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Simple Summary: Advanced image analysis, specifically radiomics, has been recognized as a 
potential source of biomarkers for cancers. However, there are challenges to its application in the 
clinic, such as proper phenotyping of diseases where multiple lesions coexist. In this study, we aimed 
to characterize the intra-tumor heterogeneity of metastatic prostate cancer using an innovative 
approach. This approach consisted of a feature transformation method to build a radiomic profile 
of lesions extracted from [18F]FMCH PET/CT, a qualitative assessment of intra-tumor het-
erogeneity of patients, and a quantitative representation of the intra-tumor heterogeneity of 
patients in terms of the relationship between their lesions’ profiles. We found that metastatic 
prostate cancer patients had lesions with different radiomic profiles that exhibited intra-tumor 
radiomic heterogeneity and that the presence of many radiomic profiles within the same patient 
impacted the outcome. 
 
Abstract: Advanced image analysis, including radiomics, has recently acquired recognition as a 
source of biomarkers, although there are some technical and methodological challenges to face for 
its application in the clinic. Among others, proper phenotyping of metastatic or systemic disease 
where multiple lesions coexist is an issue, since each lesion contributes to characterization of the 
disease. Therefore, the radiomic profile of each lesion should be modeled into a more complex 
architecture able to reproduce each “unit” (lesion) as a part of the “entire” (patient). This work 
aimed to characterize intra-tumor heterogeneity underpinning metastatic prostate cancer using an 
exhaustive innovative approach which consist of a i) feature transformation method to build an 
agnostic (i.e., irrespective of pre-existence knowledge, experience, and expertise) radiomic pro-file 
of lesions extracted from [18F]FMCH PET/CT, ii) qualitative assessment of intra-tumor 
heterogeneity of patients, iii) quantitative representation of the intra-tumor heterogeneity of 
patients in terms of the relationship between their lesions’ profiles, to be associated with prognostic 
factors. We confirmed that metastatic prostate cancer patients encompassed lesions with different 



radio-mic profiles that exhibited intra-tumor radiomic heterogeneity and that the presence of many 
radiomic profiles within the same patient impacted the outcome. 
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1. Introduction 
In the era of personalized treatment an increasing focus has arisen on biomarkers to identify a 
patient’s specific characteristics and assist clinicians in their decision making. Parallelly to serum and 
molecular markers, advanced image analysis has recently acquired recognition as source of 
biomarkers. Whole-body assessment that attempts to evaluate multiple lesions (when present) at 
the same time, repeatability and cost-effectively—as is performed using conventional imaging—are 
among the pros of advanced image analysis over other approaches [1,2]. Specifically, quantitative 
features extracted from imaging through mathematical approaches (i.e., radiomics) are capable of 
categorizing tumors into different (imaging) phenotypes. Nonetheless, some technical and 
methodological challenges are faced with the application of radiomics clinically [3,4]. To successfully 
implement radiomics in the real clinical world, sustainable, rigorous, and robust research plans are 
needed for study design, model development, training, and testing. Although these limitations have 
been extensively acknowledged in recent years, as clearly stated by reviews, editorials, expert 
opinions, and position papers, the majority of radiomic studies lack adequate sample size, rigorous 
methodology, and ap-propriate methods for statistics and data analysis. As a result, no strong 
evidence about the role of radiomics has been provided [5], nor understandable answers have been 
given to explain their clinical significance [2,6,7]. Moreover, many studies showed a scarce 
robustness for radiomics features and proved that preprocessing data harmonization may have a 
positive impact, simplifying multi-institutional collaboration for large-scale analytics [4,8,9]. Indeed, 
radiomic features are affected by many pre- and postprocessing factors including the scanner, 
acquisition protocol, segmentation method, soft-ware, and parameters setting for extraction [4–6]. 
Proper methods for feature selection and dimensionality reduction should be employed to limit 
redundancy and remove un-informative data from the dataset [4–6]. Moreover, well-designed trials 
and multidisciplinarity are also crucial factors in radiomic studies to informatively contribute to 
science [10,11].  
Predictive and prognostic radiomic models have been extensively proposed for primary tumors, 
whereas proper phenotyping of metastatic or systemic disease where multiple lesions coexist is still 
missing [12,13]. We recently demonstrated that proper modelling of radiomic data provides crucial 
information on lesion heterogeneity in patients with recurrent prostate cancer (PCa), reflecting the 
presence of different cellular clusters within each patient. Indeed, biochemical recurrence will occur 
in 20–40% of PCa patients after radical prostatectomy and in 30–50% of cases after radiotherapy 
within ten years [14] suggesting that other factors—in addition to those commonly used in clinical 
practice (e.g., Gleason score)—play a role in disease progression and prognosis. We previously 
showed that [18F]FMCH PET/CT lesion heterogeneity differed in patients with limited tumor burden 
(i.e., oligometastatic) as compared with patients with more advanced disease. Such heterogeneity 
significantly decreased when considering only lesions within the same organ with respect to all the 
lesions and when focusing on metabolically similar lesions featuring comparable SUV_max values 
[13]. From this experience, we learnt that to maximize the benefit of subpopulation-specific risk 
stratification, we have to move beyond single lesion assessment. Inter-lesion description is needed 
to build up an “object” representing the inter-lesion relation network, exhaustively representing the 
disease within the patient. Nonetheless, each lesion (and its heterogeneity) contributes to 
characterize the disease and, consequently, the patient. Therefore, each lesion’s radiomic profile 



should be modeled into a more complex architecture able to reproduce each “unit” (lesion) as a 
part of the “entire” (patient).  
This work aimed to provide three different contributions to access and potentially exploit cancer 
imaging phenotypes in PCa. With reference to Figure 1, we first perform a view-wise radiomic 
feature transformation model to build an agnostic (i.e., irrespective of pre-existence knowledge, 
experience, and expertise) radiomic profile of lesions from their [18F]FMCH PET/CT assessment (1). 
Then, we cluster the agnostic radiomic profiles of lesions according to their similarity (2), and we 
exploit these clusters to qualitatively characterize the similarity of lesions (3) and intra-tumor 
heterogeneity of patients (4). Furthermore, we quantitively represent patients’ disease phenotype 
based on the evolutionary relationship between their lesions’ profiles (5). To do this, tree-shaped 
objects were proposed for patient representation. The clinical relevance of the tree-shaped patient 
representation was assessed in terms of association with clinical prognostic factors and patient 
outcome (6). 
 

 
Figure 1. Flowchart of the analyses: at the lesion level, lesions are (1) represented through an agnostic 
dimensionality re-duction of radiomic vectors and (2) clustered in groups, which are further analyzed with 
clinical variables (3). At the patient level, patients are qualitatively described in terms of intra-patient 
heterogeneity (4), represented through trees (5), and quantitively analyzed with prognostic purposes (6). 

