
MOX–Report No. 22/2008

Analysis and implementation issues for the
numerical approximation of parabolic
equations with random coefficients

Fabio Nobile, Raul Tempone

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 29 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it



 



Analysis and implementation issues for the numerical

approximation of parabolic equations with random

coefficients

F. Nobile1, R. Tempone2,3

1 MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, via Bonardi 9, 20133 Milano, Italy

fabio.nobile@polimi.it

2Department of Scientific Computing
Florida State University, 400 Dirac Science Library, Tallahassee, FL 32306–4120

rtempone@fsu.edu

3 Dahlquist Research Fellow, School of Computer Sciences and Communication
KTH, S–100 44 Stockholm, Sweden

Abstract
We consider the problem of numerically approximating statistical mo-

ments of the solution of a time dependent linear parabolic partial differen-
tial equation (PDE), whose coefficients and/or forcing terms are spatially
correlated random fields. The stochastic coefficients of the PDE are approx-
imated by truncated Karhunen-Loève expansions driven by a finite number
of uncorrelated random variables. After approximating the stochastic co-
efficients the original stochastic PDE turns into a new deterministic para-
metric PDE of the same type, the dimension of the parameter set being
equal to the number of random variables introduced.

After proving that the solution of the parametric PDE problem is ana-
lytic with respect to the parameters, we consider global polynomial approx-
imations based on tensor product, total degree or sparse polynomial spaces
and constructed by either a Stochastic Galerkin or a Stochastic Collocation
approach. We derive convergence rates for the different cases and present
numerical results that show how these approaches are a valid alternative to
the more traditional Monte Carlo Method for this class of problems.
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polynomial approximation, Stochastic Galerkin methods, Stochastic Collo-
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1 Introduction

Mathematical models are widely used in many engineering applications to pre-
dict the behavior of complex systems, upon which important decisions may be
made.

Nowadays, there is an increasing interest in including uncertainty in these
models and quantify its effect on the predicted quantities of interest for applica-
tions. Such uncertainty may reflect, on the one side, our ignorance or inability
to properly characterize all input parameters of the mathematical model; on the
other side, it may describe an intrinsic variability of the physical system.

Probability theory offers a natural framework to describe uncertainty, where
all uncertain inputs are treated as random variables or more generally random
fields. The latter are particularly useful to characterize random spatial vari-
ability of some physical properties with a given correlation structure. Examples
are the variability of soil permeability in subsurface aquifers, heterogeneity of
materials with microstructure, wall roughness in a fluid dynamics study, etc.

Monte Carlo Sampling (MCS) is probably the most natural and widely used
technique to forward propagate the input randomness onto the system response
or specific quantities of interest. It consists in generating independent realiza-
tions drawn from the input distribution and compute sample statistics of the
corresponding output values. While being very flexible and easy to implement,
MCS features a very slow convergence and does not exploit the possible regu-
larity that the solution might have with respect to the input parameters.

It is known, indeed, that for certain classes of problems, such regularity could
be very high. This is the case for the solution of a steady state linear diffusion
equation, which actually depends analytically on the diffusion coefficient (see e.g.
[1, 3, 9]). The high regularity that the solution may have with respect to the
input parameters opens up the possibility to use “deterministic” approximations
of the response function (i.e. the solution of the problem as a function of the
input parameters) based on global polynomials, which are expected to yield a
very fast convergence and exploit optimally the smoothness of the solution.

When the uncertain input parameters are described by means of second order
random fields, the conceptual steps to follow are

1. Represent the random field as a truncated expansion depending on a finite
number of random variables Y1, . . . , YN . This can be done via Fourier-
like expansions of the so called Karhunen-Loève expansion (see e.g. [12,
Section 3.9]);

2. Having now a finite dimensional noise, the original stochastic problem can
be recast into a deterministic parametric one, the random variables acting
as parameters;

3. Denoting by u(Y1, . . . , YN ) the solution of the problem as a function of the
random variables, compute a polynomial approximation up(Y1, . . . , YN );

2



4. Compute statistics of up(Y1, . . . , YN ) or some functionals of up.

Among these techniques, we mention the so called Stochastic Galerkin ap-
proach, (see e.g. [11, 21, 33, 2, 28]) which consists in projecting the original
equation onto a polynomial subspace which could be constructed as the span of
tensor product polynomials or polynomials having total degree smaller that a
given integer p. More recently, Stochastic Collocation approaches have been pro-
posed (see e.g. [27, 20, 32, 3, 23, 22, 10]) as alternative to Stochastic Galerkin.
They consist in computing the solution of the problem in a given set of knots
in the parameter space and use these values to construct a global polynomial
approximation (sometimes interpolation). The set of knots can be chosen as a
tensor or a sparse grid (for instance by following the Smolyak construction [26]).

Clearly, other forms of approximation other than global polynomials are
possible and have been explored in recent years, such as wavelet approximations
[17, 19] or piecewise polynomials [1, 30]. However, global polynomial approxima-
tions are particularly attractive in those cases where the solution features very
high, possibly analytic, dependence with respect to the input parameters. We
point out that the regularity of the solution is highly problem-dependent and
only few results are available so far concerning regularity of the solution and con-
vergence rates for approximating schemes. We mention, for instance, the works
[1, 3, 28, 23, 22], which deal with an elliptic equation with a stochastic diffusion
coefficient and either Stochastic Galerkin or Collocation approximations, and
the work [5], which deals with an elliptic equation defined in a random domain.

In this work, we focus on a linear parabolic PDE with a random diffusivity
coefficient described by means of a truncated Karhunen-Loève expansion. We
first demonstrate that the solution, interpreted as a Banach-valued function
of the input parameters, is analytic as in the steady state case. This result
could be proved extending the arguments used in [3]. However, we propose
here an alternative proof which is based on analyzing the parabolic equation
in the complex plane and checking the Cauchy-Riemann conditions. We also
characterize sharply the size and shape of the analyticity region in the complex
plane. The proposed technique is quite general and could be of help also in other
applications.

We then review Stochastic Galerkin approximations based on either tensor
product or total degree polynomial spaces as well as Stochastic Collocation ap-
proaches based on either tensor or sparse grids. In all cases, we are able to derive
convergence results relying on the regularity result mentioned earlier.

This paper focuses only on approximation techniques with respect to the
random parameters. All the analysis is carried out assuming that no time dis-
cretization is introduced. In context of a Stochastic Galerkin approximation, the
choice of a proper time discretization scheme that results in efficient and stable
algorithms is a very important issue and will be addressed in a future work. See
e.g. [15] for efficient time marching schemes applied to CFD problems.

We conclude the paper with a numerical example concerning the heat equa-
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tion with a random diffusion field having a relatively large correlation length,
so that it can be truncated by a relatively small number of random variables
(7 in our case). We compare several approaches, namely: Stochastic Galerkin
on anisotropic tensor product polynomial spaces; Stochastic Collocation on
isotropic sparse grids; Monte Carlo Sampling; as well as the so called Point
Collocation approach proposed in [14], which is also a global polynomial ap-
proximation.

In all cases we observe that the techniques based on global polynomial ap-
proximations outperform the Monte Carlo method, at least for a problem with
a relatively small number of random variables.

2 Mathematical setting

Let D be a convex bounded polygonal domain in Rd and (Ω,F , P ) be a complete
probability space. Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of
events and P : F → [0, 1] is a probability measure. Consider the stochastic linear
parabolic boundary value problem: find a random function, u : Ω× [0, T ]×D →
R, such that P -almost everywhere in Ω, or in other words almost surely (a.s.),
the following parabolic equation holds:

∂tu(ω, t,x)−∇ · [a(ω,x)∇u(ω, t,x)] =f(ω, t,x), in Ω× [0, T ]×D,

u(ω, t,x) =0, on Ω× [0, T ]× ∂D,

u(ω, 0,x) =u0, on Ω×D.

(1)

Here, the symbol ∇ means differentiation with respect to the space variable
x ∈ D. Moreover, a : Ω×D → R and f : Ω×[0, T ]×D → R are random functions
with continuous and bounded covariance functions. If we denote by B(D) the
Borel σ-algebra generated by the open subsets of D, then a and f are assumed
measurable with respect to the σ-algebras (F ⊗B(D)) and (F ⊗B([0, T ]×D)),
respectively.

