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We introduce Universal Solution Manifold Network (USM-
Net), a novel surrogate model, based on Artificial Neural
Networks (ANNs), which applies to differential problems
whose solution depends on physical and geometrical param-
eters. Our method employs a mesh-less architecture, thus
overcoming the limitations associated with image segmenta-
tion and mesh generation required by traditional discretiza-
tion methods. Indeed, we encode geometrical variability
through scalar landmarks, such as coordinates of points of
interest. In biomedical applications, these landmarks can
be inexpensively processed from clinical images. Our ap-
proach is non-intrusive and modular, as we select a data-
driven loss function. The latter can also be modified by
considering additional constraints, thus leveraging available
physical knowledge. Our approach can also accommodate
a universal coordinate system, which supports the USM-
Net in learning the correspondence between points belong-
ing to different geometries, boosting prediction accuracy on
unobserved geometries. Finally, we present two numerical
test cases in computational fluid dynamics involving variable
Reynolds numbers as well as computational domains of vari-
able shape. The results show that our method allows for in-
expensive but accurate approximations of velocity and pres-
sure, avoiding computationally expensive image segmenta-
tion, mesh generation, or re-training for every new instance
of physical parameters and shape of the domain.

1 Introduction
Models and methods in scientific computing and ma-

chine learning enable the extraction of relevant knowledge
from available data [1]. Data can represent, e.g., physical co-
efficients, geometrical factors, boundary or initial conditions.
This is the case of computational fluid dynamics, a remark-
able instance, especially when addressing problems in aero-

dynamics, such as the design of vehicles, and in biomedical
engineering, such as patient-specific analysis of blood flow
dynamics [2–5].

The standard approach to modeling and simulation
(Fig. 1, top) requires the construction of a computational
mesh, a partition of the given geometry in simple elements,
e.g. tetrahedral or hexahedral cells. In biomedical applica-
tions, the construction of the computational mesh requires a
preliminary step of segmentation, i.e. the extraction of the
boundaries of the computational domain from medical im-
ages, such as those derived from magnetic resonance or com-
puterized tomography. Then, discretization methods (like
Finite Elements and Finite Difference methods [6]) assem-
ble on the elements of the mesh a suitable approximation
of the operators associated with the partial differential equa-
tions (PDEs). Unfortunately, changes in shape require the
re-execution of the entire process, necessitating the realloca-
tion of significant computational resources.

For this reason, some computational approaches, like
isogeometric analysis (IGA) and shape models, are designed
to avoid the regeneration of a new computational mesh when
a change of geometry occurs. IGA achieves this thanks to the
use of non-uniform rational B-splines (NURBS) that exactly
match CAD geometries, usually adopted in an industrial con-
text [7]. Similarly, geometrical shape models describe the
possible variations of geometry through a limited number of
parameters. Among the most diffused shape models we re-
call free-form deformation (FFD) [8,9], radial basis function
(RBF) [10], and statistical shape models [11], based e.g. on
principal component analysis (PCA) [12]. Firstly conceived
in computer graphics, FFD is a technique that surrounds the
object with a lattice of control points. Their motion drives
the deformation of all object points through a polynomial
interpolation. RBFs define a parametrized map describing
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Fig. 1. Comparison between the standard modeling and simulation approach (top) and the USM-Nets approach (bottom) for a use case of
clinical interest, namely the prediction of blood flow and pressure within a coronary bifurcation. The former approach requires a geometric
preprocessing phase, which consists in segmenting the patient’s clinical images to extract a computational domain Ωh. A partition of the
latter into a set of cells (in the figure, into triangles) constitutes the computational mesh Th. The numerical solution is then obtained by
the discretization of the Navier-Stokes equations on the computational mesh Th, solved through suitable computer-based algorithms. Our
proposed USM-Net approach lightens both the geometric preprocessing and the solution approximation steps. The first one consists solely
of landmarks extraction and (mesh-less) cloud of query points generation. Finally, the solution is obtained by evaluating the neural network
as many times as the number of query points. The USM-Net can be trained either from experimentally measured data or from synthetic data
generated using the Navier-Stokes solver.



the deformations of the geometry from a small number of
selected control points as well. Compared to the FFD ap-
proach, the control points position is not constrained on a
lattice but user-selected from application to application. Fi-
nally, PCA-based models describe a collection of similar ge-
ometries through weighted modes describing the principal
geometrical variations with respect to a mean shape. These
approaches enable the construction of reduced-order models
(ROMs) for problems with parameterized geometry, which
provide a computationally efficient approximation of the so-
lution for many different choices of the geometrical parame-
ters. In this context, empirical interpolation methods build
efficient approximations of differential operators avoiding
computationally costly reassembly. Among the main appli-
cations of parametrized ROMs [13–18], we mention those
related to computational fluid dynamics using FFD [19, 20],
RBF [21–23] and PCA [24].

Besides introducing a geometrical error, the critical as-
pect of shape models is that, when deforming a fixed mesh,
the elements may encounter such deformations that the dis-
cretized problem becomes ill-conditioned. This might con-
siderably limit the ability of the method to explore the ge-
ometric variability of the problem. To overcome the lim-
itations of mesh-based approaches, mesh-free and particle
methods construct a discretization of the geometry formed
solely by a collection of points, relaxing the constraints given
by the connectivity [25]. These methods bring numerous ad-
vantages in terms of managing geometrical accuracy (even
with discontinuities), imposing large deformations, adap-
tively refining, and code parallelization. However, they gen-
erate full-order models (FOMs) with limited computational
efficiency.

