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Abstract

In this paper, we carry out a systematic comparison between the theoretical properties of Spectral
Element Methods (SEM) and NURBS–based Isogeometric Analysis (IGA) in the framework of the
Galerkin method for the approximation of the Poisson problem. Our focus is on their convergence
properties, the algebraic structure and the spectral properties of the corresponding discrete arrays
(mass and stiffness matrices). We review the available theoretical results for these methods and
verify them numerically by performing error analysis on the solution of the Poisson problem.
Where theory is lacking, we use numerical investigation of the results to draw conjectures on the
behavior of the corresponding theoretical laws in terms of the design parameters, such as the (mesh)
element size, the local polynomial degree, the smoothness of the NURBS basis functions, the space
dimension, and the total number of degrees of freedom involved in the computations.

Keywords: isogeometric analysis, hp finite element methods, spectral element methods, rate of
convergence, condition number

1. Introduction

Spectral element methods (SEM) (see, e.g., [7]) and Isogeometric Analysis (IGA) (see, e.g., [8])
can be interpreted as two different paradigms for high order approximation of partial differential
equations (PDEs); as a matter of fact, albeit IGA was not originally introduced with this aim,
employing specific basis functions allows to interpret it as an high order method. Apart from
their different use of basis functions, piecewise polynomials for SEM, B–spline or NURBS for IGA
(with variable degree of continuity across element boundaries), the two approaches share many
similarities. The perhaps more remarkable are reported below:

1 – they can be both recast in the framework of the Galerkin method: SEM is however most
often used with inexact calculation of integrals using the so-called Gauss-Legendre-Lobatto nu-
merical integration. This results into the so-called SEM-NI method (NI standing for numerical
integration), which is the one we address in this paper. On the other side, for IGA, we consider
the so called NURBS-based IGA in the framework of the Galerin method.;
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2 – the induced approximation error decays more than algebraically fast with respect to the
local polynomial degree.

On the other hand, the two methods differ in what concerns the algebraic structures of the
corresponding arrays (say, the mass and the stiffness matrices), the spectral properties of the latter
(the behavior of their extreme eigenvalues, and the corresponding condition number), and the
actual decay rate of the approximation error with respect to the discretization parameters: the
element-size h, and the local polynomial degree p.

Our aim in this note is to report the most relevant theoretical results addressing the aforemen-
tioned issues. Most of the results on the rate of convergence of the approximation error are taken
from the existing literature (see, e.g. [3, 4, 6, 7, 2, 10, 11]) and reorganize some of them for a better
exploitation in our comparison. However, few of them are new. When the theory is missing we
investigate these properties numerically and we propose the law of behavior in terms of h, p, the
spatial dimension d, and the total number of degrees of freedom (dof).

Our analysis is concerned with the approximation of the mass matrix and the stiffness matrix
for the Poisson boundary value problem in a cubic domain. We systematically compare SEM-
NI with two realizations of IGA: IGA-C0 (only the continuity across interelement boundaries is
imposed on the problem solution, i.e. the NURBS basis functions are only globally C0-continuous
in the computational domain) and IGA-Cp−1 (the continuity holds for the solution as well as for
all its derivatives of order up to p−1, i.e. the NURBS basis functions are globally Cp−1-continuous
in the computational domain).

In general terms we can concude that, errorwise, IGA-C0 and SEM-NI behave essentially in the
same way. For instance, their rate of convergence with respect to h scales (optimally) as p in the
H1−norm, and (p + 1) in the L2− norm. IGA-Cp−1 exhibits the same type of convergence, even
if the errors it produces are larger than those provided by IGA-C0 and SEM-NI with the same
values of h and p, basically due to the (much) lower number of dofs involved in the discretization
for the same value of h. When h is kept fixed and p is increased, IGA-C0 and SEM-NI converge
with a rate that is only dictated by the Sobolev regularity of the solution (hence exponentially fast
in case the latter is analytical). The same is true for IGA-Cp−1, although with a slower rate of
decay. IGA-Cp−1 provides however the lowest error when the three methods are run with the same
number of degrees of freedom.

On a different side, SEM-NI arrays are in general less dense and better conditioned than those
of IGA-Cp−1. In particular, SEM-NI minimizes the error with respect to the number of non-zero
entries of the stiffness matrix (those that undermine the computational cost of the stiffness matrix
assembling and of the matrix-vector products for residual evaluations in iterative methods).

In the second part of the paper, the spectral analysis concerning the behavior of the extreme
eigenvalues (and associated condition number) of IGA arrays (mass and stiffness matrices) com-
plements the rather scarce literature available on the subject. More precisely starting from the
numerical computation of the extreme eigenvalues for any spatial dimension d = 1, 2, 3, we mimic
(with analytic laws) the real behavior of the spectral condition number of the IGA matrices against
the local polynomial degree p and the element-size h.

While it is well known (see, e.g., [3, 23, 6, 7]) that the condition number of the SEM-NI stiffness
matrix grows algebraically as h−2p3 for all h and p, the analysis of the present paper highlights
that the spectral condition number of the IGA-C0 stiffness matrix grows algebraically like h−2p2

when h is sufficently small w.r.t. p and exponentially like p−d/24dp otherwise; moreover, the
spectral condition number of the IGA-Cp−1 stiffness matrix grows algebraically like h−2p when h
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is sufficently small w.r.t. p and exponentially, at least like pedp, otherwise.
The condition number of the SEM-NI mass matrix grows algebraically like pd, while we find that

the condition numbers of the IGA mass matrices (either IGA-C0 and IGA-Cp−1) grow exponentially
with p.

A specific outline of the paper is as follows.
In Section 2 we present the Poisson problem, its discretization by SEM-NI (in particular we

describe how to deal with curved boundaries in the SEM context for d = 2 and d = 3 by exploiting
transfinite mappings) and by IGA methods, then we resume the theoretical convergence estimates
for both the approaches. In Section 3 we compare the numerical convergence rates of the methods
when they are applied to solve the Poisson problem with given solution. In the first test case we
solve the differential problem on the cube domain with either SEM-NI, IGA-C0 and IGA-Cp−1.
In the second one we consider a more general domain with curved boundary and compare the
convergence curves of SEM-NI and IGA-Cp−1 approximations, as well as the CPUtimes needed to
assemble the stiffness matrices. Finally Section 4 is devoted to the spectral analysis of both the
stiffness and mass matrices. After reviewing theoretical results known in literature, we present our
conjectures (based on the numerical computations of extreme eigenvalues) about the behavior of
the spectral condition number of IGA matrices versus both p and h.

This review addresses for the first time a systematic comparison of the theoretical properties
of two classes of methods that are very popular and highly appreciated in the community of
numerical analysts and computational scientists. We are confident that this analysis will be useful
for a comparative assessment of the two approaches and a better awarefulness of their strengths
and limitations.

2. Problem setting

Let Ω ⊂ Rd, with d = 1, 2, 3, be a bounded domain (when d ≥ 2 we require that the boundary
∂Ω is Lipschitz continuous), and let f ∈ L2(Ω) and g ∈ H1/2(∂Ω) be two given functions. Our
reference Poisson problem, which we use through most of the paper as a benchmark problem, reads{

−∆u = f in Ω
u = g on ∂Ω.

(1)

We denote by g̃ a lifting of the Dirichlet datum g, i.e. any function g̃ ∈ H1(Ω) such that g̃|∂Ω = g.
The weak form of problem (1) reads: find u = (u0 + g̃) ∈ H1(Ω) with u0 ∈ V = H1

0 (Ω) such that

a(u0, v) = F(v)− a(g̃, v) ∀v ∈ V, (2)

where a(u, v) =

∫
Ω
∇u · ∇v dΩ and F(v) =

∫
Ω
fv dΩ. Problem (2) admits a unique solution (see,

e.g., [24]) that is stable w.r.t. the data f and g.

2.1. Discretization by the Spectral Element Method (SEM)

Given h > 0, let Th be a family of partitions of the computational domain Ω ⊂ Rd in neh
quads (intervals when d = 1, quadrilaterals when d = 2, and hexaedra when d = 3). Following
standard assumptions we require Th to be conformal, regular, and quasi-uniform (see [24, Ch. 3]).
We denote by T̂ the reference element, i.e. the d−dimensional cube (−1, 1)d and let each element
T` ∈ Th be the image of the reference element T̂ through a sufficiently smooth one-to-one map
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Figure 1: SEM mapping of the reference element T̂ = [−1, 1]2 into a curved quadrilateral T

F` : T̂ → T` with a sufficiently smooth inverse F−1
` : T` → T̂ . If F` is affine, then the element T` is

a parallelogram (when d = 2) or a parallelepipedon (when d = 3).
To deal with more general domains, also in the case of curved boundaries, we consider transfinite

mappings introduced in [17, 18, 19]. Among the many possible choices proposed in the cited
references, we choose the maps that guarantee F`(∂T̂ ) = ∂T` for any T` ∈ Th. They are defined as
follows.

