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non-planar domains

Bree Ettinger, Tiziano Passerini, Simona Perotto, Laura M. Sangalli

Abstract We consider the problem of surface estimation and spatial smoothing over

non-planar domains. In particular, we deal with the case where the data or signals

occur on a domain that is a surface in a three-dimensional space. The application

driving our research is the modeling of hemodynamic data, such as the shear stress

and the pressure exerted by blood flow on the wall of a carotid artery. The regression

model we propose consists of two key phases. First, we conformally map the surface

domain to a region in the plane. Then, we apply existing regression methods for

planar domains, suitably modified to respect the geometry of the original surface

domain.

Key words: Functional data analysis, penalized smoothing, conformal map, finite

elements.

1 Introduction

In this paper, we deal with data that are observed over non-planar bi-dimensional

domains. The motivating application is modeling the shear stress generated by the

blood-flow over the wall of an internal carotid artery affected by an aneurysm. For

instance, Figure 1 shows the geometry of a possible surface domain of interest:

the observed values of the wall shear stress are shown by a color map over this

domain. This type of data structure, where the quantity of interest is referred to a

non-planar domain, occur in a number of different applications. Another fascinating
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application in the medical field is, e.g., the study of hemodynamic signals over the

cortical surface. The environmental and geostatistical sciences also offer several

applications that have this type of data structures.

Unfortunately, few methods are available for smoothing data over non-planar do-

mains: essentially, the nearest neighbor averaging method (see, e.g., [6]) and the so-

phisticated heat kernel smoothing method proposed by [3]. Here, we adopt a Func-

tional Data Analysis approach, and propose a regression method that efficiently han-

dles these data structures. The proposed method consists of two steps: first we map

the original surface domain to a flat domain, and then, properly modify existing spa-

tial regression methods suited to deal with data on planar domains. In particular, to

flatten the original surface domain we use a conformal map. The advantage of using

of a conformal map, with respect to any other map, is that it preserves the angles

in the original surface domain in the planar domain. The spatial regression method

we use is the penalized least square estimation technique proposed in [15] and later

generalized in [17]. The penalty is modified to account for the contribution of the

conformal flattening map.

The paper is organized as follows. Section 2 describes the motivating applied

problem in more detail. In Section 3, we first recall the spatial regression methods

defined in [15] and then introduce the new approach. Section 4.1 provides a sim-

ple simulation study. In Section 4.2 we apply the proposed method to the study of

hemodynamic data. Finally, in Section 5 we discuss possible extensions and future

directions of the proposed approach.

2 Motivating applied problem

The research described in this section is motivated by the analysis of data within the

AneuRisk Project, a scientific endeavor that investigates the pathogenesis of cerebral

aneurysms, in an interdisciplinary effort combining the experience of practitioners

from neurosurgery and neuroradiology with that of researchers from statistics, nu-

merical analysis and bio-engineering. For a description of the AneuRisk Project,

we refer the interested reader to the website http://ecm2.mathcs.emory.edu/aneurisk

and references therein.

Cerebral aneurysms are deformations of cerebral vessels characterized by a bulge

of the vessel wall. Figure 1 shows an example of an internal carotid artery, one of

the main arteries bringing blood to the brain, affected by an aneurysm. The origin

of aneurysms is considered to be the result of a complex interplay among systemic

effects, the biomechanical properties of the vessel wall and the continuous effect

of the forces exerted by the blood flow on the vessels. These hemodynamic forces

depend on the vessel morphology itself. The study of these interactions and their role

on the pathogenesis of aneurysms has been the main goal of the AneuRisk Project.

The first studies available in literature on the pathology of aneurysms restricted their

attention to the aneurysm sac. In constrast, the AneuRisk Project has investigated the

morphological and hemodynamic features of the parent vasculature, i.e., the vessel
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Fig. 1 Wall shear stress modulus at the systolic peak on a real internal carotid artery geometry affected by aneurysm

(data from the AneuRisk project, http://ecm2.mathcs.emory.edu/aneurisk).

hosting the aneurysm and the upstream vasculature, with the goal of highlighting

possible causes of aneurysm onset, development and rupture (see [10] and [18]).