In this paper, we introduce a new surrogate modeling
technique based on artificial neural networks (ANNs), that
can learn the solution manifold of a given parametrized PDE.
Notably, these surrogate models are not tailored on a given
domain, but they account for the influence of geometry on
the solution. We leverage the capabilities of approximating
arbitrary complex functions with inexpensive output evalua-
tion provided by ANNs, which are indeed universal approxi-
mators of several families of functions, including continuous
functions [26] and Sobolev spaces [27, 28]. Based on these
results, the surrogate models we propose are, in principle,
able to approximate the solution manifold of a given differ-
ential problem with arbitrary accuracy and universally with
respect to the variation of domain geometry and physical pa-
rameters. For this reason, we name them Universal Solution
Manifold Networks (USM-Nets). We train these networks
using subsamples of solutions snapshots obtained by vary-
ing the physical parameters and the domain geometry (ei-
ther synthetically generated through a FOM or experimen-
tally collected). Therefore, the accuracy of the predictions of
a specific USM-Net would directly depend on the richness
of the training set used. However, the architecture we pro-
pose has the potential to accurately approximate the solution
universally with respect to domain and physical parameters,
which is not the case for methods that are constrained to a
predetermined parameterization of the solution manifold.

The design of a USM-Net avoids complex geometrical
preprocessing (comprising segmentation and construction of
the computational mesh; see Fig. 1). We encode geometrical
variability in a few geometrical landmarks, a finite number
of scalar indicators, inexpensively processed from the input
image. In the most basic case, landmarks are the coordinates
of specific reference points where we impose a correspon-
dence between geometries. Landmarks might identify inlets,
bifurcations, or other specific structures, and they provide,
together with the physical parameters, the input to the ANN.

Our approach is modular, thanks to the possibility of ar-
bitrarily defining the loss function. Besides penalizing the
misfit with the available data, during the training of the net-
work we can enforce assumptions of regularity (imposing,
e.g., weights penalization), the initial or boundary condi-
tions, or the fulfillment of an equation in a strong (differen-
tial) form. The latter would represent a generalization of the
so-called physics-informed neural network [29–31], avoid-
ing new executions of the training process for each geometry
variation.

The outline of this paper is as follows. First, in Sec. 2
we present the notation used throughout this paper and the
proposed methods. Then, in Sec. 3 we present two test cases
and we describe how our proposed methods can be applied
to them. In Sec. 4 we present the numerical results and in
Sec. 6, finally, we draw our conclusions.

2 Methods
In this section, we first introduce the notation used

throughout this paper. Then, we present our proposed USM-
Net method.

2.1 Problem setting
We consider a space-dependent physical quantity u(x),

defined on a domain Ω ⊂ Rd , where typically d = 2,3. For
the sake of generality, we denote u(x) ∈ Rk as a vector field
even though in certain cases it could be a scalar field (that
is k = 1). For example, u(x) may correspond to the blood
velocity field in a vessel, the displacement field of soft tis-
sue, or the pressure field of air around a body. Very often,
the quantity u(x) depends on a set of physical parameters
µp ∈ P , where P ⊂Rnp is the parameter space. The parame-
ters µp characterize the physical processes that determine u.
For example, the velocity of a fluid depends on its viscos-
ity, while the displacement of biological tissue depends on
its stiffness moduli and the applied force. Furthermore, the
field u(x) depends on the domain Ω itself. In many practi-
cal applications, we are interested in the family of fields u(x)
obtained by varying the domain Ω in a given set, denoted by
G :

G ⊂ {Ω⊂ Rd , open and bounded}.

To stress the dependence of u(x) on both µp and Ω, we will
henceforth write u(x;µp,Ω).



Often, the physical processes that determine u(x;µp,Ω)
can be described by a mathematical model assuming the
form of a boundary-value problem, that is


L(y,µp) = 0 for x ∈Ω,

B(y,µp) = 0 for x ∈ ∂Ω,

u = U(y,µp) for x ∈Ω,

(1)

where y in the state variable; L and B are the operators as-
sociated with the differential equation and with the boundary
conditions, respectively; U is the observation operator. Since
the state y is instrumental for obtaining u, in what follows we
will refer to u and not to y as the solution of the FOM. If the
differential problem (1) is well-posed, then, given µp ∈P and
Ω ∈ G there exists a unique solution u(·;µp,Ω) : Ω→ Rk.
This solution can be numerically approximated through a
FOM based e.g. on Finite Differences or Finite Elements [6].

The goal of this paper is to build an emulator that surro-
gates the solution map (µp,Ω) 7→ u(·;µp,Ω), that is a model
that, for any given value of the geometrical parameters µp
and any given geometry Ω, provides an approximation of the
corresponding solution u.

2.2 USM-Net
A USM-Net is an ANN-based model, trained on a data-

driven basis, that surrogates the solution map (µp,Ω) 7→
u(·;µp,Ω), without using any FOM. In the most common
scenario, a FOM that describes the physical process is avail-
able, and it is used to generate the data needed to train the
USM-Net. Still, the training of a USM-Net is also possible
for physical problems in which the FOM is unknown, pro-
vided that sufficient experimental measurements are avail-
able. We present two versions of USM-Net:

1. PC-USM-Net, when the solution is represented in
terms of the physical coordinates, that is x ∈ Ω (see
Sec. 2.2.1);

2. UC-USM-Net, with the solution represented now by
passing through of a system of universal coordinates,
that will be defined in Sec. 2.2.2.

2.2.1 PC-USM-Net
The PC-USM-Net architecture is represented in Fig. 2

(top). It consists of an ANN, typically a fully connected
ANN (FCNN), whose input is obtained by stacking three
vectors:

1. the query point x, that is the coordinate of the point
where the solution u(x) is sought;

2. the physical parameters µp;
3. a set of geometrical landmarks associated with the do-

main at hand, that is µg = Pg(Ω), that typically represent
the coordinates of key points of the domain (such as in-
lets, bifurcation points, etc.) or geometrical measures
(such as diameters, thicknesses, etc.). In Sec. 2.3 we
will elaborate on possible choices for the function Pg.

The output of the FCNN is an approximation of the solution
u at the query point x. More precisely, denoting by N N
the FCNN and by w its trainable parameters (weights and
biases), we have:

u(x;µp,Ω)'N N (x,µp,Pg(Ω);w).

Hence, N N features d+np +ng input neurons and k output
neurons.

UC-USM-NET

PC-USM-NET

Fig. 2. Architecture of a PC-USM-Net (top) and of a UC-USM-Net
(bottom).

