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Abstract
We propose a scalable well-balanced numerical method to efficiently solve a modified set of shallow water equa-

tions targeting the dynamics of lava flows. The governing equations are an extension of a depth-integrated model
already available in the literature and proposed to model lava flows. Here, we consider the presence of vents that act
as point sources in the mass and energy equations. Starting from a scheme developed in the framework of landslide
simulation, we prove its capability to deal with lava flows. We show its excellent performances in terms of parallel
scaling efficiency while maintaining good results in terms of accuracy. To verify the reliability of the proposed simu-
lation tool, we first assess the accuracy and efficiency of the scheme on ideal scenarios. In particular, we investigate
the well-balancing property, we simulate benchmarks taken from the literature in the framework of lava flow simula-
tions, and provide relevant scaling results for the parallel implementation of the method. Successively, we challenge
the scheme on a real configuration taken from the available literature.

Keywords: Taylor-Galerkin scheme, Depth-integrated models, Parallel simulations, Lava flows, Quadtree mesh, Path-
conservative method.

1 Introduction
Volcanic eruptions are awe-inspiring natural phenomena, with lava flows representing a prominent aspect of their
destructive potential. Understanding and predicting the behavior of lava flows is of paramount importance to enhance
our comprehension of volcanic hazards and facilitate decision-making in volcanic risk management. Within this
pursuit, mathematical models assume a pivotal role, serving as a tool to simulate and dissect the intricate dynamics
of lava flows. Among these models, depth-integrated lava flow models have ascended in importance due to their
adeptness in capturing the overarching behavior of lava while maintaining computational efficiency.
The model we consider was first proposed in [1] and later extended in [2, 3]. It can be considered a modification of the
classical shallow water system, incorporating the depth-integration of the energy equation from the full Navier-Stokes
system. The temperature plays a significant role in lava flow dynamics and cannot be neglected in the modeling phase.
The shallow-water model, also known as de Saint-Venant equations, is a set of partial differential equations originally
designed to approximate the behavior of fluid flow in situations where the depth of the fluid is much smaller than
the horizontal length scales of the system. This approximation has proven particularly useful in the study of various
geophysical and environmental phenomena, including but not limited to river hydraulics, flood problems, landslide
runout forecasting, see, e.g., [4, 5, 6, 7, 8] and references therein.

In this work, we propose a scalable well-balanced numerical scheme to solve a depth-integrated system of equa-
tions modeling lava flow dynamics. The scheme implements a new variant of the classical two-step Taylor-Galerkin
(TG2) scheme on adaptive quadtree meshes, named TG2-PC. The acronym PC stands for the Path-Conservative
method, widely used in the literature in combination with finite-volume and discontinuous finite-element schemes [9,
10, 11, 12, 13, 14]. The TG2-PC combines the TG2 method on hierarchical quadtree meshes with a novel PC inte-
gral on continuous finite element spaces. An appropriate choice of the phase space path is sufficient to guarantee the
scheme’s exactness with respect to the lake-at-rest solution at the discrete level, i.e., the well-balancing property.
The TG2-PC scheme was introduced in [15], for the solution of a single-phase single-layer depth-integrated landslide
model, and later on enriched in [4] for a two-phase two-layer landslide model. In particular, in [15] we decouple
the stiff/parabolic from the advection/hyperbolic part through a second-order space-time Strang splitting procedure.
While, in [4] the hyperbolic and stiff parts are treated together in an additive Runge-Kutta procedure. In both cases,
the scheme has shown excellent results in terms of parallel performances while maintaining good accuracy. Here, we
further modify the time integration of the source terms, by considering a different additive time integration scheme.
The resulting discretization is proved to be more stable when compared to the one described in [4]. This modification
is beneficial from the stability viewpoint of the method as it prevents the time step to go to zero due to the rise of
numerical spurious oscillations. Indeed, in the numerical tests we present, especially when dealing with the real case
study, the scheme proposed in [4] for the landslide model fails to provide an oscillation free solution. The physical
model we consider is a set of nonlinear balance laws with nonconservative contributions. This model is similar to the
one considered in [1, 2, 3], but is further enriched with the presence of vents that are modeled as point-wise sources in
the depth-integrated model. Vents are openings in the crust of the planet from which lava erupts.