In this paper, we analyze hemodynamic data on the real anatomy of internal

carotid arteries. The internal carotid artery geometry is reconstructed from three-

dimensional angiographic images, belonging to the AneuRisk data warehouse; for

details on vessel geometry reconstruction see, e.g., [8]. The hemodynamic quanti-

ties, wall shear stress and pressure, have been simulated in [9] via Computational

Fluid Dynamics. As detailed in [9] and [10], blood has been modeled as a New-

tonian fluid, and its dynamics has been described by means of the incompressible

Navier-Stokes equations. The geometry of the carotid artery has been assumed to

be fixed in time, since compliance effects are expected to be negligible in this vas-

cular district. Proper boundary conditions have been devised to ensure that the flow

regime is comparable among all simulated cases. For each case, blood velocity and

blood pressure have been simulated over three heart beats, and the wall shear stress

has been computed in a post-processing step. Figure 1 shows the simulated wall

shear stress modulus at the systolic peak on a real three-dimensional geometry. The

hemodynamic data are referred to points (x,y,z) on the artery wall, the latter being

a bidimensional, but not-planar, domain. In [2] and [17] some first analyses of these

data were performed, by flattening a simplified version of the carotid domain. In

particular, a new coordinate system is defined by (s,r,θ), where s is the curvilin-

ear abscissa along the artery centerline, r the artery radius, and θ the angle of the

surface point with respect to the artery centerline. The domain is then reduced to

the plane (s,θ ∗ r̄), where r̄ is the average carotid radius on the carotid tract con-

sidered. This planar rectangular domain is essentially obtained by cutting the artery

wall along the axial direction given by s and then opening and flattening the artery

wall; notice that this planar domain is equivalent to a simplified three-dimensional

artery geometry, where the radius is kept fixed to a constant value and the curvature

of the artery is not taken into account. The map just described will be referred to

in the following as the angular map. Then existing spatial regression methods for
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the planar setting have been applied to the flattened simplified carotid geometry;

in particular [17] employs Spatial Spline Regression (SSR) models. Notice that, by

flattening the domain with the angular map and then applying a spatial regression

method for planar domains, any information related to the vessel radius and curva-

ture is lost; on the contrary, these two geometrical quantities greatly influence the

hemodynamics in the artery and statistically discriminate aneurysm presence and

location (see, e.g., [18]). Moreover, to have a bijective angular map, it is necessary

to exclude the aneurysmal sac (otherwise, different points on the carotid wall would

be mapped to the same point on the plane).

In the next section, after recalling Spatial Spline Regression (SSR) model for pla-

nar domains used in [17], we introduce the SSR model for non planar domains. This

model allows us to consider the carotid geometry in its actual complexity, including

the varying radius and curvature, and without need to remove of the aneurysmal sac.

3 Spatial Spline Regression Models

3.1 Spatial Spline Regression Model for planar domains

In this section, we present the Spatial Spline Regression models for planar domains

introduced in [15] and the generalized version provided in [17] (see also [13] and

[14]).

Let {ui = (ui,vi); i = 1, . . . ,n} be a set of n data locations on a bounded regular

domain Ω ⊂ R
2. Let wi be the real valued variable of interest observed at point ui.

Assume the model

wi = f (ui)+ εi i = 1, . . . ,n (1)

where εi are independent observational errors with zero mean and constant variance,

and f is a twice-differentiable real-valued function to be estimated. According to the

SSR model, the estimate of f is found by minimizing the following functional

n

∑
i=1

(wi − f (ui))
2 +λ

∫

Ω

(∆ f )2du, (2)

i.e., a sum of squared errors penalized via the L2-norm of the Laplacian of f . The

Laplacian of f measures the local curvature of f . Hence in (2) via the penalty we

are essentially controlling the roughness of the solution. Moreover, the Laplacian

is invariant with respect to Euclidean transformations of the domain and this en-

sures that the smoothness of the estimate does not depend on the arbitrary chosen

coordinate system.

The estimation problem (2) cannot be solved analytically. An approximate solu-

tion is found by resorting to a finite element approach, that provides a local basis

for piecewise polynomial surfaces. The finite element method is largely employed
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to approximate partial differential equations and it is widely used in engineering

applications (for an introduction to the finite element framework see, e.g., [11]).