2.2.2 UC-USM-Net
As anticipated, a PC-USM-Net has a universality char-

acter with respect to domains, i.e. a single network is used to
represent solutions in different geometries. However, a given
point with physical coordinate x, given as input to the PC-
USM-Net, can play a different role for different geometries.
For example, a point x that for one geometry Ω1 belongs to
the boundary of the domain, for another geometry Ω2 could
be internal to the domain, and for yet another Ω3 could even
be external. Therefore, we propose an evolution of PC-USM-
Net aimed at capturing more effectively the correspondence
between points among geometries.

To achieve this goal, we rely on a universal coordinates
(UC) system for G . A UC system is a map ΦG that, to any
domain Ω and to any point x ∈ Ω, associates a point x̂ ∈ Ω̂

belonging to a reference domain Ω̂ ⊂ Rd . More precisely,
the reference coordinate is obtained as x̂ = ΦG (x,Ω). We re-
quire that the application ΦG (·,Ω) : Ω→ Ω̂ be a continuous
bijection for any Ω∈G . Hence, the UC system ΦG defines a
coordinate transformation that maps each domain Ω∈G into
the reference one Ω̂. In Sec. 3 we will present two concrete
examples of UC systems.

Whenever a UC system is available, it can augment a
PC-USM-Net. The enhanced version of a PC-USM-Net,



called UC-USM-Net, is obtained by giving as input to N N
the reference coordinate x̂ = ΦG (x,Ω) instead of the physi-
cal one x∈Ω. More precisely, the surrogate model is defined
as

u(x;µp,Ω)'N N (ΦG (x,Ω),µp,Pg(Ω);w). (2)

The resulting architecture is represented in Fig. 2 (bottom).
We remark that UC-USM-Net is a generalization of PC-

USM-Net, as the latter can be obtained from the former by
setting ΦG equal to the identity function, that is by setting
x̂ = x. For this reason, from now on we will consider without
loss of generality the surrogate model of Eq. (2).

As we will show in the results section, UC-USM-Nets
allow to improve the generalization accuracy of PC-USM-
Nets, that is the accuracy of predictions for physical param-
eters and geometries not included in the training set, by pro-
viding geometrical prior knowledge during training. More-
over, we will show that, besides helping the ANN to link
together points of different geometries, a UC system might
provide details of the geometry that are not captured by the
landmarks.

We remark that, in practical applications, both the
injectivity and the surjectivity requirements of the map
ΦG (·,Ω) : Ω→ Ω̂ can be relaxed.

2.3 Geometrical landmarks
In order to build a surrogate model that learns an approx-

imation of the solution map, we introduce a low-dimensional
description of the geometry. In particular, we construct an
operator Pg : G 7→ Rng that, to any given computational do-
main Ω ∈G , associates a finite number (say ng) of geometri-
cal landmarks µg = Pg(Ω) ∈ Rng , which are suitable to pro-
vide a compact description of Ω. Depending on the structure
of G , different strategies can be followed to define the oper-
ator Pg.

1. In case an explicit parametrization of the elements of
the space G is available, we define Pg in such a way that
the landmarks µg = Pg(Ω) coincide with the geometrical
parameters themselves. An example is provided in Test
Case 1.

2. If such a parameterization is not available (as it is
in many cases of practical interest), a straightforward
choice is to take the coordinates of key points in the
domain as landmarks. An example is provided in Test
Case 2.

3. Other more sophisticated techniques can be used to ob-
tain a low-dimensional description of the computational
domains. For example, the geometrical landmarks can
be defined as the first, more relevant, coefficients asso-
ciated with a POD analysis of a finite subset of G (shape
model). Entering into the details of this or other tech-
niques is beyond the scope of this paper. The method
proposed in this paper is indeed general, as it is built on
top of the different techniques that can be used to define
the map.

In general, our method does not require the operator Pg to be
invertible. As a matter of fact, Pg is invertible only when an
explicit parametrization of the space G is available. In fact,
we allow for the case when two different geometries Ω1 6=
Ω2, both belonging to G , are associated to identical land-
marks (i.e. Pg(Ω

1) = Pg(Ω
2)). Since the geometrical land-

marks characterize the variability of the geometry, a good
design of Pg requires that the condition Pg(Ω

1) = Pg(Ω
2) im-

plies that Ω1 and Ω2 are minimally different.

2.4 Training a USM-Net
To train a USM-Net (that is, either a PC-USM-Net

or a UC-USM-Net), we require the output of problem (1)
for several pairs (µp,Ω) ∈ P ×G . These solutions, called
snapshots, are typically obtained through the FOM, a high-
fidelity numerical solver of Eq. (1), based e.g. on Finite El-
ements of Finite Differences [6]. Yet, as our method is non-
intrusive and does not require any knowledge of equation (1),
snapshots can also be derived from a black-box solver, or
even from experimental measurements.

We consider a collection of Nsn snapshots, associated
with µi

p ∈ P and Ωi ∈ G , for i = 1, . . . ,Nsn. For any snap-
shot, then, we consider a number of observations in a set of
points belonging to Ωi. In case of high variability of the ge-
ometries in G , the resolution of the FOM typically requires
the generation of different meshes, without a one-to-one cor-
respondence of the nodes. Therefore, to guarantee generality,
we consider the case where each snapshot has a potentially
different number of observation points. Specifically, we de-
note by {xi

j, j = 1, . . . ,Ni
pt} the set of observation points as-

sociated with the i-th snapshot. In conclusion, the training
dataset consists of the following set

{µi
p,Ω

i,{u(xi
j;µi

p,Ω
i)}Ni

pt
j=1}

Nsn
i=1.

Training the USM-Net requires solving the following mini-
mization problem

ŵ = argmin
w

J (w).

The loss function J is given by the misfit between snapshot
data and predictions, plus (optionally) a regularization term
R :

J (w) =
1

Nsn

Nsn

∑
i=1

1
Ni

pt

Ni
pt

∑
j=1

d(ui
j, ũ

i
j)+R (w), (3)

having defined

ui
j = u(xi

j;µi
p,Ω

i),

ũi
j = N N (ΦG (xi

j,Ω
i),µi

p,Pg(Ω
i);w)

and where d(·, ·) is a suitable discrepancy metric (typically,
d(u, ũ) = ‖u− ũ‖2). Standard techniques, such as Tikhonov



or LASSO regularization, can be used for the regularization
term R . Additionally, R can be augmented by suitable terms
informing the USM-Net of physical knowledge available on
the solution (see also Sec. 2.5). An example in this sense will
be shown in Sec. 4.

