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Abstract

We develop a reliable a posteriori anisotropic first order estimator for
the numerical simulation of the Francfort and Marigo model of brittle frac-
ture, after its approximation by means of the Ambrosio-Tortorelli varia-
tional model. We show that an adaptive algorithm based on this estimator
reproduces all the previously obtained well-known benchmarks on fracture
development with particular attention to the fracture directionality. Addi-
tionally, we explain why our method, based on an extremely careful tuning
of the anisotropic adaptation, has the potential of outperforming signifi-
cantly in terms of numerical complexity the ones used to achieve similar
degrees of accuracy in previous studies.
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1 Introduction

A variational formulation for the evolution of the fracture surface in a brittle,
linearly elastic solid was proposed by Francfort and Marigo in [19]. The main
feature of this model is that there is no predefined crack, i.e., the crack is able to
propagate in the material without any constraint, driven only by elastic forces.
Bourdin et al. [7] addressed the numerical approximation of the solution of
the fracture model by Francfort and Marigo by first approximating it via the
Ambrosio-Tortorelli variational model. Then, an extremely fine discretization
is considered to be able to capture the fracture path and its expected direc-
tional developments, independently of the intrisic anisotropies of the a priori
prescribed mesh. This technique proved to be very stable not only in the case of
anti-plane shear, but also in the more challenging situation where plane-strain
is considered, capturing the physically expected crack paths and directionalities.
However, the cost of an extremely fine discretization to render the material nu-
merically homogenous is enormous, leading to the quest for possible alternative
techniques based on adaptive strategies, which can break the ambiguity of ”the
crack following the mesh or the mesh following the crack”. In the work of Cham-
bolle et al. [10], an anisotropic adaptive finite element method was presented
for the simulation of the model of Francfort and Marigo in the anti-plane shear
case. The adaptive re-meshing is, however, based on a local approximation of
the Hessian of the solution, which, unfortunately, may lack the expected reg-
ularity. In the approach of Süli et al. [8], the adaptivity is driven exclusively
by an a posteriori first order estimator, but only isotropic mesh refinement was
considered. In our recent work [4], we tried to combine these two previous ap-
proaches, designing an appropriate a posteriori anisotropic first order estimator,
leading to mesh coarsening far from the fracture and fine mesh elements exclu-
sively very close to the crack path. Again this new method resulted being very
efficient and effective, producing stable and realistic results for some test cases
where the force applied to the domain is orthogonal to the domain itself. In this
work, we study and present numerical results in the case the fracture is induced
by a plane-strain. These tests play a key role in validating the reliability and the
applicability of anisotropic mesh adaptation in the context of quasi-static crack
path detection. Indeed, for assessing the quality of our results we can count on
previous precise studies of the behaviour of the fracture, both from numerical
and physical viewpoints [2, 7].
The numerical experiments in Sect. 4 show that the proposed method is very
stable and it allows us to reproduce all the previously obtained predictions on
fracture development, in particular its directionality features. Additionally, we
expect that our method, based on an extremely careful tuning of the anisotropic
adaptation, outperforms significantly the ones used to achieve similar degrees of
accuracy in previous studies. Unfortunately, the only reference with which we
can compare the computational burden is Süli et al. [8], while for Bourdin et
al., Chambolle et al., Del Piero et al. [7, 10, 16] we are obliged to extrapolate
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our positive expectation from the very fine meshes showed in the corresponding
numerical sections.

The paper is organized as follows. In Sect. 1.1, we describe the model, in
Sect. 2, we introduce the discrete setting and the anisotropic error estimator
which drives the mesh adaptation. In Sect. 3, we provide the algorithm for the
minimization of the energy functional, while in Sect. 4, we address the numerical
results on the benchmark tests, comparing them with the expected ones from
the literature.