The paper is organized as follows: In section 2, we present the physical model considered. In section 3, we describe
the numerical model adopted to discretize the mathematical model. In section 4, the proposed discretization scheme
is applied to several tests, in which the accuracy of the numerical schemes is studied. The concluding remarks are
presented in section 5.
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2 Physical model
According to [1, 2, 3] lava flow can be modeled with a set of equations obtained from the depth-integration of the
Navier-Stokes equations considering a hydrostatic pressure distribution along the vertical axis. This idea stems from
the hypothesis that the vertical length-scale of the flowing material is much smaller than the horizontal one.

We consider a Cartesian domain Ω = (0, Lx) × (0, Ly) ⊂ R2 and a domain Ωw ⊂ Ω, which moves in space
and time and is defined as the space where the lava height is greater than zero, i.e., h > 0. According to [16], in
Ωw × (0, tfin], tfin being the final time, we define the following depth-integrated model, which is basically the shallow
water system for the mass and momentum, plus another equation modeling the evolution of the temperature during the
lava movement 

∂th+ ∂x(hux) + ∂y(huy) = Qδ(x− xv),

∂t(hux) + ∂x
(
hu2

x + 1
2gh

2
)
+ ∂y (huxuy) + gh∂xZ = −γux,

∂t(huy) + ∂x (huyux) + ∂y
(
hu2

y +
1
2gh

2
)
+ gh∂yZ = −γuy,

∂t(hT ) + ∂x (hTux) + ∂y (hTuy) = QTeδ(x− xv).

(1)

Apart from the material height h that we have already defined above, the unknowns are represented by the mass fluxes
along the x- and y-direction hux, huy respectively and by hT , which is the product between the depth-integrated
temperature and the material height, i.e.,

hT =

∫ Z+h

Z

T (x, y, z) dz, (2)

where T = T (x, y, z) is the vertically varying temperature, solution of the Navier-Stokes system. As underlined in [2],
the transport terms of the momentum and energy equations can be modified by considering multiplicative coefficients
known as Boussinesq or shape factors. Nevertheless, the presence of these coefficients slightly modify the eigenvalues
of the Jacobian matrix associated to the transport operator without compromising its analytical computation. To make
an example, under the hypothesis of parabolic profile in the vertical direction, the momentum shape factors reduce to
6
5 . These shape factors correspond to 1 only in case a constant vertical profile is assumed. Here, for simplicity, we set
these coefficients to 1 since they do not alter the numerical scheme we present.
Concerning the reaction term, we have a quantity Qδ(x−xv) in the mass conservation equation, where δ is the Dirac’s
delta and xv is the vent spatial location. The quantity Q represents the lava discharge into the domain and could be
a time varying function. The effect of the vent reflects also in the energy equation where appears QTeδ(x − xv),
where Te is the vent effusion temperature. In the friction term appearing in the momentum equation, we define the
dimensionless coefficient γ = k∗/[1 + k∗h/(3νr)], according to [17, 18], where νr is a reference kinematic viscosity,
i.e., it is evaluated at a reference temperature Tr, and k∗ is the Navier friction coefficient. In the present work, by
considering the following dynamic viscosity

µ = µre
−b(T−Tr), (3)

and in the limit case k∗h/νr ≫ 1, implying that γ = 3ν/h, we obtain the approximation

γ =
3νr
h

e−b(T−Tr). (4)

The quantity νr is the reference kinematic viscosity, and is linked to the µr through the lava density ρ, i.e., µr = νrρ.
According to [1], a convenient choice for the reference temperature coincides with the vent effusion temperature.
Possibly, other reaction terms could be considered in the energy equation. We mention the conductive, radiative,
convective, and viscous heating coefficient. These terms represent the energy dissipation of the lava during its motion
due to heat transfer and internal stresses, and are important to conduct a real case study analysis. Indeed, they improve
the dissipation rate of the temperature of the flowing material, and enrich the model with calibration parameters that
can be useful when performing back analysis. In this study, we simply neglect them and focus on the presence of
the friction coefficient on the momentum equation that depends on the temperature, and plays a significant role in the
coupling between the momentum and energy equations. Anyway, the heat transfer contributions can be easily inserted
in the numerical method we present in this work without requiring any modification of the conceptual scheme.
Finally, we notice that this depth-integrated system of equations (1) admits the following steady state solution

h+ Z = constant, u = 0, T = constant, (5)

which is normally named lake-at-rest condition. One of the goals of the numerical method we propose in this work is
to be exact with respect to this lake-at-rest condition. In the literature, numerical schemes that are built to be exact to
this condition are named well-balanced schemes.