Let us begin with d = 2 and let T̂ = [−1, 1]2 be the reference element whose vertices V̂1, . . . , V̂4

and edges ê1, . . . , ê4 are ordered as in Fig. 1, while T (for simplicity we omit the index `) denotes
the generic element of Th with vertices V1, . . . , V4 and (possibly curved) edges e1, . . . , e4.

The transfinite mapping F : T̂ → T is expressed in terms of the parametrizations πi : [−1, 1]→
ei (for i = 1, . . . , 4) of the edges (for any ξ ∈ [−1, 1], πi(ξ) ∈ R2). Given π1, . . . ,π4 such that

V1 = π1(−1) = π4(−1), V2 = π1(+1) = π2(−1),
V3 = π2(+1) = π3(+1), V4 = π4(+1) = π3(−1),

(3)

any (ξ, η) ∈ T̂ is mapped into the corresponding point (x, y) ∈ T by

(x, y) = F(ξ, η) =
1− η

2
π1(ξ) +

1 + η

2
π3(ξ)

+
1− ξ

2

[
π4(η)− 1− η

2
π4(−1)− 1 + η

2
π4(1)

]
+

1 + ξ

2

[
π2(η)− 1− η

2
π2(−1)− 1 + η

2
π2(1)

]
.

(4)

It is easy to verify that F(V̂i) = Vi and F(êi) = ei for i = 1, . . . , 4.
When d = 3, let T̂ = (−1, 1)3 be the reference cube and (ξ, η, ζ) any point in T̂ . The faces

f̂1, . . . , f̂6 of T̂ are ordered as follows: f̂1 belongs to the plane η = −1 and its vertices are
V̂1, V̂2, V̂6, V̂5; f̂2 belongs to the plane ξ = 1 and its vertices are V̂2, V̂3, V̂7, V̂6; f̂3 belongs
to the plane η = 1 and its vertices are V̂4, V̂3, V̂7, V̂8; f̂4 belongs to the plane ξ = −1 and its
vertices are V̂1, V̂4, V̂8, V̂5; f̂5 belongs to the plane ζ = −1 and its vertices are V̂1, V̂2, V̂3, V̂4; f̂6

belongs to the plane ζ = 1 and its vertices are V̂5, V̂6, V̂7, V̂8 (see Fig. 2). The edges ê1, . . . , ê12

are counterclockwise ordered, first those on the bottom horizontal plane, then those on the top
horizontal plane and finally the vertical ones, thus, for example, the end-points of ê1 are V̂1 and
V̂2, the end-points of ê5 are V̂5 and V̂6, and the end-points of ê9 are V̂1 and V̂5.
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Figure 2: SEM mapping of the reference element T̂ = [−1, 1]3 into a curved hexahedron T

Let T denote the generic element of Th with possibly curved faces f1, . . . , f6. The transfinite
mapping F : T̂ → T is expressed in terms of the parametrizations Π` : [−1, 1]2 → f` (for ` =
1, . . . , 6) of the faces of T (for any (ξ, η) ∈ [−1, 1]2, Π`(ξ, η) ∈ R3). Given Π1, Π3 : (ξ, ζ) → R3,
Π2, Π4 : (η, ζ)→ R3 and Π5, Π6 : (ξ, η)→ R3 such that

e1 = Π1(·,−1) = Π5(·,−1), e2 = Π2(·,−1) = Π5(+1, ·),
e3 = Π3(·,−1) = Π5(·,+1), e4 = Π4(·,−1) = Π5(−1, ·),
e5 = Π1(·,+1) = Π6(·,−1), e6 = Π2(·,+1) = Π6(+1, ·),
e7 = Π3(·,+1) = Π6(·,+1), e8 = Π4(·,+1) = Π6(−1, ·),
e9 = Π1(−1, ·) = Π4(−1, ·), e10 = Π1(+1, ·) = Π2(−1, ·),
e11 = Π2(+1, ·) = Π3(+1, ·), e12 = Π3(−1, ·) = Π4(+1, ·),

(5)

any (ξ, η, ζ) ∈ T̂ is mapped into the corresponding point (x, y, z) ∈ T by

(x, y, z) = F(ξ, η, ζ) =
1− η

2
Π1(ξ, ζ) +

1 + η

2
Π3(ξ, ζ)

+
1− ξ

2

[
Π4(η, ζ)− 1− η

2
Π4(−1, ζ)− 1 + η

2
Π4(1, ζ)

]
+

1 + ξ

2

[
Π2(η, ζ)− 1− η

2
Π2(−1, ζ)− 1 + η

2
Π2(1, ζ)

]
+

1− ζ
2

[
Π5(ξ, η)− 1− ξ

2
Π5(−1, η)− 1 + ξ

2
Π5(1, η)

−1− η
2

(
Π5(ξ,−1)− 1− ξ

2
Π5(−1,−1)− 1 + ξ

2
Π5(1,−1)

)
−1 + η

2

(
Π5(ξ, 1)− 1− ξ

2
Π5(−1, 1)− 1 + ξ

2
Π5(1, 1)

)]
+

1 + ζ

2

[
Π6(ξ, η)− 1− ξ

2
Π6(−1, η)− 1 + ξ

2
Π6(1, η)

−1− η
2

(
Π6(ξ,−1)− 1− ξ

2
Π6(−1,−1)− 1 + ξ

2
Π6(1,−1)

)
−1 + η

2

(
Π6(ξ, 1)− 1− ξ

2
Π6(−1, 1)− 1 + ξ

2
Π6(1, 1)

)]
.

(6)

Then, F(f̂`) = f` for ` = 1, . . . , 6, F(êi) = ei for i = 1, . . . , 12 and F(V̂j) = Vj for j = 1, . . . , 8.
Notice that, when the map Π` defining the face f` is not known explicitly, then it can be obtained
from (4) in terms of the maps π`1 , . . . ,π`4 associated with the four edges of f`.
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So far, each element can be viewed as the image of a transfinite map Fk defined in either (4)
(if d = 2) or (6) (if d = 3); in order to guarantee the conformity of the mesh, if Tk and Tm share a
common edge or a face, say Γkm, then Fk and Fm must agree there, i.e. Fk|Γkm ≡ Fm|Γkm .

Formulation. Given an integer p ≥ 1, let us denote by Qp the space of polynomials of degree less
than or equal to p with respect to each independent variable ξ, η, ζ. We introduce the following
finite dimensional spaces in Ω:

Xδ = {v ∈ C0(Ω) : v|Tk ∈ Qp ◦ F−1
k , ∀Tk ∈ Th}, Vδ = V ∩Xδ = {v ∈ Xδ : v|∂Ω = 0}. (7)

δ is an abridged notation undermining the mesh size h and the local polynomial degree p.
Let g̃δ ∈ Xδ denote any discrete approximation of the lifting g̃. The Galerkin approximation of

(2) reads: find uδ = (u0
δ + g̃δ) ∈ Xδ with u0

δ ∈ Vδ such that

a(u0
δ , vδ) = F(vδ)− a(g̃δ, vδ) ∀vδ ∈ Vδ. (8)

Typically, when using SEM, the exact integrals appearing in a and F are replaced by the
composite Legendre-Gauss-Lobatto (LGL) quadrature formulas (see [6]) with the aim of reducing
the computational effort. This is exactly the approach that we consider in this paper, i.e the so
called SEM with Numerical Integration (SEM-NI) at the LGL nodes [7].

For any integer p ≥ 1, the (p + 1) LGL nodes and weights are first defined on the reference
interval [−1, 1] (see [6, formula (2.3.12)]) and then tensorized and mapped into the generic quad
T` ∈ Th by applying the transfinite map F`. Let x`,q and w`,q, with q = 1, . . . , (p+ 1)d, denote the
quadrature nodes and weights on T` for any T` ∈ Th and let neh be the number of elements in Th.
By setting

aδ(uδ, vδ) =

neh∑
`=1

(p+1)d∑
q=1

∇uδ(x`,q) · ∇vδ(x`,q)w`,q, (9)

Fδ(vδ) = (f, vδ)δ =

neh∑
`=1

(p+1)d∑
q=1

f(x`,q)vδ(x`,q)w`,q, (10)

the discrete Galerkin formulation of (2) with Numerical Integration (SEM-NI) reads: find uδ =
(u0
δ + g̃δ) ∈ Xδ with u0

δ ∈ Vδ such that

aδ(u
0
δ , vδ) = Fδ(vδ)− aδ(g̃δ, vδ) ∀vδ ∈ Vδ. (11)

Algebraic form. Le us denote by N = N(h, p) the total number of (non-repeated) LGL quadrature
nodes xi of Th. In order to represent the discrete solution uδ, the nodal Lagrange basis functions
ϕi(x) (for i = 1, . . . , N) defined over the set of LGL quadrature nodes {xi} are used, thus we have

uδ(x) =
N∑
i=1

uiϕi(x), (12)

where ui = uδ(xi). Typically g̃δ is chosen to be the Lagrange interpolant of g at the boundary
nodes, extended to zero at all internal nodes of Ω, i.e.

g̃δ(xi) =

{
g(xi) if xi ∈ Th ∩ ∂Ω,
0 if xi ∈ Th \ ∂Ω.
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The SEM-NI stiffness matrix is defined by

(KSEM )ij = aδ(ϕj , ϕi), i, j = 1, . . . , N, (13)

while the SEM-NI mass matrix by

(MSEM )ij = (ϕj , ϕi)δ, i, j = 1, . . . , N. (14)

Thanks to the fact that the interpolation nodes coincide with the quadrature nodes, and noticing
that the Lagrange basis functions are orthogonal with respect to the discrete inner product (·, ·)δ,
the SEM-NI mass matrix MSEM is diagonal.

