
MOX-Report No. 21/2020

Resilience and fault-tolerance in high-performance
computing for numerical weather and climate

prediction

Benacchio, T.; Bonaventura, L.; Altenbernd, M.; Cantwell,

C.D.; Düben, P.D.; Gillard, M.; Giraud, L.; Göddeke, D.;

Raffin, E.; Teranishi, K.; Wedi, N.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it

.

Resilience and fault-tolerance in

high-performance computing for numerical

weather and climate prediction

Tommaso Benacchio(1), Luca Bonaventura(1), Mirco Altenbernd(2),

Chris D. Cantwell(3), Peter D. Düben(4,9), Mike Gillard(5), Luc Giraud(6),

Dominik Göddeke(2), Erwan Raffin(7), Keita Teranishi(8), Nils Wedi(4)

(1) MOX – Modelling and Scientific Computing,
Dipartimento di Matematica, Politecnico di Milano, Milan, Italy

{tommaso.benacchio, luca.bonaventura}@polimi.it

(2) Institute for Applied Analysis and Numerical Simulation and
Cluster of Excellence ‘Data-driven Simulation Science’

University of Stuttgart, Stuttgart, Germany

{mirco.altenbernd, dominik.goeddeke}@ians.uni-stuttgart.de

(3) Imperial College London, UK

c.cantwell@imperial.ac.uk

(4) European Centre for Medium Range Weather Forecasts, Reading, UK
{peter.dueben, nils.wedi}@ecmwf.int

(5) Loughborough University, UK
m.gillard@lboro.ac.uk

(6) HiePACS, Inria Bordeaux, Sud-Ouest, Talence, France
luc.giraud@inria.fr

(7) CEPP - Center for Excellence in Performance Programming, Atos Bull,
Rennes, France

erwan.raffin@atos.net

(8) Sandia National Laboratories, Livermore, CA, USA
knteran@sandia.gov

(9) AOPP, Department of Physics, University of Oxford, Oxford, UK

Keywords: Fault-tolerant computing; high-performance computing; nu-
merical weather prediction; iterative solvers

AMS Subject Classification: 65-04, 65F10, 65M55, 65N22, 65Y05,
86A10, 94B99

1

Abstract

Numerical weather and climate prediction rates as one of the
scientific applications whose accuracy improvements greatly depend
on the growth of the available computing power. As the number of
cores in top computing facilities pushes into the millions, increasing
average frequency of hardware and software failures forces users to
review their algorithms and systems in order to protect simulations
from breakdown. This report surveys approaches for fault-tolerance
in numerical algorithms and system resilience in parallel simulations
from the perspective of numerical weather and climate prediction
systems. A selection of existing strategies is analyzed, featuring
interpolation-restart and compressed checkpointing for the numer-
ics, in-memory checkpointing, ULFM- and backup-based methods
for the systems. Numerical examples showcase the performance of
the techniques in addressing faults, with particular emphasis on
iterative solvers for linear systems, a staple of atmospheric fluid
flow solvers. The potential impact of these strategies is discussed
in relation to current development of numerical weather prediction
algorithms and systems towards the exascale. Trade-offs between
performance, efficiency and effectiveness of resiliency strategies are
analyzed and some recommendations outlined for future develop-
ments.

2

1 Introduction

Since the dawn of computing, numerical weather prediction (NWP)
and climate studies have served as a key test bed for performance
of cutting-edge hardware architectures. In operational weather ser-
vices, supercomputers provide the infrastructure for a round-the-
clock enterprise relying on the timely execution of the forecast suite,
ranging from assimilation and handling of observations that gener-
ate initial conditions to extended-range predictions.

Up to a decade ago, improvement in atmospheric fluid flow sim-
ulations followed steady increases in clock speed of supercomputers’
processors. This growth, largely due to Moore’s law, has flattened
out in the last decade, so that, besides systematic exploitation of
alternative architectures such as GPUs, increase in sheer core count
represents the main factor in the current advances in computational
performance. Extrapolation of the core count and performance of
the machines included in the TOP500 list shows that the one-million
core and exaflop (1018 double precision floating-point operations per
second) limits are bound to be crossed in the next few years [98].

As of November 2019, the TOP500 list features at least 20 high-
performance computing (HPC) systems exclusively devoted to nu-
merical weather and climate prediction, with their combined figures
exceeding two million cores, 68 Petaflops maximum LINPACK per-
formance and memory in the region of petabytes (Table 1). This
excludes general-purpose HPC systems - some very high-ranking -
on which atmospheric simulations also run routinely. The growing
core count and computational performance have enabled a steady
increase in model resolution and, ultimately, forecast accuracy [14,
129], but have also posed serious challenges to existing modelling sys-
tems, numerical algorithms, interplay between different modelling
components, computational infrastructure, memory management,
efficiency, scalability, and energy consumption.

As pointed out in [109], the challenges of exascale scientific com-
puting will revolve around power (current flops/watt rates project to
unsustainable consumption in the range of hundreds of megawatts),
concurrency (reduction of communications in parallel programs),
data locality (redefining performance from flops to bandwidth/latency),
and memory (as available memory per core is decreasing). One rela-
tively less considered issue on the path towards exascale simulations
in numerical weather prediction concerns the reliability of comput-
ing systems. While reliability was a major concern in the early days
of computing (see, e.g., the discussion in [96]), the practical irrele-
vance of computing hardware faults has now been taken for granted

3

Table 1: Subset of the Top500 list (November 2019 standings) with ranking,
owning institution, core count (in thousands), and maximum LINPACK perfor-
mance Rmax for systems dedicated to numerical weather prediction and climate
studies, operational or for research (for more details see [98]).

Ranking [/500] Institution KCores Rmax [PFLOPs]

27,87,88
United Kingdom

241.9 + 89.86(2) 7.039+2.802(2)
Meteorological Office

33,34
Japan Meteorological

135.79(2) 5.731(2)
Agency

44,339 NCAR (US) 144.9+72.29 4.788+1.258

54,55 ECMWF 126.47(2) 3.945(2)

57
Indian Institute of

119.32 3.764
Tropical Meteorology

80
Deutsches

99.072 3.011
Klimarechenzentrum

102,110
China Meteorological

50.82+48.13 2.547+2.435
Administration

100 NCMRWF (India) 83.59 2.570

113,114
Korea Meteorological

69.6(2) 2.396(2)
Administration

127,132 Météo-France 72+73.44 2.168+2.157

341,342 NOAA (US) 48.96(2) 1.635(2)

345
Beijing Meteorological

28.8 1.624
Association

460 Deutscher Wetterdienst 41.47 1.214

465 Roshydromet (Russia) 35.14 1.200

4

for many years. However, infallibility assumptions for HPC hard-
ware, as well as absence of faults at the bit level, inevitably cease to
hold as the number of processors exponentially expands and their
size shrinks. Inadvertently, applications spread across a larger num-
ber of computational nodes with single point of failures. Bit-level
faults may also be exaggerated in the future due to a trend to exploit
reduced precision in order to accelerate the time-to-solution [54].

1.1 Numerical weather and climate predic-

tion models

An atmospheric prediction system takes input data obtained through
complex data assimilation procedures - variational optimization prob-
lems involving observations and previous model output - and uses
them as initial conditions for a numerical model approximating the
physical laws governing the evolution of atmospheric flow.

Within the numerical model, the dynamical core is responsible
for the simulation of the atmospheric flows resolved by the computa-
tional grid, usually discretizing the inviscid, rotating, compressible
Navier-Stokes equations under the action of gravity. The typical
prognostic variables include wind, air density or pressure, as well
as thermodynamic and water substance variables – different options
for variables and equation sets are discussed, e.g., in [142]. The
numerical solution involves handling the transport by the wind on
the one hand and the faster dynamics of sound waves and internal
gravity waves, induced by the compressibility and vertical stratifica-
tion of the atmosphere, on the other [18, 19, 134, 29]. Semi-implicit
time discretization strategies are widely employed in atmospheric
models in order to achieve efficiency by employing large time steps
unconstrained by the speed of fast waves. Semi-implicit approaches,
however, imply the formulation and solution of global linear systems
that make model discretizations more involved and parallelization
harder than with explicit methods. Experience with operational
semi-implicit discretizations suggests that linear solvers routinely
take up sizeable portions of wall-clock time in model runs (see, e.g.,
Figure 2 in [104]). In this context, particular attention has been
directed to the choice and construction of suitable preconditioners
for these systems. Conceptually similar linear solvers also feature
in the data assimilation process, to which analogous considerations
apply. Indeed, data assimilation routinely takes up the largest share
of the total computational time required to produce a weather fore-
cast, and its resilience is therefore of paramount importance for the
timely dissemination of forecast products.

5

In addition to the dry inviscid dynamics solved by the dynamical
core, many of the processes associated with meteorologically relevant
phenomena - convection, radiation, cloud microphysics, boundary
layer turbulence, gravity wave drag, and others, customarily referred
to in meteorology as the physics - occur at scales that cannot be
resolved by the computational grid, so their effects are parametrized
and fed into the dynamical core as source terms. Model complex-
ity is further enhanced by other components, such as the ocean
and wave model, the land surface model, the atmospheric chemistry
model, and their mutual coupling.

Today’s state-of-the-art global operational NWP systems pro-
vide forecasts simulated with 25-9 km average grid-spacing in the
horizontal direction. Limited area models use grid-spacings down to
1 km. Ensembles with perturbed initial conditions and additional
model perturbations with up to 50 members are used to sample the
initial condition and model uncertainty. The vertical discretization
uses approximately 100 unevenly spaced vertical levels out to model
tops of around 80 km. This translates into around 500 million spa-
tial degrees of freedom per variable, requiring a couple of thousand
forward time steps for a two-week forecast.

Especially in NWP, due to the relatively short window between
the arrival of observations, the quality control, assimilation and
subsequent dissemination of the forecast, typically only one hour
is available for the two-week forecast including uncertainty estima-
tion. Efficiency and in particular scalability, with a mixture of both
strong scaling and weak scaling requirements, become paramount in
a context of expanding massively parallel resources. Recent studies
[56, 105, 129] warned that current model efficiency needed to im-
prove by at least two orders of magnitude in order to be able to
run timely 1 km global NWP simulations on exascale systems. As a
result, failed tasks or other hardware issues can very quickly lead to
delayed forecast dissemination. Thus, strategies for resilience such
as hosting identical twin computing clusters for instant switching
of workloads, separating research and operational (peak) resources,
and checkpointing intermediate forecast results to disk are already
common practice.

1.2 Computational challenges and aims of the

study

The present paper aims to explore the reliability issue in numerical
weather and climate prediction applications by:

� establishing a reference taxonomy of faults, errors, and failures;

6

� surveying the traditional approaches to reliability in comput-
ing, and considering their shortcomings;

� exploring data recovery strategies used by current research on
fault-tolerance for linear solvers and on systems’ hardware re-
silience;

� presenting example applications of these approaches to NWP
demonstrators;

� discussing the resilience/efficiency trade-off and admissible over-
heads with a view to improving existing NWP systems’ relia-
bility.

In the following, resilience will be used as an umbrella term for tech-
niques that keep applications running despite faults. Most likely this
will be accomplished by combining hardware, programming environ-
ment and application resilience measures. Because of the nature of
solvers used in NWP, data recovery approaches that are local in
nature will be of particular interest given the increasing communi-
cation/computation time ratio in discrete models.

1.3 Taxonomy and traditional approaches

In the reliability literature, faults are defined as causes of errors,
which are parts of the state causing a failure. The latter represents
the transition to incorrect service (for taxonomy and wider related
literature we refer to the reviews in [11, 34, 35, 49, 102, 109, 133]).
Parallel computing systems may undergo hardware breakdowns in
several of their components - processes, nodes, blades, cabinets.
These breakdowns are usually defined as hard faults, they are in
general reproducible and, if unaddressed, bring programmes to halt.
Soft faults are instead usually caused by fluctuations in radiation
that introduce spurious modifications in the programme data in the
form of bit flips and are usually non-reproducible [38]. Faults are
further distinguished into detected and corrected, detected and un-
correctable, and undetected ones. The latter category can take the
form of silent data corruption and lead the programme to compute
the wrong solution unbeknown to the user [32, 44, 57, 58, 59, 64,
65, 76, 92, 99]. Next to other performance figures in HPC, mean
time between failure (MTBF), made of the sum of mean time to
interrupt (MTTI) and mean time to repair (MTTR), has arisen as
a measure of reliability of a computing system.

The aforementioned exponential growth in the core counts of
high-performance computing systems carries the potential to shrink
fault-free computing cycles, dramatically so in some cases. The

7

authors of [69] report a MTBF of 9-12 hours. Lower figures were
identified for Blue Waters [48] and the Tianhe-2 machines [37]. The
authors of [77] present the normalized MTBF of 5 systems over 8
years (their Figure 1). As reported in [41], the MTBF of a system
with one million nodes, each of which with a MTBF of 3 years, drops
to about 94 seconds.

Published figures in machines used in weather centres are gen-
erally hard to come by. The two supercomputers at the European
Centre for Medium-Range Weather Forecasts (ECMWF), with a to-
tal 7220 Cray XC-40 nodes and a joint peak performance of more
than 8 petaflops, show about 15 node failures per months, including
memory failures, CPU failures and software crashes but excluding
preventive maintenance. (Christian Weihrauch, personal communi-
cation). See also [12, 17, 77, 128] for more experimental resilience
assessments.

Efforts to limit the impact of computing failures have usually
revolved around rollback strategies, mostly in the form of check-
point-restart (CPR). In this approach, state data are written out
to a parallel filesystem, enabling the application to continue from
this consistent state after being restarted following a failure. Check-
pointing is intuitive in principle and is commonly agreed to be good
programming practice for code bases of a certain size. However,
it is computationally expensive as it involves moving data to and
from disk, a potential requeuing of the job when run under batch
submission systems, and an increase in total system resource and
energy usage. Looking ahead, the delays in time-to-solution and
overhead caused by CPR may become less and less sustainable for
time-bound applications, given the inherently increasing failure fre-
quency in future operating schedules. While studies have identified
optimal checkpointing intervals [41], CPR clearly stops being worth-
while at the point when the checkpointing procedure takes longer
than the average mean time between failure that it is meant to pro-
tect from. As an example, a study [133] reports CPR times of 2000 s
for a 64 TB dump on 1000 nodes.

Other traditional resilience strategies have used other forms of
redundancy, typically replication [20, 49]. While these approaches
may present some advantages when MTBF is low and CPR is heavy,
they also carry sizeable overheads and are generally power-hungry.

To protect the system from bitflips, error-correcting code mem-
ory (ECC) is almost exclusively used in computing centres. The
associated overhead in terms of performance, storage, and power
consumption is not negligible. Depending on the configuration, ca-
pacity overhead varies between 10 % and 40 % [91] and performance-

8

power overhead around 10–20 % [86]. In the hardware community, a
12.5 % overhead appears to be a commonly accepted value [135]. In
this context, figures released by hardware vendors tend to include
performance penalty only, overlooking the power requirements for
ECC/Chipkill[45]. Memory(DRAM) protection - increasing refresh
rate and adding more parity modules/bits to ECC/Chipkill - also
needs energy. The hardware community agreed on the power or per-
formance penalty associated with reliability enhancement. Despite
new techniques enabling more efficient reliability enhancement, it
is inevitable for computer system architects to allocate some power
and performance budget for reliability. For example, in [85] a highly
reliable Chipkill was implemented with two extra chips for a 16-chip
memory module. Other authors suggested hybridizing dynamic re-
fresh rates and Chipkill together to tune reliability, power and per-
formance tradeoffs.

