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Summary: Evaluating hospital performance and its relationship to patients’ characteristics is of utmost importance

to ensure timely, effective, and optimal treatment. This is particularly relevant in areas and situations where the

healthcare system must deal with an unexpected surge in hospitalizations, such as heart failure patients in the

Lombardy region of Italy during the COVID-19 pandemic. Motivated by this issue, the paper introduces a novel

Multilevel Logistic Cluster-Weighted Model (ML-CWMd) for predicting 45-day mortality following hospitalization

due to COVID-19. The methodology flexibly accommodates dependence patterns among continuous and dichotomous

variables; effectively accounting for group-specific effects in distinct subgroups showing different attributes. A tailored

Classification Expectation-Maximization algorithm is developed for parameter estimation, and extensive simulation

studies are conducted to evaluate its performance against competing models. The novel approach is applied to



administrative data from Lombardy Region, with the aim of profiling heart failure patients hospitalized for COVID-

19 and investigating the hospital-level impact on their overall mortality. A scenario analysis demonstrates the model’s

efficacy in managing multiple sources of heterogeneity, thereby yielding promising results in aiding healthcare providers

and policy makers in the identification of patient-specific treatment pathways.

Key words: Cluster-weighted models; Expectation–Maximization algorithm; Health care system; Hierarchical data;

Ising model; Multilevel models.



1 Introduction

Medical data often present a hierarchical structure and encompass hidden clusters of patients.

To evaluate the effectiveness of the health care system or assess the impact of a treatment or

pathology on patient outcomes, classical techniques are often incapable of jointly taking into

account the heterogeneity given by the admitting facility and the intrinsic characteristics

of the patient. This holds significance as failing to separate the hospital effect from the

individual patient’s factors limits the policy’s practicability. Consequently, there is a growing

need to adopt advanced analytical pipelines that can effectively address these complexities.

Utilizing such methodologies enables the medical field to derive deeper insights, capturing the

intricate interplay of variables that collectively influence patient outcomes (Committee et al.,

2012; Ammenwerth et al., 2003; Berta et al., 2016).

Driven by the potential of healthcare administrative data, this study aims to profile and

categorize heart failure patients from the Lombardy region of Italy who were hospitalized for

COVID-19. The importance of studying this population arises from the observed correlation

between COVID-19 and heart failure, which was associated with a significantly high mor-

tality rate during the pandemic. The coexistence of these conditions often complicates the

recovery process for patients infected with the virus (Rey et al., 2020; Bader et al., 2021).

Moreover, the virus itself can also trigger heart failure in patients who have contracted it

(Adeghate et al., 2021). Consequently, the objective of the present work is multifold. First, it

aims to disentangle the combined influence of hospital features and individual patient factors

to improve patient profiling, particularly for vulnerable populations such as those affected by

COVID-19, and to assess hospital effects accordingly. Second, the study seeks to examine and

analyze the impact of respiratory illnesses on the clinical outcomes and overall well-being of

patients within this demographic. This understanding will be crucial in developing tailored

interventions to improve patient outcomes.



From a methodological perspective, the proposed approach originates from the general

framework of mixture modeling, specifically within the realm of cluster-weighted models

(CWM, Gershenfeld, 1997; Ingrassia et al., 2012, 2014). CWMs are employed to represent

the joint distribution of a random vector including a response variable and a set of covariates

in situations in which the data can be naturally divided into clusters.

We propose a novel methodology, termed ML-CWMd, that integrates and extends cluster-

weighted models (CWM) with logistic mixed-effects models (GLMM).

This innovative approach is designed to accommodate multiple types of dependence, cap-

turing not only relationships among observations within the same cluster and group but

also enabling the inclusion of dichotomous dependent covariates through the Ising model

(Ghosal and Mukherjee, 2020; Cheng et al., 2014). This aspect is particularly impactful in

the medical domain as it facilitates the analysis of relationships between the presence or

absence of various diseases (referred to as comorbidities) and distinct risk factors observed

in hospital-grouped patients. The novelty introduced in the paper is therefore two-fold: first,

it generalizes the multilevel logistic cluster-weighted framework (Berta and Vinciotti, 2019),

contributing to the methodological advancement of hierarchical modeling in complex set up;

second, it addresses a critical public health challenge by uncovering group-specific mortality

patterns that account for dependent comorbidities in COVID-19 heart failure patients.

Notice that the efficacy of multilevel models in this context is reinforced by their successful

application to diverse COVID-19 datasets, as demonstrated in recent studies (Verbeeck et al.,

2023; Berta et al., 2024).