Let N0 denote the number of degrees of freedom internal to Ω (we reorder all the mesh nodes
so that the first N0 are the internal ones), then we set uSEM = [ui]

N0

i=1, fSEM = [f(xi)]
N0

i=1 and
gSEM s.t.

(gSEM )i =
N∑

j=N0+1

(KSEM )ijg(xj) for i = 1, . . . , N0.

The algebraic form of (11) reads:

KSEMuSEM = MSEM fSEM − gSEM , (15)

where we understand that both KSEM and MSEM are restricted to the rows i = 1, . . . , N0 and the
columns j = 1, . . . , N0.

The equivalent system

(MSEM )−1KSEMuSEM = fSEM − (MSEM )−1gSEM (16)

represents instead the algebraic counterpart of the collocation approximation to problem (1) at the
LGL quadrature nodes (see [6]).

Both MSEM and KSEM are symmetric positive definite (s.p.d.) matrices.
(MSEM )−1KSEM is not symmetric any more, however it is similar to (and therefore share the same
eigenvalues of) the s.p.d. matrix (MSEM )−1/2KSEM (MSEM )−1/2.

Error estimates. The quadrature error produced by the LGL formulas decays with spectral accu-
racy, i.e., there exists c = c(Ω) > 0 such that, for any f ∈ Hs(Ω), with s ≥ 1, and for any vδ ∈ Vδ
it holds (see [6, Sect. 5.4.3] and standard scaling arguments)

|(f, vδ)− (f, vδ)δ| ≤ c(Ω) p−s hs‖f‖Hs(Ω) ‖vδ‖L2(Ω). (17)

Let us assume for the sake of simplicity that g = 0 in (1). By using (17) and the Strang
Lemma, the following approximation error can be proved: if u ∈ Hs(Ω) is the solution of (2) with
f ∈ Hq(Ω) (q ≥ 0) and uδ is the solution of the SEM-NI problem (11) (notice that uδ = u0

δ) then
(see [3, 6, 7])

‖u− uδ‖Hr(Ω) ≤ c
(
hmin(s,p+1)−r pr−s ‖u‖Hs(Ω) + hmin(q,p+1) p−q ‖f‖Hq(Ω)

)
(18)

0 ≤ r ≤ 1, s > d/2,
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where c = c(s, q,Ω) is independent of both h and p. A key ingredient to prove (18) is the following
interpolation error estimate ([3, 6, 7])

‖u− Iδu‖Hr(Ω) ≤ c hmin(s,p+1)−r pr−s ‖u‖Hs(Ω) 0 ≤ r ≤ 1, s > d/2, (19)

where Iδ : C0(Ω)→ Xδ is the Lagrange interpolation operator at the LGL nodes.
If f is integrated exactly by the LGL quadrature formulas, the convergence estimate (18)

simplifies as follows

‖u− uδ‖Hr(Ω) ≤ c hmin(s,p+1)−r pr−s ‖u‖Hs(Ω) 0 ≤ r ≤ 1, s > r. (20)

If, in particular, s > p+ 1 and r = 1, (20) becomes

‖u− uδ‖H1(Ω) ≤ c
(
h

p

)p 1

ps−p−1
‖u‖Hs(Ω). (21)

If the mesh is uniform and generated through the tensor-product rule, the total number neh of
spectral elements can be written as neh = (c/h)d, with c depending only on Ω, so that the total

number of degrees of freedom reads N = (p c/h+1)d ∼
( p
h

)d
. Thus, (21) can be expressed in terms

of N as follows

‖u− uδ‖H1(Ω) ≤ cN−p/d
1

ps−p−1
‖u‖Hs(Ω). (22)

2.2. Discretization by Isogeometric Analysis (IGA)

B-splines. Let Z = {0 = ζ0, ζ1, . . . , ζn−1, ζn = 1} be the set of (n + 1) distinct knot values in
the one-dimensional patch [0, 1] and, given two positive integers p and k with 0 ≤ k ≤ p− 1, let

Ξ(k) = {ξ1, ξ2, . . . , ξq} = {ζ0, . . . , ζ0︸ ︷︷ ︸
p+1

, ζ1, . . . , ζ1︸ ︷︷ ︸
p−k

, . . . , ζn−1, . . . , ζn−1︸ ︷︷ ︸
p−k

, ζn, . . . , ζn︸ ︷︷ ︸
p+1

} (23)

be the (ordered) p−open knot vector with a fixed number of repetitions. Notice that in this paper
we specifically assume that all the internal knot values ζ1, . . . , ζn−1 are repeated p− k times. This
implies that the cardinality of Ξ(k) is q = (p− k)(n− 1) + 2p+ 2. In an open knot-vector Ξ(k), as
that under consideration in this paper, the two extreme knots (values) are repeated exactly p+ 1
times. Then, after setting

Bi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise,
(24)

we define the univariate B-splines basis functions of local degree p ≥ 1 and regularity Ck in [0,1]
by means of the Cox-de Boor recursion formula as follows ([8]):

Bi,p(ξ) =
ξ − ξi
ξi+p − ξi

Bi,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1(ξ). (25)

The basis functions Bi,p intrinsically depend on (and inherit all their properties from) the knots
ξi. A most prominent property is the regularity. For that, we assume in this paper that all the
basis functions are globally Ck-continuous in the patch (for a suitable k, with 0 ≤ k ≤ p− 1, that
stands for the global order of regularity), and in particular at all the internal knot values in Z.
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In order to comply with the existing literature, we also understand the dependence of the basis
functions on k.

When p, n, and k are fixed, the number of linearly independent B-splines Bi,p is nb = (n −
1)(p − k) + (p + 1). We will consider the two extreme values for k. When k = 0, the B-splines
are only globally C0 and we use the notation IGA-C0 to identify this case. When k = p − 1, the
B-splines are globally Cp−1 and we write IGA-Cp−1 to identify this case.

The d-times tensor product of the set Z induces a cartesian grid in the parametric domain
Ω̂ = (0, 1)d. If we assume for the sake of simplicity that the knots ζi are equally spaced along all
the parametric directions, then the mesh size is h = 1/n. When the geometric dimension d of the
computational domain is larger than 1, we exploit the tensor product rule for the set Ξ(k) and the
B-splines functions. Then, for any ξ = (ξ1, . . . , ξd) ∈ Ω̂, let

ψi,p(ξ) = Bi1,p(ξ
1) · · ·Bid,p(ξ

d) (26)

be the generic multivariate B-spline basis function, with ik = 1, . . . , nb for any k = 1, . . . , d and
with i = 1, . . . , Nb = ndb , with lexicographic ordering. Notice that ξ1 = ξ in the univariate case.

NURBS. Univariate NURBS basis functions are built starting from univariate B-splines by asso-
ciating a set of weights {w1, w2, . . . , wnb} with each of them; we assume in this paper that wi ∈ R
and wi > 0 for all i = 1, . . . , nb. The i-th univariate NURBS basis function reads:

Ni,p(ξ) =
wiBi,p(ξ)∑nb
j=1wj Bj,p(ξ)

. (27)

NURBS inherit properties from their B-splines counterpart, specifically the regularity property as
the global Ck-continuity in the patch; we notice however that NURBS are not piecewise polyno-
mials, for which p stands for the polynomial degree of the B-splines from which these are built.
Multivariate NURBS basis functions are built by exploiting the d-times tensor product structure,
thus yielding basis functions ψi,p(ξ) in the form of equation (26). Unless than otherwise specified,
we consider in this paper ψi,p as a B-spline basis function.

