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Palacký University, Olomouc, Czech Republic.

2MOX-Department of Mathematics, Politecnico di Milano, Milano, Italy
∗alessandra.menafoglio@polimi.it

Abstract

This work addresses the problem of performing functional linear regression
when the response variable is represented as a probability density function (PDF).
PDFs are interpreted as functional compositions, that are objects carrying pri-
marily relative information. In this context, the unit integral constraint allows to
single out one of the possible representations of a class of equivalent measures.
On these bases, a function-on-scalar regression model with distributional response
is proposed, by relying on the theory of Bayes Hilbert spaces. The geometry of
Bayes spaces allows capturing all the key inherent feature of distributional data
(e.g., scale invariance, relative scale). A B-spline basis expansion combined with
a functional version of the centred log-ratio transformation is employed for ac-
tual computations. For this purpose, a new key result is proved to characterize
B-spline representations in Bayes spaces. We show the potential of the method-
ological developments on a real case study, dealing with metabolomics data. Here,
a bootstrap-based study is also performed for the uncertainty quantification of the
obtained estimates.

Keywords: Bayes spaces, regression analysis, density functions, B-spline representa-
tion

1 Introduction

Distributional data in their discrete form frequently occur in many real-world surveys.
For instance, frequencies of occurrence of observations from a continuous random vari-
able – aggregated according to a given partition of the domain of observation – are
typically represented by a histogram, which in turn approximates an underlying (con-
tinuous) probability density function (PDF). In general, the PDFs are Borel measurable
functions that are constrained to be non-negative and to integrate to unity. Nevertheless,
one may think at the unit-integral constraint as a way to single out a proper representa-
tion of the underlying measure rather than an inherent feature of PDFs themselves. In
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fact, when changing the value the PDF integrates to a general real constant c (i.e., the
measure of the whole), the relative information carried by PDFs is preserved – we refer
to scale invariance of PDFs. Here, relative information is to be interpreted in terms
of the contributions of Borel sets of real line to the overall measure of the support of
the corresponding random variable (Hron et al., 2016). Due to the peculiar features
of PDFs (e.g., the aforementioned scale invariance and additional properties such as
the so-called relative scale) the standard L2 space of square integrable functions turns
out to be inappropriate for their representation. For instance, the sum of two PDFs
according to the geometrical structure of the L2 space leads to a function that is not
a PDF anymore. Even more interestingly, multiplication of a PDF by a real constant
yields to a scaled PDF, that carries the same relative information as the original PDF
according to scale invariance. The relative nature of PDFs indicates that ratios between
values rather than absolute values represent the only relevant source of information;
accordingly, instead of absolute differences, ratios between them should be considered
to measure distances and dissimilarities.

In this context, Bayes (Hilbert) spaces provide a well-defined geometrical frame-
work to represent PDFs (van den Boogaart et al., 2010, 2014; Egozcue et al., 2006).
The idea motivating the introduction of Bayes spaces was to generalize the well-known
Aitchison geometry for finite-dimensional compositional data (i.e., positive observa-
tions carrying exclusively relative information (Aitchison, 1986; Pawlowsky-Glahn et al.,
2015)) to the infinite-dimensional setting. In fact, any PDF can be seen as a composition
with infinitely many parts.

Although the general problem of functional regression has been already studied in
detail in the seminal book of functional data analysis (Ramsay and Silverman, 2005),
the case of functional regression with a distributional response variable has not been
systematically elaborated yet. In fact, most techniques developed in that setting to
deal with PDFs (e.g., Ramsay and Silverman (2005), Section 6.6) aim to remove the
constant-integral constraint, rather than taking into account the key properties of PDFs
for further statistical processing. Instead, the key point of our approach is to consider
PDFs as elements of a Bayes space, and accordingly work with the geometry of the
latter space. Centred log-ratio (clr) transformation – that allows representing the PDFs
through zero-integral elements of L2 – is then used to ease computations while using
the Bayes space geometry (van den Boogaart et al., 2014; Hron et al., 2016; Menafoglio
et al., 2014, 2016a,b).

We employ the B-spline representation of clr-transformed data proposed in Machalová
et al. (2016) to express discretely observed PDFs as smooth functions. Such represen-
tation allows to properly incorporate the zero-integral constraint resulting from the clr-
transformed PDFs (van den Boogaart et al., 2014) in the B-spline basis: we here show
that such zero-integral constraint is equivalent to a linear constraint on the B-spline
coefficients, which needs to be properly taken into account in the further statistical pro-
cessing. On these bases, we shall introduce (penalized) least squares estimators for the
functional regression coefficients and their variability in the Bayes space. We illustrate
the potential of our approach through its application to a real study.

The remaining part of the paper is organized as follows. In Section 2 the proba-
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bility density functions from perspective of Bayes spaces are introduced together with
the so called centred log-ratio transformation which enables one to apply well-known
techniques of functional data analysis. The functional linear regression model with
functional response and scalar regressors for functional data in L2 is recalled in Sec-
tion 3 and its counterpart in Bayes space is proposed in Section 4. Section 5 deals with
B-spline representation of PDFs in Bayes spaces and Section 6 with multivariate regres-
sion modeling of B-spline coefficients, some specific features are derived in Section 7.
In Section 8, the methodological developments are illustrated with real data containing
measurements of metabolite concentrations.

2 Probability densities as elements of Bayes spaces

Similarly as for finite-dimensional compositional data, a proper choice of the sample
space for PDFs is essential. Indeed, as shown in Delicado (2011) and Hron et al. (2016),
processing PDFs within the usual L2 space may lead to meaningless results. Instead,
the specific features of densities can be captured through the Bayes space methodology
that relies upon an appropriate Hilbert space structure to deal with the data constraints.

We consider two positive functions f and g with the same support to be equivalent,
if f = c·g, for a positive constant c. Recalling the scale invariance of PDFs, this implies
that densities (not necessarily unit-integral densities, i.e., PDFs) within an equivalence
class provide the same relative information, or, equivalently, that contributions of Borel
sets to the whole mass measure do not change.

The Bayes space B2(I) consists of (equivalence classes of) densities f on a domain
I for which the logarithm is square-integrable, i.e.,

B2(I) = {f : I → (0,+∞),

∫
I
[log f(t)]2dt <∞}.

To avoid highly technical constructions, we limit to consider compact support I =
[a, b] ⊂ R. For a density f , we denote by C(f) the unit-integral representative within
its equivalence class in B2(I). The operation C(f) is called closure, which result is
simply obtained by dividing f by its integral over the interval I .