2.5 Grey-box USM-Net
So far, we have presented USM-Nets as fully non-

intrusive (black-box) surrogate modeling techniques. Still,
physical knowledge can be optionally embedded into their
construction. Indeed, the training process can be augmented
by informing the network either of physical constraints (such
as conservation principles, symmetry properties, or the pos-
itivity of the solution) or of the differential equations and
boundary conditions that characterize the problem. We dis-
tinguish between weak imposition and strong imposition of
the physical knowledge.

Weak imposition. Prior knowledge on the solution map
can be enforced through the regularization term R of the
loss function of (3). R can include the norm of the resid-
ual of the FOM equations and boundary conditions evaluated
in a collection of collocation points, as done in the training
of Physics Informed Neural Networks [29]. Similarly, other
physical constraints can be rephrased in terms of minimiza-
tion of a regularization term R . Thanks to Automatic Differ-
entiation, the inclusion of differential operators in the term
R does not introduce severe implementation efforts, even if
it will slow down the training process. Therefore, the user
should wisely balance the advantages and disadvantages of
introducing such a term. An example of the weak imposi-
tion of the boundary conditions is presented in Test Case 1
(Sec. 3.1).

Strong imposition. Alternatively, we can enforce physi-
cal constraints by defining an architecture N N that satisfies
them by construction. We now give a brief list of examples:

1. Non-negativity of the solution can be enforced by intro-
ducing after the FCNN a further layer that applies an
operator with nonnegative output, such as (·)2 or | · |.
In other terms, we perform a composition between the
FCNN and the nonnegative operator.

2. Symmetry w.r.t. a given input coordinate can be en-
forced, e.g., by introducing an input layer that pre-
processes the corresponding input through an even func-
tion, such as | · |. As in the previous point, this corre-
sponds to performing a composition between the even
function and the FCNN.

3. Dirichlet boundary conditions on a portion of the bound-
ary (i.e. u(x) = uD on ΓD ⊂ ∂Ω) can be strongly en-
forced by introducing a multiplicative layer after the
FCNN that multiplies the solution by a mask function
ΦBC(x,Ω), such that ΦBC = 0 on ΓD and ΦBC 6= 0 else-
where, and sums the datum uD.

4. Solenoidality of the solution (∇ ·u = 0), a common re-
quirement in fluid dynamics, can be enforced by inter-
preting the FCNN output as the flow field potential and

introducing an output layer that returns its curl. An ex-
ample of this technique is described in Sec. 3.1.

2.6 Notes about implementation
From the implementation point of view, a few cautions

are needed to make the training of USM-Nets computation-
ally light. First of all, despite the application of the Pg map
in Fig. 2 is indicated as being an integral part of the USM-
Net, the landmarks µi

g = Pg(Ω
i) can be pre-calculated before

the training. Similarly, in the case a UC system is employed,
the coordinate transformation x̂i

j = ΦG (xi
j,Ω

i) for any i and
j can be performed offline, at a stage prior to training. In this
manner, we set up an augmented dataset consisting of:

(x̂1
1, µ1

g, µ1
p), u1

1

(x̂1
2, µ1

g, µ1
p), u1

2

...
...

...
...

(x̂1
N1

pt
, µ1

g µ1
p), u1

N1
pt

(x̂2
1, µ2

g, µ2
p), u2

1

...
...

...
...

and N N is trained to fit the map from the first three columns
to the last one.

Once the N N is trained, it can be used to approximate
the solution for unseen parameters and/or geometries. This
is the online stage, which consists of the following steps:

1. Receive Ω and µp,
2. Compute µg = Pg(Ω).
3. For any x j for which the solution is needed, compute

x̂ j = ΦG (x j,Ω).
4. Evaluate u(x j;µp,Ω) ' N N (x̂ j,µp,µg;w). Typically,

this operation can be vectorized to further increase the
velocity of execution.

We recall that both Pg and (if used) ΦG are defined case-by-
case, depending on the application.

3 Test cases
In this section, we present two test cases and provide

details on the implementation choices we followed to apply
the methods presented in Sec. 2.

3.1 Test Case 1: lid-driven cavity
Test Case 1 is based on the well-known stationary lid-

driven cavity problem (see, e.g., [32]), for which we consider
an extension with variable geometry. The challenge of this
test case is to capture the different vortex topologies formed
for different Reynolds numbers and different aspect ratios of
the geometry.

We consider a rectangular domain ΩH = (0,1)× (0,H),
with H > 0, and the following PDE (Navier-Stokes equa-
tions), where ΓD

H = {(x,y)T ∈ ΩH s.t. y = H} denotes the



top edge of the domain and Re the Reynolds number:


− 1

Re
∆v+(v ·∇)v+∇p = 0 in ΩH ,

∇ ·v = 0 in ΩH ,

v = (1,0)T on Γ
D
H ,

v = 0 on ∂ΩH \Γ
D
H .

(4)

The unknowns on the problem are the fluid velocity v and
pressure p. The goal of Test Case 1 is to build an emulator
that approximates the fluid velocity v, given the geometry
ΩH and the Reynolds number. More precisely, we consider
geometries with height H in the interval [0.5,2]:

G = {ΩH = (0,1)× (0,H), for 0.5≤ H ≤ 2}.

The physical parameter consists of µp =Re and ranges in the
interval P = [102,104].

3.1.1 Training data generation
To generate training data, we consider a Taylor-Hood

Finite Element approximation of problem (4). We employ
structured triangular computational meshes with a uniform
space resolution of h = 10−2. We remark that, as a conse-
quence, Finite Element approximations associated with dif-
ferent domains of G might feature different numbers of de-
grees of freedom. To tackle Newton convergence issues for
large Re, we equip the solver with an adaptive continuation
ramp with respect to the Dirichlet datum.