3 Numerical scheme
We note that system of equations (1) can be written as a hyperbolic system of equations where non-conservative terms
and algebraic sources are present, i.e.,

∂tq+∇ · F+B∇Z = S, (6)

where the vector of conserved quantities reads,

q =



h

hux

huy

hT

Z


. (7)
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The term F = F(q) corresponds to the tensor of transport fluxes,

F(q) =



hux huy

hu2
x +

1

2
gh2 huxuy

huyux hu2
y +

1

2
gh2

hTux hTuy

0 0


, (8)

the tensor B = B(q) representing the non-conservative matrix reads

B(q) =



0 0

gh 0

0 gh

0 0

0 0


, (9)

while the source term S = S(q) is

S(q) =



Qδ(x− xv)

−γux

−γuy

QTeδ(x− xv)

0


. (10)

According to the works [6, 15, 7], we set a numerical threshold hmin on the material height so to provide a
discretization of the wet region Ωw so that, in regions below hmin, the model equations modify as

∂th = 0,

hux = 0,

huy = 0,

hT = 0. (11)

A great advantage of this procedure is that we can extend to the whole computational domain Ω the solution of the
system of equations (1), and outflow boundary conditions are applied naturally at the boundary of the discrete wet
region Ωw.

The numerical method we adopt is a modification of the classical two-step Taylor-Galerkin (TG2) method, namely
the second-order Taylor-Galerkin Path-Conservative (TG2-PC) method on adaptive quadtree meshes. This method has
been developed by some of the authors and has already been successfully applied to solve depth-integrated problems
describing the landslide runout phase, see [6, 15, 4]. The TG2-PC scheme exploits the excellent scaling performances
of the TG2 scheme, while employing the Path-Conservative (PC) strategy to the computation of non-conservative
products through a novel implementation on continuous finite-element spaces.
According to what done for the solution of the two-phase consolidation landslide model [4], the presence of the
reaction term implies a potential source of stiffness. So, the application of the TG2-PC strategy to the complete
system would require the adoption of a time step considerably smaller than the one needed to discretize the transport
fluxes, eventually leading to a greater diffusion error when resolving advection features. Nevertheless, we note that
in most of the real cases discretizing stiff sources often leads to time steps numerically close to zero. To overcome
this stiffness, we combine the Taylor time series expansion of the TG2-PC method with a second-order L-stable time
integration for the source term. This combination is performed in an IMplicit EXplicit (IMEX) Additive Runge-Kutta
(ARK) method, by resorting on the Additive RK.2.L.1 scheme developed in [19]. This method enables the efficient
treatment of fast, reaction term, and slow, hyperbolic operator, dynamics separately. The complete Butcher’s tableau
reads,

c Ã A

b̃T bT
=

0 0 0 0 0 0 0
1
2

1
2 (−1 +

√
2) 1−

√
2
2 0 1

2 0 0

1 1−
√
2
2

√
2− 1 1−

√
2
2 0 1 0

1−
√
2
2

√
2− 1 1−

√
2
2 0 1 0

, (12)

where the left arrays (Ã, b̃) interests the discretization of the stiff source term, while the right one (A,b) is the
Taylor-type discretization and is used to discretize the hyperbolic transport term. The effectiveness of IMEX schemes
have been demonstrated in several computational physics contexts, from magnetized plasma flows [20] to atmospheric
applications [21, 22] and fluid dynamics of incompressible flows [23].

Let us consider a time step ∆t, the temporal approximations of the conserved variable qn, qn+ 1
2 , qn+1 at times

tn, tn+
1
2 , tn+1, respectively. Then, the quantities with the superscript n, n + 1

2 , n + 1 indicate the evaluation of the
quantities themselves in the discrete conserved variable in time qn, qn+ 1

2 , qn+1, respectively. To obtain the fully
discrete system, consider a quadtree mesh partition and identify with M the number of quadrilateral mesh elements,
while with N the number of active nodes. The set of active nodes refers to the total number of nodes minus the set of
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hanging nodes. We seek solutions at integer times, tn, tn+1, in the continuous space Q̃1 and for half-time solutions in
the piecewise discontinuous space Q0 as defined in [6]. In this way, by integrating by parts the conservative transport
fluxes appearing in the second step of the method, and by indicating with (·, ·) the L2(Ω)-scalar product and by n the
unit outward normal vector to the boundary ∂Ω of Ω, we obtain the following fully discrete weak-form

(qn+ 1
2 , ϕ

(0)
j ) = (qn, ϕ

(0)
j )− ∆t

2
(∇ · Fn, ϕ

(0)
j )− ∆t

2
(Bn∇qn, ϕ

(0)
j ) +

∆t

2

(
−1 +

√
2
)
(Sn, ϕ

(0)
j )