Further, we introduce operations in B2(I), called perturbation and powering, which
play the role of sum and multiplication by a scalar. Consider two densities f, g ∈ B2(I)
and a real number c ∈ R, perturbation and powering are defined as

(f ⊕ g)(t) =
f(t)g(t)∫ b

a f(s)g(s)ds
= C(fg); (c� f)(t) =

f c(t)∫ b
a f

c(s)ds
= C(f c),

where t ∈ I = [a, b]. Note that e(t) = 1
b−a (uniform density on [a, b]) is the neutral

element of perturbation. It can be shown (Egozcue et al., 2006; van den Boogaart et al.,
2014) that the triple

(
B2(I),⊕,�

)
forms a vector space. The Bayes inner product is

defined as

〈f, g〉B =
1

2η

∫ b

a

∫ b

a
ln
f(t)

f(s)
· ln g(t)

g(s)
dt ds,
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where η stands for the length of interval I , i.e., η = b−a. The corresponding norm and
distance are

‖f‖B =
√
〈f, f〉B =

[
1

2η

∫ b

a

∫ b

a
ln2 f(t)

f(s)
dt ds

] 1
2

and

dB (f, g) = ‖f 	 g‖B =

[
1

2η

∫ b

a

∫ b

a

(
ln
f(t)

f(s)
− ln

g(t)

g(s)

)2

dt ds

] 1
2

,

respectively, where 	 stands for perturbation-subtraction of f by g, (f 	 g) (t) =
[f ⊕ (−1)� g] (t), for t in I .

In Egozcue et al. (2006) and van den Boogaart et al. (2014) it was shown that the
Bayes space

(
B2(I),⊕,�, 〈·, ·〉B

)
forms a separable Hilbert space. Accordingly, for

a given compact support I there exists an isometric isomorphism between the Bayes
space B2(I) and the space L2(I) of square integrable real functions on I . An instance
of such isometric isomorphism is called centred log-ratio (clr) transformation. The clr
transformation of a PDF f ∈ B2(I) is the real-valued function fc ∈ L2(I) defined as

fc(t) = clr [f ] (t) = ln f(t)− 1

η

∫
I

ln f(s) ds, t ∈ I. (1)

The clr representation is featured by a zero-integral constraint on I , i.e.,
∫
I fc(t)dt = 0.

When analyzing clr transforms of densities, the latter integral constraint may give rise to
computational issues and thus needs to be properly accounted for. The original density
f ∈ B2(I) can be obtained from the corresponding clr transform fc ∈ L2(I) through
the inverse transformation

f(t) = clr−1[fc](t) = C(exp [fc])(t), t ∈ I. (2)

Finally, we point out that the following important properties of the isometric isomor-
phism (1) hold

clr(f ⊕ g)(t) = fc(t) + gc(t), clr(c� f)(t) = c · fc(t)

and
〈f, g〉B = 〈fc, gc〉2 , ‖f‖B = ‖fc‖2 , dB (f, g) = d2 (fc, gc) ,

where 〈·, ·〉2, ‖·‖2 and d2 (·, ·) denote inner product, norm and distance in L2(I) re-
spectively. Intuitively, clr transformation translates operations and metrics of the Bayes
space into the usual operations and metrics of the L2 space.

3 Functional regression model for unconstrained data in L2

In real studies the functional variables of interest are frequently driven by one or more
covariates, either of real or of functional nature. A large body of literature has been
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developed on both theoretical and applied issues related to functional linear models
(Faraway, 1997; Shena and Xub, 2007); several approaches to linear regression with
functional response and multivariate covariates are broadly discussed in Ramsay and
Silverman (2005). We here review the key notions on functional linear models with
scalar regressors that we deem useful for our developments, by following Ramsay and
Silverman (2005, Chapter 13), to which the reader is referred for further details.

A function-on-scalar regression model relates a functional response y(t) with in-
dependent scalar covariates xj for j = 0, . . . , r, the first regressor x0 indicating the
intercept, i.e., x0 = 1. Let us consider an N -dimensional vector of functional observa-
tions y(t) in L2(I), a design matrix X of dimension N × p (the first column is made
of ones if the intercept is included) and a p-dimensional vector of unknown functional
regression parameters β(t) in L2(I), which is unknown and has to be estimated. Fur-
thermore, let ε(t) be an N -dimensional vector of i.i.d. (functional) random errors with
zero-mean in L2(I). The functional linear model is expressed as

yi(t) = β0(t) +
r∑
j=1

xijβj(t) + εi(t), i = 1, . . . , N, (3)

or, in matrix notation, y(t) = Xβ(t) + ε(t), where p = r + 1 and xi0 = 1. The
estimators β̂j , j = 0, ..., r, of the coefficients βj , j = 0, ..., r, can be obtained by
minimizing the least square fitting criterion,

SSE(β) =

∫
I

[y(t)− Xβ(t)]′ [y(t)− Xβ(t)] dt. (4)

The smoothness of the resulting estimations may be controlled by adding a differ-
ential penalization to the SSE criterion, i.e.,

PENSSE(β) =

∫
I

[y(t)− Xβ(t)]′ [y(t)− Xβ(t)] dt+ λ

∫
I

[Lβ(s)]′ [Lβ(s)] ds, (5)

with L a linear differential operator and λ a smoothing parameter. Setting a low value
of λ leads to a better fit to the observed data at the expense of a higher roughness of the
estimates. Conversely, for higher values of λ a worse fit is obtained, but the smoothness
of functions β̂j(t) is increased.

