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Abstract

Much attention has recently been devoted to the development of Stochas-
tic Galerkin (SG) and Stochastic Collocation (SC) methods for uncertainty
quantification. An open and relevant research topic is the comparison of
these two methods. By introducing a suitable generalization of the clas-
sical sparse grid SC method, we are able to compare SG and SC on the
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tialekvationer med tillämpningar” and King Abdullah University of Science and Technology
(KAUST) is also acknowledged

1



same underlying multivariate polynomial space in terms of accuracy versus
computational work. The approximation spaces considered here include
isotropic and anisotropic versions of Tensor Product (TP), Total Degree
(TD), Hyperbolic Cross (HC) and Smolyak (SM) polynomials. Numerical
results for linear elliptic SPDEs indicate a slight computational work ad-
vantage of isotropic SC over SG, with SC-SM and SG-TD being the best
choices of approximation spaces for each method. Finally, numerical re-
sults corroborate the optimality of the theoretical estimate of anisotropy
ratios introduced by the authors in a previous work for the construction of
anisotropic approximation spaces.

1 Introduction

Nowadays, we observe a widespread need for including uncertainty in mathemat-
ical models and quantify its effect on given outputs of interest used in decision
making. Such uncertainty may reflect, on one side, our ignorance or inability to
properly characterize all input parameters of the mathematical model; on the
other side, it may describe intrinsic variability of the event we model. Probabil-
ity theory offers a natural framework to describe uncertainty, where all uncertain
inputs are treated as random variables or more generally as random fields.

Monte Carlo Sampling (MCS) is probably the most natural and widely used
technique to forward propagate the input randomness onto the system response
or specific quantities of interest. While being very flexible and easy to imple-
ment, MCS features a very slow convergence and does not exploit the possible
regularity that the solution might have with respect to the input variables.

Much attention has been recently devoted towards alternative methods which
exploit such regularity and achieve sometimes a better convergence rate. Stochas-
tic Galerkin (SG) and Stochastic Collocation (SC) are examples of such methods
for uncertainty quantification. An open and relevant research topic is the com-
parison of these two approaches. This work provides, on a couple of numerical
examples, a fair comparison between the performances of SG and SC methods
with the same underlying approximation space.

Traditionally, the SG method approximates the solution in a multivariate
polynomial space of given total degree (see e.g. [11, 27, 13] and references
therein), or in anisotropic tensor product polynomial spaces [2, 8, 14]. Other
global polynomial spaces has been considered recently, see for instance [24, 5], as
well as different approximation spaces such as piecewise polynomials [2, 12, 25].

On the other hand the SC method adopted so far for SPDEs follows the
classical Smolyak construction, see e.g. [26, 16, 9] and the references therein. It is
very relevant to this work the fact that the sparse collocation method considered
in [26, 16] leads to an approximate solution in a polynomial space, which we call
hereafter Smolyak space, that differs from the total degree polynomial space
most commonly used in SG approximation.

In this work we will consider several choices of multivariate polynomial

2



spaces, namely: tensor product (TP), total degree (TD), hyperbolic cross (HC)
and Smolyak (SM) spaces. We consider on the one hand, SG approximations
in either of these spaces. On the other hand, we propose a generalization of
the classical sparse collocation method that allows us to achieve approximations
in these same spaces. By following this path, we are able to compare the two
alternative approaches (SG versus SC) given the same underlying multivariate
polynomial space.

Once both SG and SC are posed on the same approximation space the second
ingredient in a fair comparison is the computational work associated to each of
them for the same level of accuracy. Since SC entails the solution of a number
of uncoupled deterministic problems, its corresponding computational work is
directly proportional to the number of collocation points. On the other hand,
SG entails the solution of a large system of coupled deterministic problems whose
size corresponds to the number of stochastic degrees of freedom (sdof). This
can be achieved by an iterative strategy, here chosen to be a Preconditioned
Conjugate Gradient solver following [18]. Therefore, a natural approximation of
its computational work is given by the product of the number of sdof times the
number of iterations performed.

This work assesses, on a numerical example having 8 input random vari-
ables, the performances of the SG and SC methods in terms of accuracy versus
(estimated) computational cost. The numerical study shows that the two ap-
proaches have comparable performances. Actually, SC seems to be more efficient
for relative errors larger than 10−4, whereas SG is better for smaller errors.

The second numerical example that we propose contains 4 input random
variables that have largely different influence on the solution. It is thus suited
for anisotropic approximations, where higher polynomials degrees are used to
discretize the dependence on the random variables that have a greater influence
on the solution. We introduce anisotropic versions of both the SG and SC meth-
ods and compare their performances for different choices of anisotropy ratios.
The results show that theoretically derived anisotropy ratios following [15] have
the best performance and that our formula for the optimal anisotropy ratios is
sharp.