The remainder of the paper is structured as follows. In Section 2, we introduce the ML-

CWMd model. In Section 3, we outline the algorithm necessary for model estimation,

discussing inferential aspects and model selection criteria. In Section 4, we showcase the

application of our methodology to the Lombardy region healthcare administrative data,



including a comprehensive scenario analysis. A discussion follows in Section 5. Additionally,

an extensive simulation study has been conducted and is available in Web Appendix A.

The proposed model has been implemented in R (Team, 2024), and the developed routines

are freely available. In addition, we have developed a Shiny app that allows clinicians to

access model estimates by uploading their patients’ data. The application automatically

generates visualizations of results and predictions, enhancing usability and insights while

serving as a promising off-the-shelf tool for seamlessly integrating the ML-CWMd modeling

approach into clinical practice. For more details on the developed routines and the Shiny

app, refer to the Supplementary Materials section.

2 Methodology

Consider a dichotomous response variable Y and a set of covariates X = (U,V,D), where

U represents a p−dimensional vector of continuous variables, V represents a q−dimensional

vector of categorical variables and D represents an h−dimensional vector of dichotomous

variables which may possess some degree of dependence. We consider data points grouped

in a known two-level hierarchy, where units i, for i = 1, . . . , nj , are nested within groups j,

for j = 1, . . . , J . X and Y are defined in a finite space Ω with values in R
(p+q+h)

× {0, 1},

which is assumed to be divided into C clusters, irrespective of the known hierarchy, denoted

as Ω1, . . . ,ΩC . Given this setup, we assume that the joint probability across the clusters can

be factorized as follows:

p((x,y)|θ) =
C∑

c=1

p(y|x, ξc)φ(u|µc,Σc)ψ(v|λc)ζ(d|Γc,νc)wc. (1)

In details, θ denotes the vector encompassing all model parameters. The mixing proportion of

observations within cluster c is indicated with wc (wc > 0, ∀c = 1, . . . , C,
∑C

c=1wc = 1). Con-

tinuous covariates U are modeled as a multivariate normal density φ(·|µc,Σc), with cluster-

wise different mean vectors µc and covariance matrices Σc. The categorical covariates V are



assumed independent and distributed as a q-variate multinomial distribution ψ(·|λc) with

cluster-wise different parameter vectors λc. The dichotomous dependent covariates D follow

the Ising model presented in Ghosal and Mukherjee (2020), characterized by distribution

ζ(·|Γc,νc), with cluster-wise different threshold vectors νc and interaction matrices Γc. U,

V, and D are assumed locally independent within clusters. For each c, p(y|x, ξc) represents

a multilevel logistic regression model where ξc are the cluster-specific parameters for both

fixed and random effects. Without loss of generality, we hereafter discuss the setting in

which covariates in the conditional and marginal distributions of (1) are identical, although

in practical scenarios they might vary partially or entirely (see Section 4). This variation

corresponds to what is commonly referred to in the literature as mixtures of regression

models with concomitant variables (Dayton and Macready, 1988). In each cluster, for every

observation i within group j, the conditional distribution takes the form p(yij|xij, ξc) =

[
πij

]yij[1−πij
]1−yij . Let πj = (π1j, . . . , πnjj) be the vector of conditional probabilities relative

to group j. The mixed effects logistic regression model takes on the following form:

logit(πj) = Fj βc +Rj bj,c, πj =
exp{Fj βc +Rj bj,c}

1 + exp{Fj βc +Rj bj,c}
, (2)

where logit(πj) represents the odds associated with group j, indicating the probability of

an event occurring divided by the probability of not occurring. The terms bj,c ∼ N (0,Dc),

j = 1, . . . , J , represent the random effects for group j in cluster c. The vector βc comprises

the coefficients corresponding to the c-th cluster fixed effects. Matrices Fj and Rj represent

the design matrices associated with fixed effects and random effects in group j, respectively.

We denote the design matrix encompassing all types of covariates as Xj = (Fj ∪ Rj).

All specifications regarding the other terms outlined in Equation (1) will be detailed in

subsequent sections.