Besides, in order to guarantee existence and uniqueness for the solution of
(1) we assume that the diffusion coefficient a is bounded and uniformly coercive,
i.e.

∃ amin, amax ∈ (0,+∞) : P
(
ω ∈ Ω : a(ω,x) ∈ [amin, amax], ∀x ∈ D

)
= 1 (2)

and the right hand side in (1) satisfies∫
Ω

∫
[0,T ]×D

f2(ω, t,x)dx dt dP < +∞ (3)

which implies
∫
[0,T ]×D f

2(ω, t,x)dx dt < +∞ almost surely.
Further, to ensure regularity of the solution u with respect to x we assume

also that a is globally Lipschitz in Ω×D.
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2.1 Weak formulation

Here we set some basic notation and recall the notion of weak solution. Let Y be
an RN -valued random variable in (Ω,F , P ) and, for q ∈ [1,∞), let (Lq

P (Ω))N be
the set comprising those random variables Y with

∑N
i=1

∫
Ω |Yi(ω)|qdP (ω) <∞.

If Y ∈ L1
P (Ω) we denote its expected value by

E[Y ] =
∫

Ω
Y (ω)dP (ω) =

∫
RN

y dµY (y),

where µY is the distribution measure for Y , defined for the Borel sets b̃ ∈ B(RN ),
by µY (b̃) ≡ P (Y −1(b̃)). If µY is absolutely continuous with respect to the
Lebesgue measure then there exists a density function ρ : R → [0,+∞), such
that

E[Y ] =
∫

RN

y ρ(y) dy.

Analogously, whenever Y ∈ (L2
P (Ω))N , the positive semi-definite covariance

matrix of Y , Cov[Y ] ∈ RN×N , is defined by Cov[Y ](i, j) = Cov(Yi, Yj) =
E[(Yi − E[Yi])(Yj − E[Yj ])], for i, j = 1, . . . , N . Similarly, for a stochastic func-
tion u = u(ω,x) with ω ∈ Ω and x ∈ D, we denote its covariance function by
Cov[u](x,x′) = Cov(u(·,x)u(·,x′)) for x, x′ ∈ D.

Some of our arguments use the notion of the dual space. Let H be a
Hilbert space with inner product (·, ·)H . The dual space H ′ of H, contains
linear bounded functionals, L : H → R, and is endowed with the operator
norm ‖L‖H′ = sup

v∈H\{0}

L(v)
‖v‖H

. Besides, the Banach space C(Γ;H) comprises all

continuous functions u : Γ → H with the norm ‖u‖C(Γ;H) ≡ supy∈Γ ‖u(y)‖H .
Similarly we define (cf. [8, p.285])

L2
µ(Γ;Hk(D)) ={

v : Γ×D → R
∣∣∣ v is strongly meas. and

∫
Γ
‖v(y, ·)‖2

Hk(D)dµ(y) < +∞
}
.

We omit the subscript “µ” whenever we refer to the Lebesgue measure.
Since stochastic functions have intrinsically different structure with respect to

ω and with respect to x, the analysis of numerical approximations requires tensor
spaces. LetH1,H2 be Hilbert spaces. The tensor spaceH1⊗H2 is the completion
of formal sums u =

∑n
i=1 viwi, where {vi}n

i=1 ⊂ H1 and {wi}n
i=1 ⊂ H2, with

respect to the inner product (u, û)H1⊗H2 =
∑

i,j(vi, v̂j)H1 (wi, ŵj)H2 .
We now recall the notion of weak solution for the problem (1): we say that

u is a weak solution if it satisfies the initial condition, u = u0 at t = 0, and
u ∈ L2(0, T ;H1

0 (D))⊗ L2
P (Ω), ∂tu ∈ L2(0, T ;H−1(D))⊗ L2

P (Ω), and a.e. in
[0, T ]∫

D
E[∂tu v]dx+

∫
D

E[a∇u · ∇v]dx =
∫

D
E[fv]dx, ∀v ∈ H1

0 (D)⊗L2
P (Ω). (4)
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By means of energy estimates, assumptions (2) and (3) imply ([8, Chapter 7])
that there exists a unique solution u in the Hilbert space H ≡ L2(0, T ;H1

0 (D))⊗
L2

P (Ω), endowed with the inner product (v1, v2)H ≡
∫
[0,T ]×D E[∇v1 · ∇v2]dxdt.

Moreover, the following energy estimate holds

‖u(T )‖2
L2(D)⊗L2

P (Ω) + amin‖u‖2
L2([0,T ];H1

0 (D))⊗L2
P (Ω)

≤
C2

D

amin
‖f‖2

L2([0,T ]×D)⊗L2
P (Ω) + ‖u0‖2

L2(D) (5)

where CD is the Poincaré constant satisfying: ‖v‖L2(D) ≤ CD‖∇v‖L2(D), for all
v ∈ H1

0 (D).
The main goal in this work is to approximate statistical moments of the

solution u or some related quantity of physical interest depending on u. 1

2.2 Karhunen-Loève expansion and finite dimensional noise

Here we recall the Karhunen-Loève expansion for the approximation of random
functions. Consider a random function a with continuous covariance function,
Cov[a] : D × D → R. Let {(λn, bn)}∞n=1 denote the sequence of eigenpairs
associated with the compact self adjoint operator that maps

g ∈ L2(D) 7→
∫

D
Cov[a](x, ·)g(x)dx ∈ C0(D).

Its non-negative eigenvalues satisfy
√∫

D×D (Cov[a](x1,x2))
2 dx1 dx2 ≥ λ1 ≥

λ2 ≥ . . . ≥ 0 and
∑+∞

n=1 λn =
∫
D Var[a](x)dx. The corresponding eigenfunctions

are orthonormal, i.e.
∫
D bi(x)bj(x)dx = δij . The truncated Karhunen-Loève

expansion of the random function a, cf. [16], is

aN (ω,x) = E[a](x) +
N∑

n=1

√
λnbn(x)Yn(ω) (6)

where the real random variables, {Yn}∞n=1, are mutually uncorrelated, have mean
zero and unit variance. Whenever λn > 0 these random variables are uniquely
determined by Yn(ω) = 1√

λn

∫
D(a(ω,x) − E[a](x))bn(x)dx. Then, by Mercer’s

theorem (cf. [25, p. 245]) we have

sup
x∈D

E[(a− aN )2](x) = sup
x∈D

(Var[a]−Var[aN ])(x) → 0, as N →∞.

If, in addition, the following assumptions are satisfied (see [9]):
1Throughout the paper we will assume the initial condition, u0, and the load f to be

deterministic. This assumption may seem restrictive but is not: it can be connected with the
more general assumption on the independence of initial conditions and load from the diffusivity
coefficient a.
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• the images Yn(Ω), n = 1, . . . , are uniformly bounded in R,

• the eigenfunctions bn are smooth, which is the case when the covariance
function is smooth,

• and the eigenpairs have at least the decay
√
λn‖bn‖L∞(D) = O( 1

1+ns ) for
some s > 1,

then ‖a−aN‖L∞(Ω×D) → 0. Notice that for larger values of the decay exponent s
we can also obtain the convergence of higher spatial derivatives of aN in L∞(Ω×
D). The last two conditions can be readily verified once the covariance function
of a is known.

Assumption 1 (Finite dimensional noise) In what follows we assume that
the random functions a(ω,x) and f(ω, t,x) depend only on an N dimensional
random vector Y –this is for instance the case when we use a joint N term
Karhunen-Loève expansion to approximate the given coefficients–, i.e. a(ω,x) =
a(Y (ω),x) and f(ω, t,x) = f(Y (ω), t,x). Besides, the components of Y , {Yn}N

n=1

are uncorrelated real random variables with mean value zero, unit variance, and
their images, Γn ≡ Yn(Ω) are bounded intervals in R for n = 1, . . . , N . More-
over, we assume the vector Y to have a bounded joint probability density function
ρ : Γ =

∏N
n=1 Γn → R+.