 
2. Materials and Methods 
2.1. Study Design and Patient Selection 
The cohort of the present analysis consisted of 55 male patients (mean age 73 ± 7 years; median 
age 75 years, range 58–85) with biochemical failure after first-line curative treatments for PCa, 
exhibiting at least two lesions showing uptake of [18F]FMCH at PET/CT. All the scans were 
performed at the Nuclear Medicine Department of the Azienda Ospedaliero Universitaria Pisana, 
using an integrated PET/CT system General Electric Discovery 710 (General Electric Healthcare, 
Waukesha, WI, USA) as previously detailed [13]. A total of 333 lesions were I, including 149 lymph 
node (68 regional and 81 distant) metastases and 221 bone lesions. The median number of lesions 
for each patient was 5. Demographic and clinical patient data including age, Gleason score (GS) at 
diagnosis, prostate specific antigen (PSA) level at the time of [18F]FMCH PET/CT, primary treatment, 
and androgen deprivation therapy (ADT; if yes: ongoing or discontinued) were collected. Baseline 
patient characteristics are summarized in Table 1. 
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Table 1. Baseline patient characteristics. ADT: androgen deprivation therapy; N: no; PSA: prostate specific 
antigen; RP: radical prostatectomy; RT: radiation therapy; Y: yes. * Value identified as significant in a larger 
population [13] 
 

Variable Number of patients (%) 

Number of metastases 

Oligo (< 3) 15 (27%) 

Multi ( 3) 40 (73%) 

Oligo (< 5) 26 (47%) 

Multi (5) 29 (53%) 

Intermediate  

(3 ≤ n < 5) 
11 (20%) 

Gleason Score (dichotomous) 

< 7 7 (13%) 

= 7 24 (44%) 

> 7 18 (33%) 

Missing 6 (10%) 

Ongoing therapy (ADT) 
Y 24 (44%) 

N 31 (56%) 

Primary treatment  

(initial therapy) 

RP 15 (27%) 

RP+RT 30 (54%) 

RT 7 (13%) 

Missing 3 (6%) 

PSA (dichotomous) 

≤ 1.93* 11 (20%) 

> 1.93 33 (40%) 

Missing 11 (20%) 

 
2.2. Image Analysis 
Image analysis and radiomic feature extraction have been previously detailed [13]. Briefly, the LIFEx 
software (http://www.lifexsoft.org, [15]) was used to semi-automatically segment all patients’ 
lesions and obtain, for each of them, five conventional parameters related to the standardized 
uptake value (SUV) and 37 radiomic features. The 37 radiomic features were grouped, by 
methodological construction and software output, into six different semantic groups (HISTOGRAM, 
SHAPE, GLCM, GLRLM, NGLDM, and GLZLM). 
 
2.3. Data Analysis and Statistics 
Frequency tables and descriptive statistics were used to summarize the study’s population. 
According to the contributions of this work, analyses consisted of three steps, i.e., (1) the 
construction of lesions textural profile, (2) a qualitative and (3) a quantitative assessment of intra-
tumor heterogeneity according to the tree-based patient representation. Each step is validated by 
means of a comprehensive characterization of the clinical variables as detailed in the results section 
following the present one. Moreover, the quantification of intra-tumor heterogeneity via tree-
based representation was further tested for its prognostic power through survival analysis. 
 
2.3.1. Lesion Textural Profile 
Data depth was applied for radiomic data representation in this analysis. A data depth is a way of 
measuring how deep (central) a given observation is with respect to the peer observations. It can 
be thought of as a multivariate generalization of boxplots. Indeed, when analyzing a boxplot of a 
variable we are assessing the relative position of each sample in the context of the other samples’ 
distribution: samples close to the median values are typical samples and are more probable to be 
found in the distribution. Contrary to this, the greater the distance from the central values the less 
typical they are, indicating they are rarely observed within the phenomenon under analysis 



(outliers). The same approach can be extended to observations considering a higher number of 
variables, and the measure of the centrality/outwardness of data points is called the depth of the 
points. Indeed, depths allow ranking of objects characterized by a number of features d>1. Several 
definitions of data depth—such as Mahalanobis depth, Halfspace (or Tukey) depth, projection 
depth, and spatial depth—are available in the literature [16–18] and their properties were reviewed 
for radiomic data representation in our context. Exploratory analyses are described in 
Supplementary Figure S1. 
Since radiomic features are usually extracted from different high-throughput methods, they provide 
a multi-view textural description of lesions. Accordingly, they are grouped into different matrices or 
categories. Specifically, in this study radiomic features were divided into six semantic groups, 
namely histogram-derived variables, shape-derived variables, GLCM-derived variables, GLRLM-
derived variables, NGLDM-derived variables, and GLZLM-derived variables. Collinearity and 
redundancy among features within these semantic groups are known to be strong, so for the depth 
analysis we maintained the same semantic structure. We computed depth measures separately for 
each group of variables, obtaining a depth value for each se-mantic radiomic group. To quantify the 
agreement of information provided by the views, a ranking agreement analysis was performed with 
R package SuperRanker [19]. The procedures are discussed in Supplementary Figure S2. 
Conventional, i.e., SUV-related, features of uptake values, not belonging to any of the radiomic 
groups, were excluded from the depth computation and left for results interpretation.  
 
2.3.2. Qualitative Assessment of Intra-Tumor Heterogeneity 
Having each lesion described by a reduced and comparable vector of depth measures (i.e., lesion’s 
radiomic profile), it is now possible to assess the radiomic pro-files of different lesions and to 
characterize lesions with similar characteristics. Specifically, lesions’ radiomic profiles were 
clustered according to unsupervised minibatch K-means clustering [20]. The dataset of lesions (n = 
333, p = 6) was in fed into the algorithm and k was selected among a range of values through an 
exhaustive grid search so as to meet intra-cluster homogeneity. As a result, each lesion was tagged 
with a membership class, regardless the patient it belonged to. In this way, groups of similar lesions 
were identified: lesions falling in the same group exhibited a homogeneous pro-file, whereas lesions 
in different groups were considered to display a heterogeneous profile. Accordingly, it is possible to 
phenotype different groups (types) of lesions, highlighting different pattern templates. The mean 
radiomic profile was computed for every class, so as to represent the pattern templates and 
compare the detected phenotypes. Each pattern template describes the lesions’ radiomic 
phenotypes as assessed and characterized using the lesions’ clinical and biological characteristics. 
Specifically, the standard uptake values (SUV_max) were used to describe differences in lesion in-
tensity, the total lesion activity (TLA) was used to describe differences in lesion volume, and GLCM 
entropy was used to describe differences in lesion heterogeneity [21]. More-over, lesions’ sites 
(locoregional lymph nodes, distant lymph-nodes, and skeletal) were taken into account to assess 
tumor spreading. To test the differences, non-parametric t-tests were used for numerical features, 
whereas the chi-squared test was used for categorical features. Additionally, since patients in this 
study presented multiple sites of disease, we divided the patients in two different groups:  
• Patients exhibiting lesions with homogeneous radiomic phenotypes—i.e., their lesions fell 
into the same group of lesions—were labelled as patients with homogenous disease;  
• Patients featuring lesions with heterogeneous radiomic phenotypes—i.e., their lesions fell 
into more than one group of lesions—were labelled as patients with heterogeneous disease.  
In this way, the number of different radiomic profiles within a patient expresses the extent of 
heterogeneity of their disease. The two groups of patients were characterized throughout a clinical 
investigation. Specifically, the personal and clinical characteristics were compared in the two 