2.1 Model for Categorical Covariates V

Consider q categorical covariates indexed by r = 1, . . . , q. In each cluster, we model the

categorical covariates V with q independent multinomial distributions of parameter λcr =

(λcr1, . . . , λcrs, . . . , λcrkr) (c = 1, . . . , C, r = 1, . . . , q), identifying the vector of probabilities

for the kr categories of the r−th covariate. Here we are making the assumption that every

categorical variable takes on the kr categories across clusters c = 1, . . . , C. In this case, we

can represent each of these covariates using a binary vector vr = (vr1, . . . , vrkr) such that

vrs = 1 if vr = s (where s ∈ {1, . . . , kr}), and 0 otherwise (Ingrassia et al., 2015). Therefore,

the density ψ, given by the product of q conditionally independent multinomial distributions,

can be written as:

ψ(v|λc) =

q
∏

r=1

kr∏

s=1

λcrs
vrs , c = 1, . . . , C where λc = (λc1, . . . ,λcr, . . . ,λcq). (3)

2.2 Model for Dichotomous Dependent Covariates D

Consider h dichotomous variables indexed by l = 1, . . . , h which may possess some degree

of dependence and let d = (d1, . . . , dh) be a h−dimensional binary random vector. The

corresponding probability is specified by the Ising model with cluster-specific parameters Γc

and νc:

ζ(d|Γc,νc) =
1

S(Γc,νc)
exp

(
1

2
dTΓcd+ dTνc

)

, c = 1, ..., C, (4)

νc = [νc1, . . . , νch], Γc =













0 γc12 . . . γc1h

γc21 0 . . . γc2h

...
...

. . .
...

γch1 γch2 . . . 0













.

Γc ∈ R
hxh is a symmetric matrix and S is the normalizing constant. The interaction

parameter Γc depicts the interrelationships between all pairs of binary variables. Meanwhile,



the threshold parameter νc highlights the propensity of a variable to lean towards one state

or the other when all interaction parameters related to that particular variable are equal to

zero. The Ising model has formulations in two domains ({0,1} and {-1,1}), each offering a

different interpretation of interaction parameters. Within the {0, 1} domain, augmenting the

interaction parameter between two variables (e.g., γc12), results in an increased likelihood of

the state (1, 1) when compared to the other feasible states: (0, 0), (0, 1), and (1, 0). Further

details on the formulation of the Ising model can be found in Web Appendix B.

2.3 Likelihood of the Model

Consider a sample of N = n1 + · · · + nJ observation pairs {(xij, yij)}j=1,...,J, i=1,...,nj
drawn

from model (1). To express the likelihood, we introduce a latent variable z, where zijc = 1

if (xij, yij) belongs to the c−th cluster, and 0 otherwise. Also, we make the assumption of

independence between observations belonging to different clusters and independence between

observations within the same cluster but belonging to different groups (highest-level units).

With a slight abuse of notation, we use the vector zjc to indicate that only observations

within group j that are part of cluster c contribute to the likelihood associated with cluster

c and thus we express the complete likelihood and log-likelihood respectively as

L((x,y, z);θ) =
C∏

c=1

J∏

j=1

[

p(yj|xj, ξc)φ(uj|µc,Σc)ψ(vj|λc)ζ(d|Γc,νc)wc

]
zjc

,

l((x,y, z);θ) =
C∑

c=1

J∑

j=1

zjc log
(
p(yj|xj, ξc)φ(uj|µc,Σc)ψ(vj|λc)ζ(dj|Γc,νc)wc

)
.

(5)

(6)

The log-likelihood can be factorised as



l((x,y, z);θ) =
C∑

c=1

J∑

j=1

zjc log
(
p(yj|xj, ξc)

)
+

C∑

c=1

J∑

j=1

nj∑

i=1

zijc log
(
φ(uij|µc,Σc)

)
+

+
C∑

c=1

J∑

j=1

nj∑

i=1

zijc log
(
ψ(vij|λc)

)
+

C∑

c=1

J∑

j=1

nj∑

i=1

zijc log
(
ζ(dij|Γc,νc)

)
+

+
C∑

c=1

J∑

j=1

nj∑

i=1

zijc log
(
wc

)
, (7)

since we take into account the dependence between observations in the same cluster and

group only in the regression component. In particular, for the regression component, we

assume independence:

• between observations originating from different clusters;

• between observations originating from the same cluster but belonging to different groups.

The first assumption offers the advantage of simplifying the log-likelihood form, facilitating

its maximization as elaborated in the next section. However, this assumption comes with a

drawback, i.e., it precludes the model from capturing potential associations among observa-

tions belonging to the same group (e.g., hospital) but to different clusters. In the healthcare

context, while it may seem reasonable to assume that individuals treated in the same hospital

are interconnected, it is important to recognize that patients assigned to different clusters

often exhibit significantly different health statuses (see Section 4), reducing the relevance

of hospital-induced dependence. Conversely, the associations among individuals treated at

the same hospital and within the same cluster are effectively captured through the random

effects incorporated into the regression component of the model.

3 Model Estimation

To estimate the model parameters, we propose a tailored Classification Expectation-Maximization

(CEM) algorithm whose theoretical guarantees of the monotonic increase of the objective



function at each iteration and its convergence to a stationary point have been proved

in Celeux and Govaert (1992). In the following, we present the E, C and M steps. All

computational details concerning the derivation of the updates are provided in Web Ap-

pendix C. Lastly, additional details regarding the estimation procedure such as initialization,

convergence, model selection and prediction are discussed in Section 3.4.