At any rate, high-performance computing hardware could work
much more efficiently if the constraint to always calculate the exact
answer could be weakened. A number of studies recently investi-
gated the possibility to reduce numerical precision in weather sim-
ulations to allow for a reduction in computing cost. Savings can
be reinvested to increase model resolution or the number of ensem-
ble members for ensemble forecasts to improve predictions. Studies
have covered atmosphere models [55] but also data assimilation [79]
and other model components such as land surface [43]. It has also
been argued that reduced numerical precision may not necessarily
degrade results of simulations for weather predictions. In contrast,
in some cases it may even be possible to use variability from round-
ing errors to improve ensemble simulations [52].

A possible reduction in numerical precision has been investigated
using stochastic processors [54] and exact arithmetic, for example
employing programmable hardware such as Field Programmable
Gate Arrays (FPGAs) [122]. Stochastic processors reduce power
consumption through voltage over scaling. Here, the voltage applied
to the processor is reduced beyond the level at which all operations
are calculated correctly. Results suggest that power consumption
could indeed be reduced significantly if a low number of faults is
acceptable for the applications [53, 94, 127].

For all these reasons, even though HPC hardware reliability has
been relatively stable in recent years, resilience to hard and soft
faults for NWP models should now be investigated more thoroughly,
given increasingly tighter production schedules and expanding core
counts. Scalability tests with weather models using a significant frac-
tion of some of the world’s fastest supercomputers are still feasible

9

without serious problems due to faults [56, 66], but checkpointing
to disk is already required. As an example, the operational deter-
ministic global forecast at ECMWF at 9 km resolution runs with
324 compute nodes and 28 I/O server nodes with 4 MPI tasks per
node. This translates into 202MB of data to be written for a restart
file per MPI task – including the models for atmosphere, ocean,
waves and ice. Writing a restart dump for this system takes one to
three seconds. During a 10-day forecast, five checkpoints are writ-
ten, requiring less than 1% of the total forecast runtime. Although
these figures suggest that there is still some leeway before CPR
becomes unaffordable in operational NWP, checkpointing already
absorbs almost the entire bandwidth of the Lustre file-system. At
1km resolution for the atmospheric model component, the total size
of restart files reaches 4 Terabytes, which may be simultaneously
written from across thousands of MPI tasks to a single filesystem.
This raises questions regarding the interference of different users
jobs on the entire HPC performance.

1.4 Modern approaches and paper outline

Given the relatively large overhead of traditional resilience tech-
niques, in recent years computing experts have started exploring
alternative, more economical approaches, exploiting also emerging
non-volatile memory architectures becoming available at the com-
pute node level. For convenience, here we divide these approaches
in two groups, one related to algorithmic fault-tolerance models, and
one related to systems’ resilience.

Methods in the first group modify existing algorithms, typically
iterative methods for the solution of linear systems, in order to en-
sure continuing execution and solution quality upon hard or soft
faults. To this category belong the interpolation-restart (IR) algo-
rithms for iterative methods solving sparse linear systems [2, 3, 4,
5, 6, 7] and schemes guided by the algorithm-based fault-tolerance
approach (ABFT, see [50, 81] and [9, 74] for multigrid applications).
Section 2.1 contains more details on two approaches of this kind.

Methods in the second group are based on techniques that alter
parallelization schedules (in user level failure mitigation - ULFM,
see [8, 10, 26, 33, 63, 70, 71, 138]) or create convenient backup
systems [51] without modifying the lower-level numerical implemen-
tation. ULFM is usually associated with the actual set of MPI
extensions proposed to support the identification and mitigation of
failures within MPI communicators and restoring those communica-
tors back to working condition so the application may continue, see

10

Section 2.3, where two flavours of ULFM are explored more in depth.
An approach against hard and soft faults based on a backup grid
is presented in Section 2.4. Next, Section 2.5 contains some consid-
erations on HPC hardware resilience, based on the example of the
BullSequana system. In Section 3 we present preliminary numerical
results obtained applying some of the described algorithms to imple-
mentations derived from numerical weather prediction codes. Wider
applicability in the NWP context, included interplay with emerging
domain-specific language-based software frameworks, is discussed in
Section 4 and conclusions are drawn in Section 5.

Other approaches not explored in this study involve reducing the
precision of calculations or exactness of operations in order to reduce
the computational – and hence checkpoint-restart – load on simu-
lations [30], employing advanced focused checkpointing strategies
[40, 83, 87, 95, 113, 119, 124, 137], selectively identifying the parts
of models in need of reliability [31, 80], exploiting self-stabilizing
iterative solvers [125], using data compression [47], and global view
resilience [39]. Resilience in the framework of domain decomposition
preconditioners is explored in [117, 118, 126]. We refer to the cited
studies for further discussion on these techniques. We also remark
that we only deal with fault recovery techniques, while discussion
of fault detection is limited, for more on that see, e.g., [15, 22, 23],
and [141] for failure prediction.

2 Software resilience

Algorithmic fault-tolerance approaches aim at supplying numerical
methods with techniques to deal with hard or soft faults. In general,
approaches of this kind modify the theoretical formulation and the
implementation of the standard non fault-tolerant version of the
methods. Some methods, for example multigrid, structurally lend
themselves well to the task.

The effectiveness of these approaches can be evaluated based on
the trade-off between the scope of changes needed for fault-proofing
and related computational overhead on the one hand and fault-
tolerance performance on the other. Of particular interest in the
NWP context are fault-tolerant versions of iterative algorithms for
linear systems solution. Two examples are given below.

We consider the formalism proposed in [90] where data losses are
classified into three categories: computational environment, static
data and dynamic data. For Section 2.1 and 2.2 we are only dealing
with dynamic data recovery.

11

2.1 Interpolation-restart

Interpolation-Restart techniques are designed to cope with node
crashes (hard faults) in a parallel distributed environment. The
methods can be designed at the algebraic level for the solution both
of linear systems and of eigenvalue problems.

In the framework of iterative methods for the solution of linear
algebra problems, we consider numerical algorithms that are able to
extract relevant information from available data after a fault, assum-
ing a separate mechanism for fault detection. After data extraction,
a well-chosen part of the missing data is regenerated through inter-
polation strategies, and is then used as meaningful input to restart
the iterative scheme.

A well-suited initial guess is computed by using the entries of
the faulty iterate available on surviving nodes. Two fully algebraic
interpolation policies can be considered, that require the solution
of either a small linear system or a small least-squares problem.
The schemes are designed at application level and require no extra
computational units or computing time when no fault occurs.

Let us briefly describe the basic idea in the context of a sin-
gle fixed-point Richardson iteration scheme (see e.g. [115]) for the
solution of a linear system

Ax = b (1)

where A ∈ R
n×n denotes a nonsingular matrix, b ∈ R

n the right
hand side and x ∈ R

n the solution. Without loss of generality,
we assume that all the vectors or matrices of dimension n are dis-
tributed by blocks of rows in the memory of the different computing
nodes. Consistently, the iterate x(k), the right-hand side b and the
coefficient matrix A are distributed according to a block-row parti-
tion.

Let N be the number of partitions, such that each block-row is
mapped to a computing node. For all p, p ∈ [1, N], Ip denotes the
set of row indices mapped to node p. With respect to this notation,
node p stores the block-row AIp,: and xIp as well as the entries of all
the vectors involved in the solver associated with the corresponding
row indices of this block-row. If the block AIp,Iq contains at least
one nonzero entry, node p is referred to as neighbour of node q, as
communication will occur between those two nodes to perform a
parallel matrix-vector product.
Using an initial guess x(0), at step k the Richardson iteration is

x(k+1) = x(k) +
(

b−Ax(k)
)

. (2)

12

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

x bA

P

P

P

P

1

2

3

4

=

Static data Dynamic data

(a) Before Fault

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

0 0

0 0

0 0

1 1

1 1

1 1

x bA

P

P

P

P

1

2

3

4

=

Static data Dynamic data Lost data

(b) Faulty iteration

x bA

P

P

P

P

1

2

3

4

=

Static data Dynamic data Interpolated data

(c) Interpolation

Figure 1: General interpolation scheme. The matrix is initially distributed with
a block-row partition, here on four nodes (a). When a fault occurs on the node
P1, the corresponding data are lost (b). Whereas static data can be immediately
restored, dynamic data that have been lost cannot. We investigate numerical
strategies for regenerating them (c).

When a node crashes, all available data in its memory are lost.
The computational environment consists of all the data needed to
perform the computation (programme code, environment variables,
etc.). Static data are set up during the initialization phase and
remain unchanged during the computation. In the case of the so-
lution of a linear system, they correspond to the input data to the
problem and include in particular the coefficient matrix A and the
right-hand side vector b. Dynamic data are those whose value may
change during the computation, that reduces to the iterate x(k) for
a single fixed-point iteration scheme.

Figure 1a shows a block row distribution on four nodes, with
static data (matrix and right-hand side, blue) and dynamic data
(the iterate, green) associated with the linear system. If node P1

fails, the first block-row of A as well as the first entries of x and b
are lost (in black in Figure 1b).

Because the primary interest here lies in the numerical behaviour
of the schemes, we make strong assumptions on the parallel environ-
ment. In particular, when a fault occurs we assume that the crashed
node is replaced and the associated computational environment and
static data are restored [90]. This is shown in Figure 1c, where the
first matrix block-row as well as the corresponding portion of the
right-hand side are restored. By contrast, the dynamic iterate is
permanently lost and must be recovered.

The idea consists in interpolating the lost entries of the iterate
using interpolation strategies adapted to the linear systems to be
solved. The interpolated entries and the current values available on
the other nodes define the recovered iterate which is then used as

13

an initial guess to restart the Richardson iteration.
A first interpolation strategy, introduced in [90], consists in in-

terpolating lost data by using data from surviving nodes. Let x(k)

be the approximate solution when a fault occurs. After the fault,
the entries of x(k) are known on all nodes except the failed one. This
Linear Interpolation (LI) strategy computes a new approximate so-
lution by solving a local linear system associated with the failed
node. If node p fails, x(LI) is computed via











x
(LI)
Ip

= A−1
Ip,Ip

(bIp −
∑

q 6=p

AIp,Iqx
(k)
Iq

),

x
(LI)
Iq

= x
(k)
Iq

for q 6= p.

(3)

This basic idea can be adapted to more sophisticated linear
solvers based on Krylov subspace methods [4, 90] or to eigensolvers [6]
and more robust interpolation can be designed to tackle the possi-
ble singularity of the diagonal block A−1

Ip,Ip
. We refer to Section 3.1

for a more detailed description of these ideas in the context of the
GMRES method.

Finally, we note that when the linear system or eigenproblem
arises from the discretization of a partial differential equation (PDE),
each node of the parallel platform usually handles the unknowns
associated with a subdomain. In the context of a linear system
solution, the interpolation policy can be viewed as the solution of the
PDE on the failed subdomain with Dirichlet boundary conditions
defined by the current values on the interfaces with the neighbouring
domains. In that context, more sophisticated boundary conditions
can be considered as presented for example in [82].

2.2 Compressed checkpointing for iterative

solvers

Compressed checkpointing is an algorithm-based fault tolerance tech-
nique. It can also be characterized as a system-resilience technique,
since its efficient implementation crucially relies on ULFM, see Sec-
tion 2.3, and on improvements to classical CPR. Compressed check-
pointing can be used in the node loss scenario, but also in case of
silent data corruption (SDC). In the following, we describe some
ideas for the former, more specifically for in-memory compressed
checkpoints, and refer to [9] for the SDC case. Mathematical and
conceptual details can be found in [74], and more details on im-
plementation issues in [60]. The key point is that, by combining
compression techniques for backup creation with local-failure local-

14

recovery (LFLR, [138]) approaches for iterative solvers, e.g., multi-
grid preconditioners, the overhead in fault-free scenarios can be re-
duced significantly compared to classical CPR techniques, while still
providing a speed-up for recovery in the presence of hard faults or
data loss.

Compressed checkpointing has the potential to recover from hard
faults on-the-fly, without any interaction from the user, as it was
shown using the ULFM extension for MPI or a minimalistic hand-
crafted standalone feature-clone in [60]. However, focusing on the
solver alone is not sufficient. A prototypical implementation in the
DUNE software framework [28] demonstrates that memory footprint
as well as bandwidth pressure can be significantly reduced as long as
some technique like message-logging, see Section 2.3, is used to re-
cover the problem data needed to restart an iterative solver. This im-
plementation shows the usability of different combinations of backup
and recovery strategies partly based on a local-failure local-recovery
approach – on which see the next section – and lossy compression
techniques.

In practice, the solver is restarted in case of data loss, with an
updated initial guess based on the available data on the fault-free
ranks as well as the compressed backup data on the faulty rank. The
advantage in terms of minimally-invasive integration into existing
codes is that it is only necessary to create backups of the iterate
itself, and not of additional auxiliary vectors or iterative solver data.
Recovery can be further improved by storing additional information
like the search direction for the conjugate gradient method. This
can be especially useful if many data losses occur. In the best case,
the number of iterations until convergence of the fault-prone solver
before and after the restart adds up to the same amount as in the
fault-free scenario. The generation of the initial guess based on the
backup data can be done in multiple ways which we describe later.

Backup It can be shown that it is feasible to avoid creating a
full backup on disk, at least when the previously outlined approach
is combined with in-memory checkpointing techniques, see Section
2.3, storing only a compressed version of the current iterate in the
memory of a neighbouring node of the cluster. The core idea is
to resort to lossy compression, initially motivated by the ABFT
paradigm. Contrary to lossless compression methods, e.g., zip, png,
gif and others, lossy compression like mp3 or jpeg neglects some
information to increase the compression factor. Therefore, the de-
compressed data differ from the input data. However, since iterative
solvers and preconditioners are by definition not exact, the accuracy

15

loss due to compression can in fact be tolerated up to a certain de-
gree. The loss can be qualified as benign if the compression error
is smaller than the error within the solver, for example the residual
error accepted by some stopping criterion, and than the model nu-
merical truncation error. In this case, the decompressed data can
actually lead to results with similar quality as data from a lossless
compression method with the advantage of a smaller size.

In the following, we evaluate three techniques: zero backup,
multigrid, and SZ compression [47, 93, 136]. In the zero backup
technique, lost data are reinitialised with zeros. Multigrid can be
interpreted as a lossy compression technique, with a number of
mathematical peculiarities that need consideration [74]. Multigrid
algorithms use a hierarchy of grids to solve linear systems in an
asymptotically optimal way. This hierarchy can be used to restrict,
i.e., lossily interpolate, the iterate from fine to coarse grids. Such
lower-resolution representation of the iterate can then be stored as
a compressed backup. Later, the multigrid prolongation (coarse-
to-fine grid interpolation) operator is used to decompress the data.
Obviously, the quality of the backup is strongly dependent on the
grid where it is restricted to. This compression technique can easily
be applied if a multigrid solver or preconditioner is used anyway,
because the operators are readily available. Furthermore, this prin-
ciple can be used in combination with other hierarchic methods.

