bifurcation, before alignment (left) and after alignment (right).

found during this alignment process (not shown here) is analysed in [12] and is found
not to be associated to the aneurysmal pathology. Subsequent analysis may hence
focus on the aligned data.

The optimal warping functions can be used to correspondingly align the radius
and curvature profiles; see Figure 8. After alignment it is possible to start appreci-
ating a common pattern for the curvature profiles (center right panel) that was not
visible before alignment (center left panel). The effect of alignment on the radius
curves is less prominent; this is because the radius profile displays a smaller varia-
tion along the ICA with respect to the curvature profile. The registered radius and
curvature profiles highlight many interesting aspects. Figure 8 shows that the vessel
gets progressively narrower toward the terminal bifurcation of the ICA; this is the
so-called tapering effect. Tapering concerns all arteries, but it is particularly appar-
ent close to the terminal bifurcation of the ICA, where the artery has to enter inside
the skull. The figure also shows that most ICAs display two peaks of curvature in
the terminal part of the vessel; these peaks of curvature are in correspondence with

15



the carotid syphon. The bottom panels of the same figure display Gaussian kernel
density estimates of the aneurysm location along the ICA, before and after alignment
(left and right, respectively), based on data from patients having an aneurysm along
the ICA or at its terminal bifurcation. The majority of ICA aneurysms are located
in the terminal part of the vessel, where tapering is stronger, and after the main
curvature peak. These results support the conjecture concerning the influence of
the vessel morphology and the aneurysm onset, via the hemodynamics. In fact, the
tapering of the vessel and the peak in its curvature determine hemodynamic regimes
that may facilitate aneurysm formation and development. The relationship between
morphological and hemodynamical features, and their impact on aneurysm pathol-
ogy, is further explored in [11]. The bottom right panel of Figure 8 shows that, after
alignment, the locations of ICA aneurysms cluster in two neatly separated groups,
before and after –13 mm from the vessel terminal bifurcation. This fact suggest that
this is the average position of the dural ring, i.e., the hole in the skull bone the
ICA goes through to enter inside the skull. Notice that this ring cannot be detected
directly through angiographies, but indications of the location of aneurysms relative
to the dural ring may be of great importance, since aneurysms within the skull are
more dangerous, as explained in Section 1.2.

4 Principal component analysis

The aim of functional principal component analysis (FPCA) is to find a few
functions that capture most of the amplitude variation between replications of func-
tions. More specifically, we are looking for functions ξ1, . . . , ξK such that Xi(s) is
well-approximated by a linear combination

∑K
k=1

cikξk(s), where ideally K is small.
This is similar to the smoothing problem considered in Section 2, but for FPCA the
basis functions are estimated from the data (rather than being pre-specified), and
the goal is dimension reduction by using a few efficient basis functions.

4.1 Eigen functions and pricipal component scores

The starting point is the covariance operator Σ defined as

Σ(s, t) = Cov[Xi(s), Xi(t)] = E [(Xi(s)− µ(s)) (Xi(t)− µ(t))] ,

where µ(s) = E[Xi(s)] is the expected value at time s. Notice that the curves are
considered as replications such that µ and Σ does not depend on i. In practice,
Σ should be estimated from the data; see [29] and [30]. Commonly the empirical
covariance of the observed data is smoothed using a bivariate smoother after the
main diagonal has been removed; this simultaneously borrows information across
neighboring locations in the covariance operator and removes the “nugget" effect of
measurement error. The spectral decomposition of Σ produces eigenvalues λ1 ≥
λ2 ≥ · · · and eigenfunctions ξ1, ξ2, . . ., such that Xi(s) = µ(s) +

∑

∞

k=1
cikξk(s). The

coefficient cik =
∫

(Xi(s)− µ(s))ξ(s) ds is called the kth score for curve i.
Similarly to standard principal component analysis, in FPCA the first eigenfunc-

tion ξ1 has the property that it maximizes the variance Var
∫

ξ(s)Xi(s) dt among all
functions ξ with

∫

ξ2(s) ds = 1 (normalization). For k ≥ 2, the kth eigenfunction ξk
has the property that is maximizes Var

∫

ξk(s)Xi(s) ds among all functions ξ that
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satisfy
∫

ξ(s)2 ds = 1 as well as
∫

ξj(s)ξk(s) ds = 0 for j = 1, . . . , k − 1 (orthogo-
nal to all previous eigenfunctions). In this sense ξ1 captures the most variation, ξ2
the second-most variation, uncorrelated to the previous, and so forth. In practice
the first K principal components are used to express the observed curves so that
Xi(s) ≈ µ(s) +

∑K
k=1

cikξk(s), and K is chosen so that a high proportion of total
variance is explained. The kth eigenvalue λk can be interpreted as the contribu-
tion of term k to the total variance. The eigenvalues often decrease very quickly:
in many applications K < 10 suffices to explain a large proportion of overall vari-
ability. Principal component scores cik can in practice be estimated either using a
Riemann sum approximation to the integral definition, or as random effects in a
mixed model framework. The second approach is common when curves are sparsely
observed or subject to measurement error, but in many cases the two approaches are
approximately equal [29].