2 Problem setting

Let D be a convex bounded polygonal domain in Rd and (Ω,F , P ) be a complete
probability space. Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of
events and P : F → [0, 1] is a probability measure. Consider the stochastic
linear elliptic boundary value problem: find a random function, u : Ω×D → R,
such that P -almost everywhere in Ω, or in other words almost surely (a.s.), the
following equation holds:{

−div(a(ω,x)∇u(ω,x)) = f(x) x ∈ D,
u(ω,x) = 0 x ∈ ∂D.

(1)
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where the operators div and ∇ imply differentiation with respect to the physical
coordinate only.

The theory presented in this work extends straightforwardly to the case of
a random forcing term f = f(ω,x) as well as to a non homogeneous, possibly
random, Dirichlet datum on the boundary. For easiness of presentation, we will
consider the case where the randomness appears only in the diffusion coefficient,
which is, however, the most difficult case, since the solution u depends non-
linearly on it, whereas it depends linearly on the forcing term and boundary
data.

We will make the following assumptions on the random diffusion coefficient:

A1. a(ω,x) is strictly positive and bounded with probability 1, i.e. there exist
amin > 0 and amax <∞ such that

P (amin ≤ a(ω,x) ≤ amax, ∀x ∈ D) = 1

A2. a(ω,x) has the form

a(ω,x) = b0(x) +
N∑
n=1

yn(ω)bn(x) (2)

where y = [y1, . . . , yN ]T : Ω → RN , is a vector of independent random
variables.

We denote by Γn = yn(Ω) the image set of the random variable yn, Γ =
Γ1 × . . .× ΓN , and we assume that the random vector y has a joint probability
density function ρ : Γ → R+ that factorizes as ρ(y) =

∏N
n=1 ρn(yn), ∀y ∈ Γ.

Observe that for assumption (A1) to hold, the image set Γ has to be a bounded
set in RN .

After assumption (A2), the solution u of (1) depends on the single realization
ω ∈ Ω only through the value taken by the random vector y. We can therefore
replace the probability space (Ω,F , P ) with (Γ, B(Γ), ρ(y)dy), where B(Γ) de-
notes the Borel σ-algebra on Γ and ρ(y)dy is the distribution measure of the
vector y.

Finally, we introduce the functional space H1(D) of square integrable func-
tions in D with square integrable distributional derivatives; its subspace H1

0 (D)
of functions with zero trace on the boundary, and the space L2

ρ(Γ) of square
integrable functions on Γ with respect to the measure ρ(y)dy.

We are now in the position to write a weak formulation of problem (1):
find u ∈ H1

0 (D)⊗ L2
ρ(Γ) such that ∀v ∈ H1

0 (D)⊗ L2
ρ(Γ)

∫
Γ

∫
D

(
b0(x) +

N∑
n=1

ynbn(x)

)
∇u(x,y) · ∇v(x,y) ρ(y) dx dy

=
∫

Γ

∫
D
f(x)v(x,y) ρ(y) dx dy. (3)
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Under assumption (A1), a straightforward application of the Lax-Milgram
lemma allows to prove that there exists a unique solution to problem (3) for any
f ∈ L2(D). Moreover, the following estimate holds:

‖∇u‖L2(D)⊗L2
ρ(Γ) ≤

Cp
amin

‖f‖L2(D)

where Cp is the Poincaré constant such that ‖u‖L2(D) ≤ Cp‖∇u‖L2(D) for any
u ∈ H1

0 (D).
It is well known (see e.g. [3, 14]) that the solution depends analytically on

each parameter yn ∈ Γn. In particular, denoting Γ∗n =
∏
j 6=n Γj and y∗n an

arbitrary element of Γ∗n, there exists a constant M and regions Σn ⊂ C in the
complex plane for n = 1, . . . , N , with Σn ⊃ Γn, in which the solution u(x, yn,y∗n)
admits an analytic continuation u(x, z,y∗n), z ∈ Σn. Moreover

max
z∈Σn

max
y∗n∈Γ∗n

‖∇u(·, z,y∗n)‖H1(D) ≤M, for n = 1, . . . , N.

2.1 Finite element approximation in the physical space

Let Th be a triangulation of the physical domain D and Vh(D) ⊂ H1
0 (D) a finite

element space of piecewise continuous polynomials on Th, with dimension Nh =
dim(Vh(D)). We introduce the semi-discrete problem: find uh ∈ Vh(D)⊗L2

ρ(Γ)
such that ∀vh ∈ Vh(D)∫
D

(
b0(x) +

N∑
n=1

ynbn(x)

)
∇uh(x,y)·∇vh(x) dx =

∫
D
f(x)vh(x) dx, ρ-a.e. in Γ.