SZ compression, on the other hand, does not use operators from
a specific solver or preconditioner but can be applied to all kinds
of field data, although it prefers, by construction, structured data
ideally associated with a structured grid. Another important feature
is that the compression accuracy can be prescribed and adapted to
the situation. Unfortunately, a higher compression accuracy usually
leads to a lower compression factor and higher compression time,
which is crucial in terms of resilience overhead.

Recovery We suggest and evaluate three recovery techniques.
The first, baseline approach mimics CPR and simply replaces the
global iterate with its decompressed representation, independently of
the compression strategy. The second approach follows the LFLR
strategy and re-initializes only the local data lost on faulty ranks
by using backup data stored on neighbouring nodes. Unlike the
baseline approach, this is purely local and only needs minimal com-
munication to receive a remotely stored backup. In particular, the
recovery procedure itself does not involve the participation of other
ranks.

As a worst-case fallback when the backup data are not sufficient,

16

we established a third improved recovery approach, which is still
mostly local. An auxiliary problem is constructed, either by do-
main decomposition overlap or the operator structure, with bound-
ary data from the neighbouring ranks, and solved iteratively with
an initial guess based on the checkpoint data. This improves the
quality of the recovered data similar to equation (3) in Section 2.1.
This approach can nearly always restore the convergence from the
fault-free scenario independently of the used backup technique, only
the number of additional local iterations varies, see also [9, 82]. It
can be mandatory in highly-frequent fault scenarios to maintain
convergence.

2.3 System resilience

System resilience techniques take a higher-level, application-based,
perspective in comparison to algorithmic resilience approaches, often
with the focus on handling hard faults. The objective is to protect
the entire application from permanent failures in the computing
resources and enabling the application to continue, potentially on a
reduced set of resources. As a consequence, system resilience often
concerns more generic approaches which cater to a broader range of
software.

System resilience typically focuses on overcoming faults which
result in the complete loss of one or more MPI processes due to, for
example, hardware failure. The most basic form of resilience is repli-
cation, whereby calculations are performed in duplicate on multiple
nodes. This allows immediate continuation of the calculation in the
event of a failure, but with a very inefficient use of resources during
normal forward-path execution. Process replication has been ex-
plored as a simple and effective approach to resilience [75], although
it is highly wasteful of resources during fault-free execution.

As noted above, CPR to stable storage is the classic system
resilience methodology used to avoid complete re-execution of long-
running applications in the event of faults. Application-based check-
pointing is common among production codes, particularly in NWP,
allowing targeted data structures to be protected without wasting
resources in protecting auxiliary data which can otherwise be recon-
structed. We next survey a number of recent developments that
have been proposed in order to improve the efficiency of the CPR
technique at the system level.

Rather than forcing a restart of the entire application, localised
mitigation of the failure is preferable. One particular challenge in
the context of MPI applications has been the difficulty in recover-

17

Shrink Spare Spawn

_ _

MPI_Comm_revoke

MPI_COMM_WORLD Application Comm Worker Spare

Figure 2: Approaches to communication-channel recovery using user level failure
management extensions proposed for MPI 4.0.

ing MPI communication in the event of hard faults. The ULFM
extensions to the MPI standard introduced in Section 1 provide an
application-driven mechanism to detect and recover communication
channels in the event of a hard fault leading to the loss of one or
more processes. These extensions might be included in the MPI
4.0 standard [26]. In prior versions of MPI, communication routines
would either trigger an immediate abortion of the program or return
control to the application to support a more controlled termination.
ULFM allows failed communicators to be revoked – alerting all sur-
viving processes to the failure occurrence – and subsequently shrunk
to exclude all failed processes and restore functionality of the com-
municator. If supported by the computational resource, additional
processes may also be spawned to replace those which have failed.
These strategies are illustrated in Figure 2. Although not yet part
of the standard, the proposed ULFM extensions have already been
applied in a number of studies [8, 10, 26, 33, 60, 63, 70, 71, 138].

Following the restoration of communicators, the application must
be returned to a consistent state to continue execution, including
restoration of data structures on any replacement processes. This
requires mechanisms for both protection and restoration of critical
data structures.

In-memory checkpointing avoids writing to the parallel filesys-
tem. While local memory-based approaches provide excellent per-

18

formance for application faults, they fail to provide resilience against
more serious hardware failures. Remote in-memory checkpointing
places checkpoints in the memory of a remote node through a pair-
wise communication, retaining the performance benefits of avoiding
parallel filesystem access, but at the cost of increased network traf-
fic. Upon failure of one or more processes, remote checkpoints can
either be written to disk for use with traditional CPR, or restored di-
rectly after ULFM communicator recovery for a checkpoint-mitigate-
rollback approach.

Data transfer over the network is the main performance bottle-
neck of remote in-memory checkpointing. Depending on the volume
of state data which must be protected per process, the volume of
memory available on remote nodes for storing checkpoint data is also
a concern. Increasing prevalence of fast NVRAM has addressed this
issue to some extent [84, 101]. Nielsen [109] considered the applica-
tion of Reed-Solomon encoding to reduce the storage requirements
of checkpoints, storing only checksums in addition to the local data,
at the cost of additional computation.

An alternative strategy to protecting the state of an application
is to log communications between processes, thereby allowing recov-
ery of one or more processes to be performed in isolation. Message
logging avoids the need for surviving processes to rollback, but the
size of message logs may grow significantly, depending on the com-
munication pattern of the application.

Application to existing codes Mitigation of hard failures and
implementation of system resilience techniques generally requires
modification of existing codes to varying degrees. A number of li-
braries and packages already exist to facilitate this effort. Their
impact ranges from almost zero intrusion through to a complete
rewriting of the source code to incorporate resilience.

ACR [106] implements Automatic Checkpoint/Restart using repli-
cation of processes in order to handle both soft and hard errors.
FA-MPI [78] proposes non-blocking transactional operations as an
extension to the MPI standard to provide scalable failure detection,
mitigation and recovery. Finally, FT-MPI [63] was a precursor to
ULFM for adding fault tolerance to the MPI 1.2 standard.

These approaches, as well as Fenix detailed below, generally re-
quire significant intrusion into the application code to mark data
structures to be protected and to implement the recovery process. A
less intrusive approach [33], targeting time-dependent solvers, com-
bines message-logging techniques and remote in-memory checkpoint-
ing to reduce this burden in often complex object-oriented applica-

19

tions. It exploits the nature of these codes by transparently logging
MPI messages during the relatively short initialisation phase of the
application, when the data structures remain static, thereby allow-
ing recovering processes to follow the normal unmodified program to
reach the time-integration phase. For the time-integration phase, in
which the solution data change frequently, remote in-memory check-
pointing is used to maintain scalability. This approach is illustrated
in Figure 3.

Fenix Fenix is a framework enabling MPI applications to recover
nearly transparently from losses of data or computational resources
manifested as observable errors. It is based on the premise that the
MPI standard itself provides facilities for trapping and isolating such
errors, allowing the application to retain control of remaining unaf-
fected resources and obviating full program restart. Building on the
success of Fenix’s prototype implementation [69, 138], a significant
extension has been made to serve many different application needs
and styles with formal specifications [72]. The current implementa-
tion of Fenix leverages ULFM, but the specification does not require
it. The ULFM MPI fault tolerance proposal [25] is among the most
promising facilities considered for inclusion in the MPI standard.

Low-level application programming interfaces (API) of MPI ULFM
allow a minimal change in the current MPI standard, maintaining
backward compatibility. However, a lack of high-level facility, such
as application data recovery and rearrangement of MPI ranks after
process removal, is deemed too cumbersome to be used by appli-
cation scientists directly [89]. Fenix’s APIs hide the complexity of
the low-level MPI operations and provide usable and generic failure
recovery patterns for the MPI programming model.

Fenix has two distinct interfaces: process recovery and data re-
covery. The former allows an MPI application to recover from a
permanent loss of MPI processes (ranks) that cause MPI calls to
fail. Fenix’s data recovery API could be replaced by, or used with,
other mechanisms to restore application data.

Fenix’s basic assumption is that nominally fatal errors in MPI
programs are detected at runtime and reported via error codes.
While the default error response is application shutdown (MPI ERRORS ARE FATAL),
Fenix overrides this, allowing remaining resources (MPI processes)
to be informed of the failure, and to call MPI functions to remove
the lost resources from their respective communication contexts. To
ease adoption of MPI fault tolerance, Fenix automatically captures
errors resulting from MPI library calls that experience a failure. Im-
plementations of the Fenix specification can achieve this behaviour

20

(a)

Application

Resilience

MPI

Application

Resilience

MPI

Proc A

Proc B

...

...

Static

backup

Dynamic

backup

Application

Resilience

MPI

Spare

rank

rank

rank

(b)

Application

Resilience

MPI

Application

Resilience

MPI

Static init ...

...

Application

Resilience

MPI Wait

p

Restore

Roll-forward

Proc A

Proc B

Spare

rank

rank

rank

Spare

rank

Failure

Failure Detected

Figure 3: A low intrusive approach to system resilience by splitting the algorithm
into a static and dynamic phase [33]. (a) All communication is logged during the
static initialisation phase by intercepting MPI function calls. Remote-memory
check-pointing is used during the dynamic time-integration phase. (b) Following
a failure, spare ranks are used to replace failed ranks. These ranks follow the
normal code path but the results of MPI calls are replayed from the message
log.

21

by leveraging error handlers or the MPI profiling interface. Hence,
Fenix users need not replace MPI calls with calls to Fenix (for ex-
ample, Fenix Send instead of MPI Send). Subsequently, Fenix re-
pairs communicators transparently and returns execution control to
the application. Its detailed behaviour is determined by function
Fenix Init, which also initializes the library.

void Fenix_Init(

MPI_Comm comm,

MPI_Comm *newcomm,

int *role,

int *argc, char ***argv,

int spare_ranks,

int spawn,

MPI_Info info,

int *error);

Above, communicator comm is used to create resilient communi-
cator newcomm. Communicators derived from newcomm are automat-
ically resilient. Moreover, errors returned by MPI calls involving
resilient communicators are intercepted by Fenix, triggering repair
of all resilient communicators, such that the application can resume
execution. Control is returned to the application at the logical exit
of Fenix Init.

Next, parameter role contains the calling rank’s most recent his-
tory. Possible values are FENIX ROLE X RANK, with X being INITIAL,
SURVIVOR, or RECOVERED, corresponding to “no errors yet”, “not af-
fected by latest failure”, and “rank recovered, but has no useful
application data”, respectively.

Parameter spare ranks specifies how many ranks in comm are
sequestered in Fenix Init to replace failed ranks, and spawn de-
termines whether Fenix may create new ranks (MPI Comm spawn) to
restore resilient communicators to their original size. spare ranks

and spawn together define Fenix’s overall communicator repair pol-
icy. If both are zero, resilient communicators are shrunk to exclude
failed ranks after an error. If only spawn is zero, Fenix draws on the
spare ranks pool to restore resilient communicators to their original
size. Once the pool is depleted, subsequent errors lead to commu-
nicator shrinkage. Parameter info conveys details about expected
Fenix behaviour that differs from the default.

Once Fenix process recovery has returned an application to a
consistent state, the user needs to consider lost data. Sometimes
no action is required, for example because the application is embar-
rassingly parallel, like a Monte Carlo simulation. However, in most

22

HPC applications, which are Fenix’s prime target, ranks synchro-
nize often and the intermediate state of ranks lost due to error must
be restored.

We outline several plausible approaches, all supported by Fenix’s
process and data recovery facilities. However, the user need not use
Fenix for data recovery, and may, for example, use Global View
Resilience (GVR, [39]) and VeloC [107], a combination of these and
Fenix, or others. Fenix chiefly aims at providing fast and in-memory
redundant storage for data recovery, whereas GVR and VeloC target
secondary storage.

1. Non-shrinking recovery with full data retrieval. This is the
most common case in bulk-synchronous HPC codes. The pro-
grammer defines data/work decomposition that corresponds to
a certain number of ranks. After an error, SURVIVORs roll back
their state to a prior time. Missing ranks are replaced with
RECOVERED ranks that instantiate their state using non-local
data retrieved by a simple Fenix function invocation. Keeping
the same node count is desirable for applications with static
data partitioning and bulk-synchronous communication pat-
terns, mitigating the complexity associated with data reparti-
tioning for fewer node counts.

2. Non-shrinking recovery with local data retrieval only. SURVIVORs
roll back their state, but RECOVERED ranks approximate their
requisite data, for example by interpolation of logically “nearby”
data. This approach, also good for bulk-synchronous codes,
may apply to relaxation methods.

3. Shrinking recovery with full data retrieval. If the user demands
online recovery and resources are insufficient to replace defunct
ranks, Fenix shrinks damaged communicators. Now there is
no simple, unique way to assign recovered data to the reduced
number of remaining ranks. More general, flexible Fenix data
recovery functions are provided for alternate ways of retrieving
and re-assigning such data.

4. Shrinking recovery with local data retrieval only. This is a
combination of methods 2 and 3.

To organize redundant storage for data recovery after a fault,
Fenix offers data groups, containers for sets of data objects (mem-
bers) that are manipulated as a unit. Data groups also refer to the
collection of ranks that cooperate in handling recovery data. This
collection need not include all active ranks. Fenix adopts the conve-
nient MPI vehicle of communicators to indicate the subset of ranks
involved.

23

In addition to the above, Fenix provides query, synchronization,
and implicit and explicit garbage collection functions, as well as non-
blocking storage functions to improve performance, and functions
to manipulate subsets. For more specifications on Fenix we refer to
[68, 72, 73].

Kokkos Kokkos [24] is a C++ library designed as a performance-
portable node-parallel programming model to allow platform-independent
parallel implementations across multiple heterogeneous architectures.
The main idea of resilient Kokkos is extending the abstraction of par-
allel computation (execution space such as Kokkos::parallel for

) and data representation (Kokkos::View and memory space) to
support redundancy. These new features are enabled through tem-
plate parameters of Kokkos::parallel for and Kokkos::View to
realize redundant program execution and CPR handling both soft
and hard error resilience. During program execution, the resilient
Kokkos runtime monitors all active resilient Kokkos::View and au-
tomatically copies the data inside Kokkos::View to the persistent
storage as needed. For program recovery, Kokkos exploits the exist-
ing I/O and checkpoint library facilitated with annotation capability
for Kokkos::parallel for and Kokkos::View to locate the point
of failure as well as the data objects being lost. Currently, resilient
Kokkos provides C++ I/O, HDF5 and VeloC [107] for the persistent
storage options and supports OpenMP and CUDA backend for the
execution space. Writing library routines and DSL using Kokkos
can be done converting array expressions using Kokkos::View. The
same methodology can be applied to node parallel execution us-
ing Kokkos::parallel for and Kokkos::parallel reduce. The
reader is referred to [100] for more details on Kokkos resilience ca-
pabilities.