Several computational methods have been proposed in the literature to minimize
(4) or (5). In Ramsay and Silverman (2005) methods relying upon basis expansions of
the functional observations yi(t), i = 1, . . . , N , and regressors βj(t), j = 0, . . . , r, are
broadly discussed. Suppose that yi(t) and βj(t) admit the representations

yi(t) =

Ky∑
k

cikϕk(t), βj(t) =

Kβ∑
k

bjkψk(t), (6)

in terms of known basis systems {ϕ1, . . . , ϕKy} and {ψ1, . . . , ψKβ} (e.g., B-spline
basis), with coefficients {cik} and {bjk}. Equivalently, we may express (6) in matrix
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notation as y(t) = Cϕ(t) and β(t) = Bψ(t), where C and B are matrices of bases
coefficients with dimensions N ×Ky and p ×Kβ , respectively, and ϕ, ψ are vectors
of basis functions. If in (6) the same basis systems is used for both the y’s and the β’s
(i.e., K ≡ Ky = Kβ , φk = ϕk, k = 1, ...,K), the estimation of functions βj reduces
to find the matrix of coefficients B by minimizing

PENSSE(β) =

∫
I

[Cϕ(t)− XBϕ(t)]′ [Cϕ(t)− XBϕ(t)] dt

+λ

∫
I

[LBϕ(s)]′ [LBϕ(s)] ds. (7)

Note that setting λ = 0 yields the reformulation of (4) in terms of basis expansion. Fur-
ther, denote by P, Q the symmetric constant matrices of orderK, P =

∫
I [Lϕ(s)] [Lϕ(s)]′ ds

and Q =
∫
I ϕ(t)ϕ(t)′dt. By differentiating (7) with respect to B it can be shown that

the estimation of B is found as solution of the linear system(
X′XBQ + λBP

)
= X′CQ. (8)

Note that in this setting, the same level of smoothness is imposed for all the βj(t),
j = 0, . . . , r. System (8) can be equivalently reformulated using the Kronecker product
⊗ as [

Q⊗
(
X′X

)
+ P⊗ λI

]
vec(B) = vec

(
X′CQ

)
. (9)

Matrix B is thus obtained as solution of a system of linear equations of dimension p×K.

4 Functional regression when the response is a density

In this section, a functional regression model in B2(I) is introduced as a counterpart of
model (3). We assume the dependent variable y(t) to be an element of B2(I) and con-
sider scalar covariates xj , j = 0, . . . , r. Each observation of the distributional response
yi(t), i = 1, . . . , N , is thus associated with a vector of p covariates, xi0, . . . , xir, with
xi0 = 1 for i = 1, ..., N . We consider a functional linear model in B2(I) of the form

yi(t) = β0(t)⊕
r⊕
j=1

[xij � βj ] (t)⊕ εi(t) (10)

where εi denotes a zero-mean functional error (or residual) in B2(I), i = 1, . . . , N ,
and the unknown functions βj , j = 0, ..., r, belong to B2(I) as well. To estimate the
coefficients βj(t), j = 0, . . . , r, we minimize the functional sum of square-norms of
the error in B2(I)

SSE(β) =
N∑
i=1

‖εi‖2B =
N∑
i=1

∥∥∥∥∥∥
r⊕
j=0

[xij � βj ]	 yi

∥∥∥∥∥∥
2

B

. (11)
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Note that (11) is the counterpart of SSE (4) in the Bayes Hilbert space; in fact, it also
represents the analogue of compositional SSE (Egozcue et al., 2012) in infinite dimen-
sions. Applying clr transformation (1) to both sides of the model (11) yields

clr(yi)(t) = clr(β0)(t) +
r∑
j=1

[xij · clr(βj)] (t) + clr(εi)(t), i = 1, . . . , N, (12)

that enables one to reformulate the objective SSE (11) equivalently in the L2 sense as

SSE(β) =
N∑
i=1

‖clr(εi)‖22 =
N∑
i=1

∥∥∥∥∥∥
r∑
j=0

[xij · clr(βj)]− clr(yi)

∥∥∥∥∥∥
2

2

. (13)

In this work, we focus on SSE, since one may control the smoothness of the estimated
functions for clr(βj(t)) through the smoothness of the B-spline representation of the
response, as we shall discuss in Section 7. We note that alternatively one could develop
PENSSE by closely follow the arguments here presented.

Note that both the clr of observed functions clr(yi)(t), i = 1, . . . , N , and of re-
gression coefficients clr(βj)(t), j = 0, . . . , r, in (13) need to follow the zero-integral
constraint, i.e., ∫

I
clr(yi(t)) dt = 0;

∫
I

clr(βj(t)) dt = 0. (14)

In the following, we will use a basis representation for both clr(yi(t)), i = 1, . . . , N ,
and clr(βj)(t), j = 0, . . . , r, as detailed in Section 5. Let {ϕk, k = 1, ...,K} be a given
basis system and let us express clr(yi)(t), i = 1, . . . , N , and clr(βj)(t), j = 0, . . . , r,
on such basis as

clr(yi(t)) =

K∑
k

cikϕk(t); clr(βj(t)) =

K∑
k

bjkϕk(t) (15)

or, in matrix notation, clr(yi(t)) = c′iϕ(t) and clr(βj(t)) = b′jϕ(t). In this case, the
zero integral constraints in (14) reads∫
I

clr(yi(t))dt =

∫
I

K∑
k

cikϕk(t)dt = 0;

∫
I

clr(βj(t))dt =

∫
I

K∑
k

bjkϕk(t)dt = 0.

(16)
These constraints need to be carefully taken into account when estimating the linear
model (10), as they may turn in linear constraints on the coefficients {cik}, {bjk} and
consequently on model singularities. We discuss this and its implications in the next
Sections, in the light of the key result proved in Section 5.

5 The B-spline representation for density functions in Bayes
spaces

The clr transformation of both the response PDFs and the regression coefficients in
model (12) need to fulfill the zero-integral constraint. As shown in Machalová et al.
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(2016), it is possible to find an explicit expression for the B-spline representation of a
clr-transformed PDF, fulfilling the zero-integral constraint. In this section we recall the
basic notions on smoothing B-splines and show that the zero integral constraint on clr
induces a corresponding constraint on B-spline coefficients, that in turn is characteriz-
ing this class of B-splines. This fact will be useful to reduce the dimensionality of the
B-spline representation of densities proposed in Machalová et al. (2016) without loss
of information and thus avoid singularity of the resulting regression model.

Studying B-spline representations for density data is key from the application view-
point, since in most practical situations the PDFs under study are sampled in terms
of histogram data. Indeed, for each of the (theoretical) densities yi(t), t ∈ [a, b],
i = 1, . . . , N , one usually observes a positive real vector Wi = (Wi1, . . . ,WiD)′,
whose components correspond to the absolute or relative frequencies of the classes in
which the interval I is partitioned; possible count zeros can be effectively replaced by
using methods from Martı́n-Fernández et al. (2015). Note that vectors Wi, i = 1, ..., n,
are constrained similarly as the PDFs yi, i = 1, ..., n. In fact, they can be interpreted as
compositional data, and analysed by using similar ideas as in Bayes spaces (Pawlowsky-
Glahn et al., 2015). In order to express these vectors in an unconstrained Euclidean
space, one may employ the discrete version of the clr transformation (1), that is (Aitchi-
son, 1986)

Zij = ln
Wij

D

√∏D
j=1Wij

, j = 1, . . . , D. (17)

Denote by Z = (Zij) the matrix of clr-transformed raw data. Similarly as in FDA,
as a first step of the analysis one may want to smooth the observations, to obtain an es-
timate of the underlying continuous density from raw data. For this purpose, following
Machalová et al. (2016), we here consider smoothing splines.

