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Abstract

In the solution of Fluid-Structure Interaction problems, partitioned pro-
cedures are modular algorithms that involve separate fluid and structure
solvers, that interact, in an iterative framework, through the exchange of
suitable transmission conditions at the FS interface. In this work we study,
using Fourier analysis, the convergence of partitioned algorithms based on
Robin transmission conditions. We derive, for different models of the fluid
and the structure, a frequency dependent reduction factor at each iteration
of the partitioned algorithm, which is minimized by choosing optimal values
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of the coefficients in the Robin transmission conditions. Two-dimensional
numerical results are also reported, which highlight the effectiveness of the
optimization procedure.

1 Introduction

In the framework of Domain-Decomposition methods for the solution of differen-
tial problems, one of the most popular non-overlapping method is the one based
on successive exchanges of interface Robin data and called Lions’ method (see
[18] and, e.g., [7, 16]). Recently, this strategy has been applied to the Fluid-
Structure Interation (FSI) problem, which describes any physical phenomenon
where a fluid and a structure interact by exchanging normal stresses through an
interface (see [3]).

The solution of the FSI problem is problematic, since the fluid and the struc-
ture subproblems are coupled through the geometry problem (that is the deter-
mination of the unknown interface position) and through the interface continuity
conditions, namely the continuity of the velocity and of the normal stresses at
the FS interface.

Whatever treatment for the geometry problem is considered (e.g. fixed point,
Newton, explicit extrapolation in time), a sequence of linearized FSI problems,
implicitely coupled through the interface conditions, has to be solved (see Sect.
2.1). Implicit coupling of the interface conditions is required in many applica-
tions featuring a large added mass effect of the fluid on the structure (see [6])
and it allows to achieve at the numerical level perfect energy balance between
fluid and structure.

One possible strategy for the solution of such problems is to consider modu-
lar algorithms (also referred to as partitioned procedures), that involve separate
fluid and structure solvers in an iterative framework. In particular, they interact
through the exchange of suitable transmission conditions at the FS interface, and
guarantee, at convergence, the satisfaction of the continuity conditions. Modular
algorithms can be reinterpreted, in the framework of the Domain-Decomposition
method, as preconditioned Richardson iterations over a suitable interface equa-
tion (see [8, 2]). This allows one to introduce more performing Krylov methods
for the solution of the FSI problem. In particular we mention the Dirichlet-
Neumann/GMRES and the Robin-Neumann/GMRES schemes, which lead to
different modular algorithms (see [4, 2]).

The introduction of Robin-Robin (RR) partitioned procedures in the frame-
work of FSI problems, as generalization of the classic Dirichelt-Neumann (DN)
scheme, has been motivated to overcome the limitations of the latter algorithm.
In particular, the performances of the DN scheme when the added mass effect is
high (that is when the fluid and structure densities are similar) are very poor,
and a (sometimes big) relaxation is needed to reach convergence (see [23, 6, 12]).
On the contrary, RR schemes highlighted better convergence properties in the
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presence of a high added-mass. In particular, in [3, 2] the Robin-Neumann (RN)
scheme has been shown to converge without relaxation, in the test cases studied,
and to feature a big saving in computational time with respect to DN scheme.

This behaviour has been mostly evidenced by numerical tests and only few
theoretical results of the convergence properties of partitioned procedures for
the FSI problems are available so far. In particular, at the best of the authors’
knowledge, the only convergence analysis have been proposed in [6] for the DN
scheme and in [3] for the RN scheme. We mention also the analysis in [4] and
in [2] for DN-GMRES and RN-GMRES schemes. In all the cases, the analysis
has been performed on a simplified problem where the fluid is described by a 2D
potential flow and the structure by a 1D reduced model (the independent rings
in [6] and the generalized string in the other works).

The first goal of this work is to extend the convergence analysis of RR schemes
(and then of DN) to more general classes of subproblems. In particular, we
consider the generalized Stokes equations to describe the discretized-in-time fluid
problem and a 2D linear elastic incompressible structure in the half plane. In
particular, the proposed analysis are based on the application of the Fourier
transform (see, e.g, [1, 13, 14]) and on the determination of a reduction factor.

Secondly, we focus on parameters in Robin transmission conditions. Obvi-
ously, the convergence velocity of RR schemes heavily depends on the choice of
these parameters. A proposal for these parameters has been given in [3], based
on heuristic considerations. This choice has revealed to be satisfactory in or-
der to overcome the limitations of the DN scheme, but a rigorous optimization
procedure is still missing.

The second goal of this work is to optimize the values of parameters in the
Robin interface conditions, starting from the new convergence analysis proposed
in this work and following the literature on Optimization Schwartz Methods (see
[1, 13, 14] for instance).

The outline of the paper is as follows. In Sect. 2 we introduce the FSI prob-
lem under investigation, we describe the different treatments of the geometry
problem and we introduce the RR partitioned procedure. In Sect. 3 we perform
the new convergence analysis, extending the results obtained in [6, 3] to more
general classes of FSI problems. In Sect. 4 we propose an optimization procedure
for the values of the parameters in Robin transmission conditions, starting from
the convergence analysis. Finally, in Sect. 5 we present 2D numerical results,
which confirm the effectiveness of the proposed optimal values with respect to
the heuristic ones.

2 Problem setting

Let us consider a computational domain Ωt ⊂ R
d (d=2, 3, being the space

dimension). This domain is divided into a sub-domain Ωt
s occupied by an elastic

structure and its complement Ωt
f occupied by the fluid. The fluid-structure
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interface Σt is the common boundary between Ωt
s and Ωt

f (see Fig. 1), while with

Γt
i and Γt

i,s we denote the fluid and structure artificial sections. Furthermore, n

is the outward normal on ∂Ωt
f . The initial configuration Ω0 at t = 0 is considered

as the reference one.

Ωt
fΓt

1

Γt
2

Γt
3

Σt

Ωt
s

Σt

Γ1,s

Γ2 s

Γ3 s

,
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Figure 1: Example of computational fluid domain Ωt
f (left) and solid domain Ωt

s

(right).

We adopt a purely Lagrangian approach to describe the structure kinematics.
We denote the reference (initial) configuration by Ωs := Ω0

s. Hereafter, η̄ denotes
the displacement of the solid medium with respect to Ωs. For any function ḡ
defined in the reference solid configuration, we denote by g its counterpart in
the current configuration. The solid is assumed to be a linear elastic material,
characterized by the Cauchy stress tensor

T s(η) = λ1(∇η + (∇η)T ) + λ2(∇ · η)I,

where

λ1 =
E

1 + ν
, λ2 =

Eν

(1 + ν)(1 − 2ν)
+ λ1 (1)

are the Lamé constants, E is the Young modulus, ν the Poisson modulus and I

is the identity tensor.
On the other hand, the fluid problem is stated in an Arbitrary Lagrangian-

Eulerian (ALE) framework (see, e.g., [17, 9]). The ALE mapping is defined
by an appropriate lifting of the structure displacement. A classical choice is to
consider a harmonic extension operator in the reference domain. In order to
write the fluid problem in ALE coordinates, we recall the definition of ALE time
derivative of the velocity u:

DAu

Dt
=

∂u

∂t
+ w · ∇u,

where ∂u/∂t is the Eulerian derivative and w is the velocity of the points of
the fluid domain defined by the ALE map. Moreover, the fluid is assumed to be
homogeneous, Newtonian and incompressible, with Cauchy stress tensor given
by

T f (u, p) = −pI + µ(∇u + (∇u)T ),
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where p is the pressure and µ the dynamic viscosity.
Then, the full FSI problem in strong form reads:

1. Fluid-structure problem. Find the fluid velocity u, pressure p and the
structure displacement η̄ such that






ρf
DAu

Dt
+ ρf ((u − w) · ∇)u −∇ · T f = ff in Ωt

f × (0, T ),

∇ · u = 0 in Ωt
f × (0, T ),

ρs
∂2η̄

∂t2
− ∇̄ · T̄ s = f̄ s in Ω0

s × (0, T ),

u =
∂η

∂t
on Σt × (0, T ),

T f n − T s n = 0 on Σt × (0, T ),

(2)

2. Geometry problem. Given the interface structure displacement η|Σt , find
a map A : Ω0

f → Ωt
f e.g. through an harmonic extension Ext of the

boundary displacement

At(x0) = x0 + Ext(η̄|Σ0),

such that Ωt
f = At(Ω0

f ).