Minimal ULFM and fallback This approach is a much more
lightweight wrapper around the ULFM specification, specifically tar-
geted at C++ applications that intend to react to node losses and
silent data corruption via C++ exceptions [60]. The wrapper en-
sures that in case of a failure an exception can be received on all
surviving ranks if it happens inside a guarded block. The term
‘surviving’ here means, that the rank is capable to continue the
computation. We rely on two methods from the ULFM proposal:
MPIX Comm revoke, which revokes the communicator for any com-
munication and MPIX Comm agree to agree on the error state. Once
a rank calls a communication method on a revoked communication
an error is raised which is then mapped to an exception. A working

24

communicator can be recovered by calling MPIX Comm shrink and
its siblings, on which the computation can be continued, after the
error state has been resolved. This functionality is typically not
available in default MPI installations on clusters yet, and thus, such
a wrapper can be convenient in a transition phase.

2.4 Backup grid

To the best of our knowledge, there has been a single study to test
an approach to secure weather and climate models against hardware
faults on a software level [51]. The approach uses a backup grid to
store coarse resolution copies of prognostic variables. In the pres-
ence of a hardware fault, an estimate of the original values of the
model fields could be reproduced from the backup grid to enable
the simulation to continue with no significant delay. The approach
could not reproduce a bit-identical result when compared to a fault-
free simulation but it could allow the completion of a simulation in
the presence of both soft and hard faults.

The backup system uses the following mechanism [51]:

� The prognostic variables from the model grid are mapped onto
the coarse-resolution backup grid at the end of each time step.
The values of the backup grid are stored for one time step to
allow a comparison with the model fields at the following time
step.

� It is checked whether the fields on the backup grid have changed
by an unexpected amount during a time step. The threshold
of this check needs to be tuned to the specific model simula-
tion under consideration. If the change of a model variable is
suspicious, it is assumed that a hardware fault has perturbed
the simulation. Therefore, the specific value on the backup
grid is replaced by the corresponding value from the previous
time step.

� The corresponding values on the model grid that influenced
the erroneous grid value on the backup grid are checked for
values outside of a physically meaningful range.

� If the value on the model grid is found to be unreasonable, it
is replaced by the value mapped from the backup grid onto the
specific position of the model grid (Figure 4).

The approach was tested on numerical simulations with a two-
dimensional shallow water model, a standard test bed for numerical
schemes in NWP model development. As long as the backup sys-
tem was used, simulations did not crash and a high level of solution

25

Figure 4: Backup system of [51]. The coarse-resolution backup grid (black
grid points) holds an approximated representation of the prognostic variables
on the fine-resolution grid (red grid points). If a hardware fault is detected, the
prognostic fields on the model grid can be reproduced as an approximation from
the backup grid or vice versa.

quality could be maintained. The overhead due to the backup sys-
tem was reasonable with a 13% runtime increase [51]. Additional
storage requirements were small.

However, there are a number of limitations to the approach that
would require further research. The backup system, as used in [51],
is not able to distinguish between model errors and hardware errors,
and it violates local mass conservation and global energy conserva-
tion.

2.5 Hardware assistance for fault detection

Reliability, availability and serviceability (RAS) features of an HPC
system include all the components required to keep the system func-
tional for long periods without failures. In HPC, it is usually con-
sidered that the overhead cost associated with permanent RAS fea-
tures should be kept small compared to the potential impact of
computational nodes loss. This is justified by the balance between
cost and performance with respect to application criticality. Indeed,
compared to critical applications such as year-round 24/7 real-time
safety management systems, it is preferable to restart a simulation
job after excluding the failed computational resources, rather than
deploying inessential hardware RAS features at high cost. This is es-

26

pecially true if techniques restarting computations from a previous
healthy state exist at application level and can be used on time-
consuming or time-limited jobs with minimal impact on the results.

The common hardware RAS features are deployed at different
levels, from processors to the whole HPC system. The lower-level
RAS features are surveyed in [61], focusing on CPU, memory, intra-
node (socket-to-socket) interconnect and emerging FPGA-based hard-
ware accelerators. The authors, from academia, supercomputing
centres, and industry, also set a priority for the implementation of
each identified low-level resilience feature.

It results in a “must have” features list in production HPC sys-
tems based on three main criteria:

1. These resilience features should ensure that the failure rate of
the system is below an acceptable threshold depending on the
deployed technology, system size and target application;

2. Given the high cost of the uncorrected errors, frequent hard-
ware errors should be corrected, at low cost, preferably (where
possible) in hardware;

3. Overheating, one of the main causes of unreliable device be-
havior, imply that HPC systems should monitor the tempera-
ture of their components and include mechanisms that prevent
overheating while balancing power/energy and performance.

According to [61], the must have resilience features are:

� At processor and accelerator level:

– Error detection in CPU caches and registers

– To avoid overheating

* Memory thermal throttling: temporarily slowing down
the memory access rate to prevent memory modules
from overheating.

* Dynamic voltage and frequency scaling (DVFS) on
CPU and accelerator

� At memory level:

– ECC in main memory and in accelerator memory

– Memory Demand and Patrol Scrub: feature used in com-
bination with memory error detection (e.g., ECC) to find
and correct memory errors, either reactively (demand) or
proactively (patrol).

– Memory Address Parity Protection
At memory level, ECC is clearly the main feature, also
deployed on latest GPU as the Tesla V100 HBM2 memory

27

subsystem supports Single-Error Correcting Double-Error
Detecting ECC to protect data. Yet, ECC can fix only a
limited number of errors, so application level techniques
are still required.

� At intra-node level:

– Packet retry in the intra-node interconnect, mostly based
on CRC - cyclic redundancy check [112, 116] - checking
as done in Intel Ultra Path Interconnect , AMD Infinity
Fabric, Cavium Coherent Processor Interconnect.

– PCIe standard RAS features

� At inter-node level, based on high performance interconnect
such as InfiniBand and Ethernet, redundancy is commonly pro-
posed by stacking network switch allowing redundant network
links using IEEE 802.3ad Link Aggregation Control Protocol
(LACP).

� At storage level, RAID - Redundant Arrays of Inexpensive
Disks [111] - is the main common feature deployed commonly
in HPC systems in addition with advanced techniques such as
Declustered RAID, see [114].

Note that some techniques have a larger positive or negative im-
pact on performance than others. For example, ECC and DVFS fea-
tures lower the performance while LACP can improve performance
as it takes advantage to the redundant hardware.

Redundancy is the approach commonly used at the higher in-
frastructure level, where management of the redundant resources is
especially crucial. At the whole system level, a solution is to have
two or more HPC facilities physically apart, as done at ECMWF,
Météo France, and the UK Met Office, for example. This method
can include also the low-level RAS features.

For concreteness, in the rest of this section we consider in detail a
set of high-level hardware redundancy techniques for power, cooling,
management and high speed interconnect implemented in a real
example, the BullSequana XH2000. This system is relevant for the
purposes of NWP applications, since it will be installed at two main
weather and climate centres in Europe (ECMWF and Météo France),
as well as at supercomputing centres in Europe and beyond, such
as GENCI in France, CSC in Finland and C-DAC in India.

In the BullSequana XH2000 there is redundancy at four lev-
els: power, cooling, management and high-speed interconnect. For
power redundancy, in the XH2000 design the AC/DC conversion
within a rack is shared for all resource elements (compute node,
switch, hydraulic chassis, etc.). The power section is composed of

28

a power distribution unit (PDU), power supply unit (PSU) shelves,
optional ultra-capacity module (UCM) and a busbar to distribute
power to all the components within the cabinet. The level and type
of redundancy is configurable for the PSU shelves, it could be con-
figured at the PSU block or at the PSU shelf level with the following
type of configuration: N (no redundancy), N + 1 redundant, N + 2
redundant, and 2N (N + N redundant). The optional UCM chas-
sis allows the mitigation of micro power outages up to 300ms at
full load when 3-phase uninterruptible power supply equipment for
system shutdown is not present upstream in the data centre infras-
tructure. Some HPC centers use an uninterruptible power supply
(UPS) so as to maintain the power supply for longer in order to start
another power source or properly stop the systems. This method
(UPS plus another power source) is so costly with respect to the
power at stake that it is rarely deployed. Indeed, the high electrical
power demand of current HPC systems is not compatible anymore
with the densification and power efficiency imperatives required.

The BullSequana XH2000 Direct Liquid Cooling system is com-
posed of hydraulic chassis (HYC), primary and secondary manifolds,
and an expansion tank. The HYCs contain the heat exchanger sys-
tem that allows it to achieve 95% of heat transfer between the pri-
mary and secondary manifolds. Up to 3 HYC are available depend-
ing on the redundancy type desired (N or N + 1). The third HYC
is for N +1 redundancy only. To protect the system against cooling
lost at rack level, the rack is immediately put in low power mode
to lower its power consumption, and thus its dissipation, to avoid
stopping the production. In case of persistent failure inducing a
temperature rise the system shuts down automatically.

The network management of an XH2000 rack is based on a redun-
dant network switch stack (one redundant switch for each switch)
and redundant network links using Link Aggregation Control Pro-
tocol, ensuring a minimum redundancy. Moreover, in case of a cell
failure the cell-based architecture prevents from an impact on the
rest of the system.

On the high speed interconnect side, in case of node or switch
loss, the Infiniband standard provides for example the possibility to
recompute the routing tables in order to find alternative routes and
then keep the system running by isolating the failed resources.

3 Example implementations

This section contains illustrative applications of the fault-tolerant
algorithmic techniques described in Section 2.

29

3.1 Resilient GMRES with Interpolation-Restart

The GMRES method is one of the most popular solvers for the
solution of non-symmetric linear systems. It belongs to the class of
Krylov solvers that minimize the 2-norm of the residual associated
with the iterates built in the sequence of Krylov subspaces (MINRES
is another example of such a solver [110]). In contrast to many
other Krylov methods, GMRES does not update the iterate at each
iteration but only either when it has converged or when it restarts
every m steps in the so-called restarted GMRES [GMRES(m)] [123].

Most of the parallel GMRES implementations rely on a block row
partitioning of the matrix that induces a similar distribution of the
Krylov orthonormal basis, while the small upper Hessenberg matrix
resulting from the Arnoldi procedure is replicated. The memory
footprint and extra local computational cost of this replication are
negligible, and it avoids extra expensive global communications.

When a node crashes, the approximate solution is not available.
The Hessenberg matrix is replicated on each node and the least
squares problem is also solved redundantly. Consequently, each
individual node ℓ still in operation can compute its entries Iℓ of
the iterate when a fault occurs. Following the general idea of the
Interpolation-Restart policy, the lost entries of the current iterate
can be approximated by solving a local linear system defined by
Equation (3) or a more robust recovery technique, referred to as
LSI (Least Squares Interpolation) that solves the local least squares.
If node p fails, x(LSI) is computed as follows:











x
(LSI)
Ip

= argmin
xIp

‖(b−
∑

q 6=p

A:,Iqx
(k)
q) −A:,IpxIp‖,

x
(LSI)
Iq

= x
(k)
Iq

for q 6= p.

(4)

In addition to removing the assumption on the non-singularity
of the AIp,Ip block made to define the LI policy, the LSI strategy
ensures the monotonic decrease of the residual norm, a key property
of GMRES.

To study the numerical features of the proposed IR strategies,
we display the convergence history as a function of the iterations
(Figure 5), that also coincide with the number of preconditioned
matrix-vector products.

The recovery policy can induce delay in the convergence for two
reasons. The first source of possible delay is the quality of the
interpolation, the second is related to the restart that is performed
after a fault. To distinguish between the effect of the two sources
of delay, we implement a GMRES where we do not inject faults but

30

impose a restart at each iteration the faulty run experienced a fault
(it corresponds to a variable restarted policy for GMRES). We refer
to this strategy as Enforced Restart (ER, yellow line in Figure 5).
Furthermore, we also depict in red a straightforward strategy where
the lost entries of the iterate are replaced by the corresponding ones
of the first initial guess. This simple approach is denoted as Reset.

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 98 196 294 392 490 588 686 784 882 980

||
(b

-A
x
)|

|/
||
b
||

Iteration

Reset

LI

LSI

ER

(a) 3 % data lost

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 98 196 294 392 490 588 686 784 882 980

||
(b

-A
x
)|

|/
||
b
||

Iteration

Reset

LI

LSI

ER

(b) 0.8 % data lost

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 98 196 294 392 490 588 686 784 882 980

||
(b

-A
x
)|

|/
||
b
||

Iteration

Reset

LI

LSI

ER

(c) 0.2 % data lost

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 98 196 294 392 490 588 686 784 882 980

||
(b

-A
x
)|

|/
||
b
||

Iteration

Reset

LI

LSI

ER

(d) 0.001 % data lost

Figure 5: Numerical behaviour of the IR strategies applied to the GMRES(100)
solution of the linear system with matrix Averous/epb3 and 10 faults when the
amount of data loss is varied.

31

We solve the linear system Ax = b with GMRES(100) and tak-
ing as A the matrix Averous from the Florida matrix collection [42],
varying the volume of lost entries between 3% and 0.001% at each
fault (a single entry is lost in the latter case). For these experi-
ments, in order to enable cross comparison, the number of faults is
kept the same and the faults occur at the same iteration for all the
runs. The straightforward restarting Reset policy does not lead to
convergence (Figure 5). Each peak in the convergence history cor-
responds to a fault showing that the solver is not able to converge.
These characteristics are similar in other cases like multigrid meth-
ods for symmetric positive definite systems [74]. In contrast, the IR
strategies ensure convergence and have very similar convergence be-
haviour and robustness capabilities. Furthermore, the convergence
behaviour of IR strategies appears scarcely affected by the amount
of data loss.

In Figure 6, we investigate the robustness of the IR strategies
when the number of faults is varied while the amount of recovered
entries remains fixed at 0.2 % after each fault. For those experi-
ments, we consider restarted GMRES(100) to solve a linear system
associated with the matrix Kim1 from the Florida matrix collec-
tion [42]. An expected general trend that can be observed on this
example: the larger the number of faults, the slower the conver-
gence. When only a few faults occur, the convergence penalty is not
significant compared to the non-faulty case. For a large number of
faults, the convergence is slowed down but continues to take place.
For instance, for an expected accuracy of 10−7, the iteration count
with 40 faults is twice the one without faults.

3.2 Compressed checkpointing

In order to showcase the backup and recovery options with the com-
pressed checkpointing method, see Section 2 above, we consider the
test problem











−∇ ·

[(

1 0

0 0.01

)

∇u

]

= b in Ω = (0, 1)2

u = 0 on ∂Ω

(5)

with b such that u(x, y) = sin(πx2) sin(πy2) is the exact solution.
This problem is solved within the DUNE PDE framework by a
conjugate gradient method with an algebraic multigrid solver as
preconditioner provided by the Iterative Solver Template Library
(DUNE-ISTL [27]). The problem is solved in parallel on 52 ranks

32

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 140 280 420 560 700 840 980 1120 1260 1400

||
(b

-A
x
)|

|/
||
b
||

Iteration

Reset

LI

LSI

ER

(a) 4 faults

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 140 280 420 560 700 840 980 1120 1260 1400

||
(b

-A
x
)|

|/
||
b
||

Iteration

Reset

LI

LSI

ER

(b) 8 faults

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 140 280 420 560 700 840 980 1120 1260 1400

||
(b

-A
x
)|

|/
||
b
||

Iteration

Reset

LI

LSI

ER

(c) 17 faults

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 140 280 420 560 700 840 980 1120 1260 1400

||
(b

-A
x
)|

|/
||
b
||

Iteration

Reset

LI

LSI

ER

(d) 40 faults

Figure 6: Numerical behaviour of the IR strategies applied to the GMRES(100)
solution of the linear system with matrix Kim/kim1, varying number of faults,
and fixed 0.2 % data loss at each fault.