First, let us recall the basic notions on B-splines that we deem useful for the follow-
ing developments (see de Boor (1978), Dierckx (1993) for details). Let the sequence of
knots

∆λ := λ0 = a < λ1 < . . . < λg < b = λg+1

be given. In the following, S∆λ
k [a, b] denotes the vector space of polynomial splines of

degree k > 0, defined on a finite interval I = [a, b] with the sequence of knots ∆λ. It
is known that dim

(
S∆λ
k [a, b]

)
= g + k + 1. Then every spline sk(x) ∈ S∆λ

k [a, b] has
a unique representation as

sk (x) =

g∑
i=−k

biB
k+1
i (x) . (18)

For this representation it is necessary to add some additional knots to be able to con-
struct all basis functions of S∆λ

k [a, b]. Without loss of generality, we can add knots

λ−k = · · · = λ−1 = λ0, λg+1 = λg+2 = · · · = λg+k+1. (19)

Vector b = (b−k, . . . , bg)
′ is called the vector of B-spline coefficients of sk(x), func-

tions Bk+1
i (x), i = −k, . . . , g, are B-splines of degree k and form basis in S∆λ

k [a, b].

8



In line with previous considerations, to deal with density data through clr trans-
forms, one needs to build the spline sk(x) ∈ S∆λ

k [a, b], in a way that guarantees that it
has zero integral on the finite interval [a, b]. That is, for Z(i) = (Zi1, . . . , ZiD)′, with
i = 1, . . . , n, one needs to look for the smoothing spline which satisfies the condition∫ b

a
sik(x) dx = 0, (20)

and best approximates the data, according to an appropriate criterion (see Appendix B
for further details). As proved in Machalová et al. (2016), the optimal smoothing spline
admits a unique representation

sik (x) =

g∑
j=−k

Yi,j+k+1B
k+1
j (x) , (21)

where the vector of B-spline coefficients Y(i) = (Yi,1, . . . , Yi,g+k+1)′ is given by

Y(i) = VZ(i), i = 1, . . . , n. (22)

Here V is a (g+ k+ 1)×D matrix which depends only on the position of spline knots
and on the possible smoothing parameter, if a penalized criterion is chosen (Machalová
et al., 2016). If the same B-spline basis system is used for all the data, (22) can be
expressed in matrix notation as

Y = ZV′, (23)

where Y, Z are the N × (g + k + 1) matrices

Y =

 Y(1)
...

Y(N)

 , Z =

 Z(1)
...

Z(N)

 .

The following Theorem 5.1 states a necessary and sufficient condition for a vector
b (e.g., a candidate for Y(i)) to be a vector of B-spline coefficients for a spline with
zero integral.

Theorem 5.1 For a spline sk(x) ∈ S∆λ
k [a, b], sk (x) =

g∑
i=−k

biB
k+1
i (x), the condition

b∫
a
sk(x) dx = 0 is fulfilled if and only if

g∑
i=−k

bi (λi+k+1 − λi) = 0.

The proof of Theorem 5.1 is provided in Appendix A. In the light of Theorem 5.1, it
is easy to see that vector b is orthogonal to the vector n = (λ1−λ−k, . . . , λg+k+1−λg)′,
that only depends on the knots positions. Further, for the vectors Y(i), i = 1, ..., n, of
B-spline coefficients, one has the linear constraints

g+k+1∑
j=1

Yij(λj − λj−k−1) = 0. (24)
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Whenever the same B-spline basis is employed for all the data – as it is usually the case
– the linear constraint (24) turns into a model singularity, as we shall show in the next
Section.

6 Regression modeling of B-spline coefficients

By considering the B-spline representations of the clr-transformed response functions
clr(yi)(t), i = 1, . . . , N , we can express model (10) in the form of a multivariate
regression model (Johnson and Wichern, 2007). For the purpose of regression mod-
eling, the spline coefficients for the i-th observation yi(t) are denoted by Y(i) =
(Yi,1, . . . , Yi,g+k+1)′, i = 1, 2, . . . , N . Vectors Y(1), ...,Y(N) form the rows of the
N × g+ k+ 1 (random) response matrix Y. On this basis, we consider in place of (10)
the multivariate linear regression model of the form

Y(n×(g+k+1)) = X(n×p)B(p×(g+k+1)) + ε(n×(g+k+1)) (25)

or, equivalently,

(Y1,Y2, . . . ,Yg+k+1) = X(β1,β2, . . . ,βg+k+1) + (ε1, ε2, . . . , εg+k+1).

Here, the design matrix X is assumed to be of full column rank, βj = (βj0, . . . , βjr)
′,

j = 1, 2, . . . , g + k + 1, is a vector of unknown regression coefficients and ε is a
matrix of random errors. The multivariate responses Y(i) = (Y1,i, . . . , Yg+k+1,i)

′, i =
1, 2, . . . , N , are independent with the same unknown variance-covariance matrix Σ,
i.e.,

cov(Y(i),Y(j)) = 0((g+k+1)×(g+k+1)), i 6= j, var(Y(i)) = Σ((g+k+1)×(g+k+1)),

for i = 1, . . . N .
The best linear unbiased estimator (BLUE) of the parameter matrix B is found as

B̂ =
(
X′X

)−1
X′(Y1,Y2, . . . ,Yg+k+1), (26)

which is invariant to Σ. Under the assumption that Y is of full column rank, the multi-
variate model can be simply decomposed into g + k + 1 univariate multiple regression
that implies an alternative estimation of columns of B as

β̂j =
(
X′X

)−1
X′Yj , j = 1, . . . , g + k + 1.

The variance-covariance matrix of the vector vec(B̂) = (β̂
′
1, β̂

′
2, . . . , β̂

′
g+k+1)′ is

var
[
vec(B̂)

]
= Σ⊗

(
X′X

)−1
,

where the symbol ⊗ denotes the Kronecker product. The unbiased estimator of Σ
is Σ̂ = Y′MXY/(n − p), where MX = I − X(X′X)−1X′ is a projector on the
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orthogonal complement of the vector space M(X) generated by the columns of the
matrix X, i.e.,M(X) = {Xu : u ∈ Rp}.