(4)
Problem (4) admits a unique solution for almost every y ∈ Γ. Moreover, uh

satisfies the same analyticity result as the continuous solution u.
Let {φi}Nhi=1 be a Lagrangian basis of Vh(D) and consider the expansion of

the semi-discrete solution as uh(x,y) =
∑Nh

i=1 ui(y)φi(x). Denoting by U(y) =
[u1(y), . . . , uNh(y)]T the vector of nodal values as functions of the random vari-
ables y, problem (4) can be written in algebraic form as(

K0 +
N∑
n=1

ynKn

)
U(y) = F, ρ-a.e. in Γ (5)

where (Kn)ij =
∫
D bn(x)∇φj(x) · ∇φi(x), for n = 0, . . . , N , are deterministic

stiffness matrices and Fi =
∫
D f(x)φi(x) is a deterministic right hand side.

In writing (5) we have heavily exploited the fact that the random diffusion
coefficient is an affine function of the random variables yn. This allows of an
efficient evaluation of the stochastic stiffness matrix A(y) = K0 +

∑N
n=1 ynKn

in any point y ∈ Γ and greatly simplifies the implementation of the SG method
that will be presented in the next section.
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3 Polynomial approximation in the stochastic dimen-
sion

We seek a further approximation of uh(·,y) with respect to y by global poly-
nomials, which is sound because of the analyticity of the semi-discrete solution
with respect to the input random variables y.

In this work we aim at comparing numerically several choices of multivariate
polynomials spaces. We remark that the choice of the polynomial space is critical
when the number of input random variables, N , is large, since the number of
stochastic degrees of freedom might grow very fast with N , even exponentially,
for instance when isotropic tensor product polynomials are used, cf. (6). This
effect is known as the curse of dimensionality.

Let w ∈ N be an integer index denoting the level of approximation and
p = (p1, . . . , pN ) a multi-index. We introduce a sequence of increasing index
sets Λ(w) such that Λ(0) = {(0, . . . , 0)} and Λ(w) ⊆ Λ(w + 1), for w ≥ 0.
Finally, we denote by PΛ(w)(Γ) the multivariate polynomial space

PΛ(w)(Γ) = span

{
N∏
n=1

ypnn , with p ∈ Λ(w)

}

and seek a fully discrete approximation uhw ∈ Vh(D)⊗ PΛ(w)(Γ).
In the following we consider four possible choices of index sets:

Tensor product polynomial space (TP)

Λ(w) = {p ∈ NN : max
n=1...,N

pn ≤ w} (6)

Total degree polynomial space (TD)

Λ(w) = {p ∈ NN :
N∑
n=1

pn ≤ w} (7)

Hyperbolic cross space (HC)

Λ(w) = {p ∈ NN :
N∏
n=1

(pn + 1) ≤ w + 1} (8)

Smolyak polynomial space (SM)

Λ(w) = {p ∈ NN :
n∑
n=1

f(pn) ≤ f(w)}, with f(p) =


0, p = 0
1, p = 1
dlog2(p)e, p ≥ 2

(9)
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TP and TD spaces are the most common choices. The first suffers greatly
from the curse of dimensionality and is impractical for a large dimension N . The
second has a reduced curse of dimensionality and has been widely used in SG
approximations (see e.g. [11, 27, 13, 17, 23]). HC spaces have been introduced in
[1] in the context of approximation of periodic functions by trigonometric poly-
nomials. Recently they have been used to solve elliptic PDEs in high dimension
in [21]. Finally, the SM space is an unusual choice in the context of SG approx-
imations. The reason for introducing it will be made clear later, as this space
appears naturally when performing interpolation on a sparse grid following the
Smolyak construction (see Section 3.2). Observe that the Smolyak space is sim-
ilar to the hyperbolic cross space; indeed, the HC index set can be equivalently
written as ΛHC(w) = {p ∈ NN :

∑N
n=1 log2(pn + 1) ≤ log2(w + 1)}. Other

polynomial spaces have been introduced e.g. in [24].
It is also useful to introduce anisotropic versions of these spaces. Let α =

(α1, . . . , αN ) ∈ RN
+ be a vector of positive weights, and αmin = minn α. The

anisotropic version of the spaces previously defined reads:

Anisotropic tensor product polynomial space (ATP)

Λ(w) = {p ∈ NN : max
n=1...,N

αnpn ≤ αminw} (10)

Anisotropic total degree polynomial space (ATD)

Λ(w) = {p ∈ NN :
N∑
n=1

αnpn ≤ αminw} (11)

Anisotropic hyperbolic cross space (AHC)

Λ(w) = {p ∈ NN :
N∏
n=1

(pn + 1)
αn
αmin ≤ w + 1} (12)

Anisotropic Smolyak polynomial space (ASM)

Λ(w) = {p ∈ NN :
N∑
n=1

αnf(pn) ≤ αminf(w)} (13)

In all cases introduced except for the Smolyak space, the maximum polyno-
mial degree used in each direction yn does not exceed the index w and there is at
least one direction (corresponding to the minimum weight αmin) for which the
monomial ywn is in the polynomial space. For the Smolyak space this property
holds only if log2(w) is integer.