Geometric mapping. B-splines and NURBS are used to build computational domains Ω in the
physical space Rd. In this paper, we specifically consider the case in which the parameter and
physical spaces coincide (i.e. these being Rd); we refer instead the interested reader to e.g. [1, 12,
13, 20, 21, 22] for NURBS mappings into lower-dimensional manifolds as curves and surfaces and
their application in the IGA context. The geometric mapping is obtained by associating to each
basis function ψi,p a control point Pi ∈ Rd for all i = 1, . . . , Nb, such that every point x of the
physical domain Ω is obtained as

x(ξ) =

Nb∑
i=1

Pi ψi,p(ξ). (28)

We assume that the previous mapping is invertible a.e. in Ω̂; for this reason, given a generic
function v(ξ) defined in Ω̂, we will indifferently write it in the physical domain Ω with the same
notation v(x). We finally remark that the mapping (28) determines the mesh Th in the physical
domain Ω from the corresponding one in the parameter domain Ω̂ (see Fig. 3).
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Figure 3: NURBS mapping from the parametric domain Ω̂ into the physical domain Ω

Formulation. We consider now the Isogeometric approximation of problem (2) according to the
isogeometric concept for which the basis functions used to build the computational domain Ω are
then used also to build the trial function space for the approximate solution. Let us set

Skδ = span{ψi,p, i = 1, . . . , Nb} (29)

and
V k
δ = V ∩ Skδ . (30)

As for SEM, δ is an abridged notation now accounting for the mesh size (related to the number
of distinct knots along each parametric direction) and the local polynomial degree p. We indicate
with IGA-Ck the isogeometric approximation with globally Ck-continuous basis functions in the
computational domain. If, in particular, the partition Th induced by the knot vector Zd is the
same for both SEM and IGA, the finite dimensional space S0

δ of IGA-C0 coincides with the finite
dimensional space Xδ of SEM (see (7)) and then V 0

δ = Vδ.
Let g̃k,δ ∈ Skδ denote any discrete approximation of the lifting g̃. The IGA-Ck approximation

of (2) reads: find uk,δ = (u0
k,δ + g̃k,δ) ∈ Skδ with u0

k,δ ∈ V k
δ such that

a(u0
k,δ, vδ) = F(vδ)− a(g̃k,δ, vδ) ∀vδ ∈ V k

δ . (31)

The subscript k (as, e.g., in uk,δ) indicates that the IGA-Ck case is considered.

Algebraic form. The discrete solution uk,δ is expanded with respect to the B-spline basis functions,
i.e.

uk,δ(x) =

Nb∑
i=1

ûk,iψi,p(x). (32)

The IGA-Ck stiffness matrix is defined by

(Kk)ij = a(ψj,p, ψi,p), i, j = 1, . . . , Nb, (33)

while the IGA-Ck mass matrix is defined by

(Mk)ij = (ψj,p, ψi,p)L2(Ω), i, j = 1, . . . , Nb. (34)

10



Both Mk and Kk are symmetric positive definite (s.p.d.) matrices.
We write now the algebraic counterpart of (31). First we reorder the basis functions ψi,p so

that the first N0
b ones are those vanishing on ∂Ω and the function g̃k,δ can be written as

g̃k,δ(x) =

Nb∑
j=N0

b+1

̂̃gk,jψj,p(x), (35)

where the coefficents ̂̃gk,j are unknowns. A possible way to compute g̃k,δ consists in defining it as

the unique function in Skδ that minimizes
∫
∂Ω(g̃k,δ − g̃)2, i.e., recalling that g̃|∂Ω = g, g̃k,δ is the

unique solution of ∫
∂Ω
g̃k,δψi,p =

∫
∂Ω
gψi,p i = N0

b + 1, . . . , Nb. (36)

After setting Mk,∂Ω = (ψj,p, ψi,p)L2(∂Ω) (it is the mass matrix on the boundary), g̃k = [̂̃gk,j ]Nbj=N0
b+1

and g = [
∫
∂Ω gψi,p]

Nb
i=N0

b+1
, in view of (35), solving (36) is equivalent to solve the linear system

Mk,∂Ωg̃k = g.

Then we set uk = [ûk,i]
N0

i=1, fk = [f̂k,i]
N0

i=1 with f̂k,i = (f, ψi,p)L2(Ω) and gk such that

(gk)i =

Nb∑
j=N0

b+1

(Kk)iĵ̃gk,j for i = 1, . . . , N0
b ,

so that the algebraic form of (31) reads: look for the solution uk of

Kkuk = fk − gk, (37)

where we understand that Kk is restricted to the rows i = 1, . . . , N0
b and the columns j = 1, . . . , N0

b .

Error estimates. Under the assumption that g = 0 on ∂Ω and that the partition defined by the
knot vector Z is locally quasi uniform, that is, there exists a constant θ ≥ 1 such that the mesh
sizes hi = ζi+1− ζi satisfy the relation θ−1 ≤ hi/hi+1 ≤ θ for i = 0, . . . , n− 1, in [11, Thm. 3.4 and
Cor. 4.16] it is proved that there exists a positive constant c = c(s, p, θ) independent of h = maxi hi
such that, for any 0 ≤ r ≤ s ≤ p+ 1,

‖u− uk,δ‖Hr(Ω) ≤ chmin(s,p+1)−r‖u‖Hs(Ω) ∀u ∈ Hs(Ω). (38)

This is an optimal convergence estimate for IGA with respect to h (h-refinement) for all values of
k = 0, . . . , p− 1; see also [25].

The convergence rate of IGA with respect to both p and k was studied in [10] when p ≥ 2k+ 1.
We warn the reader that in our paper the parameter k is used to identify the Ck regularity of the
B-spline basis functions (and then of the IGA solution), whereas in [10] it denotes the Sobolev
regularity of the IGA solution. In order to avoid misunderstandings, we denote by kb the index k
used in [10], whence kb = k + 1.

11



Let us now consider the case of univariate B-splines. For any kb ≥ 0 integer, in [10] the authors
introduce a projection operator π̂p,kb : Hkb(Λ) → Pp(Λ), where Λ = (−1, 1), while Pp(Λ) is the
space of the restrictions to Λ of polynomials of degree almost p, such that

(π̂p,kbu)(j)(±1) = u(j)(±1), j = 0, . . . , kb − 1. (39)

π̂p,kb is not the orthogonal projection operator from Hkb(Λ) to Pp(Λ), nevertheless it is a projection
operator that perserves the values of the function and of its derivatives up to order kb − 1 at the
end-points of Λ. Moreover (see [10, Cor. 2 and Lemma 4]), if u : Λ → R with u(kb) ∈ Hs(Λ), if
p ≥ 2kb − 1 and s ≤ p− kb + 1, then for any j = 0, . . . , kb it holds

‖u(j) − (π̂p,kbu)(j)‖L2(Λ) ≤ C
(e

2

)s+kb−j
(p− kb + 1)−(s+kb−j)|u(kb)|Hs(Λ). (40)

By introducing the linear continuous mappings Fi : Λ → Ii = (ζi, ζi+1), for i = 0, . . . , n − 1
(such that Fi(ξ) = ξ(ζi+1 − ζi)/2 + (ζi+1 + ζi)/2), we define the global projection operator πp,kb :

Hkb(0, 1)→ S
(kb−1)
δ by the relations

(πp,kbu) ◦ Fi = π̂p,kb(u ◦ Fi), i = 1, . . . , n− 1. (41)

For any u ∈ Hkb(0, 1), πp,kbu preserves the values of u and of all its derivatives up to order kb − 1
at the knots ζi, for i = 0, . . . , n. If the partition induced by the knot vector Z is uniform with size
h, then ([10, Thm. 2])

‖u− πp,kbu‖Hj(0,1) ≤ Chσ−j(p− kb + 1)−(σ−j)|u|Hσ(0,1) ∀u ∈ Hσ(0, 1), (42)

for any j = 0, . . . , kb, for kb ≤ σ ≤ p+ 1, and p ≥ 2kb− 1, with C independent of σ, j, h, p and kb.
Thus, recalling that kb = k + 1 and thanks to (42) and to the Céa’s Lemma, it holds

‖u− uk,δ‖Hj(0,1) ≤ Chσ−j(p− k)−(σ−j)|u|Hσ(0,1), (43)

for 0 ≤ j ≤ k+ 1 ≤ σ ≤ p+ 1 and p ≥ 2k+ 1, i.e. the convergence of IGA is optimal also w.r.t. to
p and k.

In the following theorem we extend the convergence estimate (43) to any σ ≥ k+1 and without
the upper bound σ ≤ p+ 1 that was instead essential to prove (40). In this way, the convergence
rate w.r.t. p exploits the whole regularity order of the exact solution.

Theorem 1. Let d = 1, p ≥ 1 and k ≥ 0 be two integers with p ≥ 2k + 1, and let uk,δ ∈ V k
δ

be the solution of (31). Let the solution u of (2) belong to Hs(Ω) with s ≥ k + 1. Then, if the
partition induced by the knot vector Z is uniform of size h, for any real numbers r and s with
0 ≤ r ≤ k + 1 ≤ s, it holds

‖u− uk,δ‖Hr(0,1) ≤ Chs−r(p− k + 1)−(s−r)‖u‖Hs(0,1), (44)

with C independent of both h and p.