As the realization of multivariate response Y(i) is the vector ofB-spline coefficients
b = (b−k, . . . , bg)

′ of the clr-transformed data, the variables Yi,1, . . . , Yi,g+k+1 are lin-
early dependent. Indeed, one has that

∑g+k+1
j=1 Yij(λj − λj−k−1) = 0, due to Theorem

5.1. Accordingly, one may expect that a similar constraint applies to the corresponding
estimated coefficients, as stated by the following theorem.

Theorem 6.1 If
∑g+k+1

j=1 Yij(λj−λj−k−1) = 0 for all i = 1 . . . , n, then
∑g+k+1

j=1 β̂sj(λj−
λj−k−1) = 0 for all s = 0, . . . , r.

Note that this constraint introduces a singularity into regression model (25). To
avoid the necessity of considering singular regression models (Fišerová et al., 2007),
orthonormal coordinates from the B-spline coefficients may be considered, in the light
of the results of Section 5. The vectors Y(i), i = 1, ..., n, form a hyperplane H of
dimension g + k, orthogonal to the normal vector

n = (λ1 − λ−k, . . . , λg+k+1 − λg)′,

that only depends on the knots positions. For H one may build an orthonormal basis,
express Y(i), i = 1, ..., n, through the coordinates of such a basis – thus removing the
singularity due to the linear constraints induced by (14) – and then use the regularized
representation for the purpose of further computations. A basis for H can be easily
obtained as the set of the first g + k principal components of the B-spline coefficient
vector, that in turn correspond to the Simplicial Functional Principal Components of the
smoothed densities y1(t), ..., yn(t) (Hron et al., 2016).

7 Smoothing splines and regression: the relation with the
multivariate setting

A natural question which may arise regards the smoothing properties of the regression
estimates, and particularly if and how the data smoothing reflects on the estimates. The
key point that we here aim to investigate is whether equivalence results can be stated
for the following alternative procedures: (a) the data are smoothed and the Bayes space
regression of Section 4 is applied, and (b) a compositional regression (Egozcue et al.,
2012) is applied, estimating the model

Zi = β
(Z)
0 +

r∑
j=1

β
(Z)
j xij + εi, (27)

11



and the estimates (or predictions) of Z are smoothed afterward. In particular, we here
show that the following scheme holds true

Z
smoothing−−−−−−→ Y

regression

y yregression
Ẑ −−−−−−→

smoothing
Ŷ

(28)

Recall that, from (26), the matrix of predicted coefficients Y is obtained as

Ŷ = X
(
X′X

)−1
X′Y.

Similarly, for model (27) one has

Ẑ = X
(
X′X

)−1
X′Z. (29)

Plugging-in (23) in (29) we obtain

Ŷ = X
(
X′X

)−1
X′ZV′.

On the other hand, when smoothing splines for predicted data Ẑi, i = 1, . . . , n, are
considered, the matrix of the corresponding B-spline coefficients is obtained as

̂̂
Y = ẐV′Z . (30)

In order to guarantee that VZ coincides with the matrix V in (23), one needs just to
build the smoothing spline upon the same sequence of knots, the same degree of spline
and the same objective functional (e.g., the same penalization). In this case, and using

(29), the matrix ̂̂Y can be written in the form

̂̂
Y = X

(
X′X

)−1
X′ZV′,

that directly implies the target assertion, i.e., ̂̂Y = Ŷ. As a consequence, when
smoothing splines are considered, the smoothness of the observations induces a corre-
sponding degree of smoothness on the estimates, even if this is not explicitly imposed
through the use of a PENSSE criterion as that introduced in Section 3.

8 Modeling metabolite distributions in newborns

The data used in this example are part of a standard newborn screening done in 2013
in the Laboratory of Inherited Metabolic Disorders, in the Department of Clinical Bio-
chemistry of the Faculty Hospital in Olomouc. Here, the weight and gender of every
newborn are observed, together with 48 metabolic parameters (so called metabolites)
measured from dried blood spots of each newborn. The dataset we consider collects the

12



data about 10000 newborns with standard weights (all the data were anonymised prior
to analysis). In particular, for the purpose of this example, we focus on the metabolite
C18, which is presumed to be closely connected with the weight of newborns. More in
general, newborn screening is a nationwide active search of diseases in their early, pre-
clinical stage, so that these diseases are diagnosed and treated before they may impact
a child and cause irreversible health damage. The screening is based on the analysis
of dried blood spots on filter paper; blood is taken under defined conditions, for all
newborns born in the Czech Republic and 18 diseases are investigated.

For the purpose of modeling the dependence of C18 distribution on weight through
functional regression models, the C18 distribution was assessed from sampled data as
follows. The values of the logarithm of C18 were divided into 10 groups of equal size
according to the logarithm of weight, and represented by the midpoint of the corre-
sponding interval of weights, separately for girls (g) and boys (b). In order to exclude
extreme values of concentration of the metabolite, the measurements under the bottom
0.5%-quantile and above the upper 99.5%-quantile were omitted. In each of the 10
groups, the distribution of log(C18) was estimated empirically, by dividing in equally-
spaced classes and computing the frequency within each class. Here, the number of
optimal classes were computed by using Sturges rule, resulting in 9.93 for girls and
9.94 for boys. Hence, for both girls and boys we built D = 10 equally-spaced classes
on the ranges Ig = [−2.936,−0.939] and Ib = [−2.813,−0.763]. On these bases,
the vectors of proportions were transformed by using the discrete version of the clr
transformation (17).

As a second step of the analysis, the clr-transformed proportions were smoothed by
using a system of smoothing splines with support Ig and Ib, for girls and boys respec-
tively, fulfilling the zero-integral constraint, as described in Section 5. In both cases
(i.e., for girls and boys) the same strategy was followed to set the values of the pa-
rameters. We considered quadratic splines (i.e., k = 2, l = 1) with equally spaced
sequence of 5 knots ∆λg := [−2.836,−2.387,−1.938,−1.488,−1.039], ∆λb :=
[−2.711,−2.249,−1.788,−1.326,−0.865] for girls and boys, respectively. The op-
timal smoothing spline sk(t) on I was found as to minimize the penalized functional

Jl(sk) = (1− α)

∫
I

[
s

(l)
k (s)

]2
ds+ α

D∑
j=1

wsj [Zij − sk(tj)]2 ,

where parameter α was set to α = 0.99 in order to be as close as possible to data
(tj , Zij), and the weights were set to wsj = 1, for j = 1, . . . , 10. The resulting
smoothed clr-densities yci(t) ∈ L2(I), i = 1, ..., 10, are displayed in Figure 1 to-
gether with the corresponding densities yi(t) ∈ B2(I), i = 1, ..., 10, obtained by apply-
ing the inverse clr transformation to the smoothed data, i.e., yi(t) = clr−1 [yci] (t) =
C [exp(yci)] (t), i = 1, . . . , 10, t ∈ I .