3.1 E-step

At the (k + 1)−th iteration, the E-step involves computing the expected value of the log-

likelihood l((x,y, z);θ) defined in Equation (7), given the observed data and the previous

estimate θ̂(k), obtained from iteration k. Therefore, the E-step entails calculating the ex-

pectation of the random variables Zijc associated to zijc. In particular, for j = 1, . . . , J, i =

1, . . . , nj , c = 1, . . . , C, we have:

E
[
zijc|(x,y), θ̂

(k)
]
= P

[
zijc = 1|(xij, yij , ), θ̂

(k)
]
= τ̂

(k+1)
ijc ((xij, yij), θ̂

(k)) =

=
p(yij|xij, ξ̂

(k)
c )φ(uij|µ̂

(k)
c , Σ̂

(k)
c )ψ(vij|λ̂

(k)
c )ζ(dij|Γ̂

(k)
c , ν̂

(k)
c )ŵ

(k)
c

∑C

c=1 p(yij|xij, ξ̂
(k)
c )φ(uij|µ̂

(k)
c , Σ̂

(k)
c )ψ(vij|λ̂

(k)
c )ζ(dij|Γ̂

(k)
c , ν̂

(k)
c )ŵ

(k)
c

, (8)

which corresponds to the posterior probability that observation (xij, yij) belongs to the c−th

cluster, using the current value of θ, i.e., θ̂(k) (Ingrassia et al., 2015).

3.2 C-step

The classification step involves hard-assigning each observation to a cluster according to the

expectation calculated in Equation (8). We compute the indicator variables z̃
(k+1)
ijc as follows:

z̃
(k+1)
ijc =







1 if c = argmaxt∈{1,...,C} τ̂
(k+1)
ijt ((xij, yij), θ̂

(k))

0 otherwise

(9)

where each observation is uniquely allocated to the cluster with the highest estimated

posterior probability.



3.3 M-step

During the M-step, in the (k + 1)−th iteration, the goal is to maximize the conditional

expectation of l((x,y, z);θ) given the observed data, in which zijc is replaced by z̃
(k+1)
ijc . See

Web Appendix C for the derivation of all formulas in the M-step.

3.4 Additional details on the estimation procedure

Initialization is a crucial factor for any deterministic algorithm. Although various methods

have been suggested in the literature (for an in-depth discussion, see e.g., Biernacki et al.,

2003; Karlis and Xekalaki, 2003), empirical evaluation suggests that using multiple random

initializations is both reliable and not overly computationally expensive in our context.

Thus, we initialize the CEM algorithm by assigning observations to latent clusters randomly,

repeating this process several times, and selecting the result with the highest maximized log-

likelihood for each potential number of clusters C ∈ {1, . . . , Cmax}, with Cmax being a pre-

specified upper bound for the number of sought clusters. Convergence is monitored looking at

the relative increase of the objective function into two consecutive iterations. Lastly, model

selection is performed using the Bayesian Information Criterion (BIC, Schwarz, 1978) to

identify the best C in a data-driven fashion. In details, the BIC for ML-CWMd is obtained

as:

BIC = −2 · ln(L) + k · ln(N),

k = C · [1 +m]
︸ ︷︷ ︸

kreg

+ C ·

[
p(p+ 3)

2

]

︸ ︷︷ ︸

kcont

+ C ·

q
∑

r=1

(kr − 1)

︸ ︷︷ ︸

kcat

+ C ·

[
l(l + 1)

2

]

︸ ︷︷ ︸

kdich

+ C − 1
︸ ︷︷ ︸

kweights

, (10)

where ln(L) is the maximized log-likelihood of the model and m is the number of regression

parameters. Additionally, the formula for generating a prediction for a new observation with

our model, whose complete derivation is detailed in Web Appendix B, is as follows:

E[y|x;θ] = p(y = 1|x;θ) =

∑C

c=1 φ(u|µc,Σc)ψ(v|λc)ζ(d|Γc,νc)wc · p(y = 1|x, ξc)
∑C

c=1 φ(u|µc,Σc)ψ(v|λc)ζ(d|Γc,νc)wc

. (11)



4 ML-CWMd for profiling COVID-19 Heart Failure patients and evaluating

health providers

The proposed ML-CWMd model is now employed to profile Heart Failure (HF) patients

affected by COVID-19 and evaluate the heterogeneity of healthcare providers effects on

different risk groups. A patient is classified as HF if their records indicate hospitalizations

or contacts with emergency room under Diagnosis-Related Group (DRG) code 127. The