It is usual to have f and a to be independent, because the loads and the
material properties are seldom related. In such a situation we have a(Y (ω),x) =
a(Ya(ω),x) and f(Y (ω), t,x) = f(Yf (ω), t,x), with Y = [Ya, Yf ] and the vectors
Ya, Yf independent.

After making Assumption 1, we have by Doob-Dynkin’s lemma, cf. [24], that
u, the solution corresponding to the stochastic partial differential equation (1)
can be described by just a finite number of random variables, i.e. u(ω, t,x) =
u(Y1(ω), . . . , YN (ω), t,x). Then, in (4), we can replace the probability space
(Ω,F , P ) with (Γ, B(Γ), ρ(y) dy) involving only the image set Γ ⊂ RN and the
distribution measure for the vector Y , i.e. dµY = ρ(y)dy.

This leads to the equivalent formulation

Find u ∈ L2(0, T ;H1
0 (D))⊗ L2

ρ(Γ) with ∂tu ∈ L2(0, T ;H−1(D))⊗ L2
ρ(Γ),

u|t=0 = u0 and ∀v ∈ H1
0 (D)⊗ L2

ρ(Γ) and a.e. on [0, T ]∫
Γ×D

∂tu(t) vdx ρdy +
∫

Γ
B(u(t), v) ρdy =

∫
Γ×D

f(t)vdx ρdy,

(7)

with the notation

B(v1, v2)(y) ≡
∫

D
a(y,x)∇v1(y,x) · ∇v2(y,x)dx, ∀v1, v2 ∈ H1

0 (D)⊗ L2
ρ(Γ).
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3 Analyticity of the solution with respect to the ran-
dom inputs

In this section we prove that the solution u is analytic with respect to each
input variable yn, when the diffusion coefficient has the expression (6), namely
it is represented as a truncated Karhunen-Loève expansion. Consider the n− th
input variable, yn. Denote by Γ̂n the set of the remainder input variables,
that is Γ̂n =

∏
1≤m≤N,m6=n Γn and let ŷn ∈ Γ̂n be an arbitrary point. We

will focus on the first direction only, since the proof for the other directions
is analogous. Consequently, let Γ1 = (ymin, ymax) and set ȳ = ymin+ymax

2 and
|Γ1| = (ymax − ymin). We consider the map Ψ : [−1, 1] → L2(0, T ;H1

0 (D))
defined by

Ψ(s) = u(y1(s), ŷ1, ·) ∈ L2(0, T ;H1
0 (D)) (8)

with the affine transformation, y1 : [−1, 1] → Γ1, y1(s) ≡ ȳ + |Γ1|
2 s.

Lemma 1 (Complex continuation) The function Ψ : [−1, 1] → L2(0, T ;H1
0 (D))∩

C0(0, T ;L2(D) can be analytically continuated to the circle of the complex plane

Σ(r1) ≡ {η ∈ C, |η| ≤ 1 + r1}, with r1 =
amin

|Γ1|
√
λ1‖b1‖L∞(D)

. (9)

Moreover, the complex-valued function Ψ(η) satisfies the estimate

‖Ψ(η, T, ·)‖2
L2(D)+

amin

2
‖Ψ(η)‖2

L2(0,T ;H1
0 (D))

≤
2C2

D

amin
‖f‖2

L2(0,T ;L2(D)) + ‖u0‖2
L2(D),

(10)

for all η ∈ Σ(r1) and ŷ1 ∈ Γ̂1, with CD being the Poincaré constant for the
domain D.

Proof. Consider the natural extension of the real valued variable s to the complex
variable η = s + iw in (8). Then, the real valued function Ψ(s) has a natural
extension to the complex plane as Ψ(η) = u(y1(η), ŷ1, ·) and solves the complex
problem

∂tΨ(η, ·)−∇ · (a(y1(η), ŷ1, ·)∇Ψ(η, ·)) =f(·) in [0, T ]×D,

Ψ(η, ·) =0 on [0, T ]× ∂D,

Ψ(η, ·) =u0(·) on {t = 0} ×D.

(11)

If we write Ψ = ΨR + iΨI and similarly a = aR + iaI and introduce the real
valued vector Ψ = [ΨR,ΨI ]T , then problem (11) is equivalent to the 2×2 system
of real equations

∂tΨ(η, ·)−∇ · (A∇Ψ(η, ·)) = f (12)
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where we have denoted by A =
[
aR −aI

aI aR

]
and f = [f, 0]T since we are assuming

the forcing term to be deterministic. The system has initial condition Ψ(η, 0, ·) =
[u0, 0]T and homogeneous Dirichlet boundary conditions.

Problem (12) (or equivalently (11)) admits a unique solution as long as
minx∈D aR(η) is strictly positive. We now show that minx∈D aR(η) ≥ amin

2 ,
for all η ∈ Σ(r1) and ŷ1 ∈ Γ̂1. Indeed, we have

aR(η) = Re a(y1(η), ŷ1,x) = a(0, ŷ1,x) +
√
λ1b1(x)(ȳ +

|Γ1|
2
s)

= {setting s = t(1 + r1), with t ∈ [−1, 1]}

= a(y1(t), ŷ1,x) +
√
λ1b1(x)|Γ1|

2
tr1

≥ amin −
√
λ1‖b1‖L∞(D)|Γ1|

2
r1 ≥ amin/2 (13)

Let ε > 0. If we multiply (12) by Ψ(η, ·), integrate over D and use (13) we
obtain the energy estimate

1
2
d

dt
‖Ψ(η)‖2

L2(D) +
amin

2
‖∇Ψ(η)‖2

L2(D) ≤
∫

D
f ·Ψ(η)

≤ 1
2ε
‖f‖2

L2(D) +
ε

2
‖Ψ(η)‖2

L2(D)

≤ 1
2ε
‖f‖2

L2(D) +
εC2

D

2
‖∇Ψ(η)‖2

L2(D)

with CD being the Poincaré constant for the domain D. Taking ε = amin

2 C2
D

and
integrating in time over [0, T ] leads to estimate (10).

Finally, to prove that the complex function Ψ(η) is analytic in the strip Σ(r1),
we verify the Cauchy-Riemann conditions. By formally differentiating system
(12) with respect to Re η = s and Im η = w we obtain{

∂t∂sΨR −∇ · (aR∇∂sΨR − aI∇∂sΨI) = ∇ · (∂saR∇ΨR − ∂saI∇ΨI)
∂t∂sΨI −∇ · (aI∇∂sΨR + aR∇∂sΨI) = ∇ · (∂saI∇ΨR + ∂saR∇ΨI){
∂t∂wΨR −∇ · (aR∇∂wΨR − aI∇∂wΨI) = ∇ · (∂waR∇ΨR − ∂waI∇ΨI)
∂t∂wΨI −∇ · (aI∇∂wΨR + aR∇∂wΨI) = ∇ · (∂waI∇ΨR + ∂waR∇ΨI)

Hence, the derivatives ∂sΨ and ∂wΨ exist everywhere in Σ(r1). Moreover,
it is easy to see that the two functions Θ(η) = ∂sΨR(η)− ∂wΨI(η) and Ξ(η) =
∂wΨR(η) + ∂sΨI(η) satisfy the system{
∂tΘ−∇ · (aR∇Θ− aI∇Ξ) = ∇ · ((∂saR − ∂waI)∇ΨR − (∂waR + ∂saI)∇ΨI)
∂tΞ−∇ · (aI∇Θ + aR∇Ξ) = ∇ · ((∂waR + ∂saI)∇ΨR + (∂saR − ∂waI)∇ΨI)

(14)
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Since the coefficient a(η) = a(0, ŷ1,x) +
√
λ1b1(x)

(
ȳ + |Γ1|

2 η
)

is linear in η and
therefore satisfies the Cauchy-Riemann conditions, the right hand side in (14)
vanishes. Finally, we observe that (14) admits the only solution Θ(η) = Ξ(η) =
0, for all η ∈ Σ(r1) and this proves the analyticity of Ψ(η).