To explore the set G × P , we employ a Monte Carlo
approach by independently sampling from a uniform distri-
bution for H and a log-uniform distribution for Re. After
each FOM resolution, we export the velocity v(x) at a set of
points randomly selected within the domain ΩH .

3.1.2 Geometrical landmarks
Test Case 1 has an explicit parametrization of the do-

mains in the set G , the height H being the parameter. Hence-
forth, we define µg = H as the unique geometrical landmark,
by setting Pg(ΩH) := H.

3.1.3 UC system
A straightforward (and also effective) UC system for

Test Case 1 consists in mapping each domain ΩH ∈ G into
the unit square Ω̂ := (0,1)2, through the transformation:

x̂ = x, ŷ = y/H.

More precisely,

ΦG

((
x
y

)
,ΩH

)
:=
(

x
y/H

)
.

3.1.4 USM-Net architecture
We consider two different ANN architectures to build

USM-Nets for Test Case 1 (see Fig. 3).

Velocity-field architecture The first architecture for N N
relies on a FCNN mapping x (or x̂), µp and µg into an ap-
proximation of v(x;Re,ΩH). To ease the FCNN training, we
normalize both input and output data by mapping them in
the interval [−1,1], and we preprocess the Reynolds num-
ber through a log transformation. In conclusion, the FCNN
features 4 input neurons and 2 output neurons.

Potential-field architecture As an alternative, we build a
FCNN with a single output neuron, interpreted a the fluid
flow potential ψ(x;Re,ΩH), and we subsequently compute
the approximation of the velocity field as:

v(x;Re,ΩH) =

(
+ ∂

∂y ψ(x;Re,ΩH)

− ∂

∂x ψ(x;Re,ΩH)

)
(5)

These operations are performed through Automatic Differen-
tiation (AD) of the FCNN output. We remark that we do not
need a FOM-based potential ψ for training data. The training
is done directly with respect to the velocity data. The opera-
tions of (5) represent indeed the last layer of the architecture
N N . Input and outputs are normalized as for the velocity-
field architecture.

FCNN

velocity-field UC-USM-NET

FCNN

potential-field UC-USM-NET

Fig. 3. Test Case 1: comparison of velocity-field and potential-field
architectures.

3.1.5 Loss function
Since the goal of Test Case 1 is to reconstruct the veloc-

ity field with a focus on the vortex structure of the solution,
we employ a discrepancy metric d that emphasizes the role
of flow direction at each point in the domain, including those



with low flow intensity. Specifically, we define

d(u, ũ) = ‖u− ũ‖2 +

∥∥∥∥ u
ε+‖u‖

− ũ
ε+‖ũ‖

∥∥∥∥2

where ε = 10−4 is a small constant to avoid singularities.
The second term drives the USM-Net to accurately match
the direction of the velocity. Without this term, indeed, the
flow direction would not be captured well in the regions with
low flow magnitude, due to the low contribution in the first
term of the loss.

Moreover, we augment the loss function with the follow-
ing physics-based regularization term, aimed at enforcing the
satisfaction of the Dirichlet boundary conditions:

R (w) = 1
NBCNBC

pt
∑

NBC
i=1 ∑

NBC
pt

j=1 ‖ui
BC, j−vBC(xi

BC, j)‖2,

ui
BC, j = N N (xi

BC, j,µ
BC,i
p ,µBC,i

g ;w)

where µBC,i
p ∈ [102,104] and µBC,i

g ∈ [0.5,2] are sample
points, xi

BC, j is a set of points belonging to the boundary,
and vBC is the Dirichlet datum (see (4)).

3.2 Test Case 2: coronary bifurcation
As a second test case, we consider the problem of pre-

dicting blood flow and pressure field within a coronary bifur-
cation in the presence of stenosis.

More precisely, we consider a computational domain Ω,
corresponding to the 2D representation of a section of a coro-
nary artery with a bifurcation. We denote by Γin the portion
of the boundary corresponding to the inlet, by Γout the two
outlets and by Γwall = Γtop ∪Γbottom ∪Γfront the vessel wall.
In this test case, we will consider many different computa-
tional domains, each representing a coronary bifurcation in a
different virtual patient. An example domain is represented
in Fig. 4.

Fig. 4. Test Case 2: example of computational domain and corre-
sponding boundaries.

We consider the following stationary Navier-Stokes
model, describing the steady-state fluid flow in the coronary

bifurcation:



−ν∆v+(v ·∇)v+
1
ρ

∇p = 0 in Ω,

divv = 0 in Ω,

v = vin on Γin,

v = 0 on Γwall,

ν
∂v
∂n
− 1

ρ
pn = 0 on Γout,

(6)

where ν = 4.72mL2 s−1 is the kinematic viscosity of blood
and ρ = 1060kgm−3 its density. At the inlet, we con-
sider a parabolic profile with a maximum velocity equal to
14cms−1. In Fig. 6, we show the numerical solution of (6)
in the example computational domain of Fig. 4.

3.2.1 Geometrical variability and landmarks
The aim of Test Case 2 is to build a reduced model pre-

dicting the pressure and velocity fields in an arbitrary domain
representing a coronary bifurcation. We synthetically gener-
ate a large number of different computational domains corre-
sponding to many virtual patients. To do this, we use splines
obtained by randomly varying their parameters in suitable
intervals, defined to reflect the realistic variability observed
among patients [33]. Notice that the geometries thus ob-
tained may present stenoses, of a more or less acute degree,
located upstream of the bifurcation or in the two branches
downstream of it. A subsample of the geometries obtained
following this procedure is displayed in Fig. 7.

Due to the lack of an explicit parameterization of these
geometries (a common issue when dealing with domains
from real patients), we need to define geometrical landmarks
to characterize each geometry. To this end, we use an oper-
atively light procedure that can also be easily adopted in a
clinical context. Specifically, we define landmarks as the co-
ordinates y of the vessel wall corresponding to a set of prede-
fined coordinates x. These coordinates contain information
regarding the lumen thickness at various levels and the possi-
ble presence of stenosis. Note that, in clinical practice, these
landmarks can be easily derived directly from medical imag-
ing, without the need to construct a computational mesh. In
this test case, we will consider two sets of landmarks contain-
ing, respectively, 26 and 6 coordinates (see Fig. 5). Clearly,
the first set is much more informative than the second one.
The aim is to test the robustness of the proposed methods
in the case where the landmarks provide a poor description
of the geometry, and are not able to exhaustively capture its
variability.