Proof. The result follows from the argument used in [4, Sect.6], however we report here a sketch
of the proof for reader’s convenience.
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Let kb ≥ 1 and p ≥ 2kb − 1 be two integers. First, we consider the orthogonal projection
operator πkb,0p : Hs(Λ) ∩ Hkb

0 (Λ) → Pkb,0p (Λ) = Pp(Λ) ∩ Hkb
0 (Λ), that satisfies (see the proof of

Theorem 6.2 of [4])

‖u− πkb,0p u‖Hr(Λ) ≤ c(p− kb)r−s‖u‖Hs(Λ) ∀u ∈ Hs(Λ) ∩Hkb
0 (Λ), (45)

with 0 ≤ r ≤ kb ≤ s and the constant c independent of p. Then, we introduce the set of polynomials
χkb,`, 0 ≤ ` ≤ kb − 1 such that χkb,` ∈ P2kb−1(Λ) is the unique polynomial satisfying the following
conditions

χ
(`)
kb,`

(−1) = 1, χ
(m)
kb,`

(−1) = 0, 0 ≤ m ≤ kb − 1, m 6= `,

χkb,`(1) = χ′kb,`(1) = · · · = χ
(kb−1)
kb,`

(1) = 0;

then, we define the polynomial

χkb(ζ) =

kb−1∑
`=0

u(`)(−1)χkb,`(ζ) +

kb−1∑
`=0

(−1)`u(`)(1)χkb,`(−ζ) (46)

and the function ũkb = u− χkb ∈ H
kb
0 (Λ).

The projection operator π̃kbp : Hkb(Λ)→ Pp(Λ) is defined for any kb ≥ 1 and p ≥ 2kb − 1 by

π̃kbp u = πkb,0p u+ χkb ; (47)

it preserves the values of the function and of its derivatives of order up to kb − 1 at the end-points
of Λ. Thanks to (47) it holds

u− π̃kbp u = ũkb − π
kb,0
p ũkb ; (48)

in this manner, by using (45) and by recalling that the map u 7→ ũkb is continuous in Hs(Λ) (see
[4, formula (6.19)]), we have

‖u− π̃kbp u‖Hr(Λ) ≤ c(p− kb)r−s‖u‖Hs(Λ) ∀u ∈ Hs(Λ) (49)

for any integer kb ≥ 1 and p ≥ 2kb − 1 and for any real numbers r and s such that 0 ≤ r ≤ kb ≤ s,
with c independent of p.

By using the linear mappings Fi introduced above and starting from π̃kbp , we define a global

projection operator πkbp : Hkb(0, 1)→ S
(kb−1)
δ that preserves the values of u and its derivatives up

to order kb − 1 at the end-points of each interval Ii. By using the uniform distribution of the knot
vector Z and by standard scaling arguments it holds

‖u− πkbp u‖Hr(0,1) ≤ Chmin(p+1,s)−r(p− kb)r−s‖u‖Hs(0,1) ∀u ∈ Hs(0, 1), (50)

with 0 ≤ r ≤ kb ≤ s and c independent of both h and p.
By setting k = kb − 1 and thanks to Céa’s Lemma, the thesis follows. �

The analysis in the case d = 1 and p ≤ 2k + 1 still remains open [11, Remark 4.18].
The analysis for the case d = 2 is addressed in [4, Sect. 7] and in [10]. In particular, referring

to [10], if Q = Λ2 = (−1, 1)2, if the partition induced by the knot vector Z × Z is uniform, and if
the same values of p and k are used along the two directions, then ([10, Cor. 8])

‖u− uk,δ‖H`(Q) ≤ chσ−`(p− k)−(σ−`)‖u‖Hσ(Q) ∀u ∈ Hσ(Q), (51)
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Figure 4: Cube domain test case. Errors eδ,1 (H1−norm (left)) and eδ,0 (L2−norm (right)) vs. the polynomial degree
p. Markers refer to IGA-C0 solution, dashed lines to IGA-Cp−1 solution, while the continuous lines to SEM-NI
solution. The color identifies the mesh size h for all the approaches

for any 0 ≤ ` ≤ k + 1, provided that 2k + 2 ≤ σ ≤ p + 1. Moreover, the positive constant c is
independent of σ, `, h, p and k.

When d = 3, by assuming again that p and k are the same along all directions, the more
restrictive condition 3k + 3 ≤ σ ≤ p + 1 should be assumed to prove an analogous estimate (see
[10, Remark 1, pag. 300] and [4, Remark 7.1]).

3. Accuracy: numerical tests

In this section we compare the convergence rates of the errors under h- and p-refinement of
IGA and SEM-NI methods. We remark that for the IGA-Cp−1 case, the p−refinement coincides
with the k-refinement procedure typical of NURBS-based IGA [9, 14]. We consider only the case
d = 3; we omit to show numerical results for d = 1 and d = 2 since the methods behave similarly.

3.1. Cube domain

We consider problem (1) in Ω = (0, 1)3 and we choose the right hand side f and the Dirichlet
datum g so that the exact solution is

u(x) = sin(4π x y z) sin(4π (x− 1)(y − 1)(z− 1)). (52)

Then, we solve it by means of IGA-C0, IGA-Cp−1 and SEM-NI on a set of uniform meshes of size
h and with local polynomial degree p. We recall that, if neh,1 is the number of elements along each
direction, then h = 1/neh,1 for all the methods.

First, we choose h ∈ {1/16, 1/8, 1/4, 1/2} and p = 1, . . . , 8 and we analyse the behavior of the
errors versus either h or p.

Then we analyse the behavior of the errors versus the total number dof of degrees of freedom
and finally versus the number nnz of non-zero entries of the stiffness matrices for several values of
p and h that we specify in the sequel.
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Figure 5: Cube domain test case. Errors eδ,1 (H1−norm, (top)) and eδ,0 (L2−norm (bottom)) vs. the mesh size h.
Markers refer to IGA-C0 solution, dashed lines to IGA-Cp−1 solution, while continuous lines to SEM-NI solution.
The color identifies the polynomial degree p for all the approaches

Error vs. h and p. In Figure 4 we show the H1-norm (at left) and the L2-norm (at right) of the
relative errors between the numerical solutions (obtained by one of the three methods IGA-C0,
IGA-Cp−1 and SEM-NI) and the exact solution (52), vs. the polynomial degree p, with h fixed.
More precisely, we set

eδ,1 =
‖u− uδ‖H1(Ω)

‖u‖H1(Ω)
, eδ,0 =

‖u− uδ‖L2(Ω)

‖u‖L2(Ω)
. (53)

The H1−norm of the IGA-C0 and SEM-NI errors almost coincide: as we can see in both
pictures of Figure 4, the markers (that represent the errors for IGA-C0) are overlapped with the
continuous lines (that represent the errors for SEM-NI). The errors of IGA-Cp−1 (dashed lines)
exhibit the slowest decay rates.

The exact solution we are considering belongs to C∞(Ω), thus (in view of the estimates (20)
and (44), suitably extended to the case d = 3) the errors of IGA-C0 and SEM-NI decay with
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Figure 6: Cube domain test case. Errors eδ,1 (H1−norm) vs. dof . The results of both ‘IGA, 1 element’ and ‘SEM-
NI, 1 element’ are obtained with neh,1 = 1 and p = 1, . . . , 24, while those of IGA-C0, IGA-Cp−1 and SEM-NI are
computed with neh,1 ∈ {2, 4, 8, 16} and p = 1, . . . , 8

respect to p faster than any algebraic power of p, i.e. exponentially with respect to p. The same
happens for IGA-Cp−1, although the rate of decay of the error is slower than that of IGA-C0. The
L2−norm of the errors for IGA-C0 is slightly lower than the corresponding SEM-NI errors.

In Figure 5 we show the H1-norm (top) and the L2-norm (bottom) of the errors (53) versus
the mesh size h, when p is fixed. Optimal convergence rates are shown by all the methods.

Error vs dof . The total number of degrees of freedom (dof) of the discretization is a function of
both the local polynomial degree p and the global number of mesh elements neh. In the case in
which the partition Th is quasi uniform and tensor-based, we denote by neh,1 = c/h (c is a constant
that depends only on Ω) the number of elements along any spatial direction, so that the global
number of elements is neh = (neh,1)d and the global number of degrees of freedom dof (including
those associated with the boundary) is:

IGA-C0 IGA-Cp−1 SEM-NI (or SEM)

dof (neh,1p+ 1)d (p+ neh,1)d (neh,1p+ 1)d.

We notice that the number of degrees of freedom of IGA-C0 coincides with that of SEM-NI, while
that of IGA-Cp−1 grows more slowly.

In Figures 6 and 7 the H1-norm and the L2-norm of the errors are plotted against dof . We
considered several values of p and of neh,1. The choice of both of them is limited by the RAM
capacity (16 GBytes) of the hardware used to perform the numerical simulations.

When neh = neh,1 = 1, the numerical solutions are global polynomials in the computational
domain for all the three methods. IGA-C0 and IGA-Cp−1 provide the same solution (named simply
IGA in Figures 6 and 7) and their errors spectrally decay w.r.t. p until p = 13; then, rounding
errors downgrade the convergence and the H1−norm error remains up to 10−6 for p ≥ 13. The
round-off errors are amplified by the large condition number of the IGA stiffness matrix when h = 1
(see Tab. 3 in Sect. 4).
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Figure 7: Cube domain test case. Errors eδ,0 (L2−norm) vs. dof . The results of both ‘IGA, 1 element’ and ‘SEM-
NI, 1 element’ are obtained with neh,1 = 1 and p = 2, . . . , 24, while those of IGA-C0, IGA-Cp−1 and SEM-NI are
computed with neh,1 ∈ {2, 4, 8, 16} and p = 1, . . . , 8

On the contrary, the SEM-NI error vs. p decays until it is quite close to the machine precision
10−14. The same behavior is also observed for the L2−norm error.