After FPCA the effective dimension of each curve has been reduced to a vector
of length K, and the scores ci1, . . . , ciK can be used as covariates in subsequent
analyses regarding regression classification, regression, prediction, etc.; see the next
paragraph and Section 5 for examples.

Notice that FPCA is often applied to curves with different distributions (for
example curves from different treatment groups), even though the construction im-
plicitly assumes that the curves have same mean function and covariance operator.
The idea is that principal component scores can be used to distinguish different types
of curves. For instance [12] shows an FPCA of aligned radius and curvature profiles
of the ICA of all patients in the AneuRisk65 dataset. A discriminant analysis of the
scores of the first two principal components of aligned radius and curvature is used
to discriminate two groups of patients: a first group of patients having the aneurysm
at or after the terminal bifurcation of the ICA, and a second group of patients having
the aneurysms along the ICA, before its terminal bifurcation, or having no appar-
ent aneurysm. In particular, the discriminant analysis is able to correctly identify
patients in the first group, that, as mentioned in Section 1.2, are those having the
most dangerous aneurysms. This gives further strong statistical evidence in favor of
the conjecture explored within the AneuRisk project.

4.2 Illustrating FPCA with the DTI tract profile data

We illustrate FPCA using the DTI data set. From all available data for the right
corticospinal tract, we estimate the mean function µ(s) and the covariance Σ; after
smoothing, we obtain eigenfunctions ξk(s) and eigenscores λk. Figure 9 shows in the
left panel the mean function µ(s) as well as µ(s)±

√
λ1ξ1(s) for k = 1, 2. The mean

function is highest on the interval from 0.3 to 0.7, roughly corresponding to the mid-
brain and internal capsule; fractional anisotropy is highest in this region and is lower
in the medulla and pons (0.0 to 0.3), and in the corona radiata and the subcortical
white matter (0.7 to 1.0). The first principal component is roughly a mean shift in-
dicating that the overall level of fractional anisotropy varies across subjects over the
full domain of the tract profile; on the other hand the second principal component
affects fractional anisotropy only in a limited range. Figure 9 also illustrates the
distribution of loadings for the first two principal components, separately for cases
and healthy controls. For the first PC, the groups are indistinguishable, meaning
that the variability in the overall level of fractional anisotropy is not apparently re-
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lated to disease status. On the other hand there appears to be a group effect for the
second PC loading, which indicates that differences between groups may be localized
to particular tract regions.
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Figure 9: DTI data. The first and third panels (from the left) show µ(s) and
µ(s) ±

√
λkξk(s) for k = 1, 2 respectively, with all quantities estimated using the

DTI dataset. Boxplots of the corresponding scores for MS patients and healthy
controls are shown in second and fourth panel.

As expected, increasing K improves the quality of the approximation Xi(s) ≈
µ(s)+

∑K
k=1

cikξk(s). In Figure 10, we show the approximation for two curves when
K = 1, 3, 10. Later principal components contribute less to the approximation than
earlier components, but it is important to choose K large enough to obtain reasonable
expansions.
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Figure 10: DTI data. The expansions µ(s) +
∑K

k=1
cikξk(s) for two different curves

(left and right) and different values of K.

De-noising and interpolation for the DTI data is incorporated in the FPC anal-
ysis, rather than being performed as a separate pre-processing step. Because the
covariance operator is smoothed, the estimated principal components derived from
the covariance are also smooth. Additionally, notice that the left curve in Figure
10 is not observed near the medulla. Such missing data is difficult to address using
curve-specific smoothing, but can be handled in an FPCA framework. The mean
and principal component basis functions (common to all tract profiles) are estimated
using all available data across subjects. Curve-specific loadings are estimated using
the data available for that curve, and are combined with mean and basis functions to
estimate the curve over the full domain. Thus FPCA addresses both measurement
error and missing data in the DTI data context.
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5 Functional regression