+ ∆t

(
1−

√
2

2

)
(Sn+ 1

2 , ϕ
(0)
j ),

(qn+1, ϕ̃
(1)
i ) = (qn, ϕ̃

(1)
i ) + ∆t (F∗,n+ 1

2 ,∇ϕ̃
(1)
i )−∆t (Bn+ 1

2∇qn+ 1
2 , ϕ̃

(1)
i )−∆t

∫
∂Ω

F∗,n+ 1
2 n ϕ̃

(1)
i dΣ

+∆t

(
1−

√
2

2

)
(Sn + Sn+1, ϕ̃

(1)
i ) + ∆t

(√
2− 1

)
(Sn+ 1

2 , ϕ̃
(1)
i ), (13)

where the set {ϕ̃(1)
i }Ni=1 refers to the set of basis functions of the space Q̃1, while {ϕ(0)

j }Mj=1 refers to the set of basis
functions of the space Q0. In A, the reader can find details of the asymptotic stability of the scheme (13) in case
of severe stiffness of the source terms, for the linear scalar conservation equation with linear sources. We study the
asymptotic behaviour of the amplification factor of the present scheme in comparison to the scheme presented in n [4].
We note that, in the formulation above (13), we have put in the second step of the scheme a flux F∗,n+ 1

2 which refers
to a discrete flux function of Fn+ 1

2 but modified to ensure an oscillation-free solution according to the flux correction
limiting procedure (FCT) procedure. Thus, the discrete numerical flux reads

F∗,n+ 1
2 = (Fn+ 1

2 − δFn) + ϕδFn, (14)

with δFn the anti-diffusive flux to be defined later, giving the diffusive contribution −δFn to the high order discrete
flux Fn+ 1

2 in equation (14), and ϕ the piecewise constant FCT coefficient defined according to the Zalesak’s proce-
dure [24, 25, 26], specifically by following the quadtree version in [6]. By applying the mass lumping procedure in
the second step of the scheme (13), we can formally proof that, in one space dimension and in the case ϕ = 0, this dis-
cretization coincides with the Lax-Wendroff scheme, thus it is subject to the standard CFL condition on the transport
term. In this work, we choose the time step accordingly. The anti-diffusive flux is computed according to the Rusanov
numerical flux but suitably modified to take into account the the scheme to be exact to the lake-at-rest condition (5).
Inspired by the work [27] and as already done to discretize the two-phase consolidation landslide model [4], with
reference to a single mesh element, say j, having extension ∆xj and ∆yj along the x- and y-direction, respectively,
we propose the following well-balanced modification of the Rusanov numerical flux,

δFn
j = min(

∆xj
∆t ,

∆yj
∆t

) 1

2∆t
(∇vn, ϕ

(0)
j ), (15)

where vector vn is the time-discrete counterpart of the vector v, which is linked to the vector q of the conserved
variables through the relation v = Uq, with U the transformation matrix given by

U =


1 0 0 0 1− u
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 . (16)

Here, u = u(|∇η|−hmin) denotes the Heaviside step function, η = H + Z and ηn is the time discrete counterpart.
Moreover, in the computation of the anti-diffusive Rusanov numerical flux (15), quantities ∆xj/∆t,∆yj/∆t are
upper bounded, thanks to the CFL condition, by the maximum simple wave speed in both the directions.
A final step to ensure well-balancing, is the discretization of non-conservative fluxes. We note that the main issue is
the computation of these products at the second step of the TG2-PC method (13)2 since the gradient is not defined
on the space Q0. To overcome such a problem, we adopt the same approach used in [15] to model a single-phase
depth-integrated landslide model. To this aim, we consider the linear path

Ψ = Ψ(q
n+ 1

2
− ,q

n+ 1
2

+ , s) = q
n+ 1

2
− + s(q

n+ 1
2

+ − q
n+ 1

2
− ), (17)

parametrized by the real parameter s ∈ [0, 1], which connects two adjacent states, qn+ 1
2

− , qn+ 1
2

+ , associated with the
mesh elements sharing the generic edge e, with barycenter located at x− and x+, respectively. Then, the PC finite
element formulation for the integral of the non-conservative products in (13)2 reads