DRG 127 corresponds to the definition “Heart Failure and Shock” according to the version

of the DRG grouping system used in the administrative database of the Lombardy Region,

which follows the MS-DRG v40 version. This code is assigned to hospital discharges where

the primary or secondary diagnoses (ICD-9-CM) indicate heart failure (ICD-9-CM: 428.*)

or related conditions such as hypertension with heart failure (ICD-9-CM: 402.01, 402.11,

and 402.91), according to the coding criteria adopted by the region. We focus on HF

patients who have been hospitalized due to COVID-19 and who appear in the healthcare

administrative database of the Lombardy region in Italy. The purpose of this study is

twofold. On one hand, our aim is to enhance comprehension of the characteristics and

requirements of HF patients in the region, particularly amidst the exceptional circumstances

following the onset of the COVID-19 pandemic. On the other hand, we aim to investigate the

capabilities of the proposed model in capturing heterogeneous dynamics within hierarchical

data. Specifically, by applying the ML-CWMd model, we explore the presence of latent

HF COVID-19 patient subpopulations, hereafter called patients profiles, that display unique

sets of attributes and intrinsic characteristics. Next, we evaluate and rank hospitals based

on their performance in treating patients with different profiles. Finally, we deepen our

understanding on the association between respiratory illnesses and HF COVID-19 patients

death risk, across different patient profiles. This might offer valuable insights into the complex

interplay between patient characteristics, hospital dynamics, and the impact of respiratory



illnesses in the context of COVID-19 hospitalizations, ultimately resulting in actionable

margins for defining healthcare interventions to enhance the management of patients with

HF.

4.1 Dataset Description

From the healthcare administrative records of the Lombardy region, we identify patients

who have been diagnosed with HF (as described in the previous paragraph) in the period

between January 1, 2018 and December 31, 2020. Among them, we select the ones who have

been hospitalized with COVID-19 in Lombardy region between January 31, 2020 and June

18, 2021. The hospitalization for COVID-19 is identified through an explicit “COVID-19

flag” in the database. This flag is based on the coding criteria established by the Lombardy

Region during the pandemic. The sample contains 3193 HF COVID-19 patients within 32

distinct hospitals. Hospitals with less than 50 cases were excluded. For each patient we

observe personal and clinic characteristics, as:

• Age: HF patient’s age at the moment of COVID-19 hospitalization.

• Sex: gender of the patient.

• Respiratory diseases: binary variables indicating whether the patient suffers or not from

chronic obstructive pulmonary disease (COPD), pneumonia (PNA), respiratory failure

(RF) and bronchitis (BRH) at the moment of admission.

• Modified Multisource-Comorbidity Score (MCS): the aim of this scoring system is

to offer a succinct snapshot of the patient’s clinical condition as described in Corrao et al.

(2017). We customized the score to the current setting (indicating it as ‘Modified MCS’)

excluding comorbidities related to respiratory system. In doing so, we aim at evaluating

the influence of these particular diseases on a standalone basis with the adjustment in the

regression model. See Web Appendix D for a detailed breakdown of patients’ Modified

MCS across six distinct categories, reflecting varying degrees of health severity.

https://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioServizio/servizi-e-informazioni/Enti-e-Operatori/sistema-welfare/Accreditamento/accesso-db-covid/accesso-db-covid


Web Appendix D provides a comprehensive overview of both personal and clinic variables

in the dataset. Additionally, it includes a description of the clinical variables along with

their corresponding ICD-9-CM codes (Romano et al., 1993). The endpoint is the overall

mortality within a specific timeframe t following hospitalization for COVID-19. We identify

the 45-day threshold as adequate, aligning with our research objectives. We selected this

timeframe for two main reasons. Firstly, 89.7% of the deceased patients passed away within

45 days. Secondly, this timeframe enables us to evaluate both the initial severity of the illness

and the potential influence of hospital treatment on patient outcomes. A shorter duration

might not offer ample time for the effects of hospital treatment to manifest, while a longer

duration could introduce more confounding variables or uncertainties. Therefore, we created

a response encoded as a dichotomous variable that takes the value 1 if patient i passed away

within t = 45 days starting from the moment of hospital admission and 0 otherwise. More

generally, given the considered time frame t from admission, the regression model will return

predictions about the likelihood of a patient’s mortality within this specific time frame. This

enables the creation of a risk score for each individual patient.