�

Remark 1 Similarly, it can be proved that ∂tΨ : [−1, 1] → L2(0, T ;H−1(D)) is
also analytic in Σ(r1). Moreover, if we let â(η) = maxx∈D |a(η, x)| then we have

‖∂tΨ‖2
L2([0,T ];H−1(D))

2
≤â2(η)‖Ψ‖2

L2([0,T ];H1
0 (D)) + C2

D‖f‖2
L2([0,T ];L2(D))

≤2

((
2â(η)
amin

)2

+ 1

)
C2

D‖f‖2
L2([0,T ];L2(D)) +

4â2(η)
amin

‖u0‖2
L2(D).

4 Stochastic Galerkin approximation based on poly-
nomial spaces

Let us consider a Galerkin approximation for (7): choose a suitable finite dimen-
sional approximating space, Vp,h ⊂ H1

0 (D)⊗ L2
ρ(Γ), and for each 0 < t < T find

up,h(t) ∈ Vp,h such that∫
Γ×D

∂tup,h(t) v dx ρdy +
∫

Γ
B(up,h(t), v) ρdy =

∫
Γ×D

f(t)v dx ρdy, ∀v ∈ Vp,h,

(15)
with the initial condition up,h(0) = u0,h, being u0,h a suitable projection of the
initial condition onto the discrete space Vp,h. This approximation is understood
as a semidiscretization of (7) because it does not carry out a time discretization
and yields a system of ordinary differential equations, just as with the classical
method of lines.

Here the construction of the subspace Vp,h is based on a tensor product,
Vp,h = Hh(D)⊗ Pp(Γ), where

• Hh(D) ⊂ H1
0 (D) is a standard finite element space that contains contin-

uous piecewise polynomials defined on regular triangulations τh that have
a maximum mesh spacing parameter h > 0 and

• Pp(Γ) ⊂ L2(Γ) is a suitably chosen polynomial subspace which is indexed
on a parameter p.

For instance, we have the following classical choices:

10



Example 1 (Anisotropic tensor polynomials) Let p be a multi-index,
p = (p1, . . . , pN ). Here the subspace Pp(Γ) is the span of tensor product polyno-
mials with degree at most p = (p1, . . . , pN ) in each direction, i.e.

Pp(Γ) =
N⊗

n=1

Ppn(Γn), (16)

with

Ppn(Γn) =
{
v ∈ L2(Γn) : v ∈ span(ym, m = 0, . . . , pn)

}
, n = 1, . . . , N.

Clearly, the dimension of this subspace is η(p) =
∏N

n=1(1 + pn).

Example 2 (Total degree polynomials) Let p be a natural number and let
Pp(Γ) be the span of monomials with total degree at most p, i.e.

Pp(Γ) = span(
N∏

n=1

yin
n :

N∑
n=1

in ≤ p). (17)

Observe that the dimension of this subspace is η(p,N) = (N+p)!
N !p! .

It is possible to consider other approximation spaces for Pp(Γ). For instance one
may use piecewise polynomial functions [7, 1, 29, 30, 28], wavelets [17, 18, 19],
etc.

If {ϕj}Nh
j=1 and {ψk}η

k=1 are basis for Hh(D) and Pp(Γ), respectively, we can
express the approximate solution as

up,h(y, t,x) =
η∑

k=1

Nh∑
j=1

ukj(t)ϕj(x)ψk(y). (18)

The unknown time dependent functions ukj : [0, T ] → R, k = 1, . . . , Nh, j =
1, . . . , η solve a system of ordinary differential equations. This system can readily
be obtained by substituting the ansatz (18) into (15) and testing with the basis
functions of Vp,h. Observe that such system has a dimension Nh∗η. Formulation
(15) with the choice of finite dimensional spaces introduced above will be referres
to as SGFEM.

4.1 Optimality of Stochastic Galerkin approximations

The goal of this section is to analyze the Stochastic Galerkin approximate so-
lution introduced in (15) and derive its optimality in the proper energy norm.
This fact is crucial to prove later the rate of convergence of the method.

For instance, Stochastic Galerkin based on tensor product of polynomials
yields an exponential rate of convergence with respect to p, the degree of the

11



polynomials used for approximation, cf. Theorem 2. The application of the p-
version in the y direction is motivated by the fact that u is analytic with respect
to y ∈ Γ, as we showed in Section 3.

For the purposes of the analysis, we first introduce an auxiliary semi-discrete
solution, up, satisfying (15) with V̂p,h = H1

0 (D)⊗Pp(Γ) instead of Vp,h = Hh(D)⊗
Pp(Γ).

In other words, for each 0 < t < T ones finds up(t) ∈ H1
0 (D) ⊗ Pp(Γ) such

that∫
Γ×D

∂tup(t) v dx ρdy +
∫

Γ
B(up(t), v) ρdy =

∫
Γ×D

f(t)v dx ρdy, ∀v ∈ Vp,h,

(19)
with the exact initial condition up(0) = u0.

With this definition, up does not have spatial nor time discretization, and
we can just concentrate on the L2

ρ(Γ) approximation. Indeed, we have the error
splitting

u− up,h︸ ︷︷ ︸
full p-h discretization error

= u− up︸ ︷︷ ︸
p-version error

+ up − up,h.︸ ︷︷ ︸
space FEM discretization error

Therefore, let us now estimate the p-version error, ep ≡ u− up. To this end, we
first prove an optimality result for the semidiscrete solution up and then use the
analyticity of u to achieve exponential convergence in the p-version error. To
make the presentation simpler we present only the case of a deterministic forcing
term and a stochastic diffusivity coefficient. Since the solution of the parabolic
equation, u depends linearly on the forcing f our results generalize directly to
the case of a stochastic forcing term as well, provided that the stochastic forcing
is an L2

ρ(Γ) valued analytic function of the inputs.

Theorem 1 (Optimality of the SGFEM approximation) Let u(y, ·) be the
solution to (7) and up(y, ·) its semi-discrete approximation defined by (19). Con-
sider a function w ∈ L2(0, T ;Pp(Γ) ⊗ H1

0 (D)) with ∂tw ∈ L2(0, T ;Pp(Γ) ⊗
H−1(D)) such that u(0, ·) = up(0, ·) = w(0, ·). Then we have the estimate

1
4

E[‖(up − u)(T, ·)‖2
L2(D)] +

amin

4
E[‖up − u‖2

L2(0,T ;H1
0 (D))]

≤ 1
2

E[‖(u− w)(T, ·)‖2
L2(D)] +

1
amin

E[‖∂t(u− w)‖2
L2(0,T ;H−1(D))]

+
(
a2

max

amin
+
amin

2

)
E[‖u− w‖2

L2(0,T ;H1
0 (D))],

(20)

Proof.

12



Let us first recall that

E[< ∂tu, v > +B(u, v)] = E[
∫

D
f v], ∀v ∈ H1

0 (D)⊗ L2
ρ(Γ)

E[< ∂tup, v > +B(up, v)] = E[
∫

D
f v], ∀v ∈ H1

0 (D)⊗ Pp(Γ)

which gives the Galerkin orthogonality

E[< ∂tep, v > +B(ep, v)] = 0, ∀v ∈ H1
0 (D)⊗ Pp(Γ). (21)

Now consider a function w ∈ L2(0, T ;Pp(Γ)⊗H1
0 (D)) with ∂tw ∈ L2(0, T ;Pp(Γ)⊗

H−1(D)) and such that u(0, ·) = up(0, ·) = w(0, ·).
Then we have

1
2

E[‖(up − w)(T, ·)‖2
L2(D)] + aminE[‖up − w‖2

L2(0,T ;H1
0 (D))]

≤
∫ T

0
E[< ∂t(up − w), up − w > +B(up − w, up − w)]dt

≤
∫ T

0
E[< ∂t(up − u), up − w > +B(up − u, up − w)]︸ ︷︷ ︸

=0 by Galerkin orthogonality

dt

+
∫ T

0
E[< ∂t(u− w), up − w > +B(u− w, up − w)]dt.

Now estimate the terms in the above integral by

|E[< ∂t(u− w), up − w >]| ≤ E[‖∂t(u− w)‖H−1(D)‖up − w‖H1
0 (D)]

and
|E[B(u− w, up − w)]| ≤ amaxE[‖u− w‖H1

0 (D)‖up − w‖H1
0 (D)].