(Bn+ 1
2∇qn+ 1

2 , ϕ̃
(1)
i ) =

∑
e∈Ei

(
q
n+ 1

2
+ − q

n+ 1
2

−

)∫
e

ϕ̃
(1)
i dl

∫ 1

0

B(Ψ(q
n+ 1

2
− ,q

n+ 1
2

+ , s))ne ds, (18)

where Ei denotes the set of all the elements sharing the node i, ne is the unit outward normal vector to the edge e, such
that ne · (x+ − x−) > 0. We compute PC integral through the trapezoidal rule.
Furthermore, we point out that we modify the implicit treatment of the source term in the first and second steps of the
method to decouple the momentum from the energy equation. We propose a semi-implicit treatment. In this way, we
first compute the mass equation, then integrate the momentum balance where the right-hand side does depend only
on the unknown updated mass flux. In particular, the momentum balance equation becomes completely linear since
the friction coefficient γ is a linear function of the mass flux. Finally, we solve the energy equation. We note that, a
potential presence of non-linear reaction terms in the energy equation can be easily handled by the proposed scheme.
Indeed, their presence would have result in a non-linear equation to be solved for the unknown temperature. This
procedure is carried out in both steps of the scheme (13), so to compute both qn+ 1

2 and qn+1.

4



4 Numerical simulations
In this section, we focus on both benchmark and realistic configurations in order to verify the capability of the proposed
numerical scheme to deal with academic problems as well as with real scenarios.
In all simulations, we set hmin = 10−5m and keep the CFL number equal to 0.9. Furthermore, in the tests where we
resort to a mesh adaptation procedure, if not otherwise stated, we set a tolerance on the solution accuracy equal to
10−5m.

While integrating the source terms appearing in the discrete weak-form, see equation (13), we approximate the
Dirac’s delta by means of the Gaussian function,

fv(r) =
1

2πσ
exp

(
− r2

2σ

)
, with r2 = (x− xv)

2 + (y − yv)
2, (19)

where σ is a parameter having the dimension of area and that can be set by the user. Further, the integrals appearing
in the discrete weak-form related to the vent point sources, both in the first and second step of the method, can
be integrated explicitly by resorting on the error function. We employ the error function implemented in the C++
standard library.

4.1 Reliability tests
With a first set of simulations we aim to numerically investigate some properties of the proposed discretization scheme
when applied to the lava flow model. In more detail, we test the well-balancing property on reference configurations
taken from the literature, we carry out a classical viscous dam-break test over flat bottom together with a parallel
efficiency test on it. The primary aim is to show the excellent scaling results of the proposed scheme, while maintaining
good results in terms of accuracy. Then, we consider a more realistic test where the lava is poured into the domain
from a vent and encounters an obstacle during its motion.
All the test are performed in double precision. The strong scaling analysis is executed on the supercomputer CINECA
GALILEO100, where we perform the compilation and linking steps with gcc-10 and OpenMPI 4.1.1.

4.1.1 Well-balancing tests

To numerically verify the well-balancing property of the proposed scheme, we analyze two examples with a smooth
and a discontinuous topography, respectively. The tests are taken from [28] and have already been reproduced by the
authors to investigate the well-balancing property in the framework of landslide runout simulation [15, 4].

L1(Ω)-norm of the error L∞(Ω) -norm of the error

h hux huy hT h hux huy hT

Z1 1.67e-13 4.87e-12 1.48e-12 8.88e-15 1.77e-13 1.21e-13 1.77e-13 1.21e-13

Z2 1.54e-15 2.78e-13 1.52e-13 3.55e-15 4.48e-14 5.76e-14 4.48e-14 5.76e-14

Table 1: Well-balancing tests. L1(Ω)- and L∞(Ω)-norm of the error for the stationary solution in the presence of a
smooth and of a discontinuous bed topography.

We consider a final time tfin = 0.5s and a square domain with horizontal and vertical dimension Lx = Ly = 10m;
the smooth topography is described by

Z(x) = Z1(x) = 5e−
2
5 (x−5)2 , (20)

while the discontinuous one is characterized by the function

Z(x) = Z2(x) =

{
4 if 4 ≤ x ≤ 8,

0 otherwise.
(21)

Concerning the initial data, we assume lava at rest condition, with a total free surface height equal to 10m, while the
quantity hT is initialized to 1000m·K in the whole domain. The domain is discretized with a structured mesh consist-
ing of 214 elements. We do not consider any source term in the present test.
Table 1 provides the L1(Ω)-norm and L∞(Ω)-norm of the error associated with the lava height, and the mean hori-
zontal velocities and temperature, for both the considered topographies. All the errors are close to the roundoff unit,
independently of the selected bed profile. This confirms the well-balancing property of the proposed discretization
scheme for the lava flow model equations.