1.1 The Mathematical Model of Plane-Strain Fracture

The considered model extends the anti-plane case proposed in [1] and, following
[7], we introduce an isotropic linearly elastic constitutive law, i.e., the Plane-
strain Ambrosio-Tortorelli functional

JPAT (u, v) =
1

2

∫

Ω
(v2 + η)σ(u) : E(u) dx +

1

2

∫

Ω

[
α(1− v)2 + ε|∇v|2

]
dx, (1)

where Ω ⊂ R
2, the fields u : Ω→ R

2 and v : Ω→ [0, 1] are the displacement and
a smoothed crack path indicator, 0 < η ≪ ε ≪ 1 and α = 1/(4ε) are suitable
regularizing constants, σ(u) = λ tr (E(u)) I + 2µE(u), is the Cauchy stress
tensor, with λ and µ the Lamé constants, and, where, for every d : Ω→ R

2,

E(d) =




∂d1
∂x1

1
2

(
∂d1
∂x2

+ ∂d2
∂x1

)

1
2

(
∂d1
∂x2

+ ∂d2
∂x1

)
∂d2
∂x2





is the symmetric gradient tensor, T1 : T2 denoting the tensor product between
T1, T2 : Ω→ R

2×2, and x = (x1, x2)
T ∈ Ω. In practice, v, with 0 ≤ v ≤ 1, can be

considered as a phase field for the crack interface [6, 28]. The first integral in (1)
represents the elastic energy of the material, while the second integral models
the energy associated with the crack propagation inside the material. The case
v = 1 is the crack-free configuration, since the last integral vanishes. On the
contrary, the regions where v = 0 identify the cracked area.

Let 0 = t0 < . . . < tF = T be a partition of the time window [0, T ]. Let
g : Ω × [0, T ] → R

2 be an displacement assigned over a subset ΩD ⊂ Ω which
drives the fracture onset, i.e.,

g(x, t) =

{
gD(t) if x ∈ ΩD,

0 elsewhere .

Notice that, with a view to the numerical test cases, function gD is assumed
to be constant in space. We denote by Ak(g) = {u ∈ [H1(Ω)]2 : u(x) =
g(x, tk) ∀x ∈ ΩD} the space of the admissible solutions, i.e., the fields which
coincide with g on ΩD at t = tk. According to a quasi-static approximation [19],
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the minimization of the functional J in (1) at the time level tk consists of finding
the pair (u(tk), v(tk)), with k = 0, . . . , F , such that

(u(tk), v(tk)) ∈ argmin
u ∈ Ak(g)

v ∈ H1(Ω; [0, 1]), v|CRk−1
= 0

J(u, v), (2)

where CRk−1 = {x ∈ Ω : v(tk−1) < CRTOL}, with CRTOL a tolerance used to
enforce the irreversibility of the crack. For simplicity we denote hereafter g(x, t)
with g(t). Moreover, standard notation is understood to denote Sobolev spaces
and their norms [23].

Following [4], we relax the constraint in (2) with two penalization terms which
lead us to rewrite the Plane-strain Ambrosio-Tortorelli elasticity functional as

JPAT (u, v) =
1

2

∫

Ω
(v2 + η)σ(u) : E(u) dx +

1

2

∫

Ω

[
α(v − 1)2 + ε|∇v|2

]
dx

+
1

2γA

∫

ΩD

|u− g(tk)|2 dx +
1

2γB

∫

CRk−1

v2 dx,

(3)
where γA and γB are the penalty constants. Henceforth we always deal with this
functional instead of (1). We are dealing now with an unconstrained minimiza-
tion process. At each time level, we seek the pair (u(tk), v(tk)) such that

(u(tk), v(tk)) ∈ argmin
(u,v)∈[H1(Ω)]2×H1(Ω;[0,1])

JPAT (u, v). (4)

Since the penalized constraints are clearly continuous, convex, and always non-
negative, the proof of the convergence of the minimizers of (4) to the minimizers
of (2), for γA, γB → 0, follows from Γ-convergence arguments (see [14]). More-
over, we are interested in local minimizers for two reasons. On the one side,
the search for global minimizers is an NP-hard problem; on the other side, one
can expect that the fracture moves along critical points of the physical energy.
Therefore, it is not only (numerically) impossible to compute global minimizers
with some guarantees, but it may also not be a meaningful choice from a physical
viewpoint.
Mimicking the proof in [8] for the anti-plane case, we can prove that the func-
tional JPAT is Fréchet-differentiable in [H1(Ω)]2× (H1(Ω)∩L∞(Ω)). In partic-
ular, the Fréchet derivative of JPAT along direction (w, z) is