Then apply the inequality αβ ≤ α2

2ε + εβ2

2 and arrive at

1
2

E[‖(up − w)(T, ·)‖2
L2(D)] +

amin

2
E[‖up − w‖2

L2(0,T ;H1
0 (D))]

≤ 1
amin

E[‖∂t(u− w)‖2
L2(0,T ;H−1(D))] +

a2
max

amin
E[‖u− w‖2

L2(0,T ;H1
0 (D))].

Finally, summing on both sides of the last inequality the terms

1
2

E[‖(u− w)(T, ·)‖2
L2(D)] +

amin

2
E[‖u− w‖2

L2(0,T ;H1
0 (D))],

and applying the triangular inequality yields

1
4

E[‖(up − u)(T, ·)‖2
L2(D)] +

amin

4
E[‖up − u‖2

L2(0,T ;H1
0 (D))]

≤ 1
2

E[‖(u− w)(T, ·)‖2
L2(D)] +

1
amin

E[‖∂t(u− w)‖2
L2(0,T ;H−1(D))]

+
(
a2

max

amin
+
amin

2

)
E[‖u− w‖2

L2(0,T ;H1
0 (D))],
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which is what we wanted to prove. �

The last Theorem is useful in the study of the convergence of Stochastic
Galerkin approximations. Indeed, we reduce the problem of estimating the size
of the error ep = u − up to that of estimating the best approximation error in
L2

ρ(Γ). Observe, however, that being ρ bounded, the best approximation error
can be equivalently stated, up to a multiplicative constant, in L2(Γ), with respect
to the Lebesgue measure (see next section) and therefore no longer weighted by
the, in general non uniform, probability density ρ. This allows us to apply
standard approximation results for functions in L2(Γ).

5 Convergence analysis for Stochastic Galerkin

Observe that from (20) we can reduce the general case of a bounded prob-
ability density ρ to the case of uniform, independent random variables. In-
deed, it is enough for this purpose to apply the inequality

∫
Γ |Z|(y)ρ(y)dy ≤

|Γ|‖ρ‖L∞(Γ)

∫
Γ |Z|(y)ρ̂(y)dy with ρ̂ = 1

|Γ| in all the expected values appearing
in (20). Thus, we only need to consider the case ρ constant when proving the
results, just as it was done in [1].

Following [13, 1], we use the Legendre polynomials to estimate best L2(Γ)
approximation properties of the polynomial spaces Pp(Γ) introduced in examples
1 and 2, respectively. These estimates, combined with the Stochastic Galerkin
optimality (20) will yield error estimates for the p×h−version of the SGFEM.
Without loss of generality we now assume that Γ = [−1, 1]N , for instance af-
ter making a linear change of variables as in Section 3. Now we consider an
orthogonal polynomial basis for L2([−1, 1]), namely the Legendre polynomials,

φn(s) ≡ 1
2nn!

dn

dsn
((s2 − 1)n), n = 0, 1, . . . ,

and a representation of the polynomial subspace Pp(Γ) in terms of Legendre
polynomials and a set of multi-indices IPp(Γ) such that when we let the multi-
index i vary over IPp(Γ) the corresponding multivariate Legendre polynomials
span the subspace Pp(Γ), namely

Pp(Γ) = span{φi, i ∈ IPp(Γ)}, φi(y) =
N∏

n=1

φin(yn).

Indeed, we work here with two cases,

anisotropic tensor polynomials: IPp(Γ) = {i ∈ NN
+ : in ≤ pn, n = 1, . . . , N},

total degree polynomials: IPp(Γ) = {i ∈ NN
+ : ‖i‖`1 ≤ p}.

Since the polynomials φi are orthogonal in L2([−1, 1]N ) we can introduce
a suitable projection of the exact solution u, namely w as follows. We choose

14



w ∈ Pp(Γ) ⊗ L2(0, T ;H1
0 (D)) such that at each time of [0, T ] it is the L2(Γ)-

projection of u(t) over Pp(Γ), i.e.∫
Γ
w(t)v =

∫
Γ
u(t)v, for all v ∈ Pp(Γ) and a.e. on [0, T ].

With this choice of w we have, by Theorem 1,

E[‖(up − u)(T, ·)‖2
L2(D)] + aminE[‖up − u‖2

L2(0,T ;H1
0 (D))]

≤ C‖ρ‖L∞(Γ)

(
‖(u− w)(T )‖2

L2(Γ)⊗L2(D) + ‖u− w‖2
L2(Γ)⊗L2(0,T ;H1

0 (D))

+ ‖∂t(u− w)‖2
L2(Γ)⊗L2(0,T ;H−1

0 (D))

)
≤ C‖ρ‖L∞(Γ)

∑
i∈NN\IPp(Γ)

‖di(T )‖2
L2(D) + ‖di‖2

L2(0,T ;H1
0 (D))

+ ‖∂tdi‖2
L2(0,T ;H−1(D))

‖φi‖2
L2(Γ)

with the function valued Fourier coefficients

di =
∫

Γ
u(y, ·)φi(y)dy. (22)

Indeed, similar arguments as in [1] show that the following estimate for the size
of the Fourier coefficients of the exact solution, u, holds.

Lemma 2 (Fourier coefficients estimate) Let i ∈ NN , and di defined in
(22) with u(y, ·) being the solution to (7). Then there exists a constant C =
C(f, amin, amax, u0, CD) > 0 not depending on i such that

‖di(T )‖2
L2(D) + ‖di‖2

L2(0,T ;H1
0 (D))

+ ‖∂tdi‖2
L2(0,T ;H−1(D))

‖φi‖2
L2(Γ)

≤ C|Γ|(3π)N

{
N∏

n=1

(√
1− e−2gn +O

(
1

i
1/3
n

))
e−gnin

}2

≤ C̃|Γ|e−2
PN

n=1 gnin

with gn ≡ log(1 + rn +
√
r2n + 2rn) and rn defined in (9) and

C̃ = C(3π)N
N∏

n=1

(√
1− e−2gn +O(1)

)2
. (23)

5.1 Convergence analysis for anisotropic tensor product approx-
imations

We recall that for an anisotropic tensor product polynomial approximation the
index set is defined as IPp(Γ) = {i ∈ NN

+ : in ≤ pn, n = 1, . . . , N}. The main
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result of this section, namely the exponential convergence with respect to the
multi-index p = (p1, . . . , pn) as in [13], follows from the above lemma. Here we
include the final convergence results for the approximation of the solution to (4)
with the anisotropic p-version.

Theorem 2 (Convergence w.r.t. the multi-index p) With the same assump-
tions as in Theorem 1 we have

E[‖(u−up)(T )]‖2
L2(D)]+amin E[‖u−up‖2

L2(0,T ;H1
0 (D))] ≤ |Γ|‖ρ‖L∞(Γ)C̃

N∑
n=1

e−2gn(pn+1)

with gn > 0 defined in (9) and C̃ > 0 independent of pn and ρ defined in (23).

Proof. To obtain the result, combine the results from Theorem 1 and Lemma 2.
�

Recall now that the number of degrees of freedom in the tensor approximation
is η =

∏N
n=1(1+pn) ≤ e

PN
n=1 pn . This estimate combined with Theorem 2 yields

Theorem 3 (Algebraic convergence w.r.t. to η) Let p be a positive inte-
ger and choose the polynomial degree in the n−th direction, pn, to be the smallest
integer such that pn ≥ pgmin

gn
, n = 1, . . . , N . Then we have

E[‖(u− up)(T )]‖2
L2(D)] + amin E[‖u− up‖2

L2(0,T ;H1
0 (D))]

≤ |Γ|‖ρ‖L∞(Γ)C̃

(
N∑

n=1

e−2gn

)
η
− 2PN

n=1 1/gn

5.2 Convergence analysis for total degree polynomial approxi-
mations

Again, we recall that for the total degree polynomial space the index set is
IPp(Γ) = {i ∈ NN

+ : ‖i‖`1 ≤ p}. Similarly as in Section 5.1, using the optimality
of the Stochastic Galerkin approximation proved in Theorem 1 and the estimate
of the Fourier coefficients in Lemma 2 we obtain

Theorem 4 (Convergence w.r.t. to the total degree p) We have

E[‖(u− up)(T )]‖2
L2(D)] + amin E[‖u− up‖2

L2(0,T ;H1
0 (D))]

≤ |Γ|‖ρ‖L∞(Γ)C̃max
(
N − 1
gmin

, 2 + p

)N−1 e−2gmin(1+p)

1− e−gmin
.