33

using an overlapping Schwarz approach with minimal overlap (essen-
tially using the template ISTLBackend CG AMG SSOR as solver from
DUNE-PDELab [13]). The iterative solving procedure is stopped
after a relative residual reduction of 10−8. In the fault-free case the
solver needs 115 iterations to fulfil this criterion for this particular
demonstrator problem.

In addition to the recovery approaches, for backup we consider
the aforementioned techniques of Zero Backup, Multigrid compres-
sion (MG, [74]), and SZ compression, as well as a fourth adaptive SZ
compression (aSZ) technique. MG is configured to a fixed backup
depth of two which reduces the data volume to 1/16 in our 2D
demonstrator. For standard SZ compression, we prescribe a com-
pression accuracy of 1e-7 and 1e-3 as examples for high and low
accuracy. For adaptive SZ compression, the compression accuracy
is coupled to the normalized local vector norm of the current residual
multiplied by an additional tolerance tolaSZ ∈ {1e-2,1e-1,1e0,1e1}:

‖Ax(i) − b‖2
‖b‖2

tolaSZ. (6)

Table 2 shows the average number of iterations to convergence in
the iterative solution of problem (5) when a fault happens in iter-
ation i ∈ {10, 40, 75, 110} on rank r ∈ {0, 21, 37}, using different
combinations of recovery approaches (first three rows) and backup
techniques. Furthermore, the last row (aux iter) shows the num-
ber of additional iterations for the local auxiliary problem when the
improved recovery is applied, using the different backups as initial
guesses.

Local recovery is always superior to global recovery while the
overhead is similar or even less. The improved recovery always yields
the best possible results but the amount of additional iterations of
the auxiliary solver varies. Zero backup, MG and the less accurate
SZ compression technique SZ 1e-3 result in a significant number
of additional iterations, either global or auxiliary ones. For local
recovery, high accurate fixed SZ compression (SZ 1e-7) is good if a
fault happens early but is not competitive if a fault happens late
in the iterative procedure (e.g. in iteration 110; not visible in the
shown Table). Adaptive SZ compression seems to be the best and
aSZ 1e0 seems to mark the sweet spot as increasing the accuracy
does not yield a big advantage for global and local recovery and a
decrease in accuracy (aSZ 1e1) yields around 20% more additional
iterations when using improved recovery.

In terms of compression factors (Figure 7, top) and cumulative
data size (Figure 7, bottom), most of the SZ compressed backups

34

Table 2: Average number of iterations to convergence in the solution of the
anisotropic diffusion problem (5) with faults, using different approaches for
backup and recovery (see text for details).

Zero MG SZ 1e-7 SZ 1e-3 aSZ 1e-2 aSZ 1e-1 aSZ 1e0 aSZ 1e1

global 200.00 200.00 154.00 193.00 116.00 115.00 119.00 120.00

local 199.33 194.67 134.33 173.00 114.33 115.67 115.67 114.67

improved 113.00 113.00 113.00 113.00 113.00 113.00 113.00 113.00
aux iter 190.00 118.33 57.33 106.67 23.00 23.00 24.00 28.33

yield a compression factor of around 100 for the given data size.
Therefore, the cumulative size over 115 iterations is less than the
size of two classic checkpoints of one iteration. Furthermore, the
adaptive approach takes advantage of the low accuracy of the solver
in the early stages and obtains higher compression factors. At the
end of the iterative solve, the adaptive compression is not as strong
as the non-adaptive one, but it enables a more efficient recovery as
shown before. It should be noted that SZ compression gives even
better compression factors when used for more data points. The
cumulative checkpoint size could be further reduced by reducing its
frequency, i.e., a checkpoint every n-th iteration. This can also re-
duce the communication overhead because the backups on different
ranks could be created in different iterations and thus the commu-
nication would be better distributed.

3.3 Soft fault detection and correction in the

Generalised Conjugate Residual method

A new nonhydrostatic dynamical core, the Finite Volume Module
(FVM) [88] of the Integrated Forecasting System, is being developed
at ECMWF for the next-generation NWP. The module uses a pre-
conditioned Generalised Conjugate Residual (GCR) elliptic solver
[130, 132] to solve the boundary value problem that arises from the
application of the Non-oscillatory Forward-in-Time (NFT) integra-
tor based on the MPDATA advection scheme [131] and results in an
equation which can symbolically be written as

L (φ) = R, (7)

where L is the elliptic operator and R represents the right-hand side
of the problem at hand. The elliptic solver (Algorithm 1) belongs
to a class of Krylov subspace methods, minimises the L2-norm of

35

0 20 40 60 80 100

102

103

Co
m

pr
es

sio
n

fa
ct

or

0 20 40 60 80 100
Iteration

0

2

4

6

8

Nu
m

be
r o

f f
ul

l s
ize

d
ch

ec
kp

oi
nt

s

MG
SZ_1e-7
SZ_1e-3
aSZ_1e-2
aSZ_1e-1
aSZ_1e0
aSZ_1e1

Figure 7: History of the average compression factor (top) and cumulative backup
size compared to full-sized checkpoint (bottom) over the iterative process using
different backup techniques in the iterative solution of the anisotropic diffusion
problem (5) with faults.

the residual, r, of the model (7), and solves the kth-order damped
oscillator equation with preconditioner operator P:

∂kP(φ)

∂τk
+

1

Tk−1 (τ)

∂k−1P(φ)

∂τk−1
+ ...+

1

T1 (τ)

∂1P(φ)

∂τ1
= L (φ)−R (8)

See [132] for a description of the physically motivated stopping crite-
ria. The damped oscillator equation (8) is discretised in pseudo-time
τ and optimal parameters T1, ..Tk−1 are determined to assure the
minimisation of 〈r, r〉 for the field φ (see [130, 132] for a detailed
discussion).

The solver employs bespoke left-preconditioning (see e.g.
[88] for details) to address the large condition number induced
by the domain anisotropy for global atmospheric problems. Since
the elliptic solver takes a significant (∼ 40%) proportion of the
computational resources of the dynamical core, it is quite likely
to encounter soft faults if they were to occur during computa-
tion.

The iterative nature of GCR provides ample opportunity to
recompute faulty data at minimal cost to the solver, given an
ability to detect such faults. A basic detection method can be
derived, given that for each iteration of GCR (n in Algorithm 1),
the kth order dampening takes place on a Krylov subspace, Kn,

36

Algorithm 1 GCR(k):

For any initial guess, φ0, set r0 = L
(

φ0
)

−R, p0 = P−1
(

r0
)

; then iterate:
for n = 1, 2, ... until convergence do

for ν = 0, ..., k − 1 do

β =
〈rνL (pν)〉

〈L (pν)L (pν)〉
φν+1 = φν + βpν

rν+1 = rν + βL (pν)
if ‖rν+1‖ ≤ ǫ then

exit
end if

e = P−1
(

rν+1
)

L(e) =

3
∑

l=1

1

ζ∗
l

∇ · ζ∗
l
C∇e

for l = 0, ..ν do

αl =

〈

L(e)L
(

pl
)〉

〈L (pl)L (pl)〉

pν+1 = e +

ν
∑

l

αlp
l

L
(

pν+1
)

= L(e) +

ν
∑

l

αlL
(

pl
)

end for

end for

reset [φ, r, p,L(p)]
k

to [φ, r, p,L(p)]
0

end for

such that Kn ⊆ Kn+1, ∀n ∈ 1, 2, As such, each iteration of
GCR minimises the L2-norm of the residual, r, on that Krylov
subspace. Since the norm is non-increasing on each subspace,
it is also non-increasing between subspaces. If during compu-
tation the discrete L2-norm value increases, that most likely
indicates a problem with the solver. Testing the resilience of
Algorithm 1 by injecting faults (bit flips) into various stages of
GCR often cause the solver to stall for an iteration, after which
the routine usually continues - sometimes more slowly but often
without other noticeable signs that a problem has been encoun-
tered. Even when a larger proportion of data is corrupted by
a fault, GCR is usually able to converge with about 10 − 20%
computational overhead. However, this can cause some erratic
behaviour of the solver - including large jumps in the maximum
absolute value of the residual in the domain, with the potential
to induce undesired modes into the solution, even if the solver

37

itself still converges.

Algorithm 2 FT-GCR(k):

For any initial guess, φ0, set r0 = L
(

φ0
)

−R, p0 = P−1
(

r0
)

; then iterate:
for n = 1, 2, ... until convergence do

for ν = 0, ..., k − 1 do

β =
〈rνL (pν)〉

〈L (pν)L (pν)〉
φν+1 = φν + βpν

rν+1 = rν + βL (pν)
if ‖rν+1‖ ≤ ǫ then

exit
end if

if rν+1 ≥ rν then

n=n-1
reset [φ, r, p,L(p)]

0
to [φ, r, p,L(p)]

∗

else if ν = 0 then

set [φ, r, p,L(p)]
∗

to [φ, r, p,L(p)]
0

end if

e = P−1
(

rν+1
)

L(e) =

3
∑

l=1

1

ζ∗
l

∇ · ζ∗
l
C∇e

for l = 0, ..ν do

αl =

〈

L(e)L
(

pl
)〉

〈L (pl)L (pl)〉

pν+1 = e +

ν
∑

l

αlp
l

L
(

pν+1
)

= L(e) +

ν
∑

l

αlL
(

pl
)

end for

end for

reset [φ, r, p,L(p)]
k

to [φ, r, p,L(p)]
0

end for

Assuming a fault has been detected, the solver can be eas-
ily reverted to a state previously deemed good (i.e., no fault
detected), at the cost of at most a full iteration of algorithm
1 (if a fault occurs during the ν = k − 1 pass). Algorithm 2
describes the fault tolerant GCR (FT-GCR) method, including
snap-shotting and fault detection.

In order to test the effectiveness of FT-GCR (algorithm 2),
the GCR elliptic solver in [97] was adapted to include fault
injection, detection, and resetting. The method solves potential
flow for an isolated hill on the planet. An O32 Octahedral

38

reduced Gaussian mesh (corresponding to ∼ 280km horizontal
resolution) with 51 vertical layers was used for the simulations.

(a) 0.0004 % data lost (b) 0.04 % data lost

(c) 0.2 % data lost (d) 1 % data lost

Figure 8: Numerical behaviour of GCR and FT-GCR when faults are introduced.
Each histogram displays the percentage of runs that converged at a given itera-
tion. Fault free convergence is reached after 66 iterations.

Faults are injected after the preconditioning stage with an
implausibly high 2% probability, with a maximum of 10 individ-
ual fault occurrences allowed. The fault causes a given number
of entries of e = P−1 (rν+1) , the preconditioner output, to suf-
fer a bit flip. Figure 8 illustrates graphically the response of
the protected and unprotected simulations, for different levels
of data corruption per fault encountered. Histograms a), b),
c), and d) correspond to 1 (0.0004%), 100 (0.04%), 500 (0.2%),
and 2700 (1%) entries corrupted (% of total data) respectively.
Table 3 documents averaged statistics for each of these simu-
lation sets. Each set contains between 100 and 200 simulation
results, where faultless simulations are disregarded.

It is clear that GCR is highly resilient to bit flip faults, as
even when a larger amount of data is corrupted the unprotected
algorithm usually manages to converge. Additionally, it can be

39

Table 3: The average number of faults per run, average number of faults de-
tected, average iterations for FT-GCR, and the average number of iterations for
unprotected GCR for each plot in Figure 8.

Histogram % data Faults Faults Convergence Convergence
lost per run detected FT-GCR GCR

a 0.0004% 4.17 0.1 68.0 68.0
b 0.04% 4.38 3.72 69.4 77.1
c 0.2% 4.33 3.66 69.6 77.8
d 1.0% 4.61 3.28 72.2 77.3

observed that minor data corruption events have little effect
on convergence (Figure 8a), which is also the likely reason why
such small corruption events are difficult to detect. When a
sufficient proportion of data is corrupted, FT-GCR detects be-
tween 60 − 80% of faults (Table 3), and convergence delay is
reduced by 5 to 8 iterations compared to the unprotected runs.
The overhead of this fault tolerance method is small, with one
backup step required per full GCR iteration - including a small
amount of extra memory to store the backups. The cost of de-
tection is also minimal, since the expensive global sum to find
the L2-norm of the residual is already computed.

4 Discussion

The techniques surveyed in this paper to secure NWP applica-
tions against faults are not yet implemented within operational
environments, but may start to play a significant role in the
next few years.

As exascale architectures start to be deployed, the feasibility
of disk or memory CPR will ultimately be contingent on the
evolution of memory latency and bandwidth compared with
the growing size of restart files. In addition, to assume that
all calculations will be performed with no faults will become
more costly. Computational cost could be significantly reduced
if constraints for fault-free calculations could be weakened (see
for example discussion of ECC memory checking and stochastic

40

processors in Section 1.3).
The ongoing transition to exascale NWP models constitutes

an excellent framework to set out objectives and requirements
for resilience and fault-tolerance as well as to test possible op-
tions to include resilience features in future atmospheric mod-
els. More economical resilience strategies should be investigated
that could flank or supplant CPR, which should ideally become
the technique of last resort. On the road to those solutions, deci-
sions and compromises need to be made on a number of aspects,
for instance whether to focus just on fault recovery or also fault
detection, and on hard or soft faults.

In the United States, efforts are under way in the framework
of the Exascale computing project in order to improve hardware
resilience. In particular, application of VeloC [108] has enabled
to significantly reduce CPR time [48]. With a final project
target of a one-week MTBF at exascale, on given machines a
three-fold increase has been obtained.

In Europe, at ECMWF energy efficiency and model sustain-
ability efforts are focusing on reshaping model implementation
into more manageable independent units called dwarfs, devel-
oped in the framework of the ESCAPE [104] and ESCAPE-2
projects. The dwarfs are eventually expected to cover around
60 per cent of the forecast model code, so improved checkpoint-
ing procedures can be tried on existing dwarfs with a view to
establishing a resilience framework applying to future ones. For
instance, experiments with checkpointing in memory [33] rather
than to disk could be carried out. Avoiding the parallel filesys-
tem may conceivably give a sizeable boost in performance at
large scale. With this and other possible solutions, performance
gains from fault recovery using spares and spawning, as well as
savings in requeue time and start-up cost of NWP code should
be weighed against development overhead for the tools them-
selves. From the systems point of view, standards are already
starting to provide resilience tools, an example being the inclu-
sion of ULFM into version 4 of MPI as an extension.