3.2.2 UC system
Differently than in Test Case 1, where, thanks to the sim-

plicity of the domains of the G space, it was possible to ex-
plicitly define a UC system, in Test Case 2 the construction of
a UC system is not an immediate task. We propose to rely on
two Laplacian-based fields, which define the inlet-outlet and
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Fig. 5. Test Case 2: geometrical landmarks µg.

top-bottom directions, respectively. More precisely, given
a geometry Ω ∈ G , we define the fields ψLR : Ω→ Ω̂ and
ψTD : Ω→ Ω̂ as the solutions of the following differential
problems:



−∆ψLR = 0 in Ω,

ψLR = 0 on Γin,

ψLR = 1 on Γout∪Γfront,

ψLR =
x− xmin

xmax− xmin
on Γtop∪Γbottom,

(7)



−∆ψTD = 0 in Ω,

ψTD =+α+(1−α)
x− xmin

xmax− xmin
on Γtop,

ψTD =−α− (1−α)
x− xmin

xmax− xmin
on Γbottom,

∂ψTD

∂n
= 0 on Γin∪Γout∪Γfront.

(8)
In Fig. 8 we show the fields ψLR and ψTD obtained for the
domain of Fig. 4. The field ψLR bridges the inlet region (i.e.
Γin, where ψLR = 0) with the frontal region of the domain
(i.e. Γout ∪Γfront, where ψLR = 1). Conversely, ψTD defines
the proximity of each lumen point to the upper wall relative
to the lower wall. Setting a constant α < 1 allows better dif-
ferentiation of the ψTD field within each branch downstream
of the bifurcation. Specifically, we set α = 0.1.

The UC system is thus defined as:

x̂ = ΦG (x,Ω) :=
(

ψLR(x;Ω)
ψTD(x;Ω)

)
.

In Fig. 9 we show the reference domain Ω̂ and the mutual
correspondences between the boundary of the physical and
reference domains.

3.2.3 Training data generation
To generate training data, we employ the Finite Element

solver described for Test Case 1 (see Sec. 3.1). For space
discretization, we consider triangular computational meshes

with a space resolution of nearly h = 0.2mm. The UC coor-
dinates are obtained by solving the differential problems (7)
and (8) with P1 Finite Elements on the same computational
mesh.

3.2.4 USM-Net architecture
In Test Case 2, we employ a FCNN connecting x or x̂

(depending on whether a PC-USM-Net or a UC-USM-Net is
used), µp and µg into an approximation of u(x;ΩH) where
the solution u = (v, p) is given by the pair velocity-pressure.
Similarly to Test Case 2, we add a normalization layer be-
fore the input and after the output layers of the FCNN, to
constrain each input and each output in the interval [−1,1].

3.2.5 Loss function
We employ a purely black-box loss function, as defined

in (3), with a quadratic discrepancy metric

d(u, ũ) = ‖u− ũ‖2

and without any regularization terms.

4 Results
In this section, we present the results obtained by ap-

plying the methods presented in Sec. 2 to the two test cases
of Sec. 3. These results have been obtained using Tensor-
Flow [34] and the optimizers of SciPy [35].

4.1 Test Case 1: lid-driven cavity
We construct a training set of Nsn = 400 numerical sim-

ulations obtained by randomly sampling the height H and the
physical parameter µp = Re. Some examples of streamlines
resulting from numerical solutions by varying the parameters
are reported in Fig. 10. For each geometry, we subsample the
solution in Npt = 360 random points.

By varying the dimensions of this dataset, we train sev-
eral USM-Nets, formed by FCNNs made of 3 inner layers,
respectively consisting of 30, 20, and 10 neurons. We con-
sider four configurations:

1. velocity-field PC-USM-Net: receiving as inputs the two
spatial coordinates, the physical and the geometrical
parameters, and producing as outputs the two velocity
components;

2. velocity-field UC-USM-Net: receiving as input the two
universal coordinates, the physical and the geometrical
parameters, and producing as outputs the two velocity
components;

3. potential-field PC-USM-Net: receiving as inputs the two
spatial coordinates, the physical and the geometrical pa-
rameters, and producing as output the two velocity com-
ponents computed from the fluid flow potential;

4. potential-field UC-USM-Net: receiving as inputs the
two universal coordinates, the physical and the geomet-
rical parameters, and producing as output the two veloc-
ity components computed from the fluid flow potential.



0

3

6

9

12

15

18

21

24

v
el

o
ci

ty
m

a
g
n

it
u

d
e

[c
m

/
s]

0.000

0.048

0.096

0.144

0.192

0.240

0.288

0.336

0.384

p
re

ss
u

re
[m

m
H

g
]

Fig. 6. Test Case 2: numerical solution of (6) on the computational domain of Fig. 4. Top: velocity field; bottom: pressure field.

Fig. 7. Test Case 2: representation of some of the geometries Ω ∈ G included in the training dataset.

For each configuration, we perform 500 epochs of the
ADAM optimizers [36] followed by 20000 epochs of the
BFGS method [37] to ensure convergence of the optimizer.
For the case of a training set composed of Nsn = 100 numeri-
cal simulations, we post-process the velocity field to display
streamlines. In Fig. 11 we report the streamlines resulting
from the different ANN configurations for three test cases
extracted from the 40 numerical simulations that formed the

test set: they represent the best, the average, and the worst-
case scenarios, respectively.

Training the ANN with a loss function composed only of
the data misfit term results insufficient for an accurate recon-
struction of the streamlines, especially in low-velocity areas.
In Figs. 12 and 13, we show the effect of the loss function
components described in Section 3.1 on the streamlines re-
construction.
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Fig. 9. Test Case 2: representation of the UC system ΦG . Left: physical domain Ω; right: reference domain Ω̂.