The functional regression model was then built by resorting to separate models
for girls and boys, as the supports of the log(C18) distribution differ between the two
populations. Thus, for each of the two groups, we separately modeled the dependence
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Figure 1: Clr densities and their inverse (i.e., the densities) of log(C18). Girls a)-b),
boys c)-d).

of the log(C18) distributions on log(weight) through following linear model in B2(I),

yi(t) = β0(t)⊕ [log(wi)� β1] (t)⊕ εi(t), i = 1, . . . , 10, (31)

which is written in L2(I) as

clr [yi(t)] = clr [β0(t)] + log(wi) · clr [β1(t)] + clr [εi(t)] , i = 1, . . . , 10, t ∈ I.
(32)

By considering the same B-spline basis functions B3
−2(t), . . . , B3

3(t) for the response
clr(y(t)), the regression parameters clr [β0(t)], clr [β1(t)] and the error clr [ε(t)], model
(32) can be written as a multivariate model for the B-spline coefficients Yi1, . . . , Yi6

Y1,1 Y1,2 · · · Y1,6

Y2,1 Y2,2 · · · Y2,6
...

...
. . .

...
Y10,1 Y10,2 · · · Y10,6

 =


1 log(w1)
1 log(w2)
...

...
1 log(w10)

 ·
(
β01 β02 · · · β06

β11 β16 · · · β16

)

+


e1,1 e1,2 · · · e1,6

e2,1 e2,2 · · · e2,6
...

...
. . .

...
e10,1 e10,2 · · · e10,6

 ,

(33)
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Estimates of regression parameters β·1, . . . , β·6
β̂
g
0 −17.693−14.437−9.227 7.573 17.487 1.145

σ̂ 7.491 5.995 3.235 3.436 3.998 7.536

β̂
g
1 1.978 1.738 1.265 −0.835 −2.235 −2.274

σ̂ 0.928 0.742 0.403 0.425 0.495 0.933

β̂
b
0 −33.132−13.687−7.866 5.601 21.190 24.920

σ̂ 6.828 3.054 2.028 1.984 4.572 9.292

β̂
b
1 3.912 1.660 1.105 −0.585 −2.727 −3.337

σ̂ 0.841 0.377 0.245 0.249 0.563 1.145

Table 1: Estimates of regression parameter vectors β0 and β1 with marking – g for
girls, b for boys (colourless rows), together with the corresponding estimates of the
standard deviations σ̂ =

{
v̂ar(vec(B̂))

}
k,k

(grey rows).

or, in matrix form, as Y = XB + ε. The resulting estimates β̂0 = (β̂01, β̂02, · · · , β̂06)′

and β̂1 = (β̂11, β̂16, · · · , β̂16)′ for girls and boys are listed in Table 1, together with the
estimates of their standard deviations. The corresponding estimates of the regression
functions clr[β0(t)] and clr[β1(t)] are displayed in Figure 2, together with their coun-
terparts in B2(I). Here, the colors distinguish the gender – red for girls and blue for
boys.

We first focus on the interpretation of the estimated regression parameters in the
female group, by visual inspection of Figure 2 (red curves). We first note that the
intercept β0(t) is hardly interpretable, as it estimates the expected value of the den-
sity of log(C18) when the weight of newborn is 1 gram. Nevertheless, the coefficient
β0(t) acts as a shift in the model – in sense of geometry of B2 – towards a density
highly concentrated in the right tail of domain Ig. Instead, by graphical inspection
of the same figure, one can better interpret the effects of the slope coefficient β1(t)
on the response. Indeed, if the weight of newborns increases, the predicted aver-
age distribution of log(C18) tends to be more concentrated in the left part of domain
Ig, and viceversa. This can be better appreciated from Figure 3, where the response
y(t) is predicted for a sequence of increasing values of the log-weights in the inter-
val [log(w1), log(w20)] = [log(1), log(7000)]. Note that, as the value of the regressor
increases, the predicted expected values of the log(C18) decreases while its predicted
variance increases. It can be concluded that relative proportion of newborns with higher
concentrations of metabolite C18 decreases when weight increases, while the relative
proportion of newborns with middle and lower concentrations of C18 increases. In
general, newborns with lower weight exhibit higher concentrations of metabolite C18
whereas those with higher weight show middle and lower concentrations of C18. Very
similar conclusions can be drawn for the males’ group, however, here the impact of
lower weight to distribution of the metabolite seems to be even more dramatic. This
indicates a more serious impact of the underweight to predisposition of the metabolic
disease for boys.

The fitted curves corresponding to the N = 10 observed distributions are displayed
in Figure 4 with the same gender color scheme. To assess the goodness-of-fit of the
model on the observed density curves, a pointwise version of coefficient of determi-

15



−2.5 −2.0 −1.5 −1.0

log(C18)

cl
r(

de
ns

ity
)

clr[β̂0(t)]
clr[β̂1(t)]

−15

−10

−5

0

5

10

15

−2.5 −2.0 −1.5 −1.0

log(C18)

de
ns

ity

β̂0(t)

0

1

2

3

4

−2.5 −2.0 −1.5 −1.0

log(C18)

de
ns

ity

β̂1(t)

0

0.5

1

1.5

−2.5 −2.0 −1.5 −1.0

log(C18)

cl
r(

de
ns

ity
)

clr[β̂0(t)]
clr[β̂1(t)]

−30

−20

−10

0

10

20

−2.5 −2.0 −1.5 −1.0

log(C18)

de
ns

ity

β̂0(t)

0

5

10

15

−2.5 −2.0 −1.5 −1.0

log(C18)

de
ns

ity

β̂1(t)

0

2

4

6

Figure 2: Estimates of regression coefficients. The upper three plots represent the re-
sults for the girls’ group (red): first, clr estimates of β0(t) and β1(t) in L2(Ig); second,
estimate of β0(t) in B2(Ig); third: estimate of β1(t) in B2(Ig). Lower three plots rep-
resent the results for the boys’ group (blue): first, clr estimates of β0(t) and β1(t) in
L2(Ib); second, estimate of β0(t) in B2(Ib); third: estimate of β1(t) in B2(Ib).
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Figure 4: Comparison of observed y (grey) and fitted ŷ (girls – red, boys – blue) dis-
tributions in L2 and B2 (upper and bottom first two figures). Pointwise coefficient of
determination (right figures, upper for girls and bottom for boys).

nation R2(t), t ∈ I , was computed based on the pointwise comparison between the
predicted clr-transformed density and the actual data. Additionally, a global coefficient
of determination, denoted by R2

glob, was computed as

R2
glob =

∑N
i=1 ‖clr(ŷi)− clr(ȳ)‖22∑N
i=1 ‖clr(yi)− clr(ȳ)‖22

.