Here, ρf and ρs are the fluid and structure density and ff and f̄ s the forc-
ing terms. System (2) has to be endowed with suitable Dirichlet or Neumann
boundary conditions on ∂Ωt

f \Σt and ∂Ω0
s \Σ0, and initial conditions in Ω0. Two

transmission conditions are enforced at the interface: the continuity of fluid and
structure velocities (2)4 and the continuity of stresses (2)5. The fluid and the
structure are also coupled by the geometry problem, leading to a non-linear
system of partial differential equations.

Remark 1. In the case of an incompressible structure, we have ν = 0.5. In this
case, the Cauchy stress tensor is given by

T s(η) = λ(∇η + (∇η)T ) − χI,

where χ is the structure pressure, and the structure equation (2)3 becomes





ρs

∂2η̄

∂t2
−∇ · T̄ s = f̄ s in Ω0

s × (0, T ),

∇ · η̄ = 0 in Ω0
s × (0, T ).

2.1 Time discretization and FS interface treatment

Let us introduce the backward Euler time discretization for the fluid and the
first order BDF scheme for the structure. The investigation of this work is
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independent on the time discretization, so that other schemes can be considered
as well.

The main source of non-linearity comes from the fact that the interface (and
hence the fluid domain) is unknown (geometrical non-linearity). This can be
treated numerically in several ways. We focus here either on implicit treat-
ments, where the FSI problem is solved at each time step by Picard, Newton or
quasi-Newton iterations (see, e.g, [19, 11]), or on explicit treatments, where the
interface position is extrapolated from previous time steps. Similar considera-
tions appy also to the non-linearity coming from the Navier-Stokes convective
term.

Whatever strategy is adopted, a sequence of linearized FSI problems implic-
itly coupled through the interface conditions (2)4,5 has to be solved. In particu-
lar, let us denote by Ω∗

f , u∗ and w∗ the known fluid domain, fluid velocity and
fluid domain velocity, where ∗ denotes either an extrapolated value (explicit algo-
rithms) or the value of the previous subiteration (implicit algorithm). Moreover,
let gm be the approximation of a function g at time tm := m∆t, where ∆t is the
time discretization parameter. Then, by applying the backward Euler scheme
also for the continuity condition (2)4, we obtain the following linear system

Given Ω∗
f , u∗, w∗, un, ηn and ηn−1, find the fluid velocity un+1, pressure pn+1

and the structure displacement η̄n+1 such that





ρf

∆t
un+1 + ρf ((u∗ − w∗) · ∇)un+1 −∇ · T n+1

f = fn+1
f +

ρf

∆t
un in Ω∗

f ,

∇ · un+1 = 0 in Ω∗
f ,

ρs

∆t2
η̄n+1 −∇ · T̄ n+1

s = f̄
n+1
s +

ρs

∆t2
(2η̄n − η̄n−1) in Ω0

s,

u =
ηn+1 − ηn

∆t
on Σ∗,

T n+1
f n = T n+1

s n on Σ∗,
(3)

with suitable boundary conditions on the artificial sections.
For the sake of simplicity, here and in the sequel of the paper we drop the

index n+1 referring to the time step.

2.2 Partitioned procedures

System (3) is still coupled through the interface conditions (3)4 and (3)5. In
this work we consider schemes which guarantee strong enforcement of such con-
ditions, thus achieving a perfect energy balance. In particular, we focus on the
so called modular algorithms that involve separate fluid and structure solvers
interacting through the exchange of suitable transmission conditions at the FS
interface Σ∗. At convergence, they guarantee the continuity of the velocity and
of the normal stress at Σ∗. In particular, an algorithm that uses an explicit
treatment of the FS interface position and a strong coupling of the interface
conditions is called semi-implicit (see [10, 20, 5]).
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The most classical modular algorithm is the Dirichlet-Neumann (DN) scheme,
which consists in solving iteratively the fluid problem with the structure velocity
as Dirichlet boundary condition at the FS interface, and the structure problem
with the fluid normal stress as Neumann boundary condition at Σ∗ (see, e.g.,
[21, 19]). However, it has been shown in [23, 6, 12] that in the presence of a
large added mass effect, this procedure needs a strong relaxation and features a
very slow convergence.

A new class of iterative procedures based on Robin transmission conditions,
which generalizes the DN approach, has been introduced in [3]. In particular,
the Robin-Robin schemes are based on the following transmission conditions:

αfu − T fn = αf
η − ηn

∆t
− T sn, on Σ∗,

αs

∆t
η + T sn =

αs

∆t
ηn + αsu + T fn, on Σ∗,

(4)

obtained by a linear combination of (3)4 and (3)5, with coefficients αf , αs pos-
itive. We observe that with the choice αf → ∞ and αs = 0 we recover the DN
scheme.

In this work we consider a fixed point algorithm consisting of subsequent
iterations of fluid subproblems with interface condition (4)1 and structure sub-
problems with interface condition (4)2:

Robin-Robin partitioned algorithm: Given Ω∗
f , u∗, w∗, un, ηn and ηn−1

and the solution at previous iteration ηm−1, find at each iteration m the fluid
velocity um, the fluid pressure pm and the structure displacement η̄m until con-
vergence, such that
Fluid problem:

ρf

∆tum + ρf ((u∗ − w∗) · ∇)um −∇ · T f,m = ff +
ρf

∆tu
n in Ω∗

f ,

∇ · um = 0 in Ω∗
f ,

αfum − T f,mn = αf
ηm−1−η

n

∆t − T s,m−1n, on Σ∗,

Structure problem

ρs

∆t2
η̄m −∇ · T̄ s,m = f̄ s + ρs

∆t2
(2η̄n − η̄n−1) in Ω0

s,
αs

∆tηm + T s,mn = αs

∆tη
n + αsum + T f,mn, on Σ∗.

This strategy can also be interpreted as a preconditioned Richardson algorithm
applied to a suitable interface condition (see [2]).

3 Convergence analysis of simplified problems

In this Section we analyze the convergence of the RR scheme applied to three
different reduced FSI problems, which are simple enough to be analyzed theoret-
ically. On the other hand, they feature a behavior similar to the more complex
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system (3). Therefore, we expect that the theoretical results obtained from the
analysis of these models give insightful information also for system (3). This
analysis is performed by following the optimization strategy proposed in the
Optimized Schwarz Methods literature (see [1, 13, 14] for instance). In these
works, a convergence analysis of two and three dimensional coupled problems
with Robin trasmission conditions, based on the application of the Fourier trans-
form, has been derived, for the Laplace, Helmoltz and Maxwell equations.

In order to apply this strategy to the FSI problem, we introduce suitable
simplifying assumptions and reduced models. In particular, in all the conver-
gence analysis, we consider a fixed FSI domain. The fluid domain is the half
plane Ωf = {x = (x, y) ∈ R

2 : x < 0}, the FS interface the line Σ = {(x, y) ∈
R

2 : x = 0}, the structure domain either coincides with the interface Σ (gener-
alized string model) or is the thick region Ωs = [0, Hs] × R in the case of linear
incompressibile elasticity. In all the cases considered, we allow the FS interface
to move only in the normal direction.

We will base our convergence analysis on a Fourier transform in the direction
tangential to the FS interface (corresponding to the y variable in the case at
hand), which is defined, for w(x, y) ∈ L2(R2), as

F : w(x, y) 7→ ŵ(x, k) =

∫

R

e−ikyw(x, y) dy,

where k is the frequency variable. We will then be able to quantify the error, in
the frequency space, between the pressure at the m-th iteration, p̂m(x, k), and
the exact pressure p̂(x, k). This allows us to define, on the FS interface, the
reduction factor at iteration m for each frequency as

ρm(k) :=
|p̂m(0, k) − p̂(0, k)|
|p̂m−1(0, k) − p̂(0, k)| .

The RR algorithm converges if, at each iteration m, we have ρm(k) < 1 for all
the relevant frequencies of the problem, namely for 0 ≤ k ≤ kmax, where kmax

is the maximal frequency supported by the numerical grid, and is of order π/h
(h being the mesh parameter).