The strategy is very similar to univariate splines. The finite element approach parti-

tions the domain into small disjoint elements and then constructs a local polynomial

function on each of these elements, in such a way that the union of these functions

closely approximates the solution. This simplified problem becomes computation-

ally tractable thanks to the suitable choice of the basis functions for the space of

piecewise polynomials. Convenient domain partitions are provided by triangular

meshes; see for instance Figure 2. A basis of piecewise polynomials is thus con-

sidered over a triangulation of the domain, the simplest being the one spanning the

space of all the continuous functions which are linear when restricted to any triangle

of the mesh. Thanks to the intrinsic construction of the finite element space, solv-

ing the estimation problem (2) reduces to solving a linear system. In particular, the

estimator of f turns out to be linear with respect to the observed data values, so that

classical inferential tools may be readily derived (see [17]).

3.2 Spatial Spline Regression Model for non-planar domains

Now consider the problem where the n data locations {xi = (xi,yi,zi); i = 1, . . . ,n}
lie over a non-planar domain Σ , where Σ is a surface embedded in R

3. For each

location xi, a real valued random variable of interest, wi, is observed. As in the

planar case, we assume the model

wi = f (xi)+ εi i = 1, . . . ,n (3)

where εi, i = 1, . . . ,n are observational errors and f is now a function defined on the

surface domain Σ ; our aim is to estimate this function.

By analogy to (2), we propose to estimate f in (3) by minimizing the following

penalized sum of squared error functional

Jλ ( f (x)) =
n

∑
i=1

(wi − f (xi))
2 +λ

∫

Σ

(∆Σ f (x))2
dx, (4)

where ∆Σ is the Laplace-Beltrami operator for functions defined over the surface Σ .

The Laplace-Beltrami operator is indeed the generalization of the common Lapla-

cian: it can be used to operate on functions defined on surfaces in Euclidean spaces

(see, e.g., [4]).

In [5] we show that it is possible to solve the estimation problem (4) by exploiting

existing techniques over planar domains. In particular, we propose reducing (4) to

a problem over a planar domain. To do this, we flatten Σ by means of a conformal

map. Specifically, for the surface domain Σ we define a map X such that

X :Ω → Σ

u = (u,v) 7→ x = (x,y,z)
(5)
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where Ω is an open, convex and bounded set in R
2. Denote by Xu(u) and Xv(u) the

column vectors of first order partial derivatives of X with respect to u and v. For

the map X to be conformal, we require ‖Xu(u)‖ = ‖Xv(u)‖ and 〈Xu(u),Xv(u)〉 = 0

where 〈·, ·〉 denotes the standard Euclidean scalar product and ‖·‖ is the correspond-

ing norm. Let us also define the (space-dependent) metric tensor as the following

symmetric positive definite matrix

G(u) :=

(

‖Xu(u)‖
2 〈Xu(u),Xv(u)〉

〈Xv(u),Xu(u)〉 ‖Xv(u)‖
2

)

=

(

g11(u) g12(u)
g21(u) g22(u)

)

Then, the inverse metric tensor G−1 is given by

G−1(u) =
1

[W (u)]2

(

‖Xv(u)‖
2 −〈Xu(u),Xv(u)〉

−〈Xv(u),Xu(u)〉 ‖Xu(u)‖
2

)

=

(

g11(u) g12(u)
g21(u) g22(u)

)

(6)

where g12(u) = g21(u) and W (u) =
√

det(G(u)). Note that the function W (u) is

related to the change of variable (from x to u) since the following holds for the

area element: dx = W (u)du. Using this notation, for a function f ◦X ∈ C 2(Ω), the

Laplace-Beltrami operator associated with the surface Σ can be expressed as

∆Σ f (x) =
1

W (u)

2

∑
i, j=1

∂i

(

gi j(u)W (u)∂ j f (X(u))
)

(7)

where u = X−1(x). Hence, in [5], we show that (4) can be equivalently expressed as

the following problem over the planar domain Ω :

Jλ ( f (X(u))) =

n

∑
i=1

(

wi − f (X(ui))
)2

+λ

∫

Ω

[

1

W (u)

2

∑
i, j=1

∂i

(

gi j(u)W (u)∂ j f (X(u))
)

]2

W (u)du

(8)

where X(ui) = xi. Moreover, for conformal coordinates the functional Jλ reduces to

Jλ ( f (X(u))) =
n

∑
i=1

(

wi − f (X(ui))
)2

+λ

∫

Ω

(

1
√

W (u)
∆ f (X(u))

)2

du (9)

where ∆ f is the standard Laplacian over the planar domain Ω . Therefore, this prob-

lem turns out to be a modification of the estimation problem presented in Section

3.1.