In the next sections we introduce and compare two possible ways of obtain-
ing a fully-discrete approximation uhw ∈ Vh(D) ⊗ PΛ(w)(Γ), namely Galerkin
projection and collocation on a suitable sparse grid.
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3.1 Stochastic Galerkin approximation

The Stochastic Galerkin (SG) - Finite Element approximation consists in re-
stricting the weak formulation (3) to the subspace Vh(D)⊗ PΛ(w)(Γ) and reads:
find uSGhw ∈ Vh(D)⊗ PΛ(w)(Γ) such that ∀vhw ∈ Vh(D)⊗ PΛ(w)(Γ)

∫
Γ

∫
D

(
b0(x) +

N∑
n=1

ynbn(x)

)
∇uSGhw (x,y) · ∇vhw(x,y) ρ(y) dx dy

=
∫

Γ

∫
D
f(x)vhw(x,y) ρ(y) dx dy. (14)

Let {ψn,p}∞p=0 be the sequence of orthonormal polynomials in Γn with respect
to the weight ρn, i.e. for any n = 1, . . . , N and p ≥ 0∫

Γn

ψn,p(t)v(t)ρn(t) dt = 0 ∀v ∈ Pp−1(Γn).

Given a multi-index p = (p1, . . . , pN ), let ψp(y) =
∏N
n=1 ψn,pn(yn) be the prod-

uct of one dimensional orthonormal polynomials. Then a basis for the space
PΛ(w)(Γ) is given by {ψp, p ∈ Λ(w)} and the SG solution can be expanded as

uSGhw (x,y) =
∑

p∈Λ(w)

up(x)ψp(y) =
∑

p∈Λ(w)

Nh∑
i=1

up,iφi(x)ψp(y). (15)

Given this expansion and exploiting the orthonormality of the basis {ψp(y)},
one can easily compute mean and variance of uSGhw as E

[
uSGhw

]
(x) = u0(x) and

Var
[
uSGhw

]
(x) =

∑
p∈Λ(w) u

2
p(x)− E

[
uSGhw

]2 (x).
Let Up = [up,1, . . . , up,Nh ]T be the vector of nodal values of the finite element

solution corresponding to the p multi-index. Then inserting expression (15) into
(14) and recalling the definition of the deterministic stiffness matrices Kn, we
obtain the system of Nw = dim(PΛ(w)(Γ)) coupled finite element problems

K0Up +
N∑
n=1

∑
q∈Λ(w)

Gnp,qKnUq = Fδ0p, ∀p ∈ Λ(w). (16)

where Gnp,q =
∫

Γ ynψp(y)ψq(y)ρ(y) dy and δij is the usual Kroneker symbol.
Gnp,q can be explicitly calculated via the well known three terms relation for
orthogonal polynomials, see e.g. [10, 20].

The resulting matrix of the algebraic system (16) is highly sparse, symmetric
and positive definite. See e.g. [18] for sparsity plots. For its solution we con-
sider a Preconditioned Conjugate Gradient (PCG) method with block diagonal
preconditioner Pq,q = K0 +

∑N
n=1G

n
q,qK

n as suggested in [18]. It follows easily
from assumption A1 that the condition number of the preconditioned matrix is
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independent of the discretization parameters both in the physical and stochastic
spaces, See [19, 7] for a detailed analysis of the condition number of the SG
matrix.

Each PCG iteration implies the solution of Nw deterministic problems with
matrix Pq,q. If the finite element discretization is relatively coarse and the
dimension of the probability space is moderate, a Cholesky factorization of all
matrices Pq,q could be computed once and for all. In general, this strategy
could lead to excessive memory requirements and an iterative method should be
preferred. Observe that in certain cases (e.g. for uniform random variables) all
blocks are equal and this reduces considerably the computational burden.

Let us now denote by WFE the cost for solving one deterministic problem
and by Niter the number of PCG iterations. In this work we focus on the
computational cost for solving the linear system (16) and neglect the time for
assembling the full stochastic matrix, which highly depends on how much the
computer code has been optimized. Therefore, we can estimate the total cost
WSGFE for SG - finite element as

WSGFE ≈ Nw ∗WFE ∗Niter. (17)

This estimate will be used to compare the SG method with the SC method in
the numerical tests presented in Section 4.

3.2 Stochastic collocation approximation on sparse grids

The Stochastic Collocation (SC) - Finite Element method consists in collocating
the semi-discrete problem (4) in a set of points {θj ∈ Γ, j = 1, . . . ,Mw}, i.e.
computing the solutions uh(·,θj) and building a global polynomial approxima-
tion uSChw (not necessarily interpolatory) upon those evaluations: uSChw (x,y) =∑Mw

j=1 uh(x,θj)ψ̃j(y) for suitable multivariate polynomials {ψ̃j}Mw
j=1.