3.1 Potential flow - Generalized string model (P/GS)

The first simplified model is obtained by considering a potential flow described
by the Darcy equations for the fluid and the generalized string model for the
structure (see [22])

ρfδtu + ∇p = 0 in Ωf ,

∇ · u = 0 in Ωf ,

u · n = δtη on Σ,

p = ρsHs δttη + βHs η − GHs ∂yyη, on Σ,

(5)
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where G = Kλ1/2, with K the Timoshenko correction factor, and we have set
δtw := w−wn

∆t , δttw := δtw−δtwn

∆t , where w could be a scalar or a vector function
and as usual we have omitted the time index n+1. The reaction term β, arising
in the derivation of the generalized string model in the 3D case, is introduced also
in the 2D case to take into account for transversal membrane effects. Problem
(5) has to be completed with initial conditions and with boundary conditions
here reducing to the assumption of boundedness for x → −∞ and |y| → ∞.
We point out that the structure displacement is in the x direction, which is the
normal direction to the FS interface. The structure equation (5)4 enforces the
continuity of the normal stress at the interface along the normal direction. We
observe that the analysis of this symplified problem has been already performed
in [3]. For completeness, we report here the analysis via Fourier transform, which
is functional for the further developments.

By combining linearly (5)3 and (5)4 with coefficients (αf ,−1) and (αs, 1),
respectively, we obtain two Robin boundary conditions. Observe that in this
problem the viscous terms have been neglected so the fluid Cauchy stress tensor
reduces to the only pressure. By setting ux = u · n, with n the normal unit
vector to the FS interface, and using coefficients (αf ,−1), we obtain

αf ux − p = αf δtη − ρsHs δttη − βHs η + GHs ∂yyη,

that is

αf ∆t δtux − p = αf δtη − ρsHs δttη − βHs η + GHs ∂yyη − αf un
x.

Then, the Robin transmission condition for the fluid problem can be rearranged
as

αf ∆t δtux − p =

(
αf

∆t
− ρsHs

∆t2
− βHs

)
η + GHs ∂yyη + F1(u

n
x, ηn, ηn−1), (6)

where F1(u
n
x, ηn, ηn−1) accounts for terms at previous time steps.

By using coefficients (αs, 1), we have

ρsHs δttη + βHsη − GHs∂yyη + αs δtη = p + αsux,

and the Robin condition for the structure problem can be rearranged as

(
ρsHs

∆t2
+ βHs +

αs

∆t

)
η − GHs ∂yyη = αs ∆t δtux + p + F2(u

n, ηn, ηn−1), (7)

where again F2(u
n, ηn, ηn−1) accounts for terms at previous time steps.

Let m be an iteration index. Then, the corresponding iterative Robin-Robin
algorithm reads:
Given u0, p0, η0, solve for m ≥ 0
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1. Fluid problem

ρfδtum+1 + ∇pm+1 = 0 in Ωf ,

∇ · um+1 = 0 in Ωf ,

αf ∆t δtux,m+1 − pm+1 =

(
αf

∆t
− ρsHs

∆t2
− βHs

)
ηm+

+GHs ∂yyηm + F1(u
n
x, ηn, ηn−1) on Σ;

(8)

2. Structure problem

(
ρsHs

∆t2
+ βHs +

αs

∆t

)
ηm+1 − GHs ∂yyηm+1 = (9)

= αs ∆t δtux,m+1+pm+1+F2(u
n
x, ηn, ηn−1) on Σ.

We have the following

Proposition 3.1. The reduction factor of iterations (8)-(9) is given by

ρm(k) = ρP/GS(k) =

∣∣∣∣∣

ρsHs

∆t + βHs ∆t + GHs∆t k2 − αf

ρsHs

∆t + βHs ∆t + GHs∆t k2 + αs

· ρf − αs∆t k

ρf + αf∆t k

∣∣∣∣∣ , (10)

which is independent of the iteration m.
Moreover, for all Fourier modes k ∈ [0, kmax], there exist αmax

f = αmax
f (k)

and αmax
s = αmax

s (k) such that, given u0, p0, η0, iterations (8)-(9) converge if
αf ∈ [0, αmax

f ) and αs ∈ [0, αmax
s ) and if at least one of the two values is different

from 0.

Proof. Thanks to the relation

∂xp = −ρfδtux, on Σ, (11)

obtained by restricting the first equation of the fluid problem (8)1 on the FS
interface, it is possible to rewrite the Robin interface conditions (8)3 and (9) in
terms of the sole pressure, obtaining, on Σ,

αf ∆t

ρf
∂xpm+1 + pm+1 =

(
ρsHs

∆t2
+ βHs −

αf

∆t

)
ηm − GHs ∂yyη

m − F1(u
n
x, ηn, ηn−1),

(
ρsHs

∆t2
+ βHs + αs

∆t

)
ηm − GHs ∂yyη

m = pm − αs ∆t
ρf

∂xpm + F2(u
n
x, ηn, ηn−1).

(12)
We point out that for the structure problem we wrote the m-th iteration instead
of the m + 1-th.
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Since the problems involved are linear, we analyze without loss of generality
the convergence to the zero solution when the forcing terms vanish, namely for
F1(u

n
x, ηn, ηn−1) = F2(u

n
x, ηn, ηn−1) = 0.

The divergence free condition on u allows us to rewrite the fluid problem in
the unknown pressure

△p = 0 in Ωf . (13)

Applying the Fourier transform in the y direction, we obtain the following ordi-
nary differential equation for the pressure

−∂xxp̂m+1 + k2p̂m+1 = 0 in (−∞, 0),

whose solution is given by p̂m+1(x, k) = A(k)ekx + B(k)e−kx. The boundedness
assumption on the solution entails B(k) = 0, thus

p̂(x, k) = A(k) ekx, (14)

for a suitable A(k).
Now, the interface conditions (12) become

p̂m+1 +
αf∆t

ρf
∂xp̂m+1 =

(
ρsHs

∆t2
+ βHs + GHs k2 − αf

∆t

)
η̂m, for x = 0,

(
ρsHs

∆t2
+ βHs + GHs k2 + αs

∆t

)
η̂m = p̂m − αs∆t

ρf
∂xp̂m, for x = 0.

By noticing that ∂xp̂m+1 = Am+1(k) k ekx, we have

(
ρf + αf∆t k

ρf

)
Am+1(k) =

(
ρsHs

∆t2
+ βHs + GHs k2 − αf

∆t

)
η̂m, for x = 0,

(
ρsHs

∆t2
+ βHs + GHs k2 +

αs

∆t

)
η̂m =

ρf − αs∆t k

ρf
Am(k), for x = 0.

We thus have |Am+1(k)| = ρ(k)|Am(k)|, with reduction factor ρ given by (10).
In order to guarantee convergence, we have to find suitable values of αf

and αs such that ρP/GS < 1. To do this, if we consider the two factors d1

and d2 such that ρP/GS = |d1 d2| in (10), we obtain sufficient conditions by
imposing that |d1| < 1 and |d2| < 1, separately. For the first term, d1 =
ρsHs
∆t

+βHs ∆t+GHs∆t k2−αf

ρsHs
∆t

+βHs ∆t+GHs∆t k2+αs
, it is sufficient to have αf ∈ [0, αmax

f ), with

αmax
f (k) = 2

(
ρsHs

∆t
+ βHs ∆t + GHs∆t k2

)
. (15)

For the second term, d2 =
ρf−αs∆t k
ρf+αf∆t k , it is sufficient to have αs ∈ [0, αmax

s ), where

αmax
s (k) =

2ρf

∆t k
.
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A less sharp upper bound, but independent of k, is given by

αmax
s =

2ρf

∆t kmax
. (16)

Remark 2. We observe that function A(k) is in general complex. However, in
the particular case where the initial condition for the x component of the fluid
velocity is symmetric with respect to the x−axis, then its Fourier transform is
real and therefore A is real for each time (see (11)) and ux remains symmetric
at each time.

Remark 3. For the DN scheme, that is for αf → ∞ and αs = 0, we obtain

ρP/GS(k) =

∣∣∣∣
ρf

k (ρsHs + βHs∆t2 + GHs∆t2 k2)

∣∣∣∣ .