From a computational viewpoint, the conformal map in (5) may be approximated

via non-planar finite elements. Non-planar finite elements are analogous to the fi-

nite elements mentioned in Section 3.1, except that the basis functions are defined

over triangles of a three-dimensional triangular mesh. In [7] a non-planar finite ele-

ment method is developed specifically for flattening tubular surfaces (in particular,
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a portion of the colon). We resort to a similar approach since the wall of the carotid

artery is indeed a tubular surface. The non-planar finite element method for ap-

proximating the conformal map starts with a three-dimensional triangular mesh that

approximates the surface domain Σ . The three-dimensional mesh is then flattened

via a conformal map into a planar triangular mesh that discretizes Ω . One benefit of

using a conformal map is that it preserves angles and thus shapes, i.e., essentially,

the triangulation.

Figure 2 illustrates the flattening of a test surface domain. Panel (a) shows the

non-planar domain, a conoidal tubular surface, approximated by a three-dimensional

triangular mesh, and panel (b) displays the conformally equivalent planar triangu-

lated domain. In contrast, Figure 2, panel (c), shows the planar domain obtained

with the angular map. The sides of the planar triangulation are labeled to have a

correspondence with the surface in panel (a). In particular, the sides of the planar

triangulation labeled with “bottom” and “top” correspond to the bottom and to the

top open boundaries of the original three-dimensional domain. The two sides indi-

cated by “cut” correspond to a cut along the three-dimensional domain, connecting

the two open boundaries of the surface, that is computed when calculating the flat-

tening map [7].

After the conformal flattening, we are ready to apply the modified estimation

method (9). Note that the estimates along the two “cut” sides have to coincide; this

is in fact an artificial cut. To prevent a seam, we have to take care to maintain the

periodicity of the estimate along the “cut” edges ( see [5], [2] and [17]). Similarly to

SSR over planar domains, the estimator of f is linear with respect to the observed

data values, so that classical inferential tools may be derived (see [5]).

4 Applications to simulated and real data

4.1 Simulations studies

In this section, we report the results of a first simulation study, illustrating the perfor-

mance of the proposed smoothing technique over non-planar domains. In particular,

we compare the results obtained via the proposed SSR model for non-planar do-

mains with those yielded by the SSR model for planar domains combined with a

simple angular flattening.

For these simulations, three domains, approximated by sufficiently fine three-

dimensional triangular meshes, were considered; see Figure 3. Each geometry is

obtained as a deformation of a circular cylinder. Over each of these non-planar

domains, we consider 50 test functions, having the form f (x,y,z) = a1 sin(2πx)+
a2 sin(2πy)+ a3 sin(2πz)+ 1 with coefficients ai, for i = 1, . . . ,3, randomly gener-

ated from independent normal distributions with mean 1 and standard deviation 1.

The data locations xi coincide with the nodes of the three-dimensional meshes; each

domain has 1648 data points. The noisy observations wi in correspondence with the
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Fig. 2 Flattening of a non-planar domain: (a) three-dimensional triangular mesh approximating

the non-planar domain consisting in a conoidal tubular surface, (b) planar triangulated domain

obtained by conformal flattening (c) planar triangulated domain obtained by angular flattening.

locations xi for i= 1, . . . ,n, are obtained by adding independent normally distributed

errors with mean 0 and a standard deviation 0.25 to the test function in accordance

with the model (3). Examples of a test function and the level of noise are illustrated

on each geometry in Figures 3 and 4, respectively.

At each simulation replicate, optimal values of the smoothing parameter λ in

(2) and (4) are selected by the generalized cross validation for both the models on

planar and non-planar domains, as described in [17] and [5], respectively.

(1) (2) (3)

Fig. 3 Test surface domains obtained from deformation of a circular cylinder. On each surface, the

color maps indicate one of the considered test functions f (x,y,z) = a1 sin(2πx)+ a2 sin(2πy)+
a3 sin(2πz)+1, with coefficients a1, a2 and a3 randomly generated from independent normal dis-

tributions with mean 1 and standard deviation 1.
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(1) (2) (3)

Fig. 4 On each test surface, at each of the data location xi, coinciding with the nodes of the three-

dimensional meshes approximating the surface domains, independent normally distributed errors

with mean 0 and a standard deviation 0.25 are added to the test function; the color maps are

obtained by linear interpolation of the resulting noisy observations.