For a fixed neh,1 > 1, the error of IGA-Cp−1 vs. dof = dof(p) decays faster than the errors of
both IGA-C0 and SEM-NI. Nevertheless, in the range of p ≤ 8 and 2 ≤ neh,1 ≤ 16, the minimum
error measured for IGA-Cp−1 is about 10−9, obtained with neh,1 = 16 and p = 8 (for which
dof = 15625); larger values of these discretization parameters produce matrices too large and too
dense to be stored into the 16GB RAM of the hardware used for the numerical simulations. In the
same range of p ≤ 8 and 2 ≤ neh,1 ≤ 16, the minimum error reached by SEM-NI is about 10−12

(obtained with neh,1 = 16 and p = 8, for which dof = 2146689). We speculate that also IGA-C0

would reach the minimum error provided by SEM-NI with neh,1 = 16 and p = 8, but the RAM
capacity of 16 GBytes limited the runs of IGA-C0 to p = 6 when neh,1 = 16.

Matrix sparsity pattern. As it emerges from the previous considerations, dof is not the unique
reference parameter to be taken into account in measuring the efficiency of a method. As a matter
of fact, other important issues, especially for d = 3, are the sparsity pattern of the stiffness matrix
and its number of nonzero entries, say nnz. The latter is a measure not only of the memory space
required to store the matrix, but also of the computational complexity that must be addressed,
first of all to assemble the stiffness matrix and then to solve the linear system.

The numerical results shown in these sections have been produced using an Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz with 4 Cores and 16GB of RAM. When d = 3, starting from moderate
values of p (e.g. p = 4) and moderate values of neh,1 (e.g. neh,1 = 8) the direct solution of both
the SEM-NI linear system (15) and the IGA-C0 system (37) become prohibitive on this hardware.
This is due to the fill-in that occurs during the elimination process involved in the direct solver.

As a consequence, a preconditioned iterative method, like, e.g., Krylov ones, is in order. We
solve the linear systems by the Bi-GCStab method [26], preconditioned by an incomplete LU
factorization. On our machine, the iterative numerical solution of the linear system of IGA-C0

becomes prohibitive for p > 4 and neh,1 > 7.
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Figure 8: Pattern of the stiffness matrix of IGA-C0 (left), IGA-Cp−1 (center), and SEM-NI (right) when Ω = (0, 1)3,
p = 4 and neh,1 = 4. dof is 4913 for both IGA-C0 and SEM-NI, while it is 512 for IGA-Cp−1. nnz is 911599 for
IGA-C0, 140604 for IGA-Cp−1, and 46575 for SEM-NI. The fill-in percentage are 2% for SEM, 4% for IGA-C0 and
54% for IGA-Cp−1

We notice that, even if both the IGA and SEM-NI stiffness matrices are symmetric and positive
definite for the problem at hand, we used the Bi-GCStab instead of the Conjugate Gradient method.
As a matter of fact, since the condition number of the IGA stiffness matrices heavily grows with p
(see the Sect. 4), the symmetric incomplete Cholesky factorization breaks down when computing
the square root of non-positive values. At each iteration of the Krylov method, one has to compute
matrix-vector products (whose computational cost is proportional to nnz) and to solve auxiliary
linear systems related to the preconditioner. We omit here the analysis of the costs associated with
the preconditioner, that is out of the scope of this paper.

In the next subsection we provide a comparison of the computational cost for assembling the
stiffness matrix of IGA-Cp−1 and SEM-NI versus both dof and nnz in the more realistic case of a
domain with curved boundary. Here we just plot the H1–norm error versus the parameter nnz.

In Fig. 8 the pattern of the stiffness matrix stemming from the three methods are shown, for
the case p = 4 and neh,1 = 4, when d = 3 and Ω = (0, 1)3. We notice that, in the case of SEM-NI,
nnz is independent of the fact that quadrature formulas are used to approximate integrals; indeed,
the same sparsity pattern would be obtained if one uses exact integration instead of the numerical
one.

Then, in Figure 9 we show the H1-norm of the error versus nnz. SEM-NI is the method (among
the three) that provides the minimum errors for a prescribed value of nnz.

3.2. Domain with curved boundary: one-eight of the sphere

In this section we compare the accuracy of SEM-NI and IGA (limited to the more interesting
case IGA-Cp−1) by solving the Poisson problem in a computational domain with curved boundary.

Let Ω be one-eight of the sphere centered at the origin and with radius equal to one, i.e.
Ω = {x = (x, y, z) ∈ R3 : x ≥ 0, y ≥ 0, z ≥ 0, x2 + y2 + z2 ≤ 1}.

We look for the solution of the differential problem (1) with g(x) and f(x) such that the exact
solution is u(x) = y z exp(−x2 − y2 − z2).

SEM-NI discretization. In order to approximate the solution of (1) by SEM-NI we partition
the computational domain Ω into hexaedra. The coarsest decomposition we consider is made of
four hexaedra as shown in Fig. 10, left, such decomposition ensures that the transfinite mappings
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Ω = (0, 1)3

Table 1: One-eight of the sphere test case. SEM-NI discretization parameters. The total number of spectral elements
is neh = ne3h,1 × 4. dof is the number of degrees of freedom internal to Ω

dof

neh,1 neh p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

1 4 1 13 157 1597 5853 14461
2 32 13 157 1597 14461 50877 123133
4 256 57 621 5853 50877 176541 424317
8 2048 157 1597 14461 123133 424317 1016317

12 6912 337 3277 28957 243517 835677 1997437
16 16384 621 5853 50877 424317 1452093 3465981

F` introduced in Sect. 2.1 are invertible. Then, in each of these four hexaedra we consider neh,1×
neh,1 × neh,1 uniform hexaedra spectral elements T` (see Sect. 2.1) with neh,1 = 1, 2, 4, 8, 12, 16.
The global number of elements is neh = 4 · (neh,1)3. In each element T` the local polynomial degree
p along any spatial direction ranges from 1 to 16 when neh,1 = 1, from 1 to 8 when neh,1 = 2, 4, 8,
and from 1 to 6 when neh,1 = 12, 16. The total number of degrees of freedom dof internal to Ω
are shown in Table 1 for p = 1, . . . , 6.

IGA discretization. We consider IGA-Cp−1 in a single NURBS patch (see Fig. 11), with
neh,1 = 2, 4, 8, 12, 16 and different values of p, more precisely: p ranges from 1 to 15 when neh,1 = 2,
from 1 to 13 when neh,1 = 4, from 1 to 10 when neh,1 = 8, and from 1 to 8 when neh,1 = 12, 16.
The global number of degrees of freedom internal to Ω is shown in Table 2.

The IGA numerical solutions for this test case have been computed by GeoPDEs 3.0, a package
for Isogeometric Analysis written in Matlab and Octave ([27]), while SEM-NI numerical solutions
have been computed using a proprietary software written in Matlab and Octave.
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Table 2: One-eight of the sphere test case. IGA-Cp−1 discretization parameters. The total number of elements is
neh = ne3h,1, dof is the number of degrees of freedom internal to Ω

dof

neh,1 neh p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

2 8 1 8 64 512 1728 4096
4 64 8 27 125 729 2197 4913
8 512 27 64 216 1000 2744 5832

12 1728 64 125 343 1331 3375 6859
16 4096 125 216 512 1728 4096 8000

The H1–norm errors eδ,1 (see definition (53)) are shown in Figures 12–14 for both SEM-NI and
IGA-Cp−1 discretizations versus the polynomial degree, the number of mesh elements and the total
number of degrees of freedom. The errors decay exponentially w.r.t. the polynomial degree p for
both SEM-NI and IGA-Cp−1; as in the test case on the cube domain, the SEM-NI errors decay
faster than the IGA-Cp−1 ones. Optimal convergence w.r.t. the mesh size h is confirmed for both
the methods.

As we can appreciate in Fig. 14, the IGA-Cp−1 errors decay faster than the SEM-NI ones when
we analyse the behavior vs. the number dof of degrees of freedom, nevertheless the curve of the
errors obtained with SEM-NI and neh,1 = 1 (for which the global number of elements is neh = 4)
is the lower one and the errors computed with IGA-Cp−1 stay above it for all the combinations of
p and neh allowed by the 16GB RAM of our computer.