The term “functional regression" is used for the study of associations between
variables, when one or more of them are functional; see [1] and [6] for overviews. In
the following, emphasis will be on the situation with a scalar response and functional
covariates; these situations often naturally arise in real data analysis, as in the DTI
example where the association between cognitive function and anatomy as measured
by tract profiles is of interest. Although our focus is on scalar-on-function regression,
we briefly mention function-on-scalar and function-on-function regression towards the
end of the section. In the following, we assume that the functional observations have
been sufficiently pre-processed using techniques described in the previous sections
to allow their use as covariates in a regression model. For ease of notation we
additionally assume that the mean curve has been subtracted from each Xi; this
changes the population intercept but not other aspects of the model.

5.1 Functional linear model

The simplest model for a scalar response is the following: for subject i a one-
dimensional continuous response Yi is observed, as well as a function Xi(s), and
we are interested in the conditional distribution of Yi given Xi(s). Assume that,
conditionally on X1, . . . , Xn, the response variables Y1, . . . , Yn are independent and
Gaussian with mean

E [Yi] = α+

∫

Xi(s)β(s) ds (5)

and variance σ2; this is referred to as the functional linear model. To build intuition
for the interpretation of this model, assume for the moment that curves are observed
on [0, T ]. Consider a partitioning of this interval into N subintervals of length T/N ,
and let sj = jT/N . Then E [Yi] ≈ α +

∑N
j=1

T
N
β(sj)Xi(sj). Thus, the functional

model given by (5) is a natural extension of the ordinary multiple regression model
with covariates X̃ij = T

N
Xi(sj). In contrast to ordinary multiple regression where

the regression coefficients are allowed to vary freely, in the functional context it is
natural to require some amount of smoothness in the coefficient function β(s).

Our main interest is in inference about the coefficient function, an infinite-
dimensional parameter. Two broadly defined approaches have been pursued: 1)
projection of β(s) onto a low-dimensional basis and using standard regression mod-
els for inference; 2) use of a rich, flexible basis for β(s) and imposing smoothness
constraints and other explicit penalties. We note that this dichotomy is not perfect,
but argue that it is useful for discussing general approaches.

In the low-dimensional approach, it is common to project both the estimates
Xi(s) and the coefficient function β(s) using the functional principal components
basis derived from the Xis (see Section 4), so that β(s) =

∑K
k=1

ξk(s)βk. Called
functional principal components regression (FPCR), this approach has been widely
studied and is a common starting point for functional regression analysis [31, 1]. The
coefficient function is thus restricted to the space spanned by the first K PCs; the
truncation lag K implicitly controls the smoothness of the coefficient function and
can be considered a tuning parameter. This approach builds on the intuition that the
first K components explain a high proportion of the predictor variability, and may
therefore be useful for modeling associations with the outcome. After expanding in
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terms of the orthonormal PC basis, we have that
∫

Xi(s)β(s) ds =
∑K

k=1
cikβk, so

the functional model can be expressed as a multiple linear regression with subject-
specific PC loadings as scalar covariates and regression parameters β1, . . . , βK , and
inference proceeds as in standard multiple linear regression.

For the penalized approach, we express β(s) in terms of the spline basis ψ1, . . . , ψM
so that

β(s) =

M
∑

j=1

bjψj(s) = ψ(s)b

where ψ(s) = (ψ1(s), . . . , ψM (s)) is a row and b = (b1, . . . , bM )T is a column. Rather
than estimating α and b via maximum likelihood, we impose smoothness via a penalty
term added to the log-likelihood [32, 33, 30]. For fixed smoothing parameter λ the
expression

fλ(α, b) =

n
∑

i=1

(

Yi − α−
∫

β(s)Xi(s) ds

)2

+ λ

∫

(

β′′(s)
)2
ds

=

n
∑

i=1

(

Yi − α−
∫

ψ(s)bXi(s) ds

)2

+ λbTRψb (6)

should be minimized with respect to α ∈ R and b ∈ R
M . Here Rψ is the M ×

M penalty matrix associated with the basis ψ, typically with entry (k, l) equal to
∫

ψ′′

k(s)ψ
′′

l (s) ds. Our use of the notation ψ(s) for the spline basis expansion of β(s)
recalls the smoothing problem in Section 2, although one is not constrained to use
the same basis for both problems.