Taking k = 0, we have that no convergence of the DN scheme is achieved,
even with relaxation (ρP/GS(0) → ∞). This is due to the unboundedness of
the fluid domain. If we consider a bounded domain R × [−L, 0], we have that
k ∈ (kmin, kmax), with kmin of the order of π/L > 0 (see [6]). In this case,
the reduction factor of the DN scheme is always bounded, but it highlights a
high dependence of the convergence performances on the ratio ρf/ρs, as well on
kmin. In particular, if ρf/ρs is not small enough, for k sufficiently small we
have ρP/GS(k) > 1, so that a relaxation is needed to reach convergence. On the
contrary, for a general RR scheme the sensitivity of ρP/GS on the ratio ρf/ρs is
minimal and, as stated by Proposition 3.1, there exist always suitable values of
αf and αs such that for each k convergence is guaranteed without relaxation.

3.2 Stokes - Generalized string model (S/GS)

Let us now consider the coupling between the unsteady Stokes problem for the
fluid and the generalized string model for the structure. The fluid and structure
domains are the same of the previous problem and again we consider only normal
displacement of the FS interface.

In this case, the fluid stress tensor is given by T f = pI + µ(∇u + ∇T u),
since the viscous term is now considered and the normal component of the normal
stress at the interface Σ is nT ·T fn = −p+µ∂xux. Therefore, the Robin-Robin
sequential algorithm for the generalized Stokes-generalized string model coupling
is given by

12



1. Fluid problem

ρfδtu
m+1 − µ△um+1 + ∇pm+1 = 0 in Ωf

∇ · um+1 = 0 in Ωf

αf um+1
x − pm+1 + µ∂xum+1

x =

=
(

αf

∆t −
ρsHs

∆t2
− βHs

)
ηm + GHs ∂yyη

m + F1(η
n, ηn−1) on Σ

(17)

2. Structure problem
(

ρsHs

∆t2
+ βHs +

αs

∆t

)
ηm+1 − GHs ∂yyη

m = (18)

= αs um+1
x + pm+1 − µ∂xum+1 + F2(η

n, ηn−1) on Σ,

where we have set uy|Σ = 0 and, again, F1 and F2 account for terms at previous
time steps. We have the following

Proposition 3.2. The reduction factor of iterations (17)-(18) is given by

ρS/GS(k) =

∣∣∣∣∣

ρsHs

∆t + βHs ∆t + GHs∆t k2 − αf

ρsHs

∆t + βHs ∆t + GHs∆t k2 + αs

· αs k − µγf (k + γf )

αf k + µγf (k + γf )

∣∣∣∣∣ , (19)

where

γf (k) =
√

ρf/(µ∆t) + k2, (20)

which is independent of the iteration m.
Moreover, for all Fourier modes k ∈ [0, kmax] there exist αmax

f = αmax
f (k)

and αmax
s = αmax

s (k) such that, given u0, p0, η0, iterations (17)-(18) converge if
αf ∈ [0, αmax

f ) and αs ∈ [0, αmax
s ) and if at least one of the two values is different

from 0.

Proof. In order to write the fluid Robin interface condition (17)3 in terms of the
sole pressure, we need again to write the interface velocity u as a function of p.
However, in this case we have

∂xp = −ρfδtux + µ△ux on Σ,

so that the expression of ux at the interface in terms of p is not straightforward
anymore. However, by applying the divergence operator to the fluid problem
(17)1 we obtain again problem (13) for the pressure solely. We notice that the
solution of this problem after applying the Fourier transform in the y direction
is again of the form (14), for a suitable A(k), which in this case depends also on
△ux.

13



Now, the fluid problem in the x direction after the application of the Fourier
transform in the y direction, reads

ρf

µ∆t
ûx − ∂xxûx + k2ûx +

A

µ
k ekx =

ρf

µ∆t
ûn

x, in Ωf , (21)

having noticed that ∂xp̂ = kAekx. The homogeneous solutions of this equation
are ûo

x,1(x, k) = B(k) eγf x and ûo
x,2(x, k) = C(k) e−γf x, for suitable B and C and

where γf is given by (20). From the boundedness assumption, it follows C ≡ 0.
As before, in the convergence analysis the terms at the previous time steps are
discarded, so that we drop them from now on. As particular solution let us
consider ûp

x(x, k) = − kA
2µγf (k−γf )e

γf x + kA
µ(k+γf )(k−γf )e

kx. Adding this solution to

the homogeneous ones, we obtain

ûx(x, k) =

(
B − kA

2µγf (k − γf )

)
eγf x +

kA

µ(k + γf )(k − γf )
ekx.

The equation for uy reads

ρf

µ∆t
ûy − ∂xxûy + k2ûy − ik

A

µ
ekx =

ρf

µ∆t
ûn

y , in Ωf ,

having noticed that ∂yp̂ = −ikAekx. Then, as before, it is possible to show that
the solution is given by

ûy(x, k) =

(
D +

ikA

2µγf (k − γf )

)
eγf x − ikA

µ(k + γf )(k − γf )
ekx, (22)

for a suitable D(k).
From the incompressibility constraint, we have ∂xûx − ikûy = 0, obtaining

(
γfB − ikD +

kA

2µγf

)
eγf x = 0

and then

γfB − ikD +
kA

2µγf
= 0. (23)

From the interface condition for the velocity uy, namely uy = 0 for x = 0,
we obtain

ûy(0, k) = D +
ikA

2µγf (k − γf )
− ikA

µ(k + γf )(k − γf )
= 0,

and then D = − ikA
2µγf (k+γf ) , which inserted in (23) leads to

γfB +
kA

2µ(k + γf )
= 0. (24)
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Then, the normal stress at the FS interface in the x direction is

(p̂ − µ∂xûx)|x=0 = A − µ

(
γfB − kA

2µ(k − γf )
+

k2A

µ(k + γf )(k − γf )

)
= A, (25)

where the last equality is obtained thanks to (24).
Let us finally compute the value of the velocity in the x direction at the FS

interface:

ûx|x=0 = B − kA

2µγf (k − γf )
+

kA

µ(k + γf )(k − γf )
= − kA

µγf (k + γf )
, (26)

where the last equality is obtained again thanks to (24).
Therefore, owing to (25) and (26), the interface Robin conditions (17)3 and

(18) read

− αf kAm+1

µγf (k + γf )
− Am+1 =

(
−ρsHs

∆t2
− βHs − GHs k2 +

αf

∆t

)
η̂m, for x = 0,

(
ρsHs

∆t2
+ βHs + GHs k2 +

αs

∆t

)
η̂m = − αs kAm

µγf (γf + k)
+ Am, for x = 0.

We thus have |Am+1(k)| = ρ(k)|Am(k)|, where the reduction factor ρ is given
by (19).

In order to guarantee convergence, we have to find suitable values of αf and
αs such that ρS/GS < 1. Again, to do this, we obtain sufficient conditions by
imposing that the two factors in (19) are separately less than 1. The first term
is equal to the previous analysis so that the upper bound αmax

f is given again

by (15). The second term is d2 =
αs k−µγf (k+γf )
αf k+µγf (k+γf ) , so that it is sufficient to take

as upper bound

αmax
s (k) =

2µγf (k + γf )

k
. (27)

A less sharp upper bound, but independent of k, is given by

αmax
s =

2µγ∗
f (k∗ + γ∗

f )

k∗ , (28)

where γ∗
f = γf (k∗) and k∗ =

√
(
√

5−1)ρf

2µ∆t is such that αmax
s in (27) is minimal.

Remark 4. We point out that functions A(k), B(k) and D(k) are in general
complex. In particular, if the initial condition for the x component of the fluid
velocity is symmteric with respect to the x−axis, A and B are real. In this case
(21) has real coefficients so that ux is symmetric for each time. Conversely, if
the initial condition for the y component of the fluid velocity is emi-symmteric
with respect to the x−axis, then equation (22) has imaginary coefficients, so
that D has to be imaginary and uy is emi-symmetric for each time. This is not
surprising, since in the y direction we have two waves propagating in the two
opposite directions.
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Remark 5. For the DN scheme we obtain

ρS/GS =

∣∣∣∣
µγf (k + γf )∆t

k (ρsHs + βHs∆t2 + GHs∆t2 k2)

∣∣∣∣ =

∣∣∣∣∣
ρf + k2µ∆t +

√
ρfµk2 ∆t + µ2 k4 ∆t2

k (ρsHs + βHs∆t2 + GHs∆t2 k2)

∣∣∣∣∣

which highlights again the high dependence of the convergence performances on
the ratio ρf/ρs. Also in this case, for a general RR scheme the sensitivity of
ρS/GS on this ratio is minimal.