4.2 Model Setting and Results

We make use of age, MCS, gender, COPD and BRH to effectively discern latent patient

profiles by including them in the set of random covariates in the CMW framework. Concern-

ing respiratory diseases, we incorporate PNA and RF exclusively into the regression term of

the model, since COPD and BRH are primary diseases, whereas PNA and RF often result

from other underlying conditions. Consequently, we utilize COPD and BRH as a driver for

patient profiles; while examining the impact of PNA and RF on the cluster-wise different

probability of patient mortality. Regarding the distributions of the covariates, we model age

and MCS as continuous variables using a multivariate normal distribution; while, gender,

COPD and BRH are modeled as dichotomous dependent covariates using the novel Ising



model specification introduced in the proposed ML-CWMd framework. In details, for each

patient i in hospital j and for each cluster we consider:

logit(πij) = αc + β1c · PNAij + β2c · RFij + bcj, (12)

where πij is the probability of that patient to die within 45 days from admission. Following a

similar procedure as in Section 3.4, we fit ML-CWMd models varying C ∈ {1, 2, 3, 4}. The

optimal result in terms of BIC is associated with C = 3 clusters (for the complete comparison

table and the visualization of the three clusters in the space Age-MCS, see Web Appendix

D).

Results are subsequently reported in terms of clusters description, fixed and random effects

interpretation and model predictions. The first cluster comprises 2,722 individuals (85.2%)

aged 82.52 on average with a mean MCS of 9.87, i.e., older individuals with relatively limited

occurrence of comorbidities. We label this profile as the cohort of elderly patients who

are in a state of good health. Within this cluster, there is gender balance (males 54.6%

vs females 46.4%), while patients without COPD (67.8%) and BRH (83.2%) predominate.

As we can see from Figure 1a, the interaction parameters, which capture the relationships

between pairs of binary variables, reveal a positive correlation. The interaction between sex

and the two respiratory diseases remains minimal, whereas the correlation between COPD

and BRH emerges as very high. In this cluster, 35.6% of individuals passed away within

45 days of being admitted. The fixed effects estimates, reported in Table 1, reveal that

pneumonia is statistically significant, indicating a higher probability of mortality among

patients with this condition. When exploring the random effects related to different hospitals

(Figure 2a), we discover that 15 out of 32 hospitals demonstrate a significant influence,

either in reducing or increasing the likelihood of death among patients in this cluster,

with respect to the average. This phenomenon can be explained since these patients profile

comprises elder individuals who are still in good health, making the appropriateness of



hospital instruments and techniques particularly influential. Among the hospitals, those

highlighted in green in Figure 2a are the ones that significantly lower the probability of death,

and thus can be regarded as the most proficient in treating patients belonging to Cluster 1;

conversely, hospitals highlighted in red are the ones that significantly increase the probability

of death. The second cluster comprises 321 patients aged 59.67 on average with a mean MCS

score of 4.59. This points towards a patients profile composed of young and middle-aged

individuals who exhibit favorable health conditions. Within this cluster, there is prevalence

of males (82.2%) and a prevalence of patients without COPD (84.4%) and BRH (93,5%).

Figure 1b illustrates the interaction parameters, indicating a notable positive correlation

between COPD and BRH, alongside a significant negative correlation between BRH and

sex. This suggests a higher prevalence of females with BRH. Within a 45-day period post-

hospitalization, the mortality rate among individuals in this cluster stands at 19.3%. Upon

examining the fixed effects (Table 1), we observe that the presence of RF in patients within

this cluster substantially increases their risk of mortality. This correlation likely arises from

the fact that RF implies impaired lung function, resulting in diminished oxygen levels in the

bloodstream. Given that COVID-19 primarily targets the respiratory system, the coexistence

of these two conditions further exacerbates respiratory dysfunction, making it challenging for

the body to maintain adequate oxygen levels. Consequently, despite their overall good health,

the severe oxygen deficiency can lead to exceptionally severe complications. In Figure 2b, we

observe that only two hospitals exhibit significant associations with an increased likelihood

of death in these patients. The limited impact of hospital variability on Cluster 2 is likely

attributable to the fact that patients within this profile are generally younger and consistently

healthier than the rest of the cohort, making them less susceptible to the overall quality of

care provided by the treatment facility.

The third cluster comprises a total of 150 patients aged 74.65 on average along with a



mean MCS score of 29.81. This patients profile is predominantly composed of individuals

characterized by advanced age and a significant amount of comorbidities. Within this cluster,

there is prevalence of males (67.5%) and a higher occurrence of patients without COPD

(62.6%) and BRH (79.3%). Figure 1c depicts interaction parameters, revealing a substantial

positive correlation between COPD and BRH, as well as a significant positive correlation

between BRH and gender. This implies a greater prevalence of BRH among males within this

cluster. For this cluster, the percentage of patients who died within a 45-day period following

hospitalization amounts to 43.3%. Interestingly, the presence of respiratory failure appears

to significantly reduce the probability of death in patients within this cluster (Table 1).