Many conceptual aspects of penalized functional regression are similar to those
for smoothing. The tuning parameter, λ, reflects the trade-off between model fit and
smoothness — too large values impose a large degree of smoothness at the cost of
model fit, whereas too small values result in model overfit — and the parameter is
selected along the same principles that were used for smoothing in Section 2. For
example, generalized cross-validation (GCV) aims at minimizing prediction errors of
left-out observations, whereas the REML approach treats the coefficients as random
effects ([17, 30]).

Recent work has sought to extend these approaches in several directions. A
criticism of the FPCR approach is the implicit assumption that first few major
directions of variability in the predictors are related to the outcome, and no other
directions are. To address this, a combination of FPCR and penalized regression is
considered in [34] to allow larger numbers of FPC basis functions to be included while
maintaining overall smoothness in β(s). In [35] the authors propose a shrinkage-
inducing lasso penalty to select only useful FPC basis functions. In the penalized
spline context, [36] introduced penalties geared toward “interpretability": coefficient
functions are induced to be linear, constant, or zero.

The methods developed or mentioned above are useful approaches for the func-
tional linear model, but a complete literature review of all methods is outside the
scope of this introductory paper. Although each method assumes the same outcome
structure in equation (5), the modeling approaches can result in very different coef-
ficient estimates and fitted values due to differing assumptions about the structure
of β(s), basis functions, and penalization. In practice, we highly recommend that
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multiple methods are applied to any specific dataset to explore the effect of these
assumptions on model fit.

5.2 Generalized functional linear models and functional outcomes

The basic model above given by (5) can be straightforwardly generalized to allow
non-Gaussian outcomes. For example, if the response is binary, then a logistic re-
gression version of the model assumes that, conditionally on X1, . . . , Xn, the binary
responses Y1, . . . , Yn are independent and that

log
P (Yi = 1)

P (Yi = 0)
= α+

∫

β(s)Xi(s) ds.

This model (put in a more general exponential family framework) was described
in detail in [37, 38, 20, 30], and allows for multiple functional covariates as well
as ordinary covariates. The ideas for estimation and inference carry over from the
Gaussian case: coefficient functions can be expressed using low-dimensional basis
expansions or penalized splines. Different estimation methods for the same basic
model may give different results.

Finally, some comments on models for functional responses [39, 40]. Let Yi(t) be
a functional response and Zi an 1× p+ 1 vector of ordinary covariates for subject i
(including an intercept term), and consider a function-on-scalar linear model:

E [Yi(t)] = Ziβ(t)

where β(t) row-stacks functional coefficients β0(t), β1(t), . . . , βp(t). Coefficients βj(t)
can be expanded using an M -dimensional spline basis as above so that βj(t) = bjψ(t)
with bj ∈ R

M . Letting b represent the matrix of row-stacked vectors bj , we seek to
minimize

f(b) =

n
∑

i=1

[
∫

(Yi(t)− Zibψ(t)) ds

]

over b in ∈ R
p+1×M . As elsewhere, we can add penalization terms to the rows of b

and thereby explicitly induce smoothness in estimated coefficient functions; see [1,
Chapter 13] and [41] for details. If the response Yi(t) as well as the covariate Xi(s)
are functional, a commonly used function-on-function model is

E [Yi(t)] = µ(t) +

∫

Xi(s)β(s, t) ds.

Notice that Xi(t) and Yi(t) can be observed over distinct domains. Once again, it
is typical to expand coefficient functions using spline bases and estimate parameters
based on minimizing a (penalized) sum of squares. Readers interested in this topic
are referred to [1, Chapters 14, 16] as well as [42].

5.3 Illustrating scalar-on-function regression with the DTI tract

profile data

For the DTI dataset we study the association between tract profiles and cognitive
performance for the MS patients. Cognitive performance is measured using the paced
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auditory serial addition test, or PASAT score, and takes on values between 0 and 60
with 60 being a perfect score. This test measures a variety of cognitive processes,
including auditory processing, short term memory, and arithmetic calculation [43].
In this subsection, we are interested in the association between performance on the
PASAT and anatomical structure measured using the fractional anisotropy tract
profile of the right corticospinal tract.

We consider three methods for estimating model (5) using the DTI data set: (1)
FPCR with the number of basis functions chosen via cross-validation; (2) penalized
spline regression with tuning parameter λ selected using restricted maximum likeli-
hood; and (3) the “flrti" method for interpretable coefficient of [36], with zeroth and
first derivative penalties, with all tuning parameters chosen via crosss-validation.
Coefficient function estimates are shown in the left panel of Figure 11, and a scat-
terplot matrix of observed outcomes and fitted values from each method is given in
the right panel.
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Figure 11: DTI data. Left: estimated coefficient functions for the functional linear
model using FPCR, a penalized approach, and “flrti". Right: scatterplot matrix of
observed outcomes and fitted values from each of the three methods; correlations are
given on the upper triangle of the scatterplot matrix.