The latter measures the amount of the total sample variance of the yi(t) explained by
the model, in a global sense. The pointwise and the global coefficients of determination
are displayed in Figure 4. Although the graphs of pointwiseR2 indicate some lack of fit
in the central part of the domain, the coefficientR2

glob reaches high values in both cases,
being about 72.8% and 81.2%, thus indicating a very good (global) fit of the model.

In order to support the interpretation of the parameters of the regression models,
it is desirable to incorporate uncertainty in estimation of regression parameters. To
this end, we employed a resampling method (bootstrap), to avoid introducing strong
distributional assumptions, such as Gaussianity. In particular, we considered a bootstrap
scheme based on re-sampling of the model-residuals. More precisely, having estimated
the model, we computed the estimated residuals as clr(ε̂i) = clr(yi) − clr(ŷi). For
each bootstrap repetition, we generated the bootstrap sample clr(εboot1 ), . . . , clr(εbootN )
by sampling with repetition from {clr(ε̂1), . . . , clr(ε̂N )}. We defined the corresponding
bootstrap response variables

clr(ybooti )(t) = clr(β0)(t) + log(wbooti ) · clr(β1)(t) + clr(εbooti )(t), i = 1, . . . , N,
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and collect bootstrap sample

S =
[
(log(wboot1 ), clr(yboot1 )), . . . , (log(wbootN ), clr(ybootN ))

]
.

We considered R = 200 bootstrap repetitions, which seemed sufficient for the
purpose of uncertainty assessment. For each bootstrap sample, we fitted the model and
obtained the corresponding estimates of the parameters, denoted by (β̂boot0r , β̂boot1r ), for
r = 1, ..., R. The estimated β’s and the bootstrap repetitions are displayed in Figure 5
and 6.

We then used these bootstrap outputs (β̂boot0r , β̂boot1r )r=1,...,R to quantify the uncer-
tainty in the fitted model for fixed value of log(w). Here, two values of weights were
chosen to compute 200 fitted curves by using the estimates obtained by bootstrap pro-
cedure. The results are displayed in Figure 5 and 6. In both cases, interesting patterns
appear by observing the figures. Indeed, most of the uncertainty in β0 is shown in the
right part of domain, whereas for β1 it is mostly present in the left part of domain.
For the girls’ case, the bottom two panels of Figure 5 indicate poor fitting for observed
distribution corresponding to log(w5) which can be also read from pointwise evalu-
ated coefficient of determination (see Figure 4). This can indicate that response might
depend on other regressors, not available in this study.

9 Conclusions

In this work, we presented a novel approach to perform functional regression when the
response is a density function. We employed the theory of Bayes Hilbert spaces to
extend the well-known results of FDA to functional compositional data. We showed
that using the Bayes space approach allows accounting for the relative nature of PDFs
and the related properties (e.g., scale invariance and relative scale), that may be captured
only when Bayes Hilbert spaces are considered.

For the actual estimation of the regression coefficients, we proposed an approach
based on a B-spline expansion, properly adapted to deal with density data. Here, we
proved a key result on the characterization of the B-spline expansion of clr-transformed
data, that provides a representation of the data constraints in terms of a linear constraint
on the B-spline coefficients. The singularity problem induced by the latter constraint
motivates further research in the direction of building orthonormal bases in the Bayes
space, that would allow expressing its elements through a set of unconstrained coeffi-
cients, to be further used for the purpose of, e.g., inference on the coefficients based on
functional F-tests.

More in general, the possibility of obtaining estimates of an entire distribution has
a great potential from the application viewpoint: our approach enables one to model
not only the relation of the mean and the variance of the response on the regressors,
but all the moments jointly. Nevertheless, still critical appears the data pre-processing,
which requires estimation and smoothing of the response distribution and may intro-
duce additional uncertainty. Ways to account for the latter uncertainty in the estimation
procedure are currently under investigation.
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Figure 5: Bootstrap results for the girls’ group. Upper three panels: black curves in-
dicate estimates of regression parameters, grey lines indicate the R = 200 bootstrap
estimates for both the regression parameters. Bottom four panels: black curves indi-
cate observed distributions for w1 (upper panels) and w5 (bottom panels), red curves
indicate the fitted distribution for w1 and w5 by model (31), grey lines indicate the
corresponding fitted distributions obtained by bootstrap procedure.
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Figure 6: Bootstrap results for the boys’ group. Upper three panels: black curves in-
dicate estimates of regression parameters, grey lines indicate the R = 200 bootstrap
estimates for both the regression parameters. Bottom four panels: black curves indi-
cate observed distributions for w1 (upper panels) and w5 (bottom panels), blue curves
indicate the fitted distribution for w1 and w5 by model (31), grey lines indicate the
corresponding fitted distributions obtained by bootstrap procedure.
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As a way to assess the estimators uncertainty, we considered a bootstrap resampling
method. On this basis, one could also develop confidence bands for the regressor co-
efficients, e.g., based on depth measures. On the other hand, the bootstrap resampling
procedure together with the measures of goodness-of-fit here proposed may support the
model selection, or suggest the introduction of further regressors, as shown in Section
8. Although the proposed theory is still limited to the case of scalar regressors, the
approach is entirely general and thus could provide the basis to include more complex
regressors (e.g., functional and distributional) into the model. This would be of great
relevance from the application view-point and will be the scope of future research.
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Appendix A: proofs of theorems
Proof of Theorem 5.1

In the following the notation sbk (x) is used to emphasize the dependency on vector b =
(b−k, . . . , bg)

′. It is known that

b∫
a

sbk (x) dx =
[
sck+1(x)

]b
a
,

for a vector c, that is

sbk (x) =

g∑
i=−k

biB
k+1
i (x) =

d
dx

g∑
i=−k−1

ciB
k+2
i (x) =

d
dx
sck+1(x). (34)

The components of vectors b = (b−k, . . . , bg)
′ and c = (c−k−1, . . . , cg)

′ satisfy

bi = (k + 1)
ci − ci−1

λi+k+1 − λi
, i = −k, . . . , g,

so that

ci = ci−1 +
bi (λi+k+1 − λi)

k + 1
, i = −k, . . . , g.