We consider here a generalization of the classical Smolyak construction (see
e.g. [22, 4]) to build a multivariate polynomial approximation on a sparse grid.
For each direction yn we introduce a sequence of one dimensional polynomial
interpolant operators of increasing order: Um(i)

n : C0(Γn) → Pm(i)−1(Γn). Here
i ≥ 1 denotes the level of approximation and m(i) the number of collocation
points used to build the interpolation at level i, with the requirement that
m(1) = 1 and m(i) < m(i + 1) for i ≥ 1. In addition, let m(0) = 0 and
Um(0)
n = 0. In this work the collocation points {θ(i)

n,j , j = 1, . . . ,m(i)} for the

one dimensional interpolation formula Um(i)
n will be taken as the Gauss points

with respect to the weight ρn, that is the zeros of the orthogonal polynomial
ψn,m(i). To simplify the presentation of the sparse grid approximation (18), we
now introduce the difference operators

∆m(i)
n = Um(i)

n − Um(i−1)
n .
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Given an integer w ≥ 0 and a multi-index i = (i1, . . . , iN ) ∈ NN
+ , i ≥ 1, we

introduce a function g : NN
+ → N strictly increasing in each argument and define

a sparse grid approximation of uh as

uSChw = Sm,gw [uh] =
∑

i∈NN+ :g(i)≤w

N⊗
n=1

∆m(in)
n (uh). (18)

The previous formula implies evaluation of the function uh in a finite set
of points Hm,gw ⊂ Γ (sparse grid). From the construction (18) one can easily
build the corresponding quadrature formula, and evaluate e.g. E

[
uSChw

]
(x) =∑Mω

j=1 ωjuh(x,θj) and Var
[
uSChw

]
= ωju

2
h(x,θj) − E

[
uSChw

]2 (x) . To fully char-
acterize the sparse approximation operator Sm,gw one has to provide the two
strictly increasing functions m : N+ → N+ and g : NN

+ → N. The first defines
the relation between the level i and the number of points m(i) in the correspond-
ing one dimensional polynomial interpolation formula Um(i), while the second
characterizes the set of multi-indices used to construct the sparse approximation.
Since m is not surjective in N+ (unless it is affine) we introduce a left inverse
m−1(k) = min{i ∈ N+ : m(i) ≥ k}. Observe that with this choice m−1 is a (non-
strictly) increasing function satisfying m−1(m(i)) = i, and m(m−1(k)) ≥ k.

Let m(i) = (m(i1), . . . ,m(iN )) and consider the polynomial order set

Λm,g(w) = {p ∈ NN , g(m−1(p + 1)) ≤ w}.

The following result characterizes the polynomial space underlying the sparse
approximation Sm,gw [uh]:

Proposition 1

a) For any f ∈ C0(Γ), we have Sm,gw [f ] ∈ PΛm,g(w).

b) Moreover, Sm,gw [v] = v, ∀v ∈ PΛm,g(w).

Proof. Let us denote by Pm(i)−1 the tensor product polynomial space

Pm(i)−1 = span{
N∏
n=1

ypnn , pn ≤ m(in)− 1}.
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Clearly we have that
⊗N

n=1 ∆m(in)
n (f) ∈ Pm(i)−1(Γ) and

Sm,gw [f ] ∈ span
{ ⋃

i∈NN+ : g(i)≤w

Pm(i)−1(Γ)
}

≡ span
{ ⋃

i∈NN+ : g(i)≤w

span{
N∏
n=1

ypnn , p ≤m(i)− 1}
}

≡ span
{ ⋃

i∈NN+ : g(i)≤w

span{
N∏
n=1

ypnn , m−1(p + 1) ≤ i}
}

≡ span{
N∏
n=1

ypnn , g(m−1(p + 1)) ≤ w} =: PΛm,g(w)(Γ).

This proves a). Due to linearity in (18), to prove point b) we only need to show
that the approximation formula Sm,gw is exact for all monomials

∏N
n=1 y

pn
n with

p ∈ Λm,g(w). We have

Sm,gw

[
N∏
n=1

ypnn

]
=

∑
i∈NN+ : g(i)≤w

N⊗
n=1

∆m(in)
n yp

=
∑

i∈NN+ : g(i)≤w

N∏
n=1

(
(Um(in) − Um(in−1))ypnn

)
.

Observe that Um(in)ypnn will be an exact interpolation whenever m(in) ≥ pn + 1
and therefore the term

∏N
n=1(Um(in) − Um(in−1))ypnn will vanish if any of the

m(in − 1) ≥ pn + 1 or equivalently if there exists at least one n such that
in ≥ m−1(pn + 1) + 1. Let īn = m−1(pn + 1) for n = 1, . . . , N . The multi-index
ī = (̄i1, . . . , īN ) satisfies the constraint g(̄i) ≤ p.