3.3 Stokes - Linear incompressibile elasticity

Let us consider a thick structure, whose thickness is Hs. Again, the structure do-
main is unbounded in the y direction, so that Ωs = [0, Hs]×R. We assume that
the structure is incompressible. This is an assumption verified in many applica-
tions, for example in haemodynamics. Moreover, as in the previous problems,
we set uy|Σ = 0, that is we allow the FS interface to move only in the normal
direction. This assumption is not realistic in many practical applications, but,
in the case of haemodynamics, which inspired the present work, the transversal
displacement is typically much smaller than the normal one. Moreover, as in
the generalized string model, to emulate a “cylindrically-shaped” structure and
take into account for transversal membrane effects, we add a reaction term with
coefficient β.

Therefore, the (discretized in time) structure problem reduces to a general-
ized Stokes problem and the RR algorithm reads:

1. Fluid problem

ρfδtu
m+1 − µ△um+1 + ∇pm+1 = 0, in Ωf ,

∇ · um+1 = 0, in Ωf ,

αf um+1
x − pm+1 + µ∂xum+1

x =
αf

∆t
ηm

x − χm + λ∂xηm
x + F1(η

n
x , ηn−1

x ), on Σ.

(29)

2. Structure problem

ρsδttη
m − λ△ηm + βηm + ∇χm = 0, in Ωs,

∇ · ηm = 0, in Ωs,

αs

∆t
ηm

x + χm − λ∂xηm
x = αs um+1

x + pm+1 − µ∂xum+1
x + F2(η

n
x , ηn−1

x ), on Σ,

(30)

where χ is the pressure for the structure problem and we have set uy|Σ = ηy|Σ =
0. We have the following
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Proposition 3.3. The reduction factor of iterations (29)-(30) is given by

ρS/S(k) =

∣∣∣∣
2αf δ − ε ∆t − ∆t

2αs δ + ε ∆t + ∆t
· αs k − µγf (k + γf )

αf k + µγf (k + γf )

∣∣∣∣ (31)

where γf is given by (20), and

ε(k) = −1 + 2kγ2
s

k2−γ2
s
Hs − 2k2γ4

s

(k2−γ2
s )2

H2
s + O(H3

s ),

δ(k) = (ε(k)+1)
2λγs

(
1

γsHs
− γsHs

6

)
+ O(H2

s ) = k
λ(k2−γ2

s )

(
1 − kγ2

sHs

k2−γ2
s

)
+ O(H2

s ),

γs(k) =
√

ρs/(λ∆t2) + β/λ + k2.
(32)

Moreover, for all Fourier modes k ∈ [0, kmax] there exist αmax
f = αmax

f (k)

and αmax
s = αmax

s (k) such that, given u0, p0, η0, iterations (29)-(30) converge if
αf ∈ [0, αmax

f ) and αs ∈ [0, αmax
s ) and if at least one of the two values is different

from 0.

Proof. Let us apply the divergence operator to the structure equation (30)1,
obtaining again a problem for the pressure solely:

△χ = 0, in Ωs,

with suitable boundary conditions depending on the value of η. Again, we apply
the Fourier transform in the y direction, so that the solution can be written as

χ̂(x, k) = E(k) ekx + F (k) e−kx, x > 0, (33)

for suitable functions E and F . In this case it is not possible anymore to exploit
a boundedness assumption at infinity, so that both terms in (33) have to be
considered.

Applying the Fourier transform along the y direction to the first component
of the structure problem (30)1, we obtain

ρs

λ∆t2
η̂x − ∂xxη̂x + k2 η̂x +

β

λ
η̂x +

kE

λ
ekx − kF

λ
e−kx = 0, x > 0,

having noticed that ∂xχ̂ = kE ekx − kF e−kx. The solution of this problem is
given by

η̂x(x, k) =
kE(k)

λ(k2 − γ2
s )

ekx− kF (k)

λ(k2 − γ2
s )

e−kx+

(
L(k) − kE(k)

2λγs(k − γs)
− kF (k)

2λγs(k + γs)

)
eγsx+

(34)

+

(
M(k) +

kE(k)

2λγs(k + γs)
+

kF (k)

2λγs(k − γs)

)
e−γsx,

where γs is given by (32)3 and L(k) and M(k) have to be properly determined.
The equation for η̂y reads

ρs

λ∆t2
η̂y − ∂xxη̂y + k2 η̂y +

β

λ
η̂y −

ikE

λ
ekx − ikF

λ
e−kx = 0, x > 0,
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having noticed that ∂yχ̂ = −ikE ekx − ikF e−kx. The solution of this problem
is given by

η̂y(x, k) =
−ikE(k)

λ(k2 − γ2
s )

ekx− ikF (k)

λ(k2 − γ2
s )

e−kx+

(
N(k) +

ikE(k)

2λγs(k − γs)
− ikF (k)

2λγs(k + γs)

)
eγsx+

(35)

+

(
P (k) − ikE(k)

2λγs(k + γs)
+

ikF (k)

2λγs(k − γs)

)
e−γsx,

where N(k) and P (k) are suitable functions of k.
Let us impose the incompressibility constraint ∂xη̂x − ikη̂y = 0. We obtain

(
γsL − ikN +

kE

2λγs
− kF

2λγs

)
eγsx +

(
−γsM − ikP − kE

2λγs
+

kF

2λγs

)
e−γsx = 0.

This equation has to be satisfied for all x > 0, so that it leads to the following
conditions

γs(L − M) − ik(N + P ) = 0

γsL − ikN + k(E−F )
2λγs

= 0.
(36)

Let us now impose that the velocity in the y direction at the FS interface is
zero. From (35), we obtain

η̂y|x=0 = N + P = 0,

so that from (36)1 we have L = M .
We observe that in the expressions of η̂x and η̂y in (34) and (35) we do not

rely on any boundedness assumption, since the structure domain in bounded in
the x direction. However, we can prescribe that the normal stress at the outlet
x = Hs is zero. In particular, we have

(λ∂xη̂x − χ̂) |x=Hs = 0
λ
2 (∂xη̂y − ikη̂x) |x=Hs = 0.

The first condition allows to give a relation among E, F and L, namely

L =
2γ2

sEekHs + 2γ2
sFe−kHs − (kE(k + γs) + kF (k − γs))e

γsHs

2λγs(k2 − γ2
s ) (e−γsHs − eγsHs)

+

−(kE(k − γs) + kF (k + γs))e
−γsHs

2λγs(k2 − γ2
s ) (e−γsHs − eγsHs)

=
E + F

2λγs

(
1

γsHs
− γsHs

6

)
+ O(H2

s ). (37)

The second condition allows to write N as function of E and F , namely

N = − ikL

γs
+

1

γs (eγsHs + e−γsHs)

[
2ik2E

λ(k2 − γ2
s )

ekHs − 2ik2F

λ(k2 − γ2
s )

e−kHs+

− ik

2λγs(k2 − γ2
s )

(
(k + γs)

2E + (k − γs)
2F

)
eγsHs +
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+
ik

2λγs(k2 − γ2
s )

(
(k − γs)

2E + (k + γs)
2F

)
e−γsHs

]
=

= − ik

2λγ2
s

(E + F )

(
1

γsHs
− γsHs

6
+

k − γs

k + γs
kHs

)
+ O(H2

s ).

This expression, together with (36)2 allows to derive a relation between E and
F , namely

F (k) = ε(k)E(k),

with ε given by (32)1. From (37), we have L(k) = δ(k)E(k), with δ given by
(32)2.

Let us compute the values of the displacement and of the normal stress at
the FS interface. From (34), we obtain

η̂x|x=0 = 2L = 2 δ E,

and from (33) and (34)

(λ∂xη̂x − χ̂) |x=0 = −E − F = −(1 + ε)E.

The fluid problem is identical to the one analyzed in the previous section
(Stokes/generalized string). We have therefore

p − µ∂xûx = A for x = 0,

ûx = − kA
µγf (k+γf ) for x = 0.