To simplify the notation we set

di =
k + 1

λi+k+1 − λi
, i = −k, . . . , g; (35)

then
ci = ci−1 +

bi
di
, i = −k, . . . , g.
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From these g + k + 1 equations it is easy to see that

cg =
bg
dg

+ · · ·+ b−k
d−k

+ c−k−1. (36)

With respect to (34) it is evident that

b∫
a

sbk (x) dx =
[
sck+1(x)

]b
a

= sck+1(λg+1)− sck+1(λ0), (37)

because a = λ0, b = λg+1. Considering the definition, properties of B-splines and the men-
tioned additional knots (19) it follows that

sck+1(λg+1)− sck+1(λ0) = cg − c−k−1. (38)

Thus
b∫
a

sbk (x) dx = cg − c−k−1. (39)

Now it is clear that for a spline sbk (x) ∈ S∆λ
k [a, b], sbk (x) =

g∑
i=−k

biB
k+1
i (x), the condition

b∫
a

sbk (x) dx = 0

is fulfilled if and only if
cg = c−k−1.

From (36) it follows that

cg = c−k−1 ⇔ bg
dg

+ · · ·+ b−k
d−k

= 0.

Finally, considering the notation (35) we easily get

b∫
a

sbk (x) dx = 0 ⇔
g∑

i=−k

bi (λi+k+1 − λi) = 0.

Algorithm for finding a spline with zero integral
To find an arbitrary spline sk(x) ∈ S∆λ

k [a, b] with zero integral

1. Choose g + k arbitrary B-spline coefficients bi ∈ R, i = −k . . . , j − 1, j + 1, . . . , g,

2. Compute

bj =
−1

λj+k+1 − λj

g∑
i=−k
i6=j

bi (λi+k+1 − λi) .
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It can be easily check that for these B-spline coefficients the condition
g∑

i=−k

bi (λi+k+1 − λi) = 0

is fulfilled, and with respect to Theorem 5.1 the spline sk (x) =
g∑

i=−k
biB

k+1
i (x) satisfies

condition
b∫
a

sk(x) dx = 0.

Proof of Theorem 6.1
Denote by a(s) the sth row of the matrix product (X′X)−1X′, s = 0, . . . , r, dj = λj −

λj−k−1, j = 1, . . . , g + k + 1, and 1g+k+1 a vector of g + k + 1 ones. Then

g+k+1∑
j=1

β̂jsdj = d1a(s)Y1 + d2a(s)Y2 + · · ·+ dg+k+1a(s)Yg+k+1 =

= a(s)(d1Y1, d2Y2, . . . , dg+k+1Yg+k+1)1g+k+1 =

= a(s)

g+k+1∑
j=1

Y1,jdj ,

g+k+1∑
j=1

Y2,jdj , . . . ,

g+k+1∑
j=1

Yg+k+1,jdj

 = 0.

Appendix B: smoothing splines for density functions
In this appendix, we briefly describe the computation of B-spline coefficients for a smoothing
spline with zero integral; for more details see Machalová et al. (2016). Assume that the data
(xi, yi), a ≤ xi ≤ b, the weights wi ≥ 0, i = 1, . . . , n, n ≥ g + 1 and the parameter α ∈ (0, 1)
are given. For an arbitrary l ∈ {1, . . . , k − 1} our aim is to find a spline sk(x) ∈ S∆λ

k [a, b],
which minimizes functional

Jl(sk) = α

∫ b

a

[
s

(l)
k (x)

]2
dx+

n∑
i=1

wi [yi − sk(xi)]
2 (40)

and fulfils the condition
b∫
a

sk(x) dx = 0.

In Machalová et al. (2016) it was shown that this spline is given by formula

sk (x) =

g∑
i=−k

b∗iB
k+1
i (x) ,

where the vector of B-spline coefficients b∗ = (b∗−k, . . . , b
∗
g)
′ is obtained by

b∗ = DK
[
α (DK)

′
NklDK + (Ck+1(x)DK)

′
WCk+1(x)DK

]+
K′D′C′k+1(x)Wy,

Here, A+ denotes the Moore-Penrose pseudoinverse of a matrix A, W = diag(w), w =
(w1, . . . , wn)′, y = (y1, . . . , yn)′,

Ck+1(x) =

 Bk+1
−k (x1) . . . Bk+1

g (x1)
...

. . .
...

Bk+1
−k (xn) . . . Bk+1

g (xn)

 ∈ Rn,g+k+1
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is the collocation matrix,

D = (k + 1) diag

(
1

λ1 − λ−k
, . . . ,

1

λg+k+1 − λg

)
∈ Rg+k+1,g+k+1

and

K =


1 0 0 · · · −1
−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
. . . . . .

...
0 0 · · · −1 1

 ∈ Rg+k+1,g+k+1.

The matrix Nkl = S′lMklSl is positive semidefinite, with

Mkl =


(
Bk+1−l
−k+l , B

k+1−l
−k+l

)
. . .

(
Bk+1−l
g , Bk+1−l

−k+l

)
...

...(
Bk+1−l
−k+l , B

k+1−l
g

)
. . .

(
Bk+1−l
g , Bk+1−l

g

)
 ∈ Rg+k+1−l,g+k+1−l.

The symbol (
Bk+1−l
i , Bk+1−l

j

)
=

b∫
a

Bk+1−l
i (x)Bk+1−l

j (x) dx

stands for scalar product of B-splines in L2([a, b]) space. The matrix Sl is an upper triangular
matrix such that Sl = DlLl . . .D1L1 ∈ Rg+k+1−l,g+k+1, and Dj ∈ Rg+k+1−j,g+k+1−j is a
diagonal matrix such that

Dj = (k + 1− j) diag (d−k+j , . . . , dg)

with
di =

1

λi+k+1−j − λi
∀i = −k + j, . . . , g

and

Lj :=

 −1 1
. . . . . .

−1 1

 ∈ Rg+k+1−j,g+k+2−j .
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