groups, including the Gleason Score, the oligo-/multi-metastatic status, the number of lesions, the 
type of upfront PCa treatment (initial therapy), the status of androgen deprivation therapy (ongoing 
therapy), the prostate specific antigen (PSA) value, the type of treatment, and the response to 
therapy. To test the differences, non-parametric t-tests were used for numerical features, whereas 
the chi-squared test was used for categorical features. P-values below 0.05 were considered 
significant, however, values below 0.1 were included for discussion as well. 
 
2.3.3. Quantitative Assessment of Intra-Tumor Heterogeneity 
As a step forward towards the qualitative assessment of patients' disease heterogeneity, we tuned 
a quantitative pipeline. Specifically, we went beyond the qualitative subtyping of lesions coexisting 
in the radiomic phenotypes of patients. We leveraged the lesions' radiomic profiles to build an 
insightful patient representation describing the homogeneity/heterogeneity extent among the 
patients' tumor lesions, so as to assess the patients’ disease as a whole. The similarity between two 
peer lesions’ profiles can be measured by their pairwise Euclidean distance. Accordingly, the 
evolutionary and statistical relationship among the lesions in a patient was represented by a 
hierarchical clustering dendrogram with Euclidean distance and complete linkage. Specifically, for 
each patient, the square matrix of the pairwise Euclidean distances among their lesions was 
computed and fed into the clustering algorithm. The lesions were represented by the six-
dimensional vectors of depths describing the relative position of the lesion according to the six 
radiomics semantic groups. Generally speaking, an agglomerative hierarchical clustering algorithm 
begins with treating each lesion as a separate cluster and iteratively aggregates similar lesions, that 
is lesions with short pairwise distance, to merge groups of lesions in a single cluster. The process is 
illustrated in Figure 2. 
 

 
Figure 2. Procedure of hierarchical clustering techniques: the clustering begins with treating each lesion as a 
separate cluster and iteratively aggregates similar lesions, that is lesions with short pairwise distance, to 
merge groups of lesions in a single cluster. The output of the procedure is called a dendrogram. 

 
The tree-shaped output of the algorithm is called a dendrogram and shows the hierarchical 
relationship between peer observations. Therefore, each patient is now rep-resented by a 
dendrogram, where the leaves correspond to the lesions and the lengths of the branches reflect the 
mutual similarity relationship of the radiomic profiles ex-pressed by the lesions. Lesions that are 



close to each other are very similar, thus exhibiting a similar radiomic profile, whereas distant leaves 
reflect heterogeneous lesions. For a posteriori evaluation of the reliability of such a representation 
with clinical patient-specific features, we extracted tree-derived descriptors. Accordingly, tree-
derived features included the number of lesions, the sum of the tree branch lengths, dispersion 
among lesions, and number of different phenotypes. They were computed and correlated with 
patients’ clinical variables, such as Gleason Score, prostate specific antigen levels, the oligo-/multi-
metastatic status, the type of treatment, and the response to therapy. The number of lesions 
phenotype was the number of different, i.e., independent, radiomic patterns expressed by a patient. 
In a dendrogram, this number was obtained by computing the best clustering of the patient’s lesions 
according to the evaluation of a similarity measures, i.e., the Silhouette index [22], Davies–Bouldin 
index [23], and Calinski–Harabasz index [24]. The lesions’ similarities in the reduced radiomic space 
was doublechecked with a ranking aggregation algorithm, as implement-ed in R package 
RankAggreg [25]. Supplementary Figure S3 graphically describes the process. 
 
2.3.4. Perspective modeling 
To further assess the associations between tree-derived descriptors and clinical patient information, 
we tested the prognostic and predictive power of patient representation. Tree-derived features, as 
listed above, were fed into Cox proportional hazard models in both univariate and multivariate 
fashion to predict disease-free survival. Significance of their power was assessed with p-values of 
log rank tests and final model performance was evaluated in terms of concordance index. 
 

 
Figure 3. The pairwise scatterplots of radiomic groups’ depth measures. Correlation is low for each pair of 
radiomic groups but with higher values for GLZLM and GLRLM. 

 
3. Results 
As for data analyses, results consisted of the description of three sequential parts, i.e., (1) the lesion 
textural profile and the (2) qualitative and (3) quantitative assessment of intra-tumor heterogeneity 
according to the tree-based patient representation. 



 
3.1. Lesion textural profile 
Mahalanobis depth definition was chosen as a result of the visual intra-view correlation inspection 
(Supplementary Figure S1) and ranking agreement analysis (Supplementary Figure S2). Data 
visualization of textural features' dimensionality reduction is shown in Figure 3. 
Every lesion was represented by six depth values—one per radiomic semantic group, i.e., view—
describing its centrality with respect to the peer lesions' distributions. The correlation between the 
views was assessed by plotting the distribution of depth values for each lesion computed according 
to one view versus the ones computed according to another view. As shown in the figure, the 
correlation between the views was never higher than 0.5, except for the correlation between 
GLRLM and GLZLM, which raised to 0.8, suggesting the independent information content provided 
by each view. The exemplification of the lesions' radiomic profiles can thus be visualized in Figure 
4, where sample lesions are shown, grouped by the patient they belong. 
 

 
 
Figure 4. The lesion profiles of two patients. Each lesion is represented by the 6 depth measures related to 
each radiomic view. Depth values as listed in the tables are graphically represented in spider plots. In (A), the 
patient (#17) exhibited only one radiomic pattern; in (B), the patient (#31) showed two different shapes in the 
lesion radiomic profile. 

 
Specifically, we presented the lesion radiomic profiles of two patients (#17 and #31) where depth 
values of the six radiomic views are listed and plotted in the corresponding spider plots. Every axis 
of the spider plots corresponds to a specific view, as high-lighted by the labels, and each line 
graphically displays the lesion’s radiomic profile in terms of depth measures. Accordingly, the shape 
can be intended as the textural phenotype or signature, providing an agnostic description of its 
textural phenotype with respect to other lesions. In patient #17, all four lesions appeared to be very 
similar in terms of their radiomic profiles as their shapes match a similar template. HISTO, SHAPE, 
GLCM, and GLRLM presented particularly low depth values, whereas NGLDM and GLZLM assumed 
higher depth values. In patient #31, the lesions differed since lesions 1 and 2 exhibited almost 
identical profiles (with enhanced values of NGLDM and GLZLM), lesion 4 followed their shape yet 



with a smaller area, whereas lesion 3 behaved as an outlier, showing very low depth values for 
HISTO, SHAPE, GLCM, GLRLM, and GLZLM and displaying a spike of centrality towards NGLDM. 
Accordingly, patient #17 exhibited a more homogeneous disease with lesions entailing the same 
radiomic description, whereas the disease of patient #31 was radiomically het-erogenous. Starting 
from this analysis, illustrated through these two examples, in the following, we aimed to 
progressively characterize this heterogeneity with both qualitative and quantitative methods. 
 