In addition, as part of efforts to ensure code portability and
multi-architecture performance, NWP models are transitioning
to implementations based on domain-specific-language (DSL)
approaches, such as Kokkos [24], Psyclone [1], and Stella/GridTools
[67, 139]. Fault-tolerance efforts requiring code modifications
will perforce interface with DSLs, and related investigations

41

have already started, for which see Section 2.3 above.
On the hardware side, securing stronger support from HPC

vendors in resilience efforts will require clear use cases from
the NWP community. ESCAPE and ESCAPE-2 dwarfs can
provide an optimal environment for such experiments. When a
dwarf-tested system resilience technique evolves into a de facto
standard in the weather and climate community, it can become
a differentiator for vendors to address this HPC market.

While vendors have generally been reluctant to publish hard-
ware resilience statistics such as MTBF for HPC architectures,
such information could be included in future procurements. Hard-
ware could include system monitoring functionalities, so that
users can isolate nodes that look suspicious and distinguish be-
tween healthy and unhealthy ones. In fact, unlike faults on data,
soft faults impacting instruction sets of hardware as well as in-
teger arithmetic are not addressed yet by any of the methods in
this survey, which have not yet been tested for a specific hard-
ware configuration. Atos Bull, an ESCAPE and ESCAPE-2
project member, takes part in MPI Forum, the MPI standard-
ization body [103]. Currently there is a strong interest in the
high-performance Fault Tolerance Interface (FTI) for hybrid
systems [16], and Atos Bull is already delivering FTI as part of
its software stack called Super Computer Suite.

From the algorithms viewpoint, properties of the methods
shown in this paper could be explored in more general NWP
settings. In particular, interpolation-restart techniques could
be deployed to fault-proof linear solvers in atmospheric dynam-
ical cores under development such as the ECMWF’s FVM [88]
or the Discontinuous Galerkin (DG) dynamical core under de-
velopment in ESCAPE-2 along the lines proposed in [140].

As shown in the resilience experiments with an FT-GCR
solver presented in this paper, a small numbers of faults in
the elliptic solver are both hard to detect and generally have re-
duced impact on convergence. If we can better detect soft faults
in the elliptic solver, the proposed repair technique would be
able to adequately protect this part of the model. FVM uses
a GCR solver, so that implementing the FT-GCR version in-
troduced here would give an immediate comparison between it
and, for example, IR-GMRES in terms of resilience and over-
head. Results could be compared to those obtained with disk
checkpointing or replication to evaluate trade-offs and inform

42

decisions.
Next, compressed and in-memory checkpointing as seen in

Section 2.2 could be incorporated into the FT-GCR solver. As-
suming that checkpointing will have to play a more dominant
role to maintain robustness of solvers, our experiments show
that compression can increase efficiency and reduce overhead
substantially, without compromising the numerical accuracy.
Using these techniques in an adaptive way yields low overhead
at the start of the iterative procedure, when a restart or infor-
mation loss has little effect. Later, when a simple restart will
cause the loss of a lot of invested resources and progress, the
compression accuracy increases as well as the overhead but the
recovery is as good as with no compression in return. The com-
putational overhead introduced by the SZ compression is in the
low single-digit percentage range while its achieved compression
factors can decrease the memory overhead significantly. Small
scale numerical tests (cf. Figure 7) already provide promis-
ing compression factors although SZ compression requires much
larger data sets to exploit its full potential. Introducing these
techniques into the FT-GCR solver could further reduce its
communication and storage overhead while maintaining its re-
covery properties. In addition, backup grid approaches as seen
in Section 2.4 can easily be implemented in other numerical
frameworks, for example in the modal DG framework by stor-
age of the lowest order modal coefficients of the solution for
each element.

Finally, it can be argued that the operational use of ensemble
simulations for weather and climate introduces another level
of resilience. Since individual ensemble members are run in
parallel, it may not be efficient to scale a single simulation to
the size of the entire supercomputer. If a single simulation is
crashing due to a hardware fault, at least most of the members
may finish in time and still allow the delivery of a forecast.
However, it will be difficult to perform reliable forecasts if the
number and quality of ensemble simulations varies. In general,
the error of ensemble predictions will be proportional to the sum
of a constant that is dependent on the quality of the forecast
model plus a term which is proportional to the inverse of the
number of ensemble members.

43

5 Conclusion

Performance of HPC facilities is expected to grow by an order of
magnitude and cross the exascale threshold in the next decade.
Numerical weather and climate prediction models are at the
forefront for exploiting the available computational power and
are preparing to tackle the challenges to their systems, from
data assimilation all the way to product dissemination. Pro-
jected figures for failure frequencies question the assumptions
on fault-free operating cycles that scientists have been taking
for granted after the early days of numerical computing. As
research teams and operational centres overhaul their codes to
rise up to the exascale challenge, enhanced scalable performance
will be of little use on algorithms operating with reduced pre-
cision, plagued by unchecked soft faults, and within workflows
based on unaffordable checkpointing schedules running on ma-
chines with unknown reliability.

This report explored pathways to algorithmic fault-tolerance
and computational resilience adequate for models used in nu-
merical weather and climate prediction. Existing numerical
techniques were surveyed, ranging from interpolation-restart
and compressed checkpointing approaches for iterative solvers
to in-memory checkpointing, ULFM-based process and data re-
covery for MPI, and advanced backup techniques. While this
set of algorithms and approaches was deemed a fair picture of
the state of the art, other methods are available and the field
is under rapid development. The methods were chosen because
of their proximity to NWP practice - iterative solvers for lin-
ear systems being a major component of semi-implicit methods
employed in most operational dynamical cores worldwide, MPI
being the de facto standard for CPU-based distributed-memory
parallelism.

Compressed checkpointing aside, the methods analyzed here
chiefly, though not exclusively, concern recovery from hard faults.
The frequency of soft errors in modern supercomputers presently
does not appear to be very precisely known to computational
scientists and practitioners. Bit-reproducibility tests could be
relatively easily set up for large model configurations in order
to start filling this knowledge gap. Hardware vendors could
offer valuable advice in these efforts, which would have to be
intertwined with verification and validation (V&V) strategies.

44

Indeed, bit-reproducibility tests are a common verification step
in the testing of NWP models, but the protocol for these tests
and the interpretation of their results may need to be revisited
if more frequent soft faults have to be taken into account. In
addition to soft failures, the use of massively threaded systems
(accelerators), FPGA, and special-purpose – such as AI – chips
creates a huge challenge for bitwise reproducibility. Overall
bit-reproducibility is realistic when executing only a few test
runs, while model checking can be used in workflows with re-
peated code execution. For the latter, it is essential to explore
more sophisticated V&V techniques to assess the correctness
of NWP code. Today, a variety of V&V techniques have been
practiced in other areas of computational science and engineer-
ing [120, 121], and the high performance computing community
have been recognizing the importance of V&V techniques in the
areas of compiler optimization [21], runtime (MPI and thread
scheduler [36, 62]) and numerical kernels [46].

In order to strengthen the case for hardware and software
resilience, NWP scientists should therefore reach out to other
scientific communities confronted with related issues. In partic-
ular, any nonlinear dynamic model will face similar challenges
to NWP in terms of soft error spread. Given the breadth and
depth of applications, machine learning efforts currently ex-
ert strong impact on hardware developments. In view of the
data sizes in play there, and of the growing use of those tech-
niques next to, or instead of, standard approaches in numerical
weather prediction, an investigation on the need for resilience
in machine learning could offer valuable insights and help to
drive hardware development.

Wide-ranging multinational exascale projects currently un-
der way provide ideal scientific arenas in which to discuss and
develop mitigating strategies against the threats posed by in-
creasing fault rates. The pressing need for reliable and time-
critical production of weather and climate forecasts makes a
compelling case for accelerating the pace of such endeavours.

45

Acknowledgments

The present paper stems from the ESCAPE-2 workshop on fault
tolerant algorithms and resilient approaches for exascale com-
puting held in January 2019 at the Mathematics Department
of Politecnico di Milano. An earlier version of the present pa-
per was submitted as an internal ESCAPE-2 project deliver-
able. We thank the authors of [4, 6], namely E. Agullo, L.
Giraud, A. Guermouche, J. Roman, P. Salas, and M. Zounon,
for the permission to report the description and numerical test-
ing of the interpolation-restart strategy in Sections 2.1 and
3. This work was supported by the ESCAPE-2 project, Euro-
pean Union’s Horizon 2020 research and innovation programme
(grant agreement No 800897); the ESiWACE2 Centre of Excel-
lence,European Union’s Horizon 2020 research and innovation
programme (grant agreement No 823988); and the Deutsche
Forschungsgemeinschaft under Germany’s Excellence Strategy
– EXC-2075 – (grant agreement no. 390740016). PD gratefully
acknowledges funding from the Royal Society for his University
Research Fellowship.

Note

This work has not yet been peer-reviewed and is provided by
the contributing authors as a means to ensure timely dissem-
ination of scholarly and technical work on a noncommercial
basis. Copyright and all rights therein are maintained by the
authors or by other copyright owners. It is understood that all
persons copying this information will adhere to the terms and
constraints invoked by each author’s copyright. This work may
not be reposted without explicit permission of the copyright
owner.

46

References

[1] S.V. Adams, R.W. Ford, M. Hambley, J.M. Hobson, I. Kavčič, C.M.
Maynard, T. Melvin, E.H. Müller, S. Mullerworth, A.R. Porter,
M. Rezny, B.J. Shipway, and R. Wong. LFRic: Meeting the chal-
lenges of scalability and performance portability in weather and
climate models. Journal of Parallel and Distributed Computing,
132:383–396, 2019.

[2] E. Agullo, S. Cools, L. Giraud, A. Moreau, P. Salas, W. Vanroose,
E. F. Yetkin, and M. Zounon. Hard faults and soft-errors: Possible
numerical remedies in linear algebra solvers. In International Con-
ference on Vector and Parallel Processing, pages 11–18. Springer,
2016.

[3] E. Agullo, L. Giraud, A. Guermouche, J. Roman, and M. Zounon.
Towards resilient parallel linear Krylov solvers: recover-restart
strategies. Technical report, INRIA, 2013.

[4] E. Agullo, L. Giraud, A. Guermouche, J. Roman, and M. Zounon.
Numerical recovery strategies for parallel resilient Krylov linear
solvers. Numerical Linear Algebra with Applications, 23(5):888–905,
2016.

[5] E. Agullo, L. Giraud, and Y.-F. Jing. Block GMRES method with in-
exact breakdowns and deflated restarting. SIAM Journal on Matrix
Analysis and Applications, 35(4):1625–1651, 2014.

[6] E. Agullo, L. Giraud, P. Salas, and M. Zounon. Interpolation-restart
strategies for resilient eigensolvers. SIAM Journal on Scientific Com-
puting, 38(5):C560–C583, 2016.

[7] E. Agullo, L. Giraud, and M. Zounon. On the resilience of parallel
sparse hybrid solvers. In 2015 IEEE 22nd International Conference
on High Performance Computing (HiPC), pages 75–84. IEEE, 2015.

[8] M. M. Ali, J. Southern, P. Strazdins, and B. Harding. Applica-
tion level fault recovery: Using Fault-Tolerant Open MPI in a PDE
solver. In Parallel & Distributed Processing Symposium Workshops
(IPDPSW), 2014 IEEE International, pages 1169–1178. IEEE, 2014.

[9] M. Altenbernd and D. Göddeke. Soft fault detection and correc-
tion for multigrid. The International Journal of High Performance
Computing Applications, 32(6):897–912, 2018.

[10] R. A. Ashraf, S. Hukerikar, and C. Engelmann. Shrink or substi-
tute: Handling process failures in HPC systems using in-situ re-
covery. In 2018 26th Euromicro International Conference on Paral-
lel, Distributed and Network-based Processing (PDP), pages 178–185.
IEEE, 2018.

[11] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic
concepts and taxonomy of dependable and secure computing. IEEE
transactions on dependable and secure computing, 1(1):11–33, 2004.

47

[12] A.D. Barker, D.E. Bernholdt, A.S. Bland, J.D. Gary, J.J. Hack, S.T.
McNally, J.H. Rogers, B. Smith, T.P. Straatsma, S.R. Sukumar,
et al. High Performance Computing Facility Operational Assessment
2015 Oak Ridge Leadership Computing Facility. ORNL, 2016.

[13] P. Bastian, F. Heimann, and S. Marnach. Generic implementation
of finite element methods in the Distributed and Unified Numerics
Environment (DUNE). Kybernetika, 46:294–315, 2010.

[14] P. Bauer, A. Thorpe, and G. Brunet. The quiet revolution of numer-
ical weather prediction. Nature, 525(7567):47–55, 2015.

[15] L. Bautista-Gomez and F. Cappello. Detecting silent data corrup-
tion for extreme-scale MPI applications. In Proceedings of the 22nd
European MPI Users’ Group Meeting, page 12. ACM, 2015.

[16] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka. FTI: high performance fault toler-
ance interface for hybrid systems. In SC ’11: Proceedings of 2011 In-
ternational Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–12. IEEE, 2011.

[17] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-
Smith. Unprotected computing: A large-scale study of dram raw
error rate on a supercomputer. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis, page 55. IEEE Press, 2016.

[18] T. Benacchio. A blended semi-implicit numerical model for weakly
compressible atmospheric dynamics. PhD thesis, Freie Universität
Berlin, 2014. [Available at: http://edocs.fu-berlin.de/diss/

receive/FUDISS_thesis_000000097149].

[19] T. Benacchio, W. O’Neill, and R. Klein. A blended soundproof-
to-compressible model for atmospheric dynamics. Monthy Weather
Review, 142(12):4416–4438, 2014.

[20] A. Benoit, A. Cavelan, F. Cappello, P. Raghavan, Y. Robert, and
H. Sun. Identifying the right replication level to detect and correct
silent errors at scale. In Proceedings of the 2017 Workshop on Fault-
Tolerance for HPC at Extreme Scale, pages 31–38. ACM, 2017.

[21] M. Bentley, I. Briggs, G. Gopalakrishnan, D. H. Ahn, I. Laguna,
Gregory L. Lee, and H. E. Jones. Multi-level analysis of compiler-
induced variability and performance tradeoffs. In Proceedings of
the 28th International Symposium on High-Performance Parallel and
Distributed Computing, page 61–72. ACM, 2019.

[22] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello.
Lightweight silent data corruption detection based on runtime data
analysis for HPC applications. In Proceedings of the 24th Inter-
national Symposium on High-Performance Parallel and Distributed
Computing, pages 275–278. ACM, 2015.

[23] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello.
Exploring partial replication to improve lightweight silent data cor-

48

ruption detection for HPC applications. In European Conference on
Parallel Processing, pages 419–430. Springer, 2016.

[24] L. Bertagna, M. Deakin, O. Guba, D. Sunderland, A.M. Bradley,
I.K. Tezaur, M. A. Taylor, and A.G. Salinger. HOMMEXX 1.0:
a performance-portable atmospheric dynamical core for the Energy
Exascale Earth System Model. Geoscientific Model Development,
12(4):1423–1441, 2019.

[25] W. Bland, A. Bouteiller, T. Herault, Gorge Bosilca, and Jack J.
Dongarra. Post-failure recovery of MPI communication capability:
Design and rationale. International Journal of High Performance
Computing Applications, 2013.