Then, the previous formula reduces to

Sm,gw

[
N∏
n=1

ypnn

]
=
∑
i≤ī

N∏
n=1

(
(Um(in) − Um(in−1))ypnn

)

=
N∏
n=1

īn∑
in=0

(
(Um(in) − Um(in−1))ypnn

)
=

N∏
n=1

Um(̄in)ypnn .

The final result follows from the fact that m(̄in) = m(m−1(pn + 1)) ≥ pn + 1
and therefore the interpolant Um(̄in) is exact for ypnn .

�

Remark 1 Observe that in the previous Lemma we have never used the assump-
tion that the one dimensional interpolants are based on Gauss points. Hence,
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the previous result still holds for interpolants based on arbitrary (distinct) knots
and for an arbitrary strictly increasing function m(i).

We recall that the most typical choice of m and g is given by (see [22, 4])

m(i) =

{
1, for i = 1
2i−1 + 1, for i > 1

and g(i) =
N∑
n=1

(in − 1)

This choice of m, combined with the choice of Clenshaw-Curtis interpolation
points (extrema of Chebyshev polynomials) leads to nested sequences of one
dimensional interpolation formulas and a reduced sparse grid. In the same vein,
it is possible to show that the underlying polynomial space associated to the
operator Sm,gw is the Smolyak space PΛ(w) defined in (9).

On the other hand, if we choose m(i) = i, it is easy to find functions g for the
construction of sparse collocation approximations in the polynomial spaces in-
troduced in Section 3, namely tensor product (6), total degree (7) and hyperbolic
cross (8) spaces. Table 1 summarizes several available. It is also straightforward

Approx. space SC: m, g SG: Λ(w)

Tensor Product (TP) m(i) = i {p ∈ NN : maxn pn ≤ w}
g(i) = maxn(in − 1) ≤ w

Total Degree (TD) m(i) = i {p ∈ NN :
P
n pn ≤ w}

g(i) =
P
n(in − 1) ≤ w

Hyperbolic Cross (HC) m(i) = i {p ∈ NN :
Q
n(pn + 1) ≤ w + 1}

g(i) =
Q
n(in) ≤ w + 1

Smolyak (SM) m(i) =

(
2i−1 + 1, i > 1

1, i = 1
{p ∈ NN :

P
n f(pn) ≤ f(w)}

g(i) =
P
n(in − 1) ≤ w f(p) =

8><>:
0, p = 0

1, p = 1

dlog2(p)e p ≥ 2

Table 1: Sparse approximation formulas and corresponding underlying polyno-
mial space

to build the corresponding anisotropic sparse approximation formulas.
Let now Hm,gw be the sparse grid associated to the formula Sm,gw and Mw =

#Hm,gw the number of distinct collocation points in Hm,gw . To form the sparse
collocation solution uh,w we only have to solve Mw independent deterministic
problems. Observe, however, that in general the number of points Mw is much
larger than the dimension Nw of the corresponding polynomial space PΛm,g(w).
The computational cost of the SC - Finite Element method can therefore be
estimated as

WSCFE ≈Mw ∗WFE , (19)

to be compared with the cost of the SG - Finite Element method in the same
polynomial space, given by (17).
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4 Numerical results

4.1 Test case 1: isotropic problem

In this first test case we consider a thermal diffusion problem in the form of
(1) defined in the unit square [0, 1]2, with homogeneous Dirichlet boundary con-
ditions and stochastic conductivity coefficient that depends on a finite, small,
number of random variables. The coefficient is chosen in such a way that each
random input has more or less the same influence on the solution (isotropic
problem).

Fig. 1-left shows the geometry of the test case. The forcing term is deter-
ministic, f(x) = 100χF (x), where χF (x) is the indicator function of F , a square
subdomain with side length equal to 0.2, centered in the domain. The material
features 8 circular inclusions with radius r = 0.13 and symmetrically distributed
with respect to the center of the square, each with a uniformly distributed ran-
dom conductivity. Let χn(x), n = 1, .., 8 be the indicator function for each circle.
The expression of the stochastic conductivity coefficient is then in the form of
(2), with bn(x) = χn(x):

a(ω,x) = b0(x) +
8∑

n=1

yn(ω)χn(x), with b0 = 1 and yn(ω) ∼ U(−0.99,−0.2)

As a consequence, the basis functions ψn,p for SG methods will be Legendre
polynomials orthonormal with respect to the uniform probability measure in
[−0.99,−0.2], and the collocation points for SC will be the corresponding Gauss
points.

Figure 1: Left: geometry for test case 1. Middle: expected value of the solution.
Right: standard deviation of the solution.