4.1.2 Viscous dam-break problem over a flat bottom

We consider a viscous fluid with a Newtonian rheology flowing over a horizontal domain of length Lx = Ly = 75m.
We set isothermal conditions, meaning that the energy equation does not play any role and assume T = Tr, with Tr

set equal to zero. The material is initially at rest and with the following initial material height,

h =

{
H if x < L,

0 otherwise.
(22)
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Figure 1: Viscous dam-break problem over a flat bottom. Top-left panel shows the front position over time. Top-
right panel reports the final time one-dimensional solution of the material height extracted along the line y = 37.5m.
Bottom panel shows a strong scaling analysis.

When the flow is slow enough to neglect inertia, it is possible to find analytic solutions. According to [29], in this
situation the front evolution is described by the following power law with exponent 0.5, for short times, and 0.2 for
long times, i.e.,

xf (t)

L
≈


0.284

(
t

tc

)0.5

if t < 2.5 tc,

1.133

(
t

tc
+ 1.221

)0.2

− 1 otherwise,
(23)

where the characteristic time reads tc =

(
L

H

)2
νr
gH

. In the following, we set H = 1m, L = 6.6m, νr = 3.7m2/s,

and a final time tfin = 300s.
This examination was previously assessed in [2] using a one-dimensional simulation. In our study, we employ four

distinct grids: three structured ones, specifically a quadtree mesh with a single level of refinement, and an adaptive
grid. The adaptive mesh procedure is performed each 0.1s. The structured grids contain 218, 220, 222 elements, while
the finest cell resolution equal to 0.018m×0.018m. figure 1, at the top, reports the results of our analysis where we
extract a one-dimensional solution along the line y = 37.5m. In particular, left panel shows the convergence to the
analytical solution of the front position, see equation (23). The front position of the numerical solutions is determined
by a threshold value on h equal to 10−3m according to what done in [2].

To test the parallel efficiency of the proposed numerical scheme, we perform a strong scaling analysis on the
present case study. We focus on the static mesh with 222 elements and set a final time tfin = 10s. We carry out a
strong scaling analysis, from 16 to 512 MPI ranks. figure 1, at the bottom, shows the speedup trend as a function of
the number of ranks in a log10-log10 scale. A parallel efficiency of roughly 70% is reached, with an increment
close to the ideal one.

4.1.3 Pouring of lava from a vent over an axially symmetric bottom with discontinuity

We consider a more realistic situation in which we have non-isothermal conditions and a vent pouring lava in the
domain. The initial condition is no lava in the domain. So, lava is poured in the domain just from the vent.
The domain Ω has extensions along the x- and the y-direction equal to L = Lx = Ly = 200m. Lava enters the domain
from a vent located at xv = (L/2, L/2) with a discharge Q = 200m3/s, a temperature Te = Tr = 1000K, a reference
viscosity νr = 2m2/s, and a coefficient b = 10−3K−1. The parameter σ in (19) has been set equal to 10−1m2. We
perform the simulation with adaptive mesh strategy by imposing a minimum spatial resolution equal to 0.19m, and a
tolerance on the accuracy of the space adaptation procedure equal to 10−2m. The mesh adaptation procedure has been
carried out at each time step. The topography profile has the form
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Figure 2: Pouring of lava from a vent over an axially symmetric bottom with discontinuity. Material height superim-
posed to the topography for two different time instants, t = 20s (panel a)) and t = 100s (panel b)).

Z(r) =


60 if r ≤ 10,

−r + 70 if 10 < r ≤ 50,

15 otherwise,
with r =

√
(x− L/2)2 + (y − L/2)2. (24)

Figure 2 shows the material height superimposed to the topography profile for two simulation times t = 20s (panel
a)) and t = 100s (panel b)). We particularly note how the topography is properly refined as the flow propagates.
Figure 3 panel a) shows the one-dimensional solution extracted along the line y = L/2 of the material height h, of the
mass flux Ux, and of the energy flux hT . Note the presence of the vent located at xv = 100m that pours lava in the
domain. This reflects on the behaviour of the mass flux that propagates from the left and from the right in the proximity
of the vent. Initially, this propagation is due to inertial forces, thanks to the lava inlet from the poring location. In
panel b) we show the quadtree mesh at time t = 100s. We note how the proposed numerical scheme seems to be able
to preserve the axial symmetry of the problem. Further, the horizontal line represents the line where we extract the
one-dimensional solution shown in figure 3 panel a).
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Figure 3: Pouring of lava from a vent over an axially symmetric bottom with discontinuity. Panel a): solution of the
material height h (in m), of the mass flux Ux (in m2/s), and of the energy flux hT (in km K) along the line y = L/2.
Panel b) plot of the quadtree mesh at the final time t = 100s; the horizontal ine is the line where we extract the
one-dimensional solution shown in panel a).