To assess the generalization error on the test set resulting
from different training configurations, we repeat the training
considering only a subset of [25,50,100,200,400] numeri-
cal simulations as training set. The test set comprises 40
numerical simulations sampled in 10000 points. We repeat
the training with 10 different random initializations of the
ANN weights and biases. The average root mean squared
error (RMSE) of the velocity magnitude and direction are
reported in Fig. 14, together with bands indicating the max-
imum and the minimum values for the different training set
dimensions and ANN configurations.

4.2 Test Case 2: coronary bifurcation
We consider a training set consisting of Nsn = 500 differ-

ent geometries. For each geometry, we take the solution in
Npt = 1000 randomly generated points. Then, for both the
landmark configurations (26 landmarks and 6 landmarks),
we train a PC-USM-Net and a UC-USM-Net. We consider
a FCNN with 4 inner layers, respectively consisting of 20,
15, 10, and 5 neurons. This architecture has been tuned in
order to minimize the validation error on a set of 100 geome-
tries not included in the training dataset. To train the FCNN
weights and biases, we run 200 iterations of the Adam op-
timizer [36] and, subsequently, 5000 iterations of the BFGS
algorithm [37]. We perform 10 different training runs for
each configuration, starting from different random initializa-
tions of the FCNN parameters. Each training run lasts about
45 minutes on a laptop equipped with Intel Core i7-1165G7
CPU (2.80 GHz).

In Fig. 15, we show boxplots of the errors associated
with a testing dataset of 100 geometries, neither in the train-
ing nor in the validation dataset. As expected, USM-Nets

that are provided with 26 landmarks generate more accurate
predictions than those that are aware of only 6 landmarks.
However, we notice that USM-Nets based on only 6 land-
marks still have a noticeable accuracy (relative RMSE error
of about 3% on both the velocity and pressure). This figure
is compatible with the levels of precision typically required
in clinical practice.

Furthermore, the boxplots show that the use of UC can
significantly enhance the performance of the USM-Net. The
improvement is all the more evident in the case of the veloc-
ity field, compared to the pressure field.

In order to highlight the role that a UC system has in im-
proving the generalization accuracy of USM-Nets, we con-
sider the pair of domains in the testing set that are char-
acterized by the most similar landmarks. More precisely,
these domains, which we will call Ω1 and Ω2, are such that
‖Pg(Ω

1)−Pg(Ω
2)‖ < 10−4. Since landmarks characterize

the domain at some control points, two domains with very
similar landmarks may differ significantly away from the
control points. This is what happens for the two domains
considered, in particular in correspondence of the upper out-
flow track (see Fig. 16, left). On the right side of Fig. 16
we show a detail of the velocity field obtained for these two
domains with a PC-USM-Net and a UC-USM-Net, in com-
parison with the reference solution obtained by means of the
FOM. We recall that the domain Ω affects the PC-USM-Net
result only through the landmarks µg. Therefore, the PC-
USM-Net will provide the same solution for two geometries
with identical landmarks. As shown by Fig. 16, this entails
that the PC-USM-Net is not very effective in capturing the
solution near the edge, where the solution is heavily affected
by the geometric details of the domain not captured by the



Training snapshots

Fig. 10. Test Case 1: comparison of some numerical solutions that constitute the training set. The dataset is generated by approximating
the FOM (4) for random samples of the values of the physical and geometrical parameters.
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Fig. 11. Test Case 1: comparison of ANN streamlines reconstruction on three numerical solutions from the test set. Test cases are selected
to display the range of ANN reconstruction errors in the test set: from minor (best case scenario: first row) to significant (worst case scenario:
last row).

landmarks. The use of a UC system is helpful in this re-
gard by defining a model that receives as input, not the phys-
ical coordinates, but the reference ones. These coordinates
directly encode details of the geometry not captured by the
landmarks. In particular, the UC system makes the points be-
longing to the boundary of the various domains correspond
to each other. In this way, UC-USM-Nets are more effective
than PC-USM-Nets in capturing the velocity field close to
the boundary.

In Figs. 17 and 18 we show the velocity and pressure
fields predicted by one of the trained UC-USM-Nets on a
subset of the test dataset.

5 Discussion
We have introduced USM-Nets, a deep learning class of

surrogate models capable of learning the solution manifold
of a PDE universally with respect to physical parameters and
geometry.

The ability of a surrogate model to capture the geomet-
rical variability of the solution of a differential problem is a
feature of great interest. Indeed, many applications require
considering the solution of a physical problem in different
domains. Biomedicine offers several examples in this regard
since each patient presents a different geometry, and in many
cases (as in hemodynamics) the geometry itself is the prin-
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Fig. 12. Test Case 1: comparison of velocity-field PC-USM-Net streamlines reconstruction on three numerical solutions from the test set
on varying the definition of the loss function. We consider a loss function composed of the data misfit term (second column), combined with
boundary conditions (third column) or with the direction regularization (fourth column). Test cases are selected to display the range of ANN
reconstruction errors in the test set: from minor (best case scenario: first row) to significant (worst case scenario: last row).

cipal determinant of the solution. Examples are given by the
blood flow in an aneurysm, in a stenotic artery, or through an
artificial valve.

Nevertheless, most of the reduced-order/surrogate mod-
els available in the literature consider a fixed domain ac-
counting only for the variability of physical parameters
[38–42]. Few models rely on parametrized shape models that
guarantee correspondence between points coming from dif-
ferent shapes, enabling the construction of projection-based
models. As a matter of fact, representing a solution manifold
in variable geometries is an arduous task. There are two main

difficulties in this regard: (1) how to encode the properties of
the geometry at hand and (2) how to construct a discrete rep-
resentation of the solution that is universal with respect to the
shape of the domain.