(1) (2) (3)

Fig. 5 The estimates provided by SSR over non-planar domains, with values of lambda selected

by generalized cross-validation.

Table 1 shows the median and inter-quantile ranges of the Mean Square Errors

(MSE) of f estimators over the 50 simulations. The table also report the results of

pairwise Wilcoxon tests verifying if the distribution of MSE for the estimates pro-

vided by SSR over non-planar domains is stochastically lower than the distribution

MSE Geometry 1 Geometry 2 Geometry 3

angular map + SSR over planar domains 0.0796(0.0335) 0.0813(0.0347) 0.1092(0.0508)

SSR over non-planar domains 0.0793(0.0339) 0.0810(0.0355) 0.0962(0.0696)

SSR over non-planar vs. SSR over planar 0.0153 7.648×10−07 0.001071

Table 1 Median (inter-quantile ranges) of MSE of f estimators over the 50 simulations; p-values

of pairwise Wilcoxon tests verifying if the distribution of MSE for the estimates provided by SSR

over non-planar domains is stochastically lower than the distribution of the MSE for the estimates

provided by SSR method over planar domains.
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of the MSE for the estimates provided by SSR method over planar domains. The p-

values of these tests show that the MSE of SSR over non-planar domains estimates

are significantly lower than the ones of SSR over planar domains, uniformly over

the three considered surface domains. Figure 5 displays the estimates provided by

SSR over non-planar domains for the test functions shown in Figure 3 with added

noise shown in Figure 4.

4.2 Application to hemodynamic data

This section applies the proposed smoothing technique over non-planar domains to

the modeling of the hemodynamic data described in Section 2. Figure 6 displays the

planar triangulated domain obtained from the three-dimensional triangulated artery

wall, via computation of the conformal map. Notice the area close to the “Outflow”

side where the flattened mesh is very fine; this corresponds to the aneurysm sac;

recall that the aneurysm sac has to be removed from the domain when using the

simpler angular map. Figure 6 shows the estimate of wall shear stress modulus ob-

tained with SSR over non-planar domains with smoothing parameter λ = 0.1. The

obtained patient-specific estimates can then be used for statistical analysis between

patients, in order to detect recurrent hemodynamic patterns, common across pa-

tients, and relate them to presence and location of the pathology, and to rupture risk.

Notice that this also requires appropriate registration of the patient-specific internal

carotid artery geometries.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

Inflow Outflow

cut

cut

Fig. 6 Planar triangulation generated via the conformal flattening of the mesh associated with in-

ternal carotid artery in Figure 7. The sides of the planar triangulation are labeled to correspond

with Figure 7. In particular, the sides of the planar triangulation labeled with “Inflow” and “Out-

flow” correspond to the open ends of the carotid artery. The sides indicated by “cut” correspond to

a longitudinal cut along the artery wall, connecting the open boundaries of the artery.
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Inflow

Outflow

Fig. 7 Estimate of wall shear stress modulus at the systolic peak obtained with SSR over non-

planar domains with smoothing parameter λ = 10.

5 Conclusion and future developments

The goal pursued in this paper has been to check the capabilities of SSR over non-

planar surfaces. The simple simulation study here reported provides first evidence

of the good properties of the proposed model, showing that SSR over non-planar

domains provide better estimates than those obtained by first flattening the domain

via an angular map and then applying SSR over the flattened domain without ac-

counting for the domain deformation.

Within the framework of the proposed SSR model over non-planar domains it

is also possible to include spatially distributed covariates, similarly to what done

in [17]. In the application to hemodynamics data, this, for instance, would allow

the inclusion of the values of blood pressure observed over the artery wall; pressure

could thus be used as a control variable, studying also the relationship between pres-

sure and wall-shear stress, and evaluating how this affects aneurysm pathogenesis.

Moreover, as described in [17], it is possible to impose different conditions at the

boundary of the domain of interest.

Another application for the proposed model is, e.g., the identification of areas of

activation for hemodynamics signals over a cortical surface. The cortical surface is

a sophisticated geometry that serves as the domain of the signal. A finite element

method for conformally flattening the cortical surface in shown in [1]; the proposed

SSR model for non-planar domains could thus be used also for this application.

The proposed models have been implemented in R [12] and Matlab. Both code

versions, fully integrated with the fda packages in R [16] and Matlab, shall be re-

leased shortly.
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