For these data, the three estimation approaches result in similar inferences about
the location and direction of association for sections of the tract profile that are
related to the outcome, and yield similar fitted values. Points near 0.2 and near 0.8
(near the pons and the corona radiata, respectively) are most strongly related to
the cognitive outcome. For the region near 0.2, the coefficient function shows that
above-average fractional anisotropy is related to higher cognitive performance, while
the reverse is true near the corona radiata. Despite the general agreement, there are
important differences. The FPCR estimate is the least smooth and may be difficult
to interpret; the penalized spline estimate is smooth across the full range of s, but
is not zero anywhere and has strange behavior in the right tail; the “flrti" estimate
contains a few regions with constant effects and is identically equal to zero elsewhere.
The fitted values from each method are highly correlated (near .9 for all pairwise
comparisons) but not identical. When fitted values are correlated with the outcome,
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the penalized method has the highest correlation (.38) with FPCR and “flrti" only
slightly lower (.33 and .31, respectively).

It is interesting that the corticospinal tract can be a useful predictor of cognitive
function; anatomically, this tract primarily transmits signals from the motor cortex
and should not necessarily be associated with cognitive function. We speculate that
the corticospinal tract is useful as an indicator of overall disease burden rather that
as a direct effector of cognitive performance. Indeed, additional analyses have in-
dicated that relationship between the corticospinal tract and cognitive performance
is diminished after adjusting for anatomical information more directly related to
cognition in the corpus callosum [44].

6 Software

There are a few R packages directed towards functional data analysis. The fda

package, [45], has functions for smoothing, alignment, principal component analysis,
functional regression with continuous scalar response (but not with non-continuous
response), and functional regression with functional response. All functions are also
implemented in Matlab, and there is an accompanying book which covers both pro-
grams [46]. The R package fda.usc, [47], extends some of the facilities in fda and
furthermore incorporates some of the non-parametric methods proposed in [3] as
well as bootstrap techniques. It also provides an overview of existing R packages for
functional data. The R package refund, see [48] and [30], is designed for functional
regression with scalar response and covers the generalized linear model set-up from
Section 5 with several functional covariates as well as ordinary covariates. It relies on
functions from the mgcv package, in particular the function gam. The mgcv package,
see [49], is designed for generalized additive models, i.e. models that include smooth
terms, and is very useful for smoothing and regression in the functional data setting.

In Matlab, PACE is a comprehensive package for functional data analysis, which
implements methods developed and discussed in [6, 29, 20, 40], among others. Based
on functional principal component analysis (FPCA), it is particularly useful for a
versatile collection of smoothing and regression problems; dense as well as sparse
data, scalar as well as functional response, longitudinal data, bootstrap, etc.

7 Discussion and conclusion

In this manuscript we have attempted to provide an introduction to several basic
techniques in functional data analysis, and to emphasize that functional data natu-
rally arise in many biomedical applications. The functional perspective is useful in
providing a framework to understand complex data observed within and across sub-
jects. Tools for analyzing functional data inherently respect the structure and order
found in these data, and therefore can have intuitive interpretations that increase
subject-area knowledge.

We have focused on major techniques used for functional data: smoothing, align-
ment, principal component analysis, and scalar-on-function regression. Each of these
areas is the subject of ongoing research, and our exposition was intended as a partial
overview rather than as a definitive description. Moreover, there are many impor-
tant topics that we have chosen not to address, including ordering and robust statis-
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tics, data depth, multidimensional functional data (images, surfaces, spatial data),
clustering, classification, functional outcome regression, hypothesis tests. Interested
readers may find the monographs by Ramsay and Silverman [1], and by Ferraty and
Vieu [3] to be useful starting points for further investigation.

One important message is that there are many exciting possibilities with func-
tional data, and although we have given some guidance along the way, there are
obviously many choices and decisions to be made during the analysis. We encour-
age scientists to play with different tools and thus explore the robustness of results
against different sets of assumptions and computational approaches.

As described in the introduction, functional approaches are currently used in
many areas, but functional data will be even more prominent as the conceptual
framework becomes more well-known and as tools for analysis become easier to im-
plement on new data. The impact of functional data will extend to other scientific
domains through the dissemination of statistical methods and through increased
collaboration between statisticians and scientists.
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