Then the Robin interface conditions (29)3 and (30)3 read

− αfk

µγf (k + γf )
Am+1 − Am+1 =

(
2αfδ

∆t
− ε − 1

)
Em for x = 0,

(
2αsδ

∆t
+ ε + 1

)
Em = − αsk

µγf (k + γf )
Am + Am for x = 0,

and the reduction factor is given by (31).
In order to guarantee convergence, we have to find suitable values of αf and

αs such that ρS/GS < 1. Again, to do this, we obtain sufficient conditions by
imposing that the two factors in (31) are separately less than 1. The second
term is equal to the previous analysis so that the upper bound αmax

s is given

again by (27). The first term is d1 =
2αf δ−ε ∆t−∆t
2αs δ+ε ∆t+∆t , so that it is sufficient to take

as upper bound

αmax
f (k) =

(ε + 1)∆t

δ
.

Remark 6. For the DN scheme we obtain

ρS/S =

∣∣∣∣
2δµγf (k + γf )

k∆t(ε + 1)

∣∣∣∣ =

∣∣∣∣
µγf (k + γf )

λγ2
sHsk∆t

∣∣∣∣ =

∣∣∣∣
a1ρf + a2

√
ρf + a3

a4ρs + a5

∣∣∣∣ ,
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for suitable aj = aj(k, µ, λ, β, Hs, ∆t), j = 1, . . . , 5, and again the DN scheme
highlights a high dependence of the convergence performances on the ratio ρf/ρs.
In particular, we point out that lim∆t→0 ρS/S = ρf/(kρsHs). Also in this case,
for a general RR scheme the sensitivity of ρS/S on this ratio is minimal.

4 Optimization of αf and αs

With the aim of constructing RR schemes with good convergence properties,
the problem of determining suitable values for parameters αf and αs has to
be addressed. Indeed, the convergence performances of RR schemes heavily
depend on this choice (see, in a different context, [15]). By maximizing the
convergence rate of the corresponding algorithm, it is possible to determine either
optimal or optimized values of the coefficients αf and αs in the Robin interface
conditions. The classical approach in the Optimized Schwarz Methods literature
consists in looking for parameters that, if possible, annihilate identically the
reduction factor, ensuring convergence for the scheme in just two iterations for
a two-domain decomposition. Such parameters are referred to as optimal. In
particular, in a two-domain decomposition framework, we recall that the optimal
interface conditions are of Robin type, where the Dirchlet-to-Neumann operator
of one domain is applied as a boundary condition for the other domain. When
such approach is not viable, the idea is to look for parameters that minimize the
reduction factor.

In this section we look for optimized values for αf and αs either k−independent
αf = αf,M , αs = αs,M , which lead to standard Robin boundary conditions
(with standard mass matrix at the interface), or k− dependent values of the
form αf = αf,M +αf,Kk2, αs = αs,M +αs,Kk2, which correspond to generalized
Robin boundary conditions on Σ

αf,Mu−αf,K△Σu+T f n = αf,M

(
η − ηn

∆t

)
−αf,K△Σ

(
η − ηn

∆t

)
+T s n, (38)

αs,M

∆t
η − αs,K△Ση + T s n =

αs,M

∆t
ηn − αs,K△Σηn + αs,Mu − αs,K△Σun + T f n,

(39)
where △Σ is the Laplace-Beltrami operator over the interface Σ.

Before presenting the optimization procedures, we recall in the next subsec-
tion the choices proposed in [3] for a heuristic determination of the parameters.

4.1 Determination of αf and αs by heuristic methods

In [20] a membrane model has been proposed to describe in an approximated
way the behaviour of thin structures. It is possible to “insert” the membrane
equation into the fluid one as a boundary term (we highlight that in this case the
structure domain coincides with the FS interface). This leads to a fluid problem
with a suitable Robin boundary condition at the FS interface, which accounts
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for the structure (see [20]). In [3, 2], this formulation has been used to obtain a
plausible value of αf in RR schemes, namely

αheur
f =

ρs Hs

∆t
+ β Hs ∆t, (40)

where Hs is the structure thickness and

β =
E

1 − ν2
(4ρ2

1 − 2(1 − ν)ρ2), (41)

with ρ1 and ρ2 the mean and Gaussian curvatures of the FS interface, respec-
tively. We point out that αheur

f is a function of the position on the interface.
RN schemes with αf given by (40) exhibit very good performances for a

wide range of added mass and are by far more efficient than DN strategies
(see [3, 2]). In particular, the theoretical analysis presented in these works,
have shown that RN schemes with αheur

f are less sensitive than DN schemes
to the added-mass effect. Moreover, numerical experiments with high added-
mass effect, highlighted that the RN scheme converges without any relaxation
and faster than the DN scheme. However, in [2] RN has been shown to be
sensitive to the choice of αf , leading to a deterioration of the performances
when the curvature of the FS interface could not be computed accurately. On
the contrary, the RN-GMRES scheme proposed in [2] is more robust with respect
to the choice of αf .

For what concernes the parameter αs, in [3] it has been proved that the
operator describing the added mass effect on the structure is not algebraic and
its approximation by an algebraic relationship is not evident. In particular a
generalized Robin condition (that involvs differential operators) is obtained with
αs = (ρf/∆t2)M(·), where M is the added-mass operator, that is the Neumann-
to-Dirichlet map (see [6, 3]). In order to obtain a “classical” Robin condition,
in [3] it has been proposed to approximate the operator M by θµmaxI, where
µmax is the maximum eigenvalue of the added-mass operator, I is the identity
operator and θ is a coefficient suitably chosen, getting

αheur
s = θ

ρfµmax

∆t
. (42)

The drawback of this choice is that the scaling factor θ has to be tuned “by hand”
to obtain good convergence properties. The numerical experiments in [3] showed
that the tuned value θ seems to be very robust and practically independent of
ρf , ∆t and of some geometrical parameters defining the physical domain (and
then µmax). However, the performance of the RR scheme with the choices (40)
and (42) is only slightly better than RN with (40).

4.2 Optimization procedures

Our goal is to minimize the reduction factor ρ in the different cases considered,
by choosing the Robin parameters αf , αs in the class of frequency dependent
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functions A ≡ {α(k) = αM + αK k2, αM , αK ≥ 0}. Functions in this class will
lead to generalized Robin boundary conditions having a Mass and a Stiffness
matrix on the boundary (see (38) and (39)).

In all the problems considered the reduction factor ρ(k) can be split as the
product of two factors: ρ(k) = d1(k) · d2(k) where

d1(k) =

∣∣∣∣∣

ρsHs

∆t + βHs ∆t + GHs∆t k2 − αf

ρsHs

∆t + βHs ∆t + GHs∆t k2 + αs

∣∣∣∣∣ (Generalized string model)

d1(k) =

∣∣∣∣
2αf δ − (ε + 1)∆t

2αs δ + (ε + 1)∆t

∣∣∣∣ (Linear incompressible elasticity)

and

d2(k) =

∣∣∣∣
ρf − αs∆t k

ρf + αf∆t k

∣∣∣∣ , (Potential flow)

d2(k) =

∣∣∣∣
αs k − µγf (k + γf )

αf k + µγf (k + γf )

∣∣∣∣ , (Stokes)

Since the global optimization of ρ for all frequencies is too difficult, we try
to minimize separately the two factors d1 = d1(k, αf , αs) and d2 = d2(k, αf , αs).
The first can be associated to the structure problem and will lead to an optimal
selection of αf ∈ A for all possible frequencies in [0, kmax] and all possible
functions αs ∈ A. Similarly, the second factor can be associated to the fluid
problem and leads to the optimal selection of αs ∈ A uniformly with respect to
k and αf ∈ A.

We set therefore the two optimization problems

αopt
f (k) = argmin

αf (k)∈A
max

k∈[0,kmax]
sup

αs∈A
d1(k, αf (k), αs(k)),

αopt
s (k) = argmin

αs(k)∈A
max

k∈[0,kmax]
sup

αf∈A
d2(k, αf (k), αs(k)).

Of course, by this procedure we will not get the global optimum but, hopfully,
improve the heuristic choice of the Robin coefficients.

4.2.1 Optimization of αf

We start with the optimization of the factor d1.

Generalized string model. In this case we obtain d1 ≡ 0 for

αGS
f =

ρsHs

∆t
+ βHs ∆t + GHs ∆t k2. (43)

We point out that αGS
f < αmax

f , with αmax
f given in (15). The previous expres-

sion represents the symbol, in the Fourier space, of the Dirichlet-to-Neumann
operator in the structure domain. We notice that αGS

f = αheur
f +GHs ∆t k2, and
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then the convergence analysis in Sect. 3.1 provides a correction of the optimal
value of αf with respect to the heuristic choice (40). The dependence of this
correction on k introduces in the Robin interface condition a differential term.
In particular, we obtain condition (38) with

αGS
f,M = αheur

f =
ρsHs

∆t
+ βHs ∆t, αGS

f,K = GHs ∆t.