[26] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J.
Dongarra. An evaluation of user-level failure mitigation support in
MPI. Computing, 95(12):1171–1184, 2013.

[27] M. Blatt and P. Bastian. The Iterative Solver Template Library. In
Bo Kågström, Erik Elmroth, Jack Dongarra, and Jerzy Waśniewski,
editors, Applied Parallel Computing. State of the Art in Scientific
Computing, pages 666–675. Springer Berlin Heidelberg, 2007.

[28] M. Blatt, A. Burchardt, A. Dedner, Ch. Engwer, J. Fahlke,
B. Flemisch, Ch. Gersbacher, C. Gräser, F. Gruber, Ch. Grüninger,
D. Kempf, R. Klöfkorn, T. Malkmus, S. Müthing, M. Nolte, M. Pi-
atkowski, and O. Sander. The Distributed and Unified Numerics En-
vironment, Version 2.4. Archive of Numerical Software, 4(100):13–29,
2016.

[29] R. Bonaventura, L. Redler and R. Budich. Earth System Modelling 2:
Algorithms, Code Infrastructure and Optimisation. Springer Verlag,
New York, 2012.

[30] A. Bouras and V. Frayssé. Inexact matrix-vector products in Krylov
methods for solving linear systems: a relaxation strategy. SIAM
Journal on Matrix Analysis and Applications, 26(3):660–678, 2005.

[31] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen.
Fault-tolerant linear solvers via selective reliability. arXiv preprint
arXiv:1206.1390, 2012.

[32] J. Calhoun, M. Snir, L. N. Olson, and W. D. Gropp. Towards a
more complete understanding of SDC propagation. In Proceedings
of the 26th International Symposium on High-Performance Parallel
and Distributed Computing, pages 131–142. ACM, 2017.

[33] C. D. Cantwell and A. S. Nielsen. A minimally intrusive low-memory
approach to resilience for existing transient solvers. Journal of Sci-
entific Computing, 78(1):565–581, 2019.

[34] F. Cappello. Fault tolerance in petascale/exascale systems: Current
knowledge, challenges and research opportunities. The International
Journal of High Performance Computing Applications, 23(3):212–
226, 2009.

49

[35] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir.
Toward exascale resilience: 2014 update. Supercomputing frontiers
and innovations, 1(1):5–28, 2014.

[36] D. Chapp, T. Johnston, and M. Taufer. On the need for repro-
ducible numerical accuracy through intelligent runtime selection of
reduction algorithms at the extreme scale. In 2015 IEEE Interna-
tional Conference on Cluster Computing, pages 166–175, 2015.

[37] C. Chen, Y. Du, K. Zuo, J. Fang, and C. Yang. Toward fault-
tolerant hybrid programming over large-scale heterogeneous clusters
via checkpointing/restart optimization. The Journal of Supercom-
puting, pages 1–22, 2017.

[38] C.-Y. Cher, M. Gupta, P. Bose, and K. P. Muller. Understanding soft
error resiliency of blue gene/Q compute chip through hardware pro-
ton irradiation and software fault injection. In SC’14: Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 587–596. IEEE, 2014.

[39] A. Chien, P. Balaji, P. Beckman, N. Dun, A. Fang, H. Fujita,
K. Iskra, Z. Rubenstein, Z. Zheng, R. Schreiber, et al. Versioned dis-
tributed arrays for resilience in scientific applications: Global view
resilience. Procedia Computer Science, 51:29–38, 2015.

[40] I. Cores, G. Rodŕıguez, P. González, R. R. Osorio, et al. Improv-
ing scalability of application-level checkpoint-recovery by reducing
checkpoint sizes. New Generation Computing, 31(3):163–185, 2013.

[41] J. T. Daly. A higher order estimate of the optimum checkpoint
interval for restart dumps. Future generation computer systems,
22(3):303–312, 2006.

[42] T. A. Davis and Y. Hu. The University of Florida sparse matrix
collection. j-TOMS, 38(1):1:1–1:25, 2011.

[43] A. Dawson, P. D. Düben, D. A. MacLeod, and T. N. Palmer. Reliable
low precision simulations in land surface models. Climate Dynamics,
51(7):2657–2666, 2018.

[44] D. De Oliveira, L. Pilla, M. Hanzich, V. Fratin, F. Fernandes, C. Lu-
nardi, J. M. Cela, P. Navaux, L. Carro, and P. Rech. Radiation-
induced error criticality in modern HPC parallel accelerators. In
2017 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), pages 577–588. IEEE, 2017.

[45] T. J. Dell. A white paper on the benefits of chipkill-correct ECC for
PC server main memory. IBM Microelectronics Division, 11:1–23,
1997.

[46] J. Demmel and H. D. Nguyen. Parallel reproducible summation.
IEEE Transactions on Computers, 64(7):2060–2070, 2015.

[47] S. Di and F. Cappello. Fast error-bounded lossy HPC data compres-
sion with SZ. In 2016 IEEE international parallel and distributed
processing symposium, pages 730–739. IEEE, 2016.

50

[48] C. Di Martino, W. Kramer, Z. Kalbarczyk, and R. Iyer. Measur-
ing and understanding extreme-scale application resilience: A field
study of 5,000,000 HPC application runs. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 25–36. IEEE, 2015.

[49] J. Dongarra, T. Herault, and Y. Robert. Fault tolerance techniques
for high-performance computing. In Fault-Tolerance Techniques for
High-Performance Computing, pages 3–85. Springer, 2015.

[50] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra.
Algorithm-based fault tolerance for dense matrix factorizations.
ACM SIGPLAN notices, 47(8):225–234, 2012.

[51] P. D. Düben and A. Dawson. An approach to secure weather and
climate models against hardware faults. Journal of Advances in
Modeling Earth Systems, 9(1):501–513, 2017.

[52] P. D. Düben and S. I. Dolaptchiev. Rounding errors may be benefi-
cial for simulations of atmospheric flow: results from the forced 1D
Burgers equation. Theoretical and Computational Fluid Dynamics,
29:311–328, 2015.

[53] P. D. Düben, J. Joven, A. Lingamneni, H. McNamara, G. De Micheli,
K. V. Palem, and T. N. Palmer. On the use of inexact, pruned hard-
ware in atmospheric modelling. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences,
372(2018):20130276, 2014.

[54] P. D. Düben, H. McNamara, and T.N. Palmer. The use of impre-
cise processing to improve accuracy in weather & climate prediction.
Journal of Computational Physics, 271:2–18, 2014.

[55] P. D. Düben and T. N. Palmer. Benchmark tests for numerical
weather forecasts on inexact hardware. Monthly Weather Review,
142(10):3809–3829, 2014.

[56] P. D. Düben, N. P. Wedi, C. Zeman, and S. Saarinen. Global simula-
tions of the atmosphere at 1.45 km grid-spacing with the Integrated
Forecasting System. Journal of the Meteorological Society of Japan.
Ser. II, 2020. https://doi.org/10.2151/jmsj.2020-016.

[57] J. Elliott, M. Hoemmen, and F. Mueller. Evaluating the impact
of SDC on the GMRES iterative solver. In 2014 IEEE 28th In-
ternational Parallel and Distributed Processing Symposium, pages
1193–1202. IEEE, 2014.

[58] J. Elliott, M. Hoemmen, and F. Mueller. A numerical soft fault
model for iterative linear solvers. In Proceedings of the 24th Inter-
national Symposium on High-Performance Parallel and Distributed
Computing, pages 271–274. ACM, 2015.

[59] J. Elliott, M. Hoemmen, and F. Mueller. Exploiting data representa-
tion for fault tolerance. Journal of computational science, 14:51–60,
2016.

51

[60] C. Engwer, M. Altenbernd, N.-A. Dreier, and D. Göddeke. A high-
level C++ approach to manage local errors, asynchrony and faults in
an MPI application. In 2018 26th Euromicro International Confer-
ence on Parallel, Distributed and Network-based Processing (PDP),
pages 714–721. IEEE, 2018.

[61] European HPC resilience initiative. Towards Resilient EU HPC
Systems: A Blueprint. Whitepaper, Forthcoming, 2020.

[62] Noah Evans. Verifying Qthreads: Is model checking viable for user
level tasking runtimes? In I. Laguna and C. Rubio-González, edi-
tors, 2nd IEEE/ACM International Workshop on Software Correct-
ness for HPC Applications, CORRECTNESS@SC 2018, Dallas, TX,
USA, November 12, 2018, pages 25–32. IEEE, 2018.

[63] G. E. Fagg and J. J. Dongarra. FT-MPI: Fault tolerant MPI, sup-
porting dynamic applications in a dynamic world. In European
Parallel Virtual Machine/Message Passing Interface Users’ Group
Meeting, pages 346–353. Springer, Berlin, Heidelberg, 2000.

[64] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring: probabilis-
tic soft error reliability on the cheap. In Proceedings of ASPLOS XV,
pages 385–396. ACM, 2010.

[65] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and
R. Brightwell. Detection and correction of silent data corruption for
large-scale high-performance computing. In Proceedings of the Inter-
national Conference on High Performance Computing, Networking,
Storage and Analysis, page 78. IEEE Computer Society Press, 2012.

[66] O. Fuhrer, T. Chadha, T. Hoefler, G. Kwasniewski, X. Lapillonne,
D. Leutwyler, D. Lüthi, C. Osuna, C. Schär, T. C. Schulthess, and
H. Vogt. Near-global climate simulation at 1 km resolution: estab-
lishing a performance baseline on 4888 GPUs with COSMO 5.0. Geo-
scientific Model Development, 11(4):1665–1681, 2018.

[67] O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, B. Cumming,
M. Bianco, A. Arteaga, and T. C. Schulthess. Towards a perfor-
mance portable, architecture agnostic implementation strategy for
weather and climate models. Supercomputing frontiers and innova-
tions, 1(1):45–62, 2014.

[68] M. Gamell, D. S. Katz, K. Teranishi, M. A. Heroux, R. F. Van der
Wijngaart, T. G. Mattson, and M. Parashar. Evaluating online
global recovery with Fenix using application-aware in-memory check-
pointing techniques. In 2016 45th International Conference on Par-
allel Processing Workshops (ICPPW), pages 346–355. IEEE, 2016.

[69] M. Gamell, D.S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar.
Exploring automatic, online failure recovery for scientific applica-
tions at extreme scales. In SC’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis, pages 895–906. IEEE, 2014.

[70] M. Gamell, K. Teranishi, H. Kolla, J. Mayo, M. A Heroux, J. Chen,
and M. Parashar. Scalable Failure Masking for Stencil Computations

52

using Ghost Region Expansion and Cell to Rank Remapping. SIAM
Journal on Scientific Computing, 39(5):S347–S378, 2017.

[71] M. Gamell, K. Teranishi, J. Mayo, H. Kolla, M. A. Heroux, J. Chen,
and M. Parashar. Modeling and simulating multiple failure mask-
ing enabled by local recovery for stencil-based applications at ex-
treme scales. IEEE Transactions on Parallel and Distributed Sys-
tems, 28(10):2881–2895, 2017.

[72] M. Gamell, K. Teranishi, R. Van Der Wijngaart, E. Valenzuela,
M. Heroux, and M. Parashar. Fenix, a fault tolerant programming
framework for MPI applications 1.1. Technical Report SAND No.
2016-xxxxx, Sandia National Laboratories, Livermore, CA, 2016.

[73] M. Gammel, R. Van Der Wijngaart, K. Teranishi, and M. Parashar.
Specification of Fenix MPI Fault Tolerance library version 1.0. Tech-
nical report, Sandia National Lab.(SNL-NM), Albuquerque, NM
(United States), 2016.

[74] D. Göddeke, M. Altenbernd, and D. Ribbrock. Fault-tolerant finite-
element multigrid algorithms with hierarchically compressed asyn-
chronous checkpointing. Parallel Computing, 49:117–135, 2015.

[75] Rachid Guerraoui and André Schiper. Software-based replication for
fault tolerance. Computer, 30(4):68–74, 1997.

[76] P.-L. Guhur, E. Constantinescu, D. Ghosh, T. Peterka, and F. Cap-
pello. Detection of silent data corruption in adaptive numerical in-
tegration solvers. In Cluster Computing (CLUSTER), 2017 IEEE
International Conference on, pages 592–602. IEEE, 2017.

[77] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari. Failures in large
scale systems: long-term measurement, analysis, and implications.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 44. ACM, 2017.

[78] A. Hassani, A. Skjellum, and R. Brightwell. Design and evaluation
of FA-MPI, a transactional resilience scheme for non-blocking MPI.
In 2014 44th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, pages 750–755. IEEE, 2014.

[79] S. Hatfield, P. Düben, M. Chantry, K. Kondo, T. Miyoshi, and
T. Palmer. Choosing the optimal numerical precision for data as-
similation in the presence of model error. Journal of Advances in
Modeling Earth Systems, 10(9):2177–2191, 2018.

[80] M. F. Hoemmen, M. A. Heroux, K. B. Ferreira, and P. G. Bridges.
Fault-tolerant iterative methods via selective reliability. Technical
report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States), 2011.

[81] K.-H. Huang and J.A. Abraham. Algorithm-based fault tolerance
for matrix operations. IEEE transactions on computers, 100(6):518–
528, 1984.

[82] M. Huber, B. Gmeiner, U. Rüde, and B. Wohlmuth. Resilience
for massively parallel multigrid solvers. SIAM Journal on Scientific
Computing, 38(5):S217–S239, 2016.

53

[83] T. Z. Islam, K. Mohror, S. Bagchi, A. Moody, B.R. De Supinski, and
R. Eigenmann. McrEngine: a scalable checkpointing system using
data-aware aggregation and compression. Scientific Programming,
21(3-4):149–163, 2013.

[84] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic. Optimizing
checkpoints using NVM as virtual memory. In 2013 IEEE 27th In-
ternational Symposium on Parallel and Distributed Processing, pages
29–40, 2013.

[85] J. Kim, M. Sullivan, and M. Erez. Bamboo ECC: Strong, safe, and
flexible codes for reliable computer memory. In 2015 IEEE 21st In-
ternational Symposium on High Performance Computer Architecture
(HPCA), pages 101–112, 2015.

[86] J. Kim, M. Sullivan, S.-L. Gong, and M. Erez. Frugal ECC: Efficient
and versatile memory error protection through fine-grained compres-
sion. In SC ’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’15,
pages 1–12. ACM, 2015.

[87] N. Kohl, J. Hötzer, F. Schornbaum, M. Bauer, C. Godenschwager,
H. Köstler, B. Nestler, and U. Rüde. A scalable and extensible
checkpointing scheme for massively parallel simulations. The Inter-
national Journal of High Performance Computing Applications, page
1094342018767736, 2017.

[88] C. Kühnlein, W. Deconinck, R. Klein, S. Malardel, Z. P. Piotrowski,
P. K. Smolarkiewicz, J. Szmelter, and N. P. Wedi. FVM 1.0: A non-
hydrostatic finite-volume dynamical core formulation for IFS. Geo-
scientific Model Development Discussions, 12:651–676, 2019.