Concerning point (1), USM-Nets only require the def-
inition of a finite set of scalar quantities, called geomet-
rical landmarks, that characterize the salient properties of
the geometry at hand. Landmarks make USM-Nets an ex-
tremely flexible technique that can address a wide range of
real-world applications. There are different approaches to
landmark definition, such as the one based on the statistical
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Fig. 13. Test Case 1: comparison of potential-field UC-USM-Net streamlines reconstruction on three numerical solutions from the test set
on varying the definition of the loss function. We consider a loss function composed of the data misfit term (second column), combined with
boundary conditions (third column) or with the direction regularization (fourth column). Test cases are selected in order to display the range
of ANN reconstruction errors in the test set: from minor (best case scenario: first row) to significant (worst case scenario: last row).

analysis of sampled geometries, like the first coefficients of
proper orthogonal decomposition (POD) or the positions of
control points. However, approaches combining POD and
ANN [43–46] might present difficulties in the database con-
struction and limited generalization properties imposed by
both the shape model, encoding the correspondence between
points belonging to different geometries, and the truncation
of the expansion. Landmarks could be simply the coordi-
nates of some points that characterize the geometry at hand.
This case, specifically, is well suited for clinical applications.
Landmarks, such as the coordinates of a bifurcation, the posi-

tion of an inlet, diameters, or areas can be processed directly
from medical images without the need for segmentation and
the generation of computational grids. The great flexibility
of USM-Nets lies in the fact that no structural requirements
are imposed on the definition of landmarks.

Concerning point (2), a key feature of USM-Nets is their
mesh-less nature, which frees them from a predetermined tri-
angulation of the domain, overcoming the technical difficul-
ties related to mesh element deformations. The mesh-less na-
ture of USM-Nets is achieved by their architectural design.
Unlike many existing surrogate modeling methods, that pro-
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Fig. 14. Test Case 1: RMSE on the velocity magnitude and direction on the test set, made of 40 numerical simulations sampled in 10000
points. We compare the four different configurations of ANN on varying the dimension of the training set. The error in the direction is
significantly larger than the error in the magnitude and is inversely proportional to the number of simulations of the training set.

vide a map from the problem parameters to a set of degrees
of freedom associated with a preconstructed parametrization
of the solution trial manifold, the output of USM-Nets is the
solution itself evaluated in a query point. Indeed, by fix-
ing a given parameter vector µp and a given geometry Ω,
the USM-Net is a function from Rd to Rk, that is an ap-
proximation of the solution u(·;µp,Ω). Hence, instead of
passing through a parametrization of the approximate solu-
tion, we make the ANN coincide with the approximate so-
lution. A further advantage of this architectural design is
that USM-Nets encode by construction the spatial correla-
tion (that is, with respect to the input x) and do not need to
learn it, thus achieving elevated accuracy levels even with
lightweight NNs.

We have then presented an enhanced version of PC-
USM-Nets, called UC-USM-Nets, based on a universal co-
ordinate system. Even if it is not straightforward in all prac-
tical cases to define a UC system (such as when the do-
main may vary in topology), the use of a UC system can

improve the generalization accuracy of PC-USM-Nets, as
shown by the numerical results. A UC system acts at two
levels. Firstly, it allows us to partially compensate for the
possible non-exhaustiveness of the geometrical landmarks in
describing the geometry (see also point (1) of the discussion).
In Test Case 2, for example, in the setting with only six land-
marks, we can have two geometries Ω1 and Ω2 that differ
from each other, even though they have the same landmarks
(Pg(Ω

1) = Pg(Ω
2)). In boundary areas far from the land-

marks, the PC-USM-Net might fail in satisfying the no-slip
condition, while the UC-USM-Net, on the other hand, allows
the solution to be more accurate because the UC system in-
forms the model of the position of the boundary in the geom-
etry at hand. Furthermore, regarding point (2), a UC system
provides a more effective representation of the solution man-
ifold. In fact, in this case, the FCNN does not receive as input
the coordinates x ∈ Ω, but rather x̂ ∈ Ω̂, which are more in-
formative of the role that each point plays within the specific
domain.
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Fig. 15. Test Case 2: boxplots of the errors on the test dataset obtained with 26 landmarks and 6 landmarks and with the PC-USM-Net and
the UC-USM-Net architecture. The boxplots refer to 10 training runs obtained starting from different random initializations of the ANN weights
and biases. Left: error on the velocity field; right: error on the pressure field.
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Fig. 16. Test case 2: two domains (Ω1 and Ω2) belonging to the testing set that feature almost identical landmarks, that is Pg(Ω
1) '

Pg(Ω
2) (left). On the right, a detail of the velocity field is compared among FOM solution, PC-USM-Net, and UC-USM-Net surrogates. The

color map is intentionally flattened towards low values to highlight velocity variations near the edge.

6 Conclusions
We have proposed a novel technique (USM-Nets), based

on ANNs, to build data-driven surrogate models that approx-
imate the solution of differential equations while accounting
for the dependence on both scalar physical parameters and
the domain geometry. Our method is non-intrusive as it does
not require the knowledge of the FOM equations, but rather
it is trained with samples of precomputed solution snapshots
obtained for different parameters and geometries. It is also
meshless since the USM-Net learns the map from point coor-
dinates to the solution. To characterize the geometrical fea-
tures of the domain at hand, we consider a set of geometrical
landmarks defined by the user. Our method is highly flexible,
as it does not pose specific requirements on the definition of
these landmarks, making it suitable for practical applications

and significantly easing its technological or clinical transla-
tion.

We have then presented an enhanced version of our sur-
rogate modeling method, based on a UC system employed
to pre-process the physical coordinates. As shown by our
numerical results, using this UC system enhances the gener-
alization accuracy in some cases.

We have finally presented two test cases in fluid dynam-
ics. The first is a lid-driven cavity problem with variable ge-
ometry and variable Reynolds number; the second one con-
sists in predicting the steady-state pressure and velocity field
within a coronary bifurcation, given the patient geometry. In
both test cases, despite the noticeable variability of the phys-
ical and/or geometrical parameters, USM-Nets were able to
approximate the solution within an approximation of the or-
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Fig. 17. Test Case 2: comparison of the velocity magnitude field obtained with the FOM (top figure within each box) and with the UC-USM-
Net (bottom figure within each box) in a subset of the test set.
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Fig. 18. Test Case 2: comparison of the pressure field obtained with the FOM (top figure within each box) and with the UC-USM-Net (bottom
figure within each box) in a subset of the test set.



der of 10−2, being trained, and a few hundreds of solution
snapshots.
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