Therefore, the correction given by the convergence analysis of the potential flow/
generalized string problem requires to build a “stiffness” interface matrix.

Linear incompressible elasticity. We have d1 ≡ 0 for αf (k) = (1+ε)∆t
2δ ,

which, however, is not in the class A. By considering an approximation of such
expression for Hs small, that is by using the expansions of ε and δ in powers of
Hs, given in (32), we obtain the optimized value

αLIE
f = ∆tλγ2

sHs =
ρsHs

∆t
+ βHs ∆t + λHs ∆t k2,

which leads to d1 = O(H3
s ). Observe that we obtain an expression very similar

to αGS
f .
The previous result shows that the approximated reduction factor obtained

by considering Hs small is the same as the one that is obtained when a membrane
model is considered for the structure.

4.2.2 Optimization of αs

We consider now the optimization of the factor d2.

Potential flow. In this case the optimization problem reads

αopt
s (k) = argmin

αs(k)∈A
max

k∈[0,kmax]
sup

αf∈A

∣∣∣∣
ρf − αs∆t k

ρf + αf∆t k

∣∣∣∣ = argmin
αs(k)∈A

max
k∈[0,kmax]

∣∣∣∣ 1 − αs∆t k

ρf

∣∣∣∣

It is clear that for a generic choice αs(k) = αs,M + αs,K k2 with αs,K > 0
the factor d2(k) is unbounded for k → ∞ (that is for h → 0). Therefore we re-
strict the optimization problem only to frequency-independent functions, namely
αs(k) = αs,M . In this case, we have

max
k∈[0,kmax]

∣∣∣∣ 1 − αs∆t k

ρf

∣∣∣∣ =

{
1 if αs,M ≤ 2ρf

∆t kmax
,

> 1 otherwise.

Therefore, no choice of αs,M will lead to a factor d2 strictly smaller than 1, and

we can chose any αs,M ∈ [0,
2ρf

∆t kmax
] to have exactly d2 = 1. However, in the

expressions of d1, αs is at the denominator, so that in view of the optimization
of the factor d1 we have interest in choosing αs,M as large as possible, leading
to the optimized Robin coefficient

αP
s =

2ρf

∆t kmax
. (44)
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Notice that this choice coincides with the upper bound of the stability interval
given in (16)

Stokes flow. We proceed in a similar way as for the Potential flow. In this case
we have

αopt
s (k) = argmin

αs(k)∈A
max

k∈[0,kmax]
sup

αf∈A

∣∣∣∣
αs k − µγf (k + γf )

αf k + µγf (k + γf )

∣∣∣∣ =

= argmin
αs(k)∈A

max
k∈[0,kmax]

∣∣∣∣
αs k

µγf (k + γf )
− 1

∣∣∣∣

and again we restrict the optimization only to constant values of αs or otherwise
the factor d2 will be unbounded for k → ∞.

Let us denote f(k) = k
µγf (k+γf ) = k

µ
√

a+k2(k+
√

a+k2)
, with a =

ρf

µ∆t . The func-

tion f has a global maximum in [0,∞) at k∗ =

√
a
√

5−1
2 . It is a straighforward

calculation to show that

max
k∈[0,kmax]

|αsf(k) − 1 | =

{
1 if αsf(k∗) ≤ 2

> 1 otherwise

Proceeding as for the potential flow we take the largest value for which d2 = 1
leading to the optimized coefficient for the Stokes flow

αS
s =

2

f(k∗)
=

2

∆t k∗

√
ρf + µ∆t (k∗)2

(√
µ∆t k∗ +

√
ρf + µ∆t (k∗)2

)
. (45)

4.3 Alternative optimization procedure

Another possible way to proceed to derive optimized parameters for the RR
algorithm consists in taking a different split of the reduction factor, namely
ρ(k, αf , αs) = d̃1(k, αf ) · d̃2(k, αs). In such a case, we can look for parameters
αf and αs that optimize separately the two factors, namely:

αopt
f (k) = argmin

αf∈A
max

k∈[0,kmax]
d̃1(k, αf (k)), αopt

s (k) = argmin
αs∈A

max
k∈[0,kmax]

d̃2(k, αs(k)).

This optimization procedure will lead to the same values for αf as in the
previous section since these are the values that zero the factor d1. However, this
procedure will lead to different values for αs which will depend, this time, both
on the fluid and the structure problem chosen.

4.3.1 Optimization of αs

Potential flow / Generalized string. For the Potential Flow / Generalized
string model, we have

d̃2(k, αs) =

∣∣∣∣∣
ρf − αs∆t k

ρsHs

∆t + βHs ∆t + GHs∆t k2 + αs

∣∣∣∣∣ .
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First, we observe that if αs = αs,M + αs,K k2 with αs,K > 0, the factor d̃2 is
unbounded for k → ∞, so we restrict the optimization to constant values. Let
us denote

f̃(k, αs) =
ρf − αs∆t k

ρsHs

∆t + βHs ∆t + GHs∆t k2 + αs

.

The function f̃(k, αs) is such that f̃(0, αs) =
ρf

ρsHs
∆t

+βHs ∆t+αs
> 0, ∂f̃

∂k (0, αs) < 0

and
limk→∞ f̃(k, αs) = 0, and has exactly one global minimum in k∗(αs) ∈ [0,∞),
with f̃(k∗(αs), αs) < 0. We have, therefore that the optimal value αopt

s satisfies
(see Fig. 2)

Figure 2: f̃ as a function of k.

min
αs

max
k

|f̃(k, αs)| = min
αs

max{ f̃(0, αs),−f(k∗(αs), αs) }.

We observe that f̃(0, αs) is a decreasing function of αs and −f̃(k∗(αs), αs) is an
increasing function of αs. Moreover, for αs = 0 we have that f̃(k, 0) > 0 is a
monotone decreasing function in k, so that, thanks to the continuity of f̃ , we
have f̃(0, 0+) > −f̃(k∗(0+), 0+). Therefore, the minimum is achieved for

αP,2
s such that f̃(0, αP,2

s ) = −f̃(k∗(αP,2
s ), αP,2

s ). (46)

This non-linear problem can be solved numerically given all the parameters of
the fluid and structure model.

Stokes / Generalized String In this case we have

d̃2(k, αs) =

∣∣∣∣∣
µγf (k + γf ) − αs∆t k

ρsHs

∆t + βHs ∆t + GHs∆t k2 + αs

∣∣∣∣∣ .
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Again, we observe that if αs = αs,M + αs,K k2 with αs,K > 0, the factor d̃2 is
unbounded for k → ∞, so we restrict the optimization to constant values. Let
us denote

f̃(k, αs) =
µγf (k + γf ) − αs∆t k

ρsHs

∆t + βHs ∆t + GHs∆t k2 + αs

.

The function f̃(k, αs) is such that f̃(0, αs) =
ρf

ρsHs+βHs ∆t2+αs ∆t
> 0, ∂f̃

∂k (0, αs) <

0 and limk→∞ f̃(k, αs) = F̃ := µ
G Hs ∆t > 0, and has exactly one local minimum

in k∗(αs) ∈ [0,∞), with f̃(k∗(αs), αs) < 0. Let us assume that kmax is big
enough to approximate f̃(kmax, αs) with F̃ . We have, therefore that the optimal
value αopt

s satisfies

min
αs

max
k

|f̃(k, αs)| = min
αs

max{ f̃(0, αs), −f(k∗(αs), αs) , F̃ }.

Again, f̃(0, αs) is a decreasing function of αs and −f̃(k∗(αs), αs) is an increasing
function of αs, with f̃(0, 0+) > −f̃(k∗(0+), 0+). Moreover, under the hypothesis
on the data 4µ2ρsβ > ρ2

fG2, we have that f̃(0, 0) > F̃ . Therefore, under this
hypothesis, minimum is achieved for

αopt
s =

{
αs,1 if f̃(0, αs,1) > F̃ ,

αs,2 if F̃ > f̃(0, αs,1),

where
αs,1 such that f̃(0, αs,1) = −f̃(k∗(αs,1), αs,1),

and
αs,2 such that f̃(0, αs,2) = F̃ .