[89] I. Laguna, D. F. Richards, T. Gamblin, M. Schulz, and B.R.
de Supinski. Evaluating user-level fault tolerance for MPI appli-
cations. In Proceedings of the 21st European MPI Users’ Group
Meeting, page 57. ACM, 2014.

[90] J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. Recovery patterns
for iterative methods in a parallel unstable environment. SIAM
Journal on Scientific Computing, 30:102–116, 2007.

[91] D. Li, Z. Chen, P. Wu, and J. S. Vetter. Rethinking algorithm-based
fault tolerance with a cooperative software-hardware approach. In
SC ’13: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, pages 1–12,
2013.

[92] G. Li, K. Pattabiraman, S.K.S. Hari, M. Sullivan, and T. Tsai.
Modeling soft-error propagation in programs. In 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 27–38. IEEE, 2018.

[93] X. Liang, S. Di, D. Tao, Si. Li, Sh. Li, H. Guo, Z. Chen, and F. Cap-
pello. Error-controlled lossy compression optimized for high com-
pression ratios of scientific datasets. 2018 IEEE International Con-
ference on Big Data (Big Data), pages 438–447, 2018.

54

[94] A. Lingamneni, K. K. Muntimadugu, C. Enz, R. M. Karp, K. V.
Palem, and C. Piguet. Algorithmic methodologies for ultra-efficient
inexact architectures for sustaining technology scaling. In Proceed-
ings of the 9th Conference on Computing Frontiers, pages 3–12.
ACM, 2012.

[95] N. Losada, G. Bosilca, A. Bouteiller, P. González, and M.J. Mart́ın.
Local rollback for resilient MPI applications with application-level
checkpointing and message logging. Future Generation Computer
Systems, 91:450–464, 2019.

[96] R.E. Lyons and W. Vanderkulk. The use of triple-modular redun-
dancy to improve computer reliability. IBM journal of research and
development, 6(2):200–209, 1962.

[97] G. Mengaldo. Batch 1: Definition of several weather
& climate dwarfs. Tech. rep., ECMWF, 2016.
https://arxiv.org/abs/1908.06089.

[98] H. Meuer, E. Strohmaier, J. J. Dongarra, and H. D. Simon. Top500
Supercomputer Sites. http://www.top500.org/, November 2019.

[99] S. E. Michalak, A. J. DuBois, C. B. Storlie, H. M. Quinn, W. N.
Rust, D. H. DuBois, D. G. Modl, A. Manuzzato, and S. P. Blan-
chard. Assessment of the impact of cosmic-ray-induced neutrons on
hardware in the Roadrunner supercomputer. IEEE Transactions on
Device and Materials Reliability, 12(2):445–454, 2012.

[100] J. S. Miles, K. Teranishi, N. M. Morales, and C. R. Trott. Software
resilience using Kokkos ecosystem. Technical Report SAND2019-
3616, Sandia National Laboratories, 2019.

[101] S. Mittal and J. S. Vetter. A survey of software techniques for using
non-volatile memories for storage and main memory systems. IEEE
Transactions on Parallel and Distributed Systems, 27(5):1537–1550,
2016.

[102] S. Mittal and J.S. Vetter. A survey of techniques for modeling and
improving reliability of computing systems. IEEE Transactions on
Parallel and Distributed Systems, 27(4):1226–1238, 2015.

[103] MPIForum. https://www.mpi-forum.org, 2020. Last accessed:
2019-11-22.

[104] A. Müller, W. Deconinck, C. Kühnlein, G. Mengaldo, M. Lange,
N. Wedi, P. Bauer, P. K. Smolarkiewicz, M. Diamantakis, S.-J. Lock,
M. Hamrud, S. Saarinen, G. Mozdzynski, D. Thiemert, M. Glin-
ton, P. Bénard, F. Voitus, C. Colavolpe, P. Marguinaud, Y. Zheng,
J. Van Bever, D. Degrauwe, G. Smet, P. Termonia, K. P. Nielsen,
B. H. Sass, J. W. Poulsen, P. Berg, C. Osuna, O. Fuhrer, V. Clement,
M. Baldauf, M. Gillard, J. Szmelter, E. O’Brien, A. McKinstry,
O. Robinson, P. Shukla, M. Lysaght, M. Kulczewski, M. Ciznicki,
W. Piatek, S. Ciesielski, M. B lazewicz, K. Kurowski, M. Procyk,
P. Spychala, B. Bosak, Z. P. Piotrowski, A. Wyszogrodzki, E. Raf-
fin, C. Mazauric, D. Guibert, L. Douriez, X. Vigouroux, A. Gray,

55

P. Messmer, A. J. Macfaden, and N. New. The ESCAPE project:
Energy-efficient Scalable Algorithms for Weather Prediction at Ex-
ascale. Geoscientific Model Development, 12(10):4425–4441, 2019.

[105] P. Neumann, P. Düben, P. Adamidis, P. Bauer, M. Brück, L. Ko-
rnblueh, D. Klocke, B. Stevens, N. Wedi, and J. Biercamp. As-
sessing the scales in numerical weather and climate predictions:
will exascale be the rescue? Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences,
377(2142):20180148, 2019.

[106] X. Ni, E. Meneses, N. Jain, and L.V. Kalé. ACR: Automatic check-
point/restart for soft and hard error protection. In Proceedings of
the International Conference on High Performance Computing, Net-
working, Storage and Analysis, page 7. ACM, 2013.

[107] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cap-
pello. VeloC: Towards high performance adaptive asynchronous
checkpointing at large scale. https://veloc.readthedocs.io/en/
latest/, 2019.

[108] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cap-
pello. VeloC: Towards High Performance Adaptive Asynchronous
Checkpointing at Large Scale. In IPDPS’19: The 2019 IEEE In-
ternational Parallel and Distributed Processing Symposium, pages
911–920, Rio de Janeiro, Brazil, 2019.

[109] A. S. Nielsen. Scaling and Resilience in Numerical Al-
gorithms for Exascale Computing. PhD thesis, École
Polytechnique Fédérale de Lausanne, 2018. Available at
infoscience.epfl.ch/record/258087/files/EPFL TH8926.pdf.

[110] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems
of linear equations. SIAM Journal on Numerical Analysis, 12:617–
629, 1975.

[111] D.A. Patterson and J.L. Hennessy. Parallelism and the memory hi-
erarchy: Redundant arrays of inexpensive disks. In Computer Orga-
nization and Design ARM Edition, chapter 5.11. Morgan Kaufmann,
Cambridge, MA, USA, 2016.

[112] W. W. Peterson and D. T. Brown. Cyclic codes for error detection.
Proceedings of the IRE, 49(1):228–235, 1961.

[113] J. S. Plank, M. Beck, and G. Kingsley. Compiler-assisted memory
exclusion for fast checkpointing. IEEE Technical Committee on Op-
erating Systems and Application Environments, 7(4):10–14, 1995.

[114] Z. Qiao, S. Liang, S. Fu, H. Chen, and B. Settlemyer. Character-
izing and modeling reliability of declustered raid for hpc storage
systems. In 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks – Industry Track, pages 17–20,
2019.

[115] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics,
volume 37. Springer Science & Business Media, 2010.

56

[116] T. V. Ramabadran and S. S Gaitonde. A tutorial on CRC compu-
tations. IEEE micro, 8(4):62–75, 1988.

[117] F. Rizzi, K. Morris, K. Sargsyan, P. Mycek, C. Safta, O. Le Mâıtre,
O. Knio, and B. Debusschere. Partial differential equations precon-
ditioner resilient to soft and hard faults. The International Journal
of High Performance Computing Applications, 32(5):658–673, 2018.

[118] F. Rizzi, K. Morris, K. Sargsyan, P. Mycek, C. Safta, O. Le Mâıtre,
O. Knio, and B. Debusschere. Exploring the interplay of resilience
and energy consumption for a task-based partial differential equa-
tions preconditioner. Parallel Computing, 73:16–27, 2018.

[119] G. Rodŕıguez, M. J. Mart́ın, P. González, J. Tourino, and R. Doallo.
CPPC: a compiler-assisted tool for portable checkpointing of
message-passing applications. Concurrency and Computation: Prac-
tice and Experience, 22(6):749–766, 2010.

[120] C. J. Roy. Review of code and solution verification procedures
for computational simulation. Journal of Computational Physics,
(205):131–156, 2005.

[121] C. J. Roy and W. L. Oberkampf. A comprehensive framework for
verification, validation, and uncertainty quantification in scientific
computing. Computer Methods in Applied Mechanics and Engineer-
ing, 200(25):2131 – 2144, 2011.

[122] F. P. Russell, P. D. Düben, X. Niu, W. Luk, and T. N. Palmer. Archi-
tectures and precision analysis for modelling atmospheric variables
with chaotic behaviour. In 2015 IEEE 23rd Annual International
Symposium on Field-Programmable Custom Computing Machines,
pages 171–178, 2015.

[123] Y. Saad and M. H. Schultz. GMRES: A Generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM Journal
on scientific and statistical computing, 7(3):856–869, 1986.

[124] J.C. Sancho, F. Petrini, G. Johnson, and E. Frachtenberg. On the
feasibility of incremental checkpointing for scientific computing. In
18th International Parallel and Distributed Processing Symposium,
2004. Proceedings., page 58. IEEE, 2004.

[125] P. Sao and R. Vuduc. Self-stabilizing iterative solvers. In Proceed-
ings of the Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems, page 4. ACM, 2013.

[126] K. Sargsyan, F. Rizzi, P. Mycek, C. Safta, K. Morris, H. Najm,
O. Le Mâıtre, O. Knio, and B. Debusschere. Fault resilient domain
decomposition preconditioner for PDEs. SIAM Journal on Scientific
Computing, 37(5):A2317–A2345, 2015.

[127] J. Sartori, J. Sloan, and R. Kumar. Stochastic computing: embrac-
ing errors in architecture and design of processors and applications.
In Proceedings of the 14th International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, pages 135–144.
ACM, 2011.

57

[128] B. Schroeder and G. Gibson. A large-scale study of failures in high-
performance computing systems. IEEE transactions on Dependable
and Secure Computing, 7(4):337–350, 2009.

[129] T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler, and
C. Schär. Reflecting on the goal and baseline for Exascale Comput-
ing: A roadmap based on weather and climate simulations. Com-
puting in Science & Engineering, 21(1):30–41, 2018.

[130] P. K. Smolarkiewicz and L. Margolin. Variational methods for ellip-
tic problems in fluid models. In:Proc. Workshop on Developments
in Numerical Methods for Very High Resolution Global Models, 5-7
June 2000, ECMWF, Reading, UK, 137-159, pages 137–159, 2000.

[131] P. K. Smolarkiewicz and J. Szmelter. MPDATA: An edge-based
unstructured-grid formulation. Journal of Computational Physics,
206:624–649, 2005.

[132] P. K. Smolarkiewicz and J. Szmelter. A nonhydrostatic unstructured-
mesh soundproof model for simulation of internal gravity waves.
Acta Geophysica, 59:1109–1134, 2011.

[133] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, et al. Ad-
dressing failures in exascale computing. The International Journal
of High Performance Computing Applications, 28(2):129–173, 2014.

[134] J. Steppeler, R. Hess, G. Doms, U. Schättler, and L. Bonaventura.
Review of numerical methods for nonhydrostatic weather prediction
models. Meteorology and Atmospheric Physics, 82:287–301, 2003.

[135] G. Sun. Exploring Memory Hierarchy Design with Emerging Mem-
ory Technologies. Springer, 2014.

[136] D. Tao, S. Di, Z. Chen, and F. Cappello. Significantly improving
lossy compression for scientific data sets based on multidimensional
prediction and error-controlled quantization. In 2017 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS),
pages 1129–1139. IEEE, 2017.

[137] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello. Improving per-
formance of iterative methods by lossy checkponting. In Proceedings
of the 27th International Symposium on High-Performance Parallel
and Distributed Computing, pages 52–65. ACM, 2018.

[138] K. Teranishi and M. A. Heroux. Toward local failure local recov-
ery resilience model using MPI-ULFM. In Proceedings of the 21st
European MPI Users’ Group Meeting, page 51. ACM, 2014.

[139] F. Thaler, S. Moosbrugger, C. Osuna, M. Bianco, H. Vogt,
A. Afanasyev, L. Mosimann, O. Fuhrer, T. C. Schulthess, and
T. Hoefler. Porting the COSMO Weather Model to Manycore CPUs.
In Proceedings of the Platform for Advanced Scientific Computing
Conference, page 13. ACM, 2019.

[140] G. Tumolo and L. Bonaventura. A semi-implicit, semi-Lagrangian
discontinuous Galerkin framework for adaptive numerical weather

58

prediction. Quarterly Journal of the Royal Meteorological Society,
141(692):2582–2601, 2015.

[141] D. Turnbull and N. Alldrin. Failure prediction in hardware systems.
Technical report, University of California, San Diego, 2003.

[142] A.A. White. A view of the equations of meteorological dynamics
and various approximations. Large-scale atmosphere–ocean dynam-
ics, 1:1–100, 2002.

59

MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

20/2020 Almi, S.; Belz, S.; Micheletti, S.; Perotto, S.
A DIMENSION-REDUCTION MODEL FOR BRITTLE FRACTURES ON
THIN SHELLS WITH MESH ADAPTIVITY

19/2020 Stella, S.; Vergara, C.; Maines, M.; Catanzariti, D.; Africa, P.; Demattè, C.; Centonze, M.; Nobile, F.; Del Greco, M.; Quarteroni, A.
Integration of maps of activation times in computational cardiac
electrophysiology

16/2020 Paolucci, R.; Mazzieri, I.; Piunno, G.; Smerzini, C.; Vanini, M.; Ozcebe, A.G.
Earthquake ground motion modelling of induced seismicity in the Groningen
gas field

17/2020 Cerroni, D.; Formaggia, L.; Scotti, A.
A control problem approach to Coulomb's friction

18/2020 Fumagalli, A.; Scotti, A.; Formaggia, L.
Performances of the mixed virtual element method on complex grids for
underground flow

15/2020 Fumagalli, I.; Fedele, M.; Vergara, C.; Dede', L.; Ippolito, S.; Nicolò, F.; Antona, C.; Scrofani, R.; Quarteroni, A.
An Image-based Computational Hemodynamics Study of the Systolic Anterior
Motion of the Mitral Valve

13/2020 Pozzi S.; Domanin M.; Forzenigo L.; Votta E.; Zunino P.; Redaelli A.; Vergara C.
A data-driven surrogate model for fluid-structure interaction in carotid
arteries with plaque

14/2020 Calissano, A.; Feragen, A; Vantini, S.
Populations of Unlabeled Networks: Graph Space Geometry and Geodesic
Principal Components

11/2020 Antonietti, P.F.; Facciola', C.; Houston, P.; Mazzieri, I.; Pennes, G.; Verani, M.
High-order discontinuous Galerkin methods on polyhedral grids for
geophysical applications: seismic wave propagation and fractured reservoir
simulations

10/2020 Bonaventura, L.; Carlini, E.; Calzola, E.; Ferretti, R.
Second order fully semi-Lagrangian discretizations of
advection--diffusion--reaction systems