3.2. Qualitative Assessment of Intra-Tumor Heterogeneity 
As stated above, Figure 4 shows an example of the results of the characterization of the lesion 
profiles of two patients. The profile of each lesion of a patient is highlighted with a different color. 
The visualization of radiomic profiles as described above allows a very rapid and visual comparison 
of intra-patient lesion heterogeneity. In fact, lesions exhibiting similar shapes presented mutually 
homogeneous radiomic patterns whereas lesions displaying mismatched shapes entailed mutually 
heterogeneous radiomic patterns. 
Intuitively, the more the lesions of a patient display a similar pattern, the more homogeneous the 
disease, and vice versa, if a patient presented many different pattern templates, they are described 
as exhibiting a heterogeneous disease, with heterogeneity in-creasing according to the number of 
coexisting templates, i.e., radiomic phenotypes. According to minibatch K-mean clustering, two 
groups of lesions were identified, independently to the patients they belong. Figure 5 shows the 
radiomic templates of the two clusters. Cluster 1 was characterized by a very deep value for NGLDM 
followed by a relatively deep value for GLZLM, suggesting a typical/median value for zone 
homogeneity and voxel contrast. 
 

 
 
Figure 5. Mean radiomic profile of the two classes of lesions. In (A) the Class 1 radiomic template and in (B) 
the Class 2 radiomic template are displayed. The mean depth measure values are listed in the tables and 
graphically represented in the spider plots. 
 

In contrast, the HISTO, SHAPE, GLCM, and GLRLM components were less deep, being outliers 
compared with the lesion population. Cluster 2 exhibited a pretty regular shape, with persistent 
accentuated NGLDM and GLZLM depth values, yet these were not significantly different from the 
other components. The site of disease did not play a significant role in scoring disease 



heterogeneity, as lesions in either class were not more often located at any particular site of disease 
(regional lymph nodes, distant lymph nodes, and bone metastases; χ2 test, p-value = 0.4202). In 
contrast, the value of SUV_max, TLA, site, and GLCM_Entropy, considered surrogated markers of 
tumor aggressiveness [26], proliferative activities [27], and a measure of intra-lesion heteroge-neity 
[28,29], respectively, were significantly different in the two clusters (Table 2). 
 
Table 2. Clusters of lesions as grouped by mini-batch k-means clustering were characterized in terms of TLA, 
SUV, site, and GLCM entropy and results are displayed (p-values). GLCM: gray-level co-occurrence matrix; 
SUV_max: maximum standardized uptake values; Q3: third quartile; Std. Dev.: standard deviation; TLA: total 
lesion activity. 
Significance is labelled with *** where p < 0.001, with * when p < 0.05, and “.” when p < 0.1. 
 

Parameter Cluster 1 Cluster 2 p-value 

SUV_max 

Median 9.8350 10.8707 

0.0187 * Std. Dev. 3.9163 7.8156 

Q3 12.4980 16.7168 

TLA (mL) 

Median 4.6851 6.0573 

< 0.001 *** Std. Dev. 14.4136 90.1964 

Q3 14.1085 65.8136 

GLCM Entropy              

Median 1.4224 1.4524 

0.0517 . Std. Dev. 0.4507 0.6868 

Q3 1.8524 2.2928 

Organ 

Regional lymph 

nodes 
24 (15.4%) 32 (18.1%) 

0.4202  Distant lymph 

nodes 
40 (25.6%) 36 (20.3%) 

Skeleton 92 (59%) 109 (61.6%) 

 

This underlines the ability of the depth measures to depict different biological features sustaining 
the tumor. In particular, the Class 1 cluster hosted the majority of le-sions with lower values of 
SUV_max, whereas the majority of lesions with higher SUV_max values fell into Class 2, as 
highlighted from SUV_max distribution indexes (t-test, p-value = 0.0187). Therefore, Class 1 
featured lesions with a “low” proliferative rate; in Class 2, the lesions were the ones with increased 
proliferation. Coherently, Class 1’s lesions presented lower TLA (mL) values with respect to the Class 
2 ones, as the lesions’ activity distribution parameters were higher in the second group (t-test, p-
value < 0.001), characterized by a heavier right tale (Q3 parameter). GLCM_Entropy of lesions was 
significantly different as well, although at a higher significance level. The heterogeneity of lesions 
was slightly higher in Class 2 than in Class 1, revealing a relationship be-tween heterogeneity and 
proliferation (t-test, p-value = 0.0517). Further to the lesions’ characterizations, we qualitatively 
divided patients according to the homogeneity of their lesions’ clusters. In fact, the number of lesion 
clusters in a patient is identified as a proxy for revealing patients’ intratumor heterogeneity. A total 
of 39/55 patients exhibit-ed lesions featuring different radiomic profiles, since their lesions 
belonged to different clusters; thus, they were referred to as heterogeneous. The lesions of the 
remaining 16/55 patients presented a unique radiomic pattern, thus falling in one cluster only; 
therefore, they were referred to as homogeneous. The results are displayed in Table 3. 
Although no significant difference was found in PSA levels and Gleason score (GS) or Gleason 
category (i.e., GS ≤ 7 vs. GS > 7) between these two groups of patients, the number of lesions and 
oligo/multi-metastatic status clinical cutoffs were coherently correlated with the stratification. 
Indeed, more homogeneous patients presented a lower number of lesions (t-test, p-value = 0.0001) 



and a lower total disease volume (t-test, p-value = 0.0651) than the heterogeneous group. This latter 
group exhibited a higher proportion of oligometastatic disease (χ2 test, p-value < 0.0001 with a 
cutoff of 3 lesions; p-value = 0.0004 with a cutoff of 5 lesions; p-value = 0.0001 with cutoffs at both 
3 and 5 lesions). Furthermore, the type of treatments and patients’ response to therapy did not 
significantly differ in these two groups of patients, suggesting a lack of current decision-making 
clinical parameters in assessing a patient’s disease heterogeneity. Accordingly, this supported the 
necessity of a more exhaustive and quantitative patient representation. 
 
Table 3. Tests on PSA, GS, oligo/multi-metastatic status, number of lesions, type, and response to therapy 
highlighted differences among the two patients’ phenotypes, i.e., homogeneous and heterogeneous (p-
values). GS: Gleason Score; N: no; PSA: prostate specific antigen; Q3: third quartile; RP: radical prostatectomy; 
RT: radiation therapy; Std. Dev.: standard deviation; Y: yes. Significance is labelled with *** where p < 0.001, 
with ** when p < 0.01, and “.” when p < 0.1. 