(24)
If in addition, N is sufficiently small such that

β(N) ≡

{
2gmin for N = 1
2gmin − 1− log (N − 1) for N > 1

(25)
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satisfies β(N) > 0, then we have the exponential convergence

E[‖(u− up)(T )]‖2
L2(D)]+amin E[‖u− up‖2

L2(0,T ;H1
0 (D))] ≤ |Γ|‖ρ‖L∞(Γ)C̃

e−β(N)(p+1)

1− e−β(N)
.

(26)

Proof. Let E2 = 1
‖ρ‖L∞(Γ)

{
E[‖(u− up)(T )]‖2

L2(D)] + amin E[‖u− up‖2
L2(0,T ;H1

0 (D))
]
}
.

We have

.

E2 ≤ C
∑
|i|>p

‖di(T )‖2
L2(D) + ‖di‖2

L2(0,T ;H1
0 (D))

+ ‖∂tdi‖2
L2(0,T ;H−1(D))

‖φi‖2
L2(Γ)

≤ |Γ|C̃
∑
|i|>p

e−2
PN

n=1 gnin

≤ |Γ|C̃
∑
|i|>p

e−2gmin
PN

n=1 in

≤ |Γ|C̃
+∞∑

s=p+1

e−2gmins

(
N − 1 + s

N − 1

)
Observe that in the last inequality we have used that

#{i ∈ NN
+ : |i| = s} =

(
N − 1 + s

N − 1

)
and that we can further bound, using that log(1 + x) ≤ x, for 0 ≤ x,(

N − 1 + s

N − 1

)
=

N−1∏
n=1

(
1 +

s

n

)
≤ min

(
es

PN−1
n=1

1
n , (1 + s)N−1

)
.

Now we employ the inequality
∑N

n=2
1
n ≤

∫ N
1

dx
x = log(N) to arrive at(

N − 1 + s

N − 1

)
≤

 1, for N = 1,

min
(
es(1+log(N−1)), (1 + s)N−1

)
, for N > 1,

and therefore, for N > 1,

E2 ≤ |Γ|C̃
+∞∑

s=p+1

e−2gmins min
(
es(1+log(N−1)), (1 + s)N−1

)
.

On the other hand, the function f(s) = (1 + s)N−1e−gmins has a maximum in
s̄ = (N − 1)/gmin − 1 and ∀s ≥ p+ 1 it holds

if s̄ ≥ p+ 1 f(s) ≤ f(s̄) ≤
(
N − 1
gmin

)N−1

e−gmin(p+1),

if s̄ < p+ 1 f(s) ≤ f(p+ 1) = (p+ 2)N−1e−gmin(p+1).
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Therefore,

f(s) ≤ max
(
N − 1
gmin

, 2 + p

)N−1

e−gmin(1+p), for all s ≥ p+ 1

and we have, for N > 1,

E2 ≤ |Γ|C̃min


+∞∑

s=p+1

es((1−2gmin)+log(N−1)),

+∞∑
s=p+1

e−gminsf(s)


≤


|Γ|C̃

1−e−β(N) e
−β(N)(p+1), if β(N) > 0

|Γ|C̃
1−e−gmin

max
(

N−1
gmin

, 2 + p
)N−1

e−2gmin(1+p) ∀p > 0, N > 1.

�

Remark 2 The upper bounds in the previous theorem are difficult to improve.
For instance, by including more terms in the expansion of log(1 + x) one even-
tually obtains an upper bound of the form

|Γ|C̃
+∞∑

s=p+1

e−2gmins+s(1+log(N−1))+f(s)

for a function f that does not depend on N . This upper bound still exhibits a
similar deterioration with respect to the input dimension, N , as (26).

Now we present the corresponding result with respect to the number of de-
grees of freedom in the total degree polynomial space. Indeed, we have in this
case the following upper and lower bounds for the number η of degrees of freedom
in Pp(Γ),

max
(
Np,

pN

N !

)
≤ η =

N∏
n=1

(
1 +

p

n

)
≤ ep

PN
j=1

1
n

≤ ep(1+log(N))

(27)

and therefore, the combination of (26) from Theorem 4 and (27) yields

Theorem 5 (Convergence w.r.t. to η) We have

E[‖(u− up)(T )]‖2
L2(D)] + amin E[‖u− up‖2

L2(0,T ;H1
0 (D))]

≤ |Γ|‖ρ‖L∞(Γ)C̃
e−2gmin

1− e−gmin
max

(
N − 1
gmin

, 2 + min
{ η
N
, η1/N (N !)1/N

})N−1

η
− 2gmin

1+log(N) .

(28)
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If in addition, β(N) defined in (25) is positive, then we have the algebraic con-
vergence

E[‖(u− up)(T )]‖2
L2(D)] + amin E[‖u− up‖2

L2(0,T ;H1
0 (D))]

≤ |Γ|‖ρ‖L∞(Γ)
C̃e−β(N)

1− e−β(N)
η
− β(N)

1+log(N) .

Remark 3 Observe that (28) is not optimal, specially because the lower bound
in (27) is not tight enough. For instance, if we use the alternative lower bound

η ≥ exp

(
N∑

n=1

p

n
− 1

2

N∑
n=1

p2

n2

)
,

for small values of the degree p, say,

p ≤ log(N + 1)
2
∑+∞

j=1
1
j2

then we have, in terms of the corresponding number of degrees of freedom, η(p),
the estimate

E[‖(u− up)(T )]‖2
L2(D)] + amin E[‖u− up‖2

L2(0,T ;H1
0 (D))]

≤ |Γ|‖ρ‖L∞(Γ)C̃
e−2gmin

1− e−gmin
max

(
N − 1
gmin

, 2(1 +
log(η)

log(N + 1)
)
)N−1

η
− 2gmin

1+log(N) .

6 Stochastic Collocation

Stochastic Collocation has gained much attention recently from the computa-
tional community, see for instance the works [3, 10, 23, 20, 32]. This technique
can be based on either full or sparse tensor product approximation spaces, as
we describe in what follows.

6.1 Full tensor product interpolation

In this section we briefly recall interpolation based on Lagrange polynomials, see
Section 2 in [3] and as in Section 5 we assume Γ = [−1, 1]N . We first introduce a
non negative index i ≥ 1 and then, for each value of i, let {yi

1, . . . , y
i
mi
} ⊂ [−1, 1]

be a sequence of abscissas for Lagrange interpolation on [−1, 1].
Let we denote by W (D) a Banach space of functions where the solution of

u(y, ·) takes value. For instance, in our case W (D) contains functions from
L2(0, T ;H1

0 (D)) whose time derivatives take values in L2(0, T ;H−1(D)).
For u ∈ C0(Γ1;W (D)) andN = 1 we introduce a sequence of one-dimensional

Lagrange interpolation operators U i : C0(Γ1;W (D)) → Vmi(Γ
1;W (D))

U i(u)(y) =
mi∑
j=1

u(yi
j) l

i
j(y), ∀u ∈ C0(Γ1;W (D)), (29)
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where lij ∈ Pmi−1(Γ1) are the Lagrange polynomials of degree mi−1, i.e. lij(y) =∏mi
k=1
k 6=j

(y−yi
k)

(yi
j−yi

k)
, and

Vm(Γ1;W (D)) =

{
v ∈ C0(Γ1;W (D)) : v(y,x) =

m∑
k=1

ṽk(x)lk(y), {ṽk}m
k=1 ∈W (D)

}
.