4.2 Etna eruption
We focus on reproducing a real eruption interesting the Mount Etna, located in Sicily (Southern Italy).
The topography considered here was taken from [30] and comes from a Digital Elevation Model (DEM). It has a
spatial resolution ∆ = 2m both in x- and y-directions, and was acquired on December 24, 2015. The event we want
to reproduce has been named in the aforementioned article as flow b, and happened on 18-19 May, 2016. We refer
to figure 4 for a plot of the topography isolines together with the location of the vent indicated with a gray sphere.
Further, the black points represent the boundary of the domain touched by the lava during the event. These points are
extracted using a digitizer software [31] from the results reported in [30].
Up to our knowledge this is the first time one attempts to reproduce such event with a numerical simulation. So,
regarding the rheological parameters, we choose: νr = 3m2/s, b = 10−3K−1. Then, the lava is assumed to enter the
domain with a discharge Q = 50m3/s and a temperature Te = 1000K. The parameter σ has been set equal to 2m. We
run the simulation up to 5000s, we set a tolerance hmin = 10−2m and consider a tolerance on the space adaptation
procedure equal to 10−2m.
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Figure 4: Etna eruption. DEM isolines with the vent location (gray sphere). The black points represent the boundary
of the domain touched by the lava during the event.
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Figure 5: Etna eruption. Isolines of the material height overlapped to the DEM isolines at time t = 750s, 3000s, 5000s
(from a) to c) panels). The black points represent the boundary of the domain touched by the lava during the event.

Figure 5 shows the isolines of the material height from a minimum value of 1cm superimposed to the DEM
isolines at three different times (t = 750s, 3000s, 5000s). We observe that the simulated lava flow path remains
delimited by the set of black points taken from [30]. In particular, at the end of the simulation the lava covers the
whole region delimited by the set of black points. Another similarity with what has been observed in [30] is that
the lava accumulates mostly close to the vent location, at the middle of the flow path, and at the end of the runout
path, see figure 5 panel c). Of course changes in the rheological and flow discharge parameters (νr, b, Q, Te), change
considerably the time the lava takes to reach the full runout distance experienced in [30], and possibly the runout
distance itself. Certainly, researchers are expected to conduct uncertainty quantification analysis on these parameters
in absence of real observations. In any case, results concerning the lava flow path that remains delimited by the set of
black points, and the lava accumulation, which mostly depends on the topography discretization, seem promising.

Finally, we point out that the adoption of the present IMEX-ARK scheme combined with the discrete spaces Q0,
Q̃1 was crucial to carry on the simulation. Indeed, we have experienced the rise of numerical spurious oscillations
when performing the simulation with the scheme additive scheme considered in [4]. Oscillations that result in the time
step to numerically going to zero.
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5 Conclusions
We studied a modified set of shallow water equations targeting lava flows simulation. These model equations were
first proposed in [1] and later on considered in [2, 3]. In this work, we further enrich the modelling by considering
the presence of vents as point sources in the mathematical model. This enables the inlet of masses to the domain
directly from these points rather than by imposing an initial condition. We have presented a second-order scalable
well-balanced space-time discretization scheme, which solves the non-linearities in the source term through an IMEX-
ARK technique for the temporal discretization. The scheme employed is a modification of the one presented in [15, 4],
with the aim to provide a greater stability when dealing with severe stiffness of the sources. The proposed fully
discrete scheme results to be more stable in case of severe stiffness when compared with the one proposed in [4].
Indeed, we point out that the adoption of this new time integration scheme was crucial to prevent the rise of spurious
oscillations in the discretization of the momentum equations, particularly when simulating the real case study presented
in section 4.2. An asymptotic stability analysis of the proposed scheme is provided in A, with a comparison with the
original discretization presented in [4].

We have tested the proposed numerical method on idealized as well as on realistic DEM scenarios. In particular,
we have numerically verified the well-balancing property, the parallel efficiency and the capability to deal with dis-
continuous topographies. In particular, we have shown the ability of the scheme to deal with real problems as well as
the ability to track the progression of lava by using adaptable quadtree meshes.