 
Parameter Homogeneous Heterogeneous p-value 

PSA 

Median 2.81 3.99 

0.3189 Std. Dev. 1.5036 105.6279 

Q3 3.81 14.4974 

GS 

Median 7.0 7.0 

0.7047 Std. Dev. 0.8314 1.2447 

Q3 8.0 8.0 

Nodal lesions 

Median 2.0 7.0 

0.0001 *** Std. Dev. 0.8314 3.1359 

Q3 2.0 10.0 

Total Tumor  

Volume (mL)   

Median 1.9114 15.3200 
0.0651 . 

Std. Dev. 5.7938 44.7814 

Q3 7.0262 31.1022  

Gleason  

Category 

≤7 5 (55%) 26 (65%) 
0.5954 

>7 4 (45%) 14 (35%) 

Oligo or Multi ( >3 ) 
Oligo 7 (70%) 37 (82%)  

< 0.0001 *** 
Multi 3 (30%) 8 (18%) 

Oligo or Multi ( > 

5 ) 

Oligo 10 (100%) 29 (64%) 
0.0004 ** 

Multi 0 (0%) 16 (36%) 

3 < Lesions ≤ 5 

<3 7 (70%) 29 (64%) 

0.0001 *** 3 < Lesions ≤ 5 3 (30%) 8 (18%) 

> 5 0 (0%) 8 (18%) 

Initial Therapy           

RP + RT 5 (55%) 25 (58%) 

0.6293 RP 3 (33%) 12 (28%) 

RT 1 (12%) 6 (14%) 

Ongoing  

Therapy 

N 6 (60%) 25 (55%) 
0.7976 

Y 4 (40%) 20 (35%) 

Combined therapy 
N 7 (78%) 26 (66%) 

0.8810 
Y 2 (22%) 13 (34%) 

Response to 

therapy 

N 9 (100%) 29 (74%) 
0.4255 

Y 0 (0%) 10 (26%) 

 
3.3. Quantitative Assessment of Intra-Tumor Heterogeneity 
Since heterogeneity differences among patients are appreciable according to the different number 
of coexisting phenotypes within their disease, hierarchical clustering was used to represent such a 
patient’s heterogeneity. Furthermore, hierarchical clustering allows us to exploit the hierarchical 



nature of the lesions in a patient. One dendro-gram per patient was built and the dendrogram-
related information was investigated to unveil a prognostic characterization. Indeed, the similarity 
among lesions’ radiomic profiles reveled a biological counterpart. Figure 6 shows a patient tree-
based representation. Single lesions’ biological characteristics such as standard uptake values 
(SUV_max), total lesion activity (TLA), and sites of disease metastases (i.e., loco-regional lymph 
nodes, distant lymph nodes, or skeleton) are described using a color code. 
 

 
Figure 6. A patient tree-based representation. Lesions are colored according to biological characterization, 
namely (A) their standard uptake values (SUV_max), (B) total lesion activity, TLA (mL), and (C) tissue of their 
sites, such as proximal and distant lymph (red squares) nodes or skeleton (purple circles). 

 
Of interest, close lesions and distant lesions presented different biological characterization, as 
highlighted by the specific color encoding. Table 4 showed the discrimination power of number of 
phenotypes, number of lesions, sum of tree branch lengths, and lesions’ radiomic dispersions 
according to type of therapy, number of treatments, oligo/multi-metastatic status, GS, and PSA. 
 
Table 4. Discrimination power of the number of phenotypes, the lesions’ radiomic dispersion (Dispersion), and 
the sum of tree branch lengths (Sum branches) in stratifying patients according to type of therapy, number of 
therapies, oligo/multi-metastatic status, Gleason score, PSA, and response to therapy (p-values). The number 
of phenotypes has been computed according to Silhouette coefficient (# phenotypes - silhouette), Calinski-
Harabasz index (# phenotypes - CH), and Da-vies–Bouldin index (# phenotypes - DB). Abbreviation: GS = 
Gleason score; PSA = prostate specific antigen. 
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Parameter 
# phenotypes - 

silhouette 

# phenotypes - 

CH 

# phenotypes - 

DB 
Dispersion Sum branches 

PSA 0.0214 0.0234 0.0210 0.4953 0.0433 

GS 0.0736 0.1976 0.3403 0.4672  0.1909 

Nodal 

Lesions 
< 0.0001 < 0.0001 < 0.0001 0.0016 < 0.0001 

Total 

Tumor  

Volume 

0.0002 < 0.0001   0.0004 0.4010 0.0020 

Gleason 

Category          
0.0004  0.0006  0.0086  0.0050 0.0061 

Oligo or 

Multi  

( > 3) 

0.0002 0.0003 0.0003 0.0008 0.0003 

Oligo or 

Multi  

( > 5) 

0.0088 0.0098 0.0119   0.6702  0.2933 

3 < Lesions 

≤ 5 
0.0014 0.0016 0.0020 0.0344  0.0070 



 
 
 
 
 
 
 
 
 
 
 
 
The time and response to therapy were assessed in a perspective way. The number of phenotypes, 
regardless of the similarity index used to compute it, was significantly associated with PSA levels, 
the number of lesions and the total tumor volume, Gleason category, oligo/multi-metastatic status 
(with cutoffs of 3, 5, and both 3 and 5), and radiotherapy administration (Yes/No). The dispersion 
of lesions and sum of branch lengths were discriminative with respect to the number of lesions, 
Gleason category, oligo/multi-metastatic status (with cutoffs of 3, 5, and both 3 and 5) and 
radiotherapy. Treatment was not correlated with tree-based representation descriptors: type of 
upfront PCa treatment, ongoing androgen deprivation therapy, and combination of treatments 
were found independent with respect to phenotype counts and lesion dispersion. 
 
3.4. Perspective Modelling 
For univariate Cox models, dispersion, number of lesions, sum of branch lengths, number of 
phenotypes according to Silhouette and Calinski–Harabasz indexes, and PSA were not significant (p-
values = 0.438, 0.679, 0.432, 0.549, and 0.48, respectively). The number of phenotypes according 
to Davies–Bouldin and combined therapy were significant (p-values = 0.04146 and 0.0233, 
respectively). As shown in Figure 7, the best cutoff value for the Davies–Bouldin-based number of 
phenotypes to discriminate between responder and not responder patients was 3 (p-value = 0.05). 
 

 
Figure 7. Best cutoff value for Davies–Bouldin-based number of phenotypes to discriminate be-tween 
responder and not responder patients: (A) barplot of patient proportion; (B) stratified Kaplan–Meier. 