We will compare the accuracy of the Stochastic Galerkin (SG) and Stochastic
Collocation (SC) methods by looking at statistical indicators of two quantities
of interest:

• ψ1(u) =
∫
F u(x)dx;

• ψ2(u) =
∫
C ∂xu(x)dx.
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The quantity ψ2(u) is defined only on C, the upper right part of F , since by
symmetry its expected value on F is 0 whatever (isotropic) Galerkin or Collo-
cation approximation is considered.

Let up be an approximate solution (computed either with SG or SC) and uex
the exact solution. For both quantities ψ1 and ψ2 we will check the convergence
of the following errors:

• error in the mean: εmean [ψj ] = |E [ψj(up)]− E [ψj(uex)] |;

• error in the variance: εvar [ψj ] = |Var [ψj(up)]− Var [ψj(uex)] |;

• error in L2 norm: εnorm [ψj ] =
√

E [(ψi(up)− ψi(uex))2].

Since we do not know the exact solution for this problem, we will check
the convergence of the statistical indicators with respect to an overkill solution,
which we consider close enough to the exact one. To this end we take the solu-
tion computed with SG-TD at level 9, which has approximately 24000 stochastic
degrees of freedom (sdof). The L2 error will be calculated via a MCS approx-

imation, i.e. εnorm [ψj ] ' 1
M

(∑M
l=1 [ψj(up(yl))− ψj(uex(yl))]

2
)1/2

, where yl,
l = 1, ..,M , are M randomly chosen points in Γ. To this end we have used
M = 1000 points.

We remark that here and in the following test all the computations are per-
formed on the same physical mesh, which is supposed to be refined enough to
solve adequately the elliptic problem for every value y of the random variables.
Moreover notice that, as stated in section 2.1, the FEM solution and the exact
solution have the same regularity with respect to the stochastic variables. There-
fore we expect the convergence in the stochastic dimension not to be affected by
space discretization.

We have compared the performances of the SG and Collocation methods with
the four choices of polynomial spaces presented in Table 1. In our convergence
plots we have also added the performance of the classical MCS method.

Fig. 2 shows the error εmean [ψ1] versus the estimated computational cost
(normalized to the cost WFE of a deterministic solve) given by formula (17) for
SG methods and (19) for SC methods. For the MCS method the cost is simply
M ∗WFE , where M is the number of samples used. The MCS has been repeated
20 times and only the average error over the 20 repetitions is shown.

As one can see, MCS has the worst performance, followed by tensor product
polynomial spaces both in the SG and SC version, as expected. All other choices
lead to similar, however much more accurate, results, with TD being the best
space for Galerkin method and SM the best for Collocation.

We notice that different choices of collocation points for SC-SM (Gauss versus
Clenshaw Curtis) lead to similar results (see Fig. 2-right). Therefore from now
on we will only use SC-SM with Gauss points.

From Fig. 2-right we conclude that the SC method is the best method with
respect to the computational cost, at least for “practical” tolerances, while, for
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very small tolerances (≤ 10−10), SG is a better choice. The same happens also
for the other error indicators εvar [ψ1] and εnorm [ψ1], (see Fig. 3), as well as for
the quantity ψ2 (see Fig. 4).

We should point out that the plots may not represent a completely fair
comparison. Actually, the solution of the global linear system for SG method
is performed through preconditioned conjugate gradient iterations, with a fixed
tolerance (ε = 10−12); this clearly over-resolves the system when the error in
the stochastic dimension is much larger than ε. The performance of SG may be
therefore improved by tuning the tolerance of the PCG method to an a posteriori
estimation of the stochastic error. However, we have observed that running the
same SG simulations with tolerance ε = 10−8 changes only slightly the results,
so we can say that the choice of the tolerance for the PCG method is not deeply
affecting our performance/cost analysis.

It is also instructive to look at the convergence plots of the error versus the
dimension of the stochastic space (Fig. 5). As expected from L2 optimality,
for a given polynomial space the Galerkin solution is more accurate than the
collocation solution. We remind once more, however, that the computational
cost in the two cases is quite different and the convergence plots in Fig. 2 give
a more complete picture of the performances of the two methods.
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Figure 2: Error εmean [ψ1] versus estimated computational cost. Left: compar-
ison between SG methods and Monte Carlo. Right: comparison between SC
methods and SG-TD.

4.2 Test case 2: anisotropic problem

In this test we consider an anisotropic problem in which different random vari-
ables contribute differently to the total variability of the solution, in order to
study the advantages of the anisotropic version of the SC and SG methods. We
take the geometry and problem definition similar to test case 1; however, since
our focus is on anisotropy, we consider only 4 inclusions (the ones in the corners,
cf. Fig.6-left) so that we can test many different choices of the weights that
define the anisotropic spaces (10)-(13). Nonetheless, the anisotropic setting is
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particularly meant to be used in high dimensional spaces (see e.g. [15]). For con-
venience we consider a forcing term uniformly distributed on the whole domain
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and we look just at εmean [ψ1].