Again, this non-linear problem can be solved numerically given all the parame-
ters of the fluid and structure model.

5 Numerical Results

In this section we present some numerical results with the aim of testing the opti-
mized parameters found in the previous analysis. We focus on two-dimensional
numerical simulations, even if the application of the proposed parameters to
three-dimensional problems is under investigation. This is in agreement with
the fact that the convergence analysis has been performed in two-dimensional
domains. However, the application of the optimal coefficients found in this anal-
ysis to three-dimensional cases is under investigation.

For the structure, we consider the following linear elasticity equation

ρs∂ttη − λ1∇ · (∇η + (∇η)t) − λ2∇ · ((∇ · η)I) + βη = 0,

where the Lamé constants are given by (1) and a reaction term β, arising in the
derivation of the generalized string model in the 3D case, is introduced also in
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2D to reproduce the behaviour of a cylindrical structure. For its expression we
use the particolarization of (41) to the rectangular domain, that is β = E

(1−ν2)R2 ,

where R is half the heigth of the rectangle.
For the numerical solution we use a 2D Finite Element Code written in

Matlab at MOX - Dipartimento di Matematica - Politecnico di Milano and at the
Department of Information Technology and Mathematical Methods - Università
degli Studi di Bergamo. Moreover, we consider P1−bubble/P1 elements for the
fluid and P1 elements for the structure. We use the residual normalized to the
initial one as stopping criterion (see [3]), with a tolerance equal to 10−4.

In all the cases, we prescribe an impulse pressure jump between the inlet and
the outlets

∆P (t) =

{
104 dyne/cm2 t ≤ 0.005 s,
0 t > 0.005 s.

Finally, we set µ = 0.035 poise, ρf = 1 g/cm3 and the following set of reference
values: ∆t = 10−3s, ρs = 1.1 g/cm3, E = 1.3 · 106 dyne/cm2 and the thickness
of the structure Hs = 0.1 cm.

5.1 Results in a rectangle domain

The numerical simulations of this section are performed in a rectangular domain
both for the fluid and for the two structures, whose size is 6×1 cm and 6×Hs cm,
respectively (see Fig. 3). We set ν = 0.3, R = 0.5 and the space discretization

Ω

Ω

Ω

f
0

0
s

s
0

Figure 3: Computational fluid and structure domains.

parameter is h = Hs/2, both for the fluid and the structure domains.
The aim of this test is to compare the performance of the proposed parame-

ters given in (43), (44) and (45) with respect to the heuristic choice. In particu-
lar, for the reference values, we have the following values: αGS

f,M = 681.43, αGS
f,K =

41.12, αP
s = 31.83 and αS

s = 38.95.
In Table 1 we show the average number of iterations to reach convergence

having considered as final time T = 0.008 s. In brackets, we show the compu-
tational time, normalized to that obtained with the heuristic choice of αf and
with αs = 0.

These results show that the Robin-Robin schemes are very robust with re-
spect to the added-mass effect. Indeed also for structure density 100 times
lighter than the fluid one, convergence is reached without any relaxation and
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αf = αheur
f αGS

f αGS
f αGS

f

αs = 0 0 αP
s αS

s

Ref. 5.87 (1.00) 5.37 (0.91) 4.62 (0.79) 4.50 (0.77)
ρs = 0.1 6.00 (1.00) 5.62 (0.94) 4.87 (0.81) 4.87 (0.81)
ρs = 0.01 6.00 (1.00) 5.75 (0.96) 5.00 (0.83) 4.87 (0.81)
Hs = 0.05 6.75 (1.00) 5.87 (0.87) 5.00 (0.74) 5.00 (0.74)

Hs = 0.0125 10.75 (1.00) 7.87 (0.73) 7.62 (0.71) 5.75 (0.53)
∆t = 5 · 10−4 7.00 (1.00) 5.69 (0.81) 4.94 (0.71) 4.87 (0.70)

∆t = 2.5 · 10−4 6.94 (1.00) 5.56 (0.80) 4.81 (0.69) 4.41 (0.64)
E = 6.5 · 105 6.50 (1.00) 5.62 (0.86) 4.87 (0.75) 4.87 (0.75)
E = 1.3 · 105 7.50 (1.00) 5.50 (0.73) 4.37 (0.58) 5.00 (0.67)

Table 1: Average number of iterations and relative CPU times (in brackets) for
the rectangular domain for different values of some parameters. Ref. means
reference values.

with a small number of iterations. However, a worsening in the performance
is observed when the structure thickness Hs, the time step ∆t and the Young
modulus E decrease. Moreover, these results show that there is a systematic
improvement in the performance of the Robin-Neumann scheme when adopting
the optimized value αGS

f instead of the heuristic one, with a saving in the com-
putational time up to 27%. A further improvement is obtained by considering
the Robin-Robin scheme with coefficient αP

s or αS
s . In these cases the saving

in computational time is up to 47%. We point out that the proposed choice is
robust, since numerical simulation highlightes that the number of iterations is
independent of the value of the space discretization parameter h.

In the second set of simulations, we want to compare the two different opti-
mization strategies proposed for the parameter αs in Sect. 4.2 and 4.3, respec-
tively. We limit the analysis to the Potential flow case, that is we compare the
performances of the RR scheme with αs given by (44) and (46).

In Table 2 we show the average number of iterations to reach convergence
having considered 16 time steps, by changing the Young modulus and the time
step. These results clearly show that the optimized parameter αP,2

s shows a
better performance when the structure stiffness term is small in comparison to
the other terms. However, as highlighted by the performances obtained with
the reference values and by the non-convergence with Hs = 0.0125, this choice
seems less robust than αP

s .

5.2 An application to a 2D bifurcation geometry

In this section we investigate the performance of Robin-Robin algorithm with
optimized parameters considering a 2D geometry which is an idealization of
a realistic domain, namely the human carotid. We use the reference values

28



αs = αP
s αP,2

s

Ref. 4.62 10.87
Hs = 0.0125 7.73 X

∆t = 6.4 · 10−5 6.00 5.00
∆t = 3.2 · 10−5 10.94 9.00
E = 1.3 · 104 4.62 6.37
E = 1.3 · 103 26.75 15.00

Table 2: Average number of iterations to perform 16 time steps for the rectan-
gular domain. Ref. means reference values. X means no convergence.

described in the previous sections and we set ν = 0.49 in order to model the
quasi-incompressibility of arterial vessels.

In Figure 4 the pressure in the deformed fluid domain is shown, at three
time instants. In Table 3 we show the average number of iterations and the
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Figure 4: Pressure in the deformed fluid domain obtained with αf = αGS
f and

αs = αP
s ; t = 0.004 (left), t = 0.008 s (middle), t = 0.012 s (right).

normalized computational times (in brackets) for two values of the structure
thickness, having considered as final time T = 0.012 s.

αf = αheur
f αGS

f αGS
f αGS

f

αs = 0 0 αP
s αS

s

Ref. 13.08 (1.00) 9.92 (0.76) 7.00 (0.54) 6.75 (0.52)
Hs = 0.05 23.25 (1.00) 14.08 (0.61) 13.50 (0.58) 12.67 (0.54)

Table 3: Average number of iterations and relative CPU times (in brackets) for
the carotid domain for different values of the structure thickness Hs. Ref. means
reference values.

These results show that the improvement in the performances of RR scheme
in using the optimazed parameters αGS

f , αP
s and αS

s is even slightly higher than
for the rectangular case.
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6 Conclusions

In this work, we have proposed new convergence analysis of the Robin-Robin par-
titioned procedure for the Fluid-Structure Interaction problem. In particular,
we consider 2D generalized Stokes problem both for the fluid and for structure.
These analysis improve and generalize the ones presented in [6, 3] which referred
to a potential flow model for the fluid and a 1D reduced model for the struc-
ture. The analysis have been performed applying the Fourier transform in one
direction, and highlight the dependence of the Dirichlet-Neumann scheme on the
ratio between the densities of the fluid and of the structure, and the robustness
of a general RR scheme with respect to this ratio.

Moreover, in the spirit of the Optimized Schwarz Methods, the reduction
factor of the analysis have been minimized by determining optimal values of the
parameters in the Robin transmission conditions.

The 2D numerical results show that the proposed optimized parameters im-
prove considerably the speed of convergence of RR schemes.
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