Initial 

Therapy 
0.1931 0.2040  0.1908  0.1503 0.1444 

Ongoing 

Therapy           
0.6647   0.7010  0.6760  0.7529 0.8379 

Combined  

therapy 
0.6245   0.2221 0.5707 0.7968 0.6055 

Radiothera

py 
0.0003 0.0001 0.0003 0.0207 < 0.0001   

Hormonoth

erapy 
0.0783 0.6348 0.8975 0.7963 0.0717 

Difosfonate 0.1608 0.2336 0.1212 0.1444 0.0727 



Figure 8 shows the Kaplan–Meier survival curves of patients stratified according to combination of 
treatments, i.e., patients who underwent one or more than one therapy type. 
 

 
Figure 8. Kaplan–Meier cumulative hazards of patients stratified according to the combination of treatments, 
i.e., patients who underwent one (blue curve) or more than one therapy type (red curve). 

 
The type of therapy was not significant (p-value = 0.9), as highlighted in Figure 9. 
 

 
Figure 9. Kaplan–Meier cumulative hazards of patients stratified according to type of treatment, i.e., patients 
who underwent hormonotherapy (red curve), radiotherapy (green curve), or both (blue curve). 

 
The best multivariate model was the one that contained dispersion, number of lesions, sum of 
branch lengths, Davies–Bouldin-based number of phenotypes, and combined therapy, resulting in 
a 0.86 concordance with a p-value of 0.09 using the log rank test. 



 
4. Discussion 
In this manuscript we describe a novel statistical approach for analyzing radiomic data and 
accordingly describe, represent, and quantify disease heterogeneity in patients with metastatic PCa. 
Radiomic features have been introduced as imaging biomarkers as they represent an index of the 
degree of tumor heterogeneity [1,30]. How-ever, radiomic features have the limitations of 
instability and scarce robustness due to the use of different scanners, acquisition, and post-
processing settings [4,6]. Therefore, a normalization strategy to make them agnostic and robust is 
needed. Further, redundancy and collinearity have to be tacked in order to produce insightful 
models and ex-tract useful knowledge. The statistical approach for agnostic dimensionality 
reduction we propose in this work takes advantage of data variability in order to normalize features’ 
contributions in a descriptive or perspective model. Pertinently, the measure of data depth provides 
a center-outward ordering of points in a set and leads to a non-parametric multivariate statistical 
description of data, in which no distributional assumptions are needed. Among depth definitions, 
we preferred the use of Mahalanobis depth because with this model the computed distribution 
appeared more dispersed about its center of symmetry than distributions stemming from other 
depths, leading to clearer results (Supplementary Figure 1). The depth computation resulted in a 
dimensionality reduction strategy where the 37 radiomic features describing the lesions were 
summarized in six agnostic measures. Accordingly, the six depth values formed an agnostic multi-
view lesion profile to be used for the descriptive and prognostic modeling of intra-tumor 
heterogeneity. Notably, the correlation found among the six semantic groups was negligible (less 
than 0.5) except for GLRLM and GLZLM (0.8). This was expected as the length and zones are very 
similar structures and coherently produce correlated results, whereas other groups’ features 
independently capture different aspects of texture [31,32]. According to the depth-based feature 
transformation, we presented agnostic radiomic profiles of lesions grouped by the patient they 
belonged to (Figure 4). Based on such profiling, we can depict intra-tumoral heterogeneity in some 
patients that are characterized by the contemporary presence of "typical" and "atypical" lesion 
radiomic profiles. In other patients, only "typical" lesions were observed. Coherently, disease 
heterogeneity was found to be independent from disease site and burden as well as treatment. 
However, it was proven to reflect the number of coexisting phenotypes within a patient. Moreover, 
we observed a stronger association between the number of lesions and disease heterogeneity 
rather than the volume of lesions and dis-ease heterogeneity, although both indicators are currently 
considered as prognostic fac-tors. This becomes critical in a population as one in the current work 
existed in more than two thirds of heterogeneous clusters of lesions. Interestingly, radiomic 
features provided information coherent with SUV-derived parameters. When multiple lesions were 
present, the contribution of all of them—regardless of the hosting tissue and number—to the tumor 
biology and ultimately the outcome is crucial, confirming our previous findings [12,13]. Beside 
imaging-related information, clinical variables de-scribing the status/severeness of the diseases 
coherently correlated with heterogeneity measures, whereas therapy did not denote any specific 
correspondence with tumor het-erogeneity; although patients who underwent more than one 
treatment had a worse outcome. In fact, different regimens of therapy are typically performed in 
recurrent or more aggressive tumors. Of note, radiotherapy implementation seemed to follow a la-
tent heterogeneity assessment. We can speculate that radiotherapy may select some cellular 
clones, impacting on tumor biology, heterogeneity, and ultimately the outcome. Patients presenting 
“typical” and/or “atypical” phenotypes presented different out-comes. Specifically, in our series 
heterogeneity directly impacted on outcome, with having more than three phenotypes (high 
heterogeneity) negatively associated with out-come (Figure 7). The proposed patient 
representation frames a quantitative approach that was needed as a step forward with respect to 



the qualitative assessment of heterogeneity. The hierarchical clustering devises a comprehensive 
and unique object able to summarize the statistical units (lesions) by their grouping policy (patients). 
Upon these objects, many studies are available to perform inference, classification, clustering, and 
prediction [33–35]. In this work, we proved how tree-based representations insightfully entail 
tumor heterogeneity information in the context of PCa. Such information has been revealed to be 
significant in predicting the response to therapy beyond clinical assessment. In fact, tree-derived 
indicators describing the morphology and the shape of the tree structures were used to prove their 
prognostic power through survival analyses. Most of the current clinical-based biomarkers struggle 
in relating tumor heterogeneity with cancer progression, whereas our approach showed promising 
results. Furthermore, the tree objects prevent the predictive statistical analyses from being 
hampered by radiomic limitation, above all inter-scanner variability. Specifically, the tree-based 
representation disentangles the statistical units from scanner peculiarities as it re-sorts to a relative 
distance measure. By leveraging the Euclidean distance between lesions to build up the tree 
representation, hierarchical clustering acts as standardization and normalization strategy. As a 
consequence, the obtained objects confirm their agnostic nature. Of note, the proposed pipeline 
displays a modular structure that makes it suitable for different kinds of metastatic or multi-lesion 
tumors. The dimensionality re-duction strategy, distance, and linkage selection in the hierarchical 
clustering algorithm can indeed be changed and tuned on case study data. Particularly, the 
proposed approach would be useful in those tumors for which no a priori ordering of lesions is 
known, for instance in lymphoma. According to the task to be performed, trees can be fed into the 
classification, clustering, or survival models with the aim of supporting clinical practice in effective 
treatment planning and monitoring. 
The limitations of the present study include the relatively small population analyzed and the 
consequent use of clinical variables as dichotomous (e.g., Gleason score). Indeed, this study 
included a sub-group (i.e., patients with at least two lesions identified by [18F]FMCH PET/CT) of a 
larger cohort of recurrent PCa patients prospectively enrolled in an observation trial [13]. 
Nonetheless, this approach, even if proposed in re-current PCa patients imaged with [18F]FMCH, 
might be successfully applied to patients affected by metastatic neoplasms or systemic diseases 
(e.g. lymphoma) imaged with other tracers (e.g., [18F]FDG).  
 