(
JPAT (u, v;w, z)

)′
=

∫

Ω
(v2 + η)σ(u) : E(w) dx +

1

γA

∫

ΩD

(u− g(tk)) ·w dx

︸ ︷︷ ︸
=a(v;u,w)

+

∫

Ω

[
v zσ(u) : E(u) + α(v − 1)z + ε∇v · ∇z

]
dx +

1

γB

∫

CRk−1

v z dx.

︸ ︷︷ ︸
=b(u;v,z)

(5)
Accordingly, we recall the definition of critical points of JPAT :
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Definition 1.1 The pair (u, v) ∈ [H1(Ω)]2 × (H1(Ω) ∩ L∞(Ω)) is a critical
point of JPAT if

(
JPAT (u, v;w, z)

)′
= 0 for all w ∈ [H1(Ω)]2 and for all z ∈

(H1(Ω) ∩ L∞(Ω)).

Following Proposition 2.2 in [4], we can prove that condition 0 ≤ v ≤ 1 is
automatically guaranteed for any critical point.

2 Anisotropic Error Analysis

This section collects the main developments of this paper. After providing the
discrete approximation of the functional JPAT , we introduce the main tools of
the anisotropic background, and we derive the theoretical result used to drive
the anisotropic mesh adaptation procedure.

2.1 Discretization of J
PAT

We introduce the discrete counterpart of the minimization problem (4) in a
finite element setting. Thus, we denote by {Th} a family of conforming meshes
of Ω, and let Nh be the index set of the vertices of Th, and Eh the skeleton of
Th. Henceforth, we assume that the boundary of ΩD coincides with the union
of consecutive edges in Eh. We associate with Th the space Xh of continuous
piecewise linear finite elements [11].
We denote by JPAT

h (uh, vh) the discrete correspondent of JPAT (u, v) in (3), with
uh = (uh,1, uh,2)

T ∈ [Xh]2 and vh ∈ Xh, given by

JPAT
h (uh, vh)

=
1

2

∫

Ω

[ (
Ph(v2

h) + η
)
σ(uh) : E(uh) + αPh((vh − 1)2) + ε|∇vh|2

]
dx

+
1

2γA

2∑

i=1

∫

ΩD

Ph

(
(uh,i − gh,i(tk))

2
)
dx +

1

2γB

∫

CRk−1

Ph

(
v2
h

)
dx,

(6)

where Ph : C0(Ω) → Xh is the Lagrangian interpolant onto the space Xh, with
gh(tk) = (gh,1(tk), gh,2(tk))

T ∈ [Xh]2 a suitable discrete approximation of g(tk).
In particular, we pick gh(tk) such that

∫

ΩD

gh(tk) ·wh dx =

∫

ΩD

g(tk) ·wh dx ∀wh ∈ [Xh]2, (7)

i.e., gh(tk) is the L2(ΩD)-projection of g(tk) onto [Xh]2. The action of the
operator Ph is equivalent to a mass lumping [30].

The discrete analogue to (4) consists of finding the pair (uh(tk), vh(tk)) such
that

(uh(tk), vh(tk)) ∈ argmin
(uh,vh)∈[Xh]2×Xh

JPAT
h (uh, vh).

Definition 1.1 can be also provided in the discrete case.
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Definition 2.1 The pair (uh, vh) ∈ [Xh]2 × Xh is a critical point of JPAT
h if,

for all (wh, zh) ∈ [Xh]2 ×Xh,
(
JPAT

h (uh, vh;wh, zh)
)′

= 0, where

(
JPAT

h (uh, vh;wh, zh)
)′

=

∫

Ω
(Ph(v2

h) + η)σ(uh) : E(wh) dx +
1

γA

2∑

i=1

∫

ΩD

Ph ((uh,i − gh,i(tk))wh,i) dx

︸ ︷︷ ︸
=ah(vh;uh,wh)

+

∫

Ω

[
Ph(vhzh)σ(uh) : E(uh) + αPh

(
(vh − 1)zh

)
+ ε∇vh · ∇zh

]
dx

︸ ︷︷ ︸
+

1

γB

∫

CRk−1

Ph(vhzh)dx

︸ ︷︷ ︸
=bh(uh;vh,zh)

is the Fréchet derivative of JPAT
h .