This somewhat counterintuitive finding is frequently observed among patients of this profile

(West et al., 2014). Respiratory failure acts as a protective factor; its occurrence in patients

already in critical condition prompts medical professionals to prioritize their monitoring

and treatment, thereby enhancing their chances of survival. Regarding the random effects

(Figure 2c), only one hospital shows a significant decrease in the probability of death for

this profile. This further suggests that the health conditions of patients in this cluster are so

critical that the specific hospital where they are treated has relatively little or no impact on

their outcomes.

[Figure 1 about here.]

[Table 1 about here.]

[Figure 2 about here.]

When examining the random effects across clusters, a noteworthy trend emerges. For in-

stance, Hospital H20 consistently retrieves positive evaluations in both Clusters 1 and 3,

whereas Hospitals H13 and H15 receive unfavorable ratings in both Clusters 1 and 2. This

discovery has important implications for policy making, allowing suitable monitoring and

second level analysis of ‘out of control’ situations.



Finally, we evaluate the predictive accuracy and calibration of the proposed model com-

paring it with GLMM and GLM under the same regression settings using held-out data.

Specifically, we generate 20 training-test splits with an 80-20 proportion stratified by hospi-

tals. The models are trained on the training data and then used to predict death outcomes for

patients in the test set. The results, including training and test predictive accuracy, Expected

Calibration Error (ECE), and Brier score, are summarized in Table 2, reporting the mean

and standard deviation across the 20 splits. The proposed model consistently outperforms

the alternatives, achieving superior performance on all metrics.

[Table 2 about here.]

4.3 Scenario Analysis

In this section, we implement a scenario analysis to emphasize the importance of considering

both the cluster factor and the hospital effect to capture the real-world complexity. We define

three new COVID-19 HF patients, with characteristics closely mirroring those identified

within the three clusters. From each of these patients, we select one with respiratory diseases

(PNA and RF), and one without them, resulting in six possible profiles. For the complete

table including patients’ characteristics, see Web Appendix D. The objective is to illustrate

the difference between predicting the likelihood of mortality for these new patients using

the proposed model (Equation (11)), a GLMM that neglects the consideration of latent

patient clusters, and a GLM that neglects both the consideration of latent patient cluster

and hospital effect. For each patient, we delineate three distinct predictions, corresponding,

respectively, to random effects equivalent to −σ̂bc (hospital with commendable performance

concerning that specific patient profile), 0 (hospital with negligible influence on the outcome)

and +σ̂bc (hospital with poor performance).

[Figure 3 about here.]



In Figure 3, we show the predictions obtained with the three models. For the GLM, we have

only a single value since it does not take into account the hospital effect. The bar intervals on

the graph show how the predicted probabilities of death change when the hospital is consid-

ered beneficial for patient characteristics (at −σ̂bc ) versus when it is considered detrimental

(at +σ̂bc ). The GLMM generates highly similar predictions across the same patient with and

without respiratory diseases because it does not identify any respiratory diseases as significant

covariates. Notably, only age, sex, and MCS emerge as significant variables in the fixed

regression component of the GLMM. Consequently, GLMM fails to capture the variability

attributed to respiratory diseases, which could significantly influence a patient probability

of death, particularly among COVID-19 HF patients. Instead, using the ML-CWMd enable

us to take into consideration the respiratory diseases effects observing a significant change

in the probability of death based on the presence or absence of these diseases in the ML-

CWMd predictions. For instance, for the patients in the green cluster (young individuals

with low MCS), the probability of death in a hospital characterized as detrimental for the

patient characteristics is approximately 0.28 if the patient has no respiratory diseases. This

probability increases to around 0.4 if the patient has both respiratory diseases. In conclusion,

the ML-CWMd provides more precise estimations of patient survival probabilities across

different risk categories. Additionally, it offers a valid tool for the assessment and monitoring

of hospital facilities utilizing administrative databases.