5. Conclusions 
The proposed approach, developed in PCa patients imaged using [18F]FMCH PET/CT, allowed us to 
clearly represent the coexistence of different radiomic profiles for lesions within each patient and 
providing insightful information regarding lesion het-erogeneity. Collectively, radiomics has brought 
a rare opportunity for advanced image analysis and it can be used together with artificial intelligence 
to refine the concept of “personalized medicine”. 
 
Author Contributions: Conceptualization, P.A.E. and F.I.; methodology, F.I. and L.C.; formal analysis, 
A.M.; F.P.; A.R.; L.C.; R.Z.; writing—original draft preparation, M.S.; L.C.; A.R..; writ-ing—review and 
editing, P.A.E.; F.I.; F.P.; F.B.; supervision, P.A.E. and F.I. All authors have read and agreed to the 
published version of the manuscript. 
 
Funding: This research received external funding from AIRC (IG2017 Id.20819) 
 
Institutional Review Board Statement: All procedures performed in were in accordance with the 
ethical standards of the institutional and national research committee and with the 1964 
Declaration of HELSINKI and its later amendments or comparable ethical standards. This 



observational trial was approved by the Ethics Committee of the Pisa University Hospital (Pisa 
8424/2015). 
Informed Consent Statement: All patients provided a signed inform consent. 
 
Data Availability Statement: The manuscript represents valid work, and neither this manuscript nor 
one with substantially similar content under the same authorship has been published or is be-ing 
considered for publication elsewhere.  
 
Acknowledgments: We thank AIRC, which funded this project. 
 
Conflicts of Interest: All authors do not report any conflicts of interest. 
 
References 
1. Sollini, M.; Bandera, F.; Kirienko, M. Quantitative imaging biomarkers in nuclear medicine: From SUV to 
image mining studies. Highlights from annals of nuclear medicine 2018. Eur. J. Nucl. Med. Mol. Imaging 2019, 
46, 2737–2745. 
2. Sollini, M.; Bartoli, F.; Marciano, A.; Zanca, R.; Slart, R.H.J.A.; Erba, P.A. Artificial intelligence and hybrid 
imaging: The best match for personalized medicine in oncology. Eur. J. Hybrid Imaging 2020, 4, 24. 
3. Sollini, M.; Antunovic, L.; Chiti, A.; Kirienko, M. Towards clinical application of image mining: A systematic 
review on artificial intelligence and radiomics. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2656–2672. 
4. Van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—
“how-to” guide and critical reflection. Insights Imaging 2020, 11, 91. 
5. Hatt, M.; Krizsan, A.K.; Rahmim, A.; Bradshaw, T.J.; Costa, P.F.; Forgacs, A.; Seifert, R.; Zwanenburg, A.; El 
Naqa, I.; Kinahan, P.E.; et al. Joint EANM/SNMMI guideline on radiomics in nuclear medicine : Jointly 
supported by the EANM Physics Committee and the SNMMI Physics, Instrumentation and Data Sciences 
Council. Eur. J. Nucl. Med. Mol. Imaging 2022, 50, 352–375. 
6. Sollini, M.; Cozzi, L.; Ninatti, G.; Antunovic, L.; Cavinato, L.; Chiti, A.; Kirienko, M. PET/CT radiomics in breast 
cancer: Mind the step. Methods 2021, 188, 122–132. 
7. Porenta, G. Is There Value for Artificial Intelligence Applications in Molecular Imaging and Nuclear 
Medicine? J. Nucl. Med. 2019, 60, 1347–1349. 
8. Orlhac, F.; Boughdad, S.; Philippe, C.; Stalla-Bourdillon, H.; Nioche, C.; Champion, L.; Soussan, M.; Frouin, 
F.; Frouin, V.; Buvat, I. A Postreconstruction Harmonization Method for Multicenter Radiomic Studies in PET. 
J. Nucl. Med. 2018, 59, 1321–1328. 
9. Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; 
Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized 
Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. 
10. Sollini, M.; Gelardi, F.; Matassa, G.; Delgado Bolton, R.C.; Chiti, A.; Kirienko, M. Interdisciplinarity: An 
essential requirement for translation of radiomics research into clinical practice–a systematic review focused 
on thoracic oncology. Rev. Española Med. Nucl. Imagen Mol. Engl. Ed. 2020, 39, 146–156. 
11. Gelardi, F.; Kirienko, M.; Sollini, M. Climbing the steps of the evidence-based medicine pyramid: Highlights 
from Annals of Nuclear Medicine 2019. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1293–1301. 
12. Sollini, M.; Kirienko, M.; Cavinato, L.; Ricci, F.; Biroli, M.; Ieva, F.; Calderoni, L.; Tabacchi, E.; Nanni, C.; 
Zinzani, P.L.; et al. Methodological framework for radiomics applications in Hodgkin’s lymphoma. Eur. J. 
Hybrid Imaging 2020, 4, 9. 
13. Sollini, M.; Bartoli, F.; Cavinato, L.; Ieva, F.; Ragni, A.; Marciano, A.; Zanca, R.; Galli, L.; Paiar, F.; Pasqualetti, 
F.; et al. [18F]FMCH PET/CT biomarkers and similarity analysis to refine the definition of oligometastatic 
prostate cancer. EJNMMI Res. 2021, 11, 119. 
14. Artibani, W.; Porcaro, A.B.; De Marco, V.; Cerruto, M.A.; Siracusano, S. Management of Biochemical 
Recurrence after Primary Curative Treatment for Prostate Cancer: A Review. Urol. Int. 2018, 100, 251–262. 
15. Nioche, C.; Orlhac, F.; Boughdad, S.; Reuze, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; 
Frouin, F.; Buvat, I. Lifex: A freeware for radiomic feature calculation in multimodality imaging to accelerate 
advances in the characterization of tumor heterogeneity. Cancer Res. 2018, 78, 4786–4789. 