In Figures 15 and 16 we show the CPUtimes (in seconds) needed to assemble the stiffness
matrix versus dof and nnz, respectively. We verified that, for both IGA-Cp−1 and SEM-NI, the
computational cost to assemble the stiffness matrix exceeds that required to solve the corresponding
linear system. The CPUtimes needed to assemble the IGA-Cp−1 stiffness matrix grow like dof3.2
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Figure 11: One-eight of the sphere test case. NURBS representation of the domain with neh,1 = 2 and p = 2 (left)
and neh,1 = 4 and p = 2 (right)

and nnz1.6, while in the case of SEM-NI they grow like dof1.5 and nnz.
These results lead us to compare the errors of the two methods vs the number nnz of non-zeros

entries of the stiffness matrices. In Fig. 17 the H1–norm errors eδ,1 versus nnz are shown and
finally, in Fig. 18, the H1–norm errors eδ,1 vs the CPUtime needed to assemble the stiffness matrix
are plotted. In order to reach a prescribed error, there exists at least one combination of p and
neh,1 such that the computational cost of SEM-NI is lower than that of IGA-Cp−1 and, viceversa,
if our target is a small CPUtime, the SEM-NI error corresponding to that CPUtime is lower than
the IGA-Cp−1 one.
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4. Spectral properties: eigenvalues and condition number

In this section we summarize the main results concerning the spectral properties of SEM-NI
and IGA arrays. Because of their importance for the convergence rate of iterative methods for
the solution of the linear system, as well as for the propagation of rounding errors in solving
the linear system itself (see, e.g., Figs. 6, 9, and 12), we specifically highlight the behavior of
the extreme eigenvalues (and the corresponding spectral condition number) of mass matrices and
stiffness matrices.

For any matrix A which is symmetric positive definite (or similar to a symmetric positive
definite matrix), let λmin(A) and λmax(A) denote its minimum and maximum (real) eigenvalues,
respectively. The spectral condition number of A is defined as

K(A) =
λmax(A)

λmin(A)
. (54)

The extreme eigenvalues of the SEM-NI mass matrix (14) and stiffness matrix (13) (the latter
reduced to the rows and columns associated with the nodes internal to Ω = (0, 1)d) behave as
follows ([3, 23, 6, 7, 5]):

λmin(MSEM ) ∼ hdp−2d (55)

λmax(MSEM ) ∼ hdp−d (56)

λmin(KSEM ) ∼ hdp−d (57)

λmax(KSEM ) ∼ hd−2p3−d (58)

λmin((MSEM )−1KSEM ) ∼ c (59)

λmin((MSEM )−1KSEM ) ∼ h−2p4. (60)

The corresponding iterative condition numbers for d = 1, 2, 3 are:

K(MSEM ) ∼ pd (61)

K(KSEM ) ∼ p3h−2 (62)

K((MSEM )−1KSEM ) ∼ p4h−2; (63)

these are reported in Table 3. In the whole section the symbol ∼ means “up to a constant inde-
pendent of both p and h”.

The eigenvalues and the condition number of IGA matrices have been studied in [15, 16]. In
[15] it is proved for d = 2 that, independently of the k-regularity of the B-spline basis functions, it
holds:

λmin(Mk) ∼ c(p)h2, λmin(Mk) ≥ c(h)p−416−p

λmax(Mk) ∼ c(p)h2, λmax(Mk) ∼ c(h)p−2,

K(Mk) ≤ cp216p, with c independent of h and p,

λmin(Kk) ∼ c(p)h2,

λmax(Kk) ∼ c, with c independent of h and p,

K(Kk) ≤ c(h)p816p,

(64)
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where Mk and Kk are the mass matrix and the stiffness matrix of IGA approximation for a generic
k = 0, . . . , p − 1. In [16] the authors prove for d = 1, p ≥ 1 and n ≥ 2 (where n is the number of
elements, so that h ∼ 1/n) that

λmin(Mp−1) ≥ c(p)h, λmin(Kp−1) ≥ π2c(p)h. (65)

Other estimates about the clustering of the eigenvalues of the matrix corresponding to the IGA
approximation of the advection-diffusion-reaction operator for d = 1 are proved in [16].

We have numerically computed the extreme eigenvalues of the mass and stiffness matrices for
both IGA-C0 and IGA-Cp−1 using the function eigs of Matlab for different values of h and p.
Starting from these values we have estimated the analytic behavior of the extreme eigenvalues
(and then the spectral condition number) of the IGA matrices w.r.t. both h and p.

For the sake of clearness, we anticipate in Table 3 the estimated behavior of the spectral
condition number of mass and stiffness matrices for all the three approaches (SEM-NI, IGA-C0

and IGA-Cp−1). In the next sections we show the numerical computed values and the estimated
behavior of the extreme eigenvalues and of the condition number of the mass and stiffness IGA
matrices.

4.1. IGA-C0 mass matrix

We denote with M0 the mass matrix associated with IGA-C0 approximation. Our numerical
results show that, for any value of h > 0 and p ≥ 1, λmin(M0) and λmax(M0) behave as:

λmin(M0) ∼ hdp−d/24−pd, (66)

λmax(M0) ∼ hdp−d, (67)

Table 3: Behavior of the condition numbers of mass and stiffness matrices

SEM-NI IGA-C0 IGA-Cp−1

K(M) ∼ pd ∼ p−d/24pd

0

−1

p

log10 h

∼
(
e
4

)d/h
4pd(hp)−d/2

∼ epd

1

h = 1/p

K(K) ∼ h−2p3

h = (p2+d/24−dp)1/2

1 pp

∼ h−2p2

0

−1

∼ p−d/24dp

log10 h

p

∼ h−2p

0

−1

1

h = 1/plog10 h

h = e−dp/2

∼
(
e
4

)d/h
p−d/2h−d/2−14dp

∼ pedp
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for d = 1, 2, 3, respectively. Then
K(M0) ∼ p−d/24pd, (68)

i.e., the condition number ofM0 grows exponentially with p and it is independent of the element-size
h.

In Figures 19 – 21 we show the computed extreme eigenvalues and the spectral condition number
versus h (at left) and versus p (at right) for d = 1, 2, 3. Numerical results confirm estimates (66),
(67) and (68).

4.2. IGA-C0 stiffness matrix

By denoting with K0 the stiffness matrix corresponding to the IGA-C0 approximation, its
(computed) extreme eigenvalues behave depending as follows:

λmin(K0) ∼

{
hdp−d if h <

(
p2+d/24−dp

)1/2
hd−2p2−d/24−dp otherwise

(69)

λmax(K0) ∼ hd−2p2−d (70)

for any d = 1, 2, 3. Then

K(K0) ∼

{
h−2p2 if h <

(
p2+d/24−dp

)1/2
p−d/24dp otherwise.

(71)

In Figure 22 we report the computed spectral condition numbers versus both h and p, for
d = 1, 2, 3 jointly with a graph summarizing the behavior of K(K0) given in (71). The stiffness
matrix K0 is better conditioned w.r.t. p when h < (p2+d/24−dp)1/2, in such a case K(K0) ∼ h−2p2

is more favorable of one order than the condition number of KSEM . On the contrary, when
h > (p2+d/24−dp)1/2, K(K0) grows exponentially with p, but it is independent of h.

In Figures 23 – 25 we show the computed extreme eigenvalues and the spectral condition number
versus h (at left) and versus p (at right) for d = 1, 2, 3. Numerical results confirm estimates (66),
(67) and (68).
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Figure 19: The extreme eigenvalues and the spectral condition number of K(M0) for d = 1, versus h (at left) and
versus p (at right). The computed values confirm the estimate given in (66), (67) and (68)

27



10
-2

10
-1

10
0

h

10
-15

10
-10

10
-5

10
0

m
in

im
u
m

 e
ig

e
n
v
a
lu

e

2
1

p=1

p=2

p=4

p=8

0 2 4 6 8 10 12

p

10
-20

10
-15

10
-10

10
-5

10
0

m
in

im
u
m

 e
ig

e
n
v
a
lu

e

h=1

h=0.083333

h=0.027778

h=0.013889

p
-1

4
-2p

10
-2

10
-1

10
0

h

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

m
a

x
im

u
m

 e
ig

e
n

v
a

lu
e

2

1

p=1

p=2

p=4

p=8

1 2 4 8 12

p

10
-6

10
-4

10
-2

10
0

m
a

x
im

u
m

 e
ig

e
n

v
a

lu
e

h=1

h=0.083333

h=0.027778

h=0.013889

p
-2

10
-2

10
-1

10
0

h

10
0

10
2

10
4

10
6

10
8

10
10

s
p

e
c
tr

a
l 
c
o

n
d

it
io

n
 n

u
m

b
e

r

p=1

p=2

p=4

p=8

0 2 4 6 8 10 12

p

10
0

10
5

10
10

10
15

s
p
e
c
tr

a
l 
c
o
n
d
it
io

n
 n

u
m

b
e
r

h=1

h=0.083333

h=0.027778

h=0.013889

p
-1

4
2p

Figure 20: The extreme eigenvalues and the spectral condition number of K(M0) for d = 2, versus h (at left) and
versus p (at right). The computed values confirm the estimates given in (66), (67) and (68)
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Figure 21: The extreme eigenvalues and the spectral condition number of K(M0) for d = 3, versus h (at left) and
versus p (at right). The computed values confirm the estimates given in (66), (67) and (68)
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Figure 23: The extreme eigenvalues and the spectral condition number of K(K0) for d = 1, versus h (at left) and
versus p (at right). The behavior of the minimum eigenvalue (and similarly that of the spectral condition number)
versus h and p depends on how much h is small w.r.t. p, see (69) and (71)
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Figure 24: The extreme eigenvalues and the spectral condition number of K(K0) for d = 2, versus h (at left) and
versus p (at right). The behavior of the minimum eigenvalue (and similarly that of the spectral condition number)
versus h and p depends on how much h is small w.r.t. p, see (69) and (71)
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Figure 25: The extreme eigenvalues and the spectral condition number of K(K0) for d = 3, versus h (at left) and
versus p (at right). The behavior of the minimum eigenvalue (and similarly that of the spectral condition number)
versus h and p depends on how much h is small w.r.t. p, see (69) and (71)
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4.3. IGA-Cp−1 mass matrix