Figure 6: Left: geometry for test case 2. Middle: expected value of the solution.
Right: standard deviation of the solution.

The random coefficient is a(ω,x) = 1 +
∑4

n=1 γnyn(ω)χn(x), with yn(ω) ∼
U(−0.99, 0) and γn ≤ 1. The values of the coefficients γn are shown in Fig.
6-left. Notice that these values give different importance to the four random
variables. In particular, the inclusion in the bottom-left corner has the largest
variance and we expect it to contribute the most to the total variance of the
solution. It is therefore intuitively justified to use polynomial degrees higher in
the corresponding direction of the stochastic multidimensional space rather than
in the other ones. Fig. 6 also shows the mean value (middle) and the standard
deviation (right) of the solution.

Our goal is to assess the performances of anisotropic polynomial spaces in
comparison with their isotropic counterpart. For this we need to estimate the
weights to be used in the construction of the anisotropic polynomial space.

We follow closely the argument in [15]. The overall random conductivity
coefficient in the n-th inclusion Ωn is a uniform random variable U(an, bn) with
an = 1− 0.99γn and bn = 1. This can be rewritten as

a(ω,x)|Ωn =
an + bn

2
+
bn − an

2
ŷn, with ŷn ∼ U(−1, 1).

It is easy to show that the solution u = u(·, ŷn) admits an analytic continu-
ation in the complex region Σn = {z ∈ C : Re (z) > −wn} with wn = an+bn

bn−an =
2−0.99γn

0.99γn
, which contains, in particular, the interior of the ellipse

Eρn =
{
z ∈ C : Re (z) =

ρn + ρ−1
n

2
cosφ, Im (z) =

ρn − ρ−1
n

2
sinφ, φ ∈ [0, 2π)

}
with ρn = wn +

√
w2
n − 1.

Standard spectral approximation analysis (see e.g. [6]) allows us to say that
interpolation of u(·, ŷn) in pn+1 Gauss-Legendre points converges exponentially
fast with rate e−gnpn , with gn = log ρn = log(wn +

√
w2
n − 1).

17



Therefore the theoretical estimate (a priori choice) of the weight to be used
for the n-th variable is αn = gn. The larger γn, the smaller the correspond-
ing weight αn. In practice, we have renormalized the weights by dividing
them by the smallest one. Notice that the spaces (10)-(13) remain unchanged
by this normalization. The corresponding theoretical weights are in this case
αth = [1, 3.5, 5.5, 7.5]. To assess the effectiveness of the proposed theoretical
estimate, we also consider the weights α = [1, 2, 3, 4] (nearly half the theoreti-
cal estimate) and α = [1, 7, 11, 15] (twice the theoretical estimate). Finally, we
have also considered an experimental (a posteriori) estimate of the coefficients
(as suggested in [15]), where the exponential decay e−gnpn is estimated numeri-
cally by increasing the approximation level in only one direction at a time; the
resulting weights are αexp = [1, 2.5, 4, 5.5].

In this example we consider only SG methods in anisotropic TD spaces as
they seem to be the most appropriate for this type of problem. Similarly, we
restrict our study only to SC methods in the same ATD spaces, so they are
directly comparable with the corresponding Galerkin version. The use of SC-
ASM methods is expected to give even better results.

We have computed the SG-ATD and SC-ATD with the different choices
of weights up to level w = 21 and compared them with an overkill solution
computed by SG-TD isotropic method at level w = 22. This solution has about
14000 sdof . In comparison, the SG-ATD solution has 837 sdof with weights
α = [1, 2, 3, 4], 434 sdof with the experimental weights αexp = [1, 2.5, 4, 5.5], 220
sdof with the theoretical weights αth = [1, 3.5, 5.5, 7.5], and 68 sdof with the
weights α = [1, 7, 11, 15]. We observe that the level w = 22 isotropic TD space
contains all the ATD spaces with level w < 22, therefore our overkill solution is
much more accurate than the other ones considered here.

Fig. 7 shows the error in computing E [ψ1] versus the estimated compu-
tational cost when using the SG-ATD (left) or SC-ATD (right) methods. For
reference purposes we have also added the convergence plot for MCS.

First, we observe that SC and SG outperform the standard MCS. Fig. 7
also shows that the theoretical estimate of the weights performs better than
all other choices and seems to be very close to optimum for both SC and SG
methods, while the a posteriori choice gives slightly worse results although the
convergence curve is smoother.

In Fig. 8 we compare the performances of the SG-ATD and SC-ATD methods
with the theoretical and experimental choices of the weights. In this test, the
collocation method seems to be superior to the Galerkin one, even for very small
tolerances.
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Figure 7: Performance of SG-ATD (left) and SC-ATD (right) methods with
different choices of weights, in the computation of E [ψ1]. Error εmean [ψ1] versus
computational cost.
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