16. Dong, Y.; Lee, S.M.S. Depth functions as measures of representativeness. Stat. Pap. 2014, 55, 1079–1105. 
17. Pokotylo, O.; Mozharovskyi, P.; Dyckerhoff, R. Depth and depth-based classification with R package 
ddalpha. J. Stat. Softw. 2019, 91, 1–46. 
18. Velasco-Forero, S.; Angulo, J. Mathematical Morphology for Vector Images Using Statistical Depth. In 
Mathematical Morphology and Its Applications to Image and Signal Processing; Lecture Notes in Computer 
Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 
Springer: Berlin/Heidelberg, Germany, 2011; Volume 6671, pp. 355–366. 
19. Ekstrøm, C.T.; Alexander, T.; Maintainer, G. Package “SuperRanker” Title Sequential Rank Agreement; 
Version 1.2.0; CRAN: Vienna, Austria, 2021. 
20. Newling, J.; Fleuret, F. Nested Mini-Batch K-Means. arXiv 2016, arXiv:1602.02934. 
21. Ganeshan, B.; Skogen, K.; Pressney, I.; Coutroubis, D.; Miles, K. Tumour heterogeneity in oesophageal 
cancer assessed by CT texture analysis: Preliminary evidence of an association with tumour metabolism, 
stage, and survival. Clin. Radiol. 2012, 67, 157–164. 
22. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. 
Comput. Appl. Math. 1987, 20, 53–65. 
23. Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 
PAMI-1, 224–227. 
24. Caliñski, T.; Harabasz, J. A Dendrite Method Foe Cluster Analysis. Commun. Stat. 1974, 3, 1–27. 
25. Pihur, M.V. Package “RankAggreg” Type Package Title Weighted Rank Aggregation; Version 0.6.6; CRAN: 
Vienna, Austria, 2020. 
26. Tateishi, U.; Terauchi, T.; Akashi-Tanaka, S.; Kinoshita, T.; Kano, D.; Daisaki, H.; Murano, T.; Tsuda, H.; 
Macapinlac, H.A. Comparative study of the value of dual tracer PET/CT in evaluating breast cancer. Cancer 
Sci. 2012, 103, 1701–1707. 
27. Sollini, M.; Sghedoni, R.; Erba, P.A.; Cavuto, S.; Froio, A.; De Berti, G.; Pisanello, A.; Fraternali, A.; Iori, M.; 
Iaccarino, C.; et al. Diagnostic performances of [18F]fluorocholine positron emission tomography in brain 
tumors. Q. J. Nucl. Med. Mol. Imaging 2018, 62, 209–219. 
28. Fiz, F.; Costa, G.; Gennaro, N.; la Bella, L.; Boichuk, A.; Sollini, M.; Politi, L.S.; Balzarini, L.; Torzilli, G.; Chiti, 
A.; et al. Contrast administration impacts CT-based radiomics of colorectal liver metastases and non-tumoral 
liver parenchyma revealing the “radiological” tumour microenvironment. Diagnostics 2021, 11, 1162. 
29. Fiz, F.; Masci, C.; Costa, G.; Sollini, M.; Chiti, A.; Ieva, F.; Torzilli, G.; Viganò, L. PET/CT-based radiomics of 
mass-forming intrahepatic cholangiocarcinoma improves prediction of pathology data and survival. Eur. J. 
Nucl. Med. Mol. Imaging 2022, 49, 3387–3400. 
30. Fournier, L.; Costaridou, L.; Bidaut, L.; Michoux, N.; Lecouvet, F.E.; de Geus-Oei, L.F.; Boellaard, R.; Oprea-
Lager, D.E.; Obuchowski, N.A.; Caroli, A.; et al. Incorporating radiomics into clinical trials: Expert consensus 
endorsed by the European Society of Radiology on considerations for data-driven compared to biologically 
driven quantitative biomarkers. Eur. Radiol. 2021, 31, 6001–6012. 
31. Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction 
to radiomics. J. Nucl. Med. 2020, 61, 488–495. 
32. Sollini, M.; Cozzi, L.; Antunovic, L.; Chiti, A.; Kirienko, M. PET Radiomics in NSCLC: State of the art and a 
proposal for harmonization of methodology. Sci. Rep. 2017, 7, 358. 
33. Wang, H.; Marron, J.S. Object oriented data analysis: Sets of trees. Ann. Stat. 2007, 35, 1849–1873. 
34. Georgina, F.A. Multiclass classification of tree structured objects: The k-nn case. BIOMAT 2013, 323–343. 
https://doi.org/10.1142/9789814520829_0019. 
35. Flesia, A.G. Unsupervised Classification of Tree Structured Objects. BIOMAT 2009, 280–299. 
https://doi.org/10.1142/9789814271820_0018. 
 
 
 
 
 
 
 
 

https://doi.org/10.1142/9789814271820_0018


 

Supplementary data 
 

 
Supplementary Figure S1. Comparison between depth measures: scatterplots of the Mahalanobis, 
Tukey, Simplicial depths on non-standardized data (left panel) compared to standardized data (right 
panel). Of note, Mahalanobis measure provides more dispersed results with respect to Tukey and 
Simplicial depths, whether they are applied to standardize data or not. Tukey depth values are 
flatted towards zero, while Simplicial depths assume more discrete values, due to rounding policies. 
Regardless of the depth definition, radiomic views present very low correlations, with higher values 
between GLRLM and GLZLM. 
 



 
Supplementary Figure S2. Dependency of information provided by the radiomic views, according to 
ranking agreement analysis (SuperRanker). The sequential rank agreement (sra) methods for 
comparison of ranked lists was used: the sra metrics is the pooled standard deviation of the sets of 
items ranked less than or equal to a value d in any of the ranking lists. The sra metrics can be 
analyzed by letting d vary from 0 to the number of elements to compare. Values of sra close to zero 
at any depth d suggest that the ranking lists agree while larger values suggest disagreement. In 
figure, the sra rank agreement plot for Mahalanobis and Halfspace depths on both non standardized 
(left) and standardized data (right) is displayed: in none of the four cases plots are close to zero. This 
disagreement should not be interpreted as absence of correlation between the radiomic groups, 
which was proved to be positive; instead, the ranking of lesions induced by view-specific depths is 
never equal, as expected, suggesting that radiomic groups capture different, yet not independent, 
aspects of texture description. 
 



 
Supplementary Figure S3. Lesions’ similarity-based clustering was doublechecked with a ranking 
aggregation procedure. Specifically, depth measures of lesions were transformed into ordered lists 
as to sort observations from the more central to the furthest. Each lesion was thus described by six 
positional indexes, one per radiomic group, providing a ranking of observations. The package 
RankAggreg was used to perform aggregation of the ranking lists using two different aggregating 
algorithms – Cross-Entropy Monte Carlo (CE) algorithm and Genetic algorithm (GA) – and two types 
of distances – Spearman footrule and Kendall’s tau. The aggregated ranking list provides the 
consensus among all radiomic views of the lesions’ ordering and was used to confirm the similarity 
between lesions and their clustering in phenotypes. In figure, the radiomic-specific rankings of the 
n lesions of one sample patient are aggregated in four super ranking lists through the four weighted 
rank aggregation algorithms: lesions are then ordered from the deepest (Rank 1) to the outer (Rank 
10). Colors delimit the three clusters of phenotypes as computed by the clustering similarity 
measures. Of note, lesions with consecutive ranks are found within the same cluster, enforcing the 
imaging subtyping policy. The same checking procedure was carried out successfully in each patient. 
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