Possible future developments include exploiting the parallel efficiency of the new method to apply an uncertainty
quantification analysis to real case studies, for instance, by resorting to a polynomial chaos expansion [32].
We also note the possibility to construct a fully L-stable discretization of the source terms when combined with the
TG2-PC scheme.
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A Asymptotic stability analysis of the IMEX-ARK Galerkin scheme
Let us consider the one-dimensional linear advection problem with reaction term

∂tq + a∂xq + γq = 0, (25)

where q is a generic scalar conservation variable, and a, γ are real coefficients. The coefficient γ is assumed to be
strictly positive as it physically represents a friction in the model equation. In the following, we consider a uniform
mesh with size ∆x, with i we indicate a generic mesh node, which is shared by two consecutive cells indicated with
i− 1

2 and i+ 1
2 .

We first analyze the stability of the IMEX-ARK Galerkin method described in [4] (section 3.1) which employs
the Additive RK.2.A.2 described in [19] in combination with the Galerkin method on the discrete spaces Q0, Q̃1. For
each spatial node and for each time tn we have

q
n+ 1

2

i+ 1
2

=
qni + qni+1

2
− ν

2
(qni+1 − qni )−

Φ

2
q
n+ 1

2

i+ 1
2

,

qn+1
i = qni + ν(q

n+ 1
2

i− 1
2

− q
n+ 1

2

i+ 1
2

)− Φ

2
(qni + qni+1).

(26)

By combining the two equations above, we obtain the amplification factor, and by introducing the adimensional
coefficients ν = a∆t

∆x and Φ = γ∆t, after applying the von Neumann analysis to (26), we obtain the amplification
factor

G =
1

1 + Φ
2

[
1− Φ

2
− 2jν sin θ

1 + Φ
2

+
ν2

1 + Φ
2

(cos θ − 1)

]
, (27)

with j the imaginary unit and θ an angle in [0, π]. In case of severe stiffness, i.e., by computing the amplification factor
in the limit case Φ → ∞, the leading order term of the amplification factor results in

G ∼
1− Φ

2

1 + Φ
2

= −1, as Φ → ∞, (28)

this under the hypothesis that ν is limited, i.e., ν = o(
√
Φ). Here, we set ν ∈ (0, 1]. We note that the amplification

factor does not decay as Φ → ∞. Indeed, when applying this kind of discretization to the real case study we have
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presented in section 4.2, we experience oscillations in the mass flux and, eventually, a time step that continuously
decrease reaching the epsilon machine.

Let us now focus on the IMEX-ARK discretization we have used in this work, i.e., the Additive RK.2.L.1 described
in [19] in combinaion with the discretization spaces Q0, Q̃1. Again, for each time tn we have the following set of
discrete equations,

q
n+ 1

2

i+ 1
2

=
qni + qni+1

2
− ν

2
(qni+1 − qni )−

Φ

2

(√
2− 1

) qni + qni+1

2
− Φ

(
1−

√
2
2

)
q
n+ 1

2

i+ 1
2

,

qn+1
i = qni + ν(q

n+ 1
2

i− 1
2

− q
n+ 1

2

i+ 1
2

)− Φ
(
1−

√
2
2

)
(qni + qn+1

i )− Φ(
√
2− 1)

q
n+ 1

2

i+ 1
2

+ q
n+ 1

2

i− 1
2

2
.

(29)

By applying the the Von Neumann analysis, we have the following amplification factor

G =
1

1 + Φ
(
1−

√
2
2

)[1−Φ

(
1−

√
2

2

)
+

ν

1 + Φ
(
1−

√
2
2

) (−j sin θ + ν(cos θ − 1) +
Φ

2
(
√
2− 1)j sin θ

)
+

−
1
2Φ(

√
2− 1)

1 + Φ
(
1−

√
2
2

) (1 + cos θ − νj sin θ − Φ

2
(
√
2− 1)(cos θ + 1)

)]
, (30)

which reduces to

G ∼ −1 +
1

4

(√
2− 1

1−
√
2
2

)2

(1 + cos θ), as Φ → ∞. (31)

The asymptotic limit of the amplification factor coincides with equation (28) in the case θ = π. In any case we note
that this situation is rather unlikely to happen because it corresponds to the case 2qni + qni−1 + qni+1 = 0 so it means
that locally we are in presence of a change of sign of the conserved variable. In all the other situations the asymptotic
limit in (31) is always lower than one in modulus, and approaches zero for values of θ close to zero.
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