Formula (29) reproduces exactly all polynomials of degree less than mi. Now,
in the multivariate case N > 1, for each u ∈ C0(ΓN ;W (D)) and the multi-index
i = (i1, . . . , iN ) ∈ NN

+ we recall the full tensor product interpolation formula,

Π̂N
i u(y) =

(
U i1 ⊗ · · · ⊗U iN

)
(u)(y)

=
mi1∑
j1=1

· · ·
miN∑
jN=1

u
(
yi1

j1
, . . . , yiN

jN

) (
li1j1 ⊗ · · · ⊗ liNjN

)
(y).

(30)

Clearly, the above product needs
∏N

n=1min function evaluations. These formulas
will also be used as the building blocks for the Smolyak method, described next.

6.2 Stochastic Collocation based on isotropic sparse grids

Here we follow closely the work [4] and describe the Smolyak isotropic formulas
A (w, N). The Smolyak formulas are just linear combinations of tensor product
formulas (30) where the indices are chosen such that only tensor products with a
relatively small number of points are used. With U 0 = 0 and for i ∈ N+ define

∆i := U i −U i−1. (31)

Moreover, given a positive integer w ∈ N+, hereafter called the level, and a
multi-index i ∈ NN

+ , the isotropic Smolyak formula is given by

A (w, N) =
∑

|i|≤w+N

(
∆i1 ⊗ · · · ⊗∆iN

)
. (32)

Equivalently, formula (32) can be written as (see [31])

A (w, N) =
∑

w+1≤|i|≤w+N

(−1)w+N−|i|
(

N − 1
w +N − |i|

)
·
(
U i1 ⊗ · · · ⊗U iN

)
. (33)

To compute A (w, N)(u), one only needs to know function values on the “sparse
grid”

H (w, N) =
⋃

w+1≤|i|≤w+N

(
ϑi1 × · · · × ϑiN

)
⊂ [−1, 1]N , (34)

where ϑi =
{
yi
1, . . . , y

i
mi

}
⊂ [−1, 1] denotes the set of abscissas used by U i. If

the sets are nested, i.e. ϑi ⊂ ϑi+1, then H (w, N) ⊂ H (w + 1, N) and

H (w, N) =
⋃

|i|=w+N

(
ϑi1 × · · · × ϑiN

)
. (35)
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The Smolyak formula is actually interpolatory whenever nested points are used.
This result has been proved in [4, Proposition 6 on page 277].

By comparing (35) and (34), we observe that the Smolyak approximation
that employs nested points requires less function evaluations than the corre-
sponding formula with non nested points.

Clenshaw-Curtis abscissas. A popular choice for abscissas in the con-
struction of the Smolyak formula are the Clenshaw-Curtis ones [6]. These ab-
scissas are the extrema of Chebyshev polynomials and, for any choice of mi > 1,
are given by

yi
j = − cos

(
π(j − 1)
mi − 1

)
, j = 1, . . . ,mi. (36)

In addition, one sets yi
1 = 0 if mi = 1 and lets the number of abscissas mi in

each level to grow according to the following formula

m1 = 1 and mi = 2i−1 + 1, for i > 1. (37)

With this particular choice, one obtains nested sets of abscissas, i.e., ϑi ⊂ ϑi+1

and thereby H (w, N) ⊂ H (w + 1, N). It is important to choose m1 = 1 if
we are interested in optimal approximation in relatively large N , because in all
other cases the number of points used by A (w, N) increases too fast with N .

Remark 4 (Anisotropic Smolyak) The work [22] proposed and analyzed a
novel anisotropic sparse grid stochastic collocation method that is based on a
weighted version of the Smolyak formula (32), namely one penalizes the use
of approximation levels on input random variables which have little influence
in the solution. In other words, given a vector with positive weights α =
(α1, α2, . . . , αN ) ∈ RN

+ , the anisotropic formula is

Aα(w, N) =
∑

PN
n=1(in−1)αn≤w

(
∆i1 ⊗ · · · ⊗∆iN

)
(38)

for each level value w ∈ N+. The work [22] also developed a procedure for choos-
ing the anisotropy of the sparse grid (i.e. the weight vector α, based on either
a priori or a posteriori estimates and showed both theoretically and numerically
the effectiveness of these methods for several problems. This approach is partic-
ularly attractive in the case of truncated expansions of random fields, since the
anisotropy can be tuned to the decay properties of the expansion.

7 Convergence analysis for Stochastic Collocation

Here we recall convergence results from previous works to motivate the use of
Stochastic Collocation methods.
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7.1 Convergence analysis for full tensor grids

An isotropic full tensor product interpolation converges roughly like C(gmin, N)e−gminp,
see [3], where p is the order of the polynomial space. Since the number of
collocation points relates to p in this case as η = (1 + p)N then log(η) =
N log(1+p) ≤ Np and with respect to η the convergence rate can be bounded as
C(gmin, N)η−gmin/N , with gmin > 0 being a problem dependent constant. The
slowdown effect that the dimension N has on the last convergence is known as
the curse of dimensionality and it is the reason for not using isotropic full tensor
interpolation for large values of N .

On the other hand, the behavior of anisotropic approximations is a bit bet-
ter, and tends to follow the one corresponding to Stochastic Galerkin based on
anisotropic full tensor products, see Theorem 3. Actually, it was shown in [3]
that in some cases, polynomial approximations computed by the full tensor grid
Stochastic Collocation method coincide with the ones obtained by Stochastic
Galerkin projecting onto the same tensor polynomial space.

This applies in particular to problem (1) with diffusion coefficient (6) pro-
vided the density ρ of the random vector [Y1, . . . , YN ] factorizes as ρ(y) =∏N

n=1 ρn(yn) (meaning that the random variables are independent) and we choose
Gauss abscissas in each direction with respect to the weight ρn. If, in addition,
we consider an anisotropic tensor grid in which the number of knots in the n-th
direction is chosen as in = gmin

gn
p + 1, then the rate of convergence is the one

stated in Theorem 3.
We point out, however, that in more general cases of nonlinear problems

or non-linear expansions of the input random fields, the Stochastic Collocation
solution does not coincide with the Stochastic Galerkin one, the main advantage
of the first approach being that it always produces a set of uncoupled equations,
while preserving roughly the same accuracy of the second one.

7.2 Convergence analysis for isotropic sparse grids

Whenever the number of input random variables, N , is relatively large, the
isotropic sparse grid approximation seems to be better suited than a full tensor
one.

In [23] we have derived a general convergence result for the isotropic Smolyak
approximation of Banach-valued functions u ∈ C0(Γ;W ), where W is an arbi-
trary Banach space, under the assumption that u is analytic with respect to
each input variable yn ∈ Γn. This assumption holds in our case, as we showed
in Section 3. The following result can therefore be proved with minimal changes
of the proof in [23]:

Theorem 6 Let w be a positive integer and η(w) the total number of points
in the isotropic sparse grid based on Clenshaw-Curtis abscissas. With the same
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assumptions as in Theorem 1 we have

E[‖(u−A (w, N)u)(T )]‖2
L2(D)] + amin E[‖u−A (w, N)u‖2

L2(0,T ;H1
0 (D))]

≤ |Γ|‖ρ‖L∞(Γ)C(g̃min, amin, amax, f, CD, N)η(w)−
g̃min

1+log(2N) (39)

where g̃n = 1
2 log

(
2rn +

√
1 + 4r2n

)
, g̃min = minn gn and rn defined as in Lemma

9.

Observe that the previous result indicates at least algebraic convergence with
respect to the number of collocation points η and we have a similar degradation
of the exponent with respect to the dimension N as in Theorem 5 for the total
degree polynomial - Stochastic Galerkin approximation. However, differently
than (28) there are no polynomial terms in η multiplying the leading term in
the estimate.

For large values of w we have a related subexponential convergence result, see
[23]. Finally, we point out that the convergence results hold also if one chooses
Gaussian abscissas instead of Clenshaw-Curtis ones (see [23]).