5 Discussion

This paper has introduced a novel methodology for simultaneously risk-stratifying patients

and conducting cluster-specific hospital evaluations. In details, a novel Multilevel Logistic

Cluster-Weighted Model (ML-CWMd) is devised, extending previous works with the ability

to effectively capture the dependence among observations within the same cluster and

hierarchy; as well as among dichotomous variables through the inclusion of the Ising model



contribution. Resorting to maximum likelihood estimation, we have implemented a tailored

Classification Expectation Maximization algorithm to perform model fitting, testing its

performance in a simulated setting, and comparing it with state-of-the-art alternatives. Our

proposal has demonstrated promising results when dealing with complex scenarios encom-

passing latent clusters of observations, group effects, and the interdependence among binary

covariates. This research has been motivated by the challenge of developing tailored models

needed for accommodating diverse patient profiles and hospital-specific effects. Specifically,

we have applied our proposal to a real-world administrative dataset of Lombardy region,

Italy, including information about Heart Failure patients hospitalized for COVID-19. The

analysis has revealed the existence of three distinct patient profiles, each characterized by

cluster-wise different survival patterns and comorbidities. On top of this, the model setting

has allowed for valuable insights into the ways respiratory diseases and hospitals impact

individual profiles of patients. The analysis has thus demonstrated promising results in

terms of actionable margins for defining healthcare interventions to enhance the territorial

management of patients with heart failure through the planning of optimal care pathways,

thereby reducing adverse clinical outcomes and improving system efficiency.

The devised methodology also possesses limitations. The independence assumption among

observations belonging to the same known hierarchy but different latent cluster may not

always be tenable, as the grouping effect could potentially exhibit shared patterns across

clusters. Furthermore, the restriction of modeling dependence among dichotomous covari-

ates only was solely motivated by the type of covariates available within the Lombardy

region database. Specifically, the considered Ising model represents the simplest form of

Markov Random Fields (Kindermann and Snell, 1980), and future methodological advance-

ments could indeed extend the current proposal to allow for more general higher-order

interactions. In addition, tackling the well-known over-parameterization issue associated



with multiple continuous covariates could improve both the flexibility and adaptability

of the proposed approach. Solutions to this issue are proposed in Banfield and Raftery

(1993), Celeux and Govaert (1995) and Murphy and Murphy (2020), among others. Lastly,

one aspect not addressed in this work is the evaluation of uncertainty associated with

parameter estimates. While non-differentiability issues may prevent the implementation of

an information matrix based approach in our setting, sampling-based methods provide an

alternative and generalizable solution for estimating standard errors. Jackknife and boot-

strap techniques could be adapted to our problem, similar to the approaches proposed by

O’Hagan et al. (2019) and Berta and Vinciotti (2019) in the context of Gaussian mixtures

and multilevel logistic cluster-weighted models, respectively. Future research will extend the

current proposal to address its limitations and enhance its ability to model time-to-event

outcomes, with several proposals already under study.
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(a) Ising model interaction param-
eters Γ1 obtained from ML-CWMd
estimation for the first cluster.

(b) Ising model interaction param-
eters Γ2 obtained from ML-CWMd
estimation for the second cluster.

(c) Ising model interaction param-
eters Γ3 obtained from ML-CWMd
estimation for the third cluster.
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(a) Random effects of the 32 hospitals in the first cluster. Hospitals increasing the probability of death
are highlighted in red, while those decreasing it are highlighted in green.
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(b) Random effects of the 32 hospitals in the second cluster. Hospitals increasing the probability of death
are highlighted in red, while those decreasing it are highlighted in green.
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(c) Random effects of the 32 hospitals in the third cluster. Hospitals increasing the probability of death
are highlighted in red, while those decreasing it are highlighted in green.
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Table 1: Parameters values acquired through ML-CWMd model estimation across the three
clusters. The upper section displays the values of the parameters µ, Σ and ν . The
lower section shows the estimate of fixed effects parameters βc (c = 1, . . . , C) and their
corresponding p-values.

Parameter Cluster 1 Cluster 2 Cluster 3

µ (82.52; 9.87) (59.67; 4.59) (74.65; 29.81)

Σ

[
51.3 −3.8
−3.8 36.9

] [
91.6 −6.3
−6.3 19.2

] [
98.6 14.7
14.7 35.9

]

ν (0.11; −3.41; −1.37) (1.80; −2.10; −1.90) (0.28; −4.86; −1.40)

Cluster 1 Cluster 2 Cluster 3

Variable Estimate Pr(> |z|) Estimate Pr(> |z|) Estimate Pr(> |z|)

PNA +0.18 0.09 . −0.08 0.21 +0.27 0.47

RF +0.10 0.37 +1.51 0.018* −0.90 0.046*



Table 2: Mean and standard deviation for all metrics across the 20 held-out data.

Evaluation Type ML-CWMd GLMM GLM

Train Pred.Acc. 0.660± 0.01 0.639± 0.01 0.588± 0.003

Test Pred.Acc. 0.620± 0.02 0.610± 0.01 0.588± 0.01

ECE 0.045± 0.009 0.048± 0.012 0.056± 0.012

Brier Score 0.209± 0.005 0.212± 0.004 0.225± 0.003
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