Thanks to the mass lumping associated with Ph and to the assumption

kij =

∫

Ω
∇ξi · ∇ξj dx ≤ 0 ∀i 6= j ∈ Nh,

about the stiffness matrix K, with {ξl}#Nh
l=1 the basis of Xh, the property 0 ≤

vh ≤ 1, related to the discrete maximum principle (see, e.g., [12, 22, 29]), can
be assessed for any critical point vh of (6).

2.2 The Anisotropic Setting

Following [15, 25], we recover the anisotropic information from the spectral prop-
erties of the affine map TK : K̂ → K, with x = TK(x̂) = MK x̂ + bK , from
the equilateral reference triangle K̂ with vertices (−

√
3/2,−1/2), (

√
3/2,−1/2),

(0, 1), inscribed in the unit circle, to the generic triangle K of Th, with MK ∈
R

2×2, bK ∈ R
2, x ∈ K and x̂ ∈ K̂.

In particular, we apply the polar decomposition to the Jacobian MK , i.e., MK =
BKZK , where BK , ZK ∈ R

2×2 are a symmetric positive definite and an orthogo-
nal matrix, respectively. Matrix BK deforms K, while ZK turns it about the ori-
gin. Then, we consider the spectral decomposition of BK , i.e., BK = RT

KΛKRK ,
with RT

K = [r1,K , r2,K ] and ΛK = diag(λ1,K , λ2,K), with λ1,K ≥ λ2,K . The
eigenvectors ri,K identify the directions of the semi-axes of the ellipse circum-
scribed to K, while the eigenvalues λi,K provide the length of these semi-axes
(see Fig. 1). We also define the aspect ratio of the element K by sK = λ1,K/λ2,K .
The value sK = 1 corresponds to the isotropic case.

To derive the a posteriori error estimator, we introduce anisotropic error
estimates for the quasi-interpolant Clément operator Ch : L2(Ω)→ Xh [13].
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K̂

1

1,Kλ

λ

K

r

2,K

1,K
2,K
r

TK

Figure 1: Anisotropic geometric quantities associated with the map TK

Lemma 2.1 Let w ∈ H1(Ω). If #∆K ≤ N for some N ∈ N, and diam(T−1
K (∆K))

≤ C∆ ≃ O(1), where ∆K = {T ∈ Th : T ∩K 6= ∅}, then there exist constants
Cs = Cs(N , C∆), with s = 1, 2, 3, such that, for any K ∈ Th, it holds

‖w − Ch(w)‖L2(K) ≤ C1

[ 2∑

j=1

λ2
j,K(rT

j,KG∆K
(w)rj,K)

]1/2
,

|w − Ch(w)|H1(K) ≤ C2
1

λ2,K

[ 2∑

j=1

λ2
j,K(rT

j,KG∆K
(w)rj,K)

]1/2
, (8)

‖w − Ch(w)‖L2(∂K) ≤ C3

(
hK

λ1,Kλ2,K

)1/2



2∑

j=1

λ2
j,K(rT

j,KG∆K
(w)rj,K)




1/2

,

where hK = diam(K), while G∆K
(w) is the symmetric positive semi-definite

matrix

G∆K
(w) =

∑

T∈∆K





∫

T

(
∂w

∂x1

)2

dx

∫

T

∂w

∂x1

∂w

∂x2
dx

∫

T

∂w

∂x1

∂w

∂x2
dx

∫

T

(
∂w

∂x2

)2

dx




. (9)

We refer to [17, 18] for the proof.

Osservazione 2.1 The geometric hypotheses in Lemma 2.