The computed extreme eigenvalues of the mass matrix Mp−1 of IGA-Cp−1 behave depending
on h and p as follows:

λmin(Mp−1) ∼

{
hde−pd if h < 1/p(
e
4

)−d/h (h
p

)d/2
4−pd otherwise

(72)

λmax(Mp−1) ∼
{
hd if h < 1/p
p−d otherwise

(73)

for any d = 1, 2, 3, respectively. Then

K(Mp−1) ∼

{
epd if h < 1/p(
e
4

)d/h
(hp)−d/24pd otherwise.

(74)

In Figure 26 we report the computed spectral condition numbers versus both h and p, for
d = 1, 2, 3 jointly with a graph summarizing the behavior of K(Mp−1) given in (74).

In Figures 27 – 29 we show the computed extreme eigenvalues and the spectral condition number
versus h (at left) and versus p (at right) for d = 1, 2, 3. Numerical results confirm estimates (72),
(73) and (74).

2

0

4

6

8

lo
g

1
0

(K
)

10

12

20

log10(h)

-1 15

p

10
5-2 0

2

0

4

6

8

lo
g

1
0

(K
)

10

12

10

log10(h)

-1

p

5

-2 0

2

4

0

6

8

lo
g
1
0
(K

)

10

8

12

-0.5 6

log10(h) p

4-1
2

-1.5 0

0

−1

p

log10 h

∼
(
e
4

)d/h
4pd(hp)−d/2

∼ epd

1

h = 1/p

Figure 26: The numerically computed values of K(Mp−1) for d = 1 (top-left), d = 2 (top-right), and d = 3 (bottom-
left) for different values of h and p. The red curve is the graphical representation of h = 1/p. Summary of (74)
(bottom-right)

34



10
-3

10
-2

10
-1

10
0

h

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m
in

im
u
m

 e
ig

e
n
v
a
lu

e

1
1

p=1

p=2

p=3

p=4

p=8

p=16

(e/4)
-1/h

h
1/2

0 5 10 15 20 25

p

10
-15

10
-10

10
-5

10
0

m
in

im
u

m
 e

ig
e

n
v
a

lu
e

h=1

h=0.25

h=0.125

h=0.083333

h=0.035714

h=0.022727

e
-p

p
-1/2

4
-p

10
-3

10
-2

10
-1

10
0

h

10
-3

10
-2

10
-1

10
0

m
a

x
im

u
m

 e
ig

e
n

v
a

lu
e

1

1

p=1

p=2

p=3

p=4

p=8

p=16

1 2 4 8 16 24

p

10
-2

10
-1

10
0

m
a

x
im

u
m

 e
ig

e
n

v
a

lu
e

h=1

h=0.25

h=0.125

h=0.083333

h=0.035714

h=0.022727

p
-1

10
-3

10
-2

10
-1

10
0

h

10
0

10
2

10
4

10
6

10
8

10
10

s
p

e
c
tr

a
l 
c
o

n
d

it
io

n
 n

u
m

b
e

r

p=1

p=2

p=3

p=4

p=8

p=16

(e/4)
1/h

h
-1/2

0 5 10 15 20 25

p

10
0

10
5

10
10

10
15

s
p
e
c
tr

a
l 
c
o
n
d
it
io

n
 n

u
m

b
e
r

h=1

h=0.25

h=0.125

h=0.083333

h=0.035714

h=0.022727

e
p

p
-1/2

4
p

Figure 27: The extreme eigenvalues and the spectral condition number of K(Mp−1) for d = 1, versus h (at left) and
versus p (at right). The behavior of the extreme eigenvalues (and similarly that of the spectral condition number)
versus h and p depends on how much h is small w.r.t. p, see (72)–(74)
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Figure 28: The extreme eigenvalues and the spectral condition number of K(Mp−1) for d = 2, versus h (at left) and
versus p (at right). The behavior of the extreme eigenvalues (and similarly that of the spectral condition number)
versus h and p depends on how much h is small w.r.t. p, see (72)–(74)
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Figure 29: The extreme eigenvalues and the spectral condition number of K(Mp−1) for d = 3, versus h (at left) and
versus p (at right). The behavior of the extreme eigenvalues (and similarly that of the spectral condition number)
versus h and p depends on how much h is small w.r.t. p, see (72)–(74)
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4.4. IGA-Cp−1 stiffness matrix

The computed extreme eigenvalues of the stiffness matrix Kp−1 of IGA-Cp−1 behave depending
on h and p as follows:

λmin(Kp−1) ∼


hd if h < e−pd/2

hd−2e−pd if e−pd/2 < h < 1/p(
e
4

)−d/h
p2−d/2hd/24−pd if h > 1/p

(75)

λmax(Kp−1) ∼
{
phd−2 if h < 1/p for p > 2
p2−dh−1 otherwise.

(76)

for any d = 1, 2, 3, respectively. Then

K(Kp−1) ∼


h−2p if h < e−dp/2

pedp if e−dp/2 < h < 1/p(
e
4

)d/h
p−d/2h−d/2−14dp otherwise

(77)

In Figure 30 we report the computed spectral condition numbers versus both h and p, for
d = 1, 2, 3 jointly with a graph summarizing the behavior of K(Kp−1) given in (77).

In Figures 31 – 33 we show the computed extreme eigenvalues and the spectral condition number
versus h (at left) and versus p (at right) for d = 1, 2, 3. Numerical results confirm estimates (75),
(76) and (77).
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Figure 31: The extreme eigenvalues and the spectral condition number of K(Kp−1) for d = 1, versus h (at left) and
versus p (at right). The behavior of the extreme eigenvalues (and similarly that of the spectral condition number)
versus h and p depends on how much h is small w.r.t. p, see (75)–(77)
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Figure 32: The extreme eigenvalues and the spectral condition number of K(Kp−1) for d = 2, versus h (at left) and
versus p (at right). The behavior of the extreme eigenvalues (and similarly that of the spectral condition number)
versus h and p depends on how much h is small w.r.t. p, see (75)–(77)
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Figure 33: The extreme eigenvalues and the spectral condition number of K(Kp−1) for d = 3, versus h (at left) and
versus p (at right). The behavior of the extreme eigenvalues (and similarly that of the spectral condition number)
versus h and p depends on how much h is small w.r.t. p, see (75)–(77)
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5. Conclusions

In this paper we have carried out a systematic comparison between the Spectral Element
Method with Numerical Integration (SEM-NI) and the NURBS-based Isogeometric Analysis meth-
ods (in the framework of the Galerkin method) IGA-C0 (C0 regularity inside the domain) and
IGA-Cp−1 (global Cp−1 regularity inside the domain). Our focus has been on the accuracy and
the conditioning with respect to the discretization parameters h and p when applied to solve the
Poisson problem. As of accuracy, we have considered two test cases, the first one on the refer-
ence domain Ω = (0, 1)d with d = 1, 2, 3, the second one on a more general domain with curved
boundary. IGA and SEM-NI are comparable in terms of accuracy w.r.t. h and p, whereas their
computational costs are different. As a matter of fact, for a given accuracy target, SEM-NI is the
less computational demanding method both in terms of CPUtime and of memory storage.

In the second part of the paper, starting from the numerical computations of the eigenvalues,
we provided very accurate estimates of the extreme eigenvalues (as well as of the spectral condition
numbers) of the mass and stiffness matrices of IGA approaches. These factors play a crucial role
on the convergence rate of iterative methods for the solution of the associated linear system and
on the propagation of rounding errors in solving the linear system itself. The extreme eigenvalues
also reflect the stability restriction of explicit time-advancing schemes for initial boundary value
problems. The condition number of IGA mass matrices grows exponentially w.r.t. to p, while the
condition number of the SEM-NI matrices grows only algebraically vs p. On the other hand, the
condition number of the IGA stiffness matrices follows different regimes (with either algebraic or
exponential dependence on p) in different regions of the plane (p, h).
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