8 Numerical Example

In this numerical example we compare the performance of different numerical
approximations. We consider problem (1) with a stochastic diffusion coefficient,
zero forcing term f and zero initial condition u0. The physical domain is the
unit square [0, 1]2. Homogeneous Dirichlet boundary conditions are imposed on
the bottom, right and top edges, while an incoming unitary flux is imposed on
the left edge, namely a∂nu = 1. The domain and spatial mesh employed in the
simulations are shown in Figure 1. All the approximations use the same time
and space discretizations. They only differ in the treatment of the stochastic dis-
cretization. The random diffusion coefficient varies only in the vertical direction
and has the following form

a(ω, x, y) = a0 + σ
√
λ0Y0(ω) +

nf∑
i=1

σ
√
λi

[
Yi(ω) cos(iπy) + Ynf+i(ω) sin(iπy)

]
(40)

with

λ0 =
√
πLc

2
, λi =

√
πLce

− (iπLc)2

4 , i = 1 . . . , nf

and Y0, . . . , Y2nf
uncorrelated zero mean and unit variance random variables.

Expansion (40) approximates a stationary random field with covariance function

Cov[a](y1, y2) ≈ σ2 exp
{
−(y1 − y2)2

L2
c

}
.
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Figure 1: Computational mesh and boundary conditions for Example 2

The parameter Lc represents a physical correlation length and σ2 the variance
of the random field.

In the numerical simulations we have used the following values: a0 = 1,
Lc = 0.25, σ = 0.15, nf = 3 (corresponding to N = 7 random variables) and
we have assumed the random variables Y0, . . . , Y2nf

independent and uniformly
distributed in the interval [−

√
3,
√

3].
In particular the choice σ = 0.15 guarantees that the random field is strictly

positive, even in the limit nf →∞. On the other hand, by choosing nf = 3 we
represent 95% of the variance of the limit field for nf → ∞. Figure 2 shows 4
random realizations of the truncated random field (40).

The deterministic solver employs continuous piecewise linear finite elements
in space and the implicit Euler method in time. We have run 40 uniform time
steps in the interval [0, T = 0.1] and focused on the quantity of interest

ψ(ω) =
∫

D
u(ω, T, x)dx.

Figures 3 and 4 show the mean and the standard deviation of the solution at
the final time T = 0.1, while Figure 5 shows a sample histogram of the quantity
of interest ψ, obtained by Monte Carlo sampling. We see in Figure 5 that the
distribution of ψ slightly deviates from a Gaussian one.

On this example, we have compared several techniques in the computation of
the mean value of the quantity of interest, i.e. E[ψ]. The results are summarized
in Figure 7, which shows convergence plots obtained by comparing the solution
computed by the different methods, with an overkilling solution computed with
the level 5 isotropic Smolyak method (25978 collocation points) using the same
spatial and temporal grid. The errors shown are relative to the value of the
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Figure 2: Realizations of the diffusivity coefficient.

mean solution at time t=0.1
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Figure 3: Mean of the solution at time 0.1.

overkilling solution. All simulations have been run in Matlab using the PDE
toolbox.
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standard deviation at time t=0.1
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Figure 4: Standard deviation of the solution at time 0.1.
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Figure 5: Histogram of the quantity of interest.

Anisotropic tensor product Stochastic Galerkin. The first methodol-
ogy considered is the Stochastic Galerkin method based on an anisotropic tensor
product polynomial space. Since the problem is linear and the diffusion coeffi-
cient depends linearly on the random variables, a proper choice of basis functions
(double orthogonal polynomials, see [1]) allows us to decouple the global system
and reduce it to a sequence of uncoupled deterministic problems. It can be shown
that in such a case, the Stochastic Galerkin method coincides with a Stochastic
Collocation on a proper tensor grid of Gauss points (see [3]).

The polynomial degrees in each direction have been chosen as suggested in
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Y0 Y1 Y2 Y3 Y4 Y5 Y6 η

p = 1 0 1 0 0 1 0 0 4
p = 2 1 2 1 1 2 1 1 288
p = 3 2 3 2 2 3 2 2 3888
p = 4 3 4 3 2 4 3 2 14400

Table 1: Polynomial degree used in the different directions, for p = 1, 2, 3, 4. The
last column shows the dimension η of the corresponding anisotropic polynomial
space.

Theorem 3, namely
pn =

gmin

gn
p, p ∈ N+

where the decay coefficients gn have been estimated according to results given
in Lemma 2 and equation (9), namely:

gn = log(1 + rn +
√
r2n + 2rn) and

r0 =
amin

2
√

3λ0
, rn = rnf+n =

amin

2
√

3λn
, n = 1, . . . , nf .

Finally, amin has been estimated as

amin = c0 − σ
√

3λ0 −
nf∑
i=1

2σ
√

3λi.

The convergence plot in Figure 7 (label TP) has been obtained taking p =
1, 2, 3, 4. The polynomial degrees used in the 7 directions, for different values of
p, are reported in Table 1, together with the dimension η of the corresponding
polynomial space.

Isotropic sparse grid Stochastic Collocation. The second methodol-
ogy considered is the Stochastic Collocation method described in Section 6.2
based on isotropic sparse grids using Clenshaw-Curtis abscissas. Figure 6 shows
the projection of the level 5 sparse grid onto the first 3 directions. The con-
vergence plot in Figure 7 (label SC) has been obtained taking the sparse grids
of level w = 1, 2, 3, 4. The number of collocation points in the four grids are
η = 22, 225, 1450, 6819, respectively.

Monte Carlo Sampling. The third method considered is the classical
Monte Carlo sampling. Here we have considered an increasing number of sample
points

η = 100, 200, 400, 800, 1600, 3200,

and computed the sample average of the quantity of interest. The convergence
curve is shown in Figure 7 (label MC). We have actually repeated the error
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analysis for 20 independent replica. The solid line in Figure 7 corresponds to
the average of the 20 errors (in absolute value) observed for each choice of η,
while the dashed line corresponds the maximum error observed among the 20
replica.

Point Collocation. The fourth method considered is the so called Point
Collocation, see [14], which is a non intrusive method as the Stochastic Collo-
cation. It consists in randomly sampling the quantity of interest ψ in M points
and seeking a polynomial approximation ψp ∈ Pp(Γ) of total degree p by a dis-
crete least square approximation of the M sampled values (for details see [14]).
The number of degrees of freedom of ψp is η̃ = (N+p)!

N !p! and we have chosen
M = 3η̃. The total cost of each simulation (number of deterministic problems
to solve) is therefore η = 3η̃. The convergence curve in Figure 7 (label PC)
has been obtained taking p = 1, 2, 3, 4, 5, 6, which correspond to a total cost
η = 24, 108, 360, 990, 2376, 5148, respectively. As for the Monte Carlo method,
we have repeated the analysis for 20 independent replica and plotted the average
error (solid line) and the maximum error (dashed line).

Monte Carlo Sampling + Point Collocation. The last method con-
sidered consists in taking the Point Collocation as a control variate of the
Monte Carlo sample average to reduce its variance. In this case, we have used
M = 3 (N+p)!

N !p! samples to generate the Point Collocation approximation and M
(independent) samples in the Monte Carlo method with control variate. There-
fore, the total cost of each simulation is η = 2M = 6 (N+p)!

N !p! . In the convergence
plot shown in Figure 7 (label MCPC) we have selected p = 1, 2, 3, 4, 5, 6 and
shown the average error (solid line) and the maximum error (dashed line) ob-
tained over 20 independent replica.

We see from this convergence analysis that, since the number of input ran-
dom variables determining the diffusion coefficient is just N = 7, polynomial
approximations obtained with either Stochastic Galerkin, Stochastic Collocation
or Point Collocation seem to behave very similarly, clearly outperforming the
Monte Carlo method. At the same time, the combination of Point Collocation
and Monte Carlo reduces the original variance and yields a faster convergence
than Monte Carlo. However, this procedure involves more deterministic solu-
tions than the corresponding Point Collocation. The numerical results indicate
that in this low input dimensional case, it is better to invest the extra work in
the original Point Collocation method rather than on the combination of Point
Collocation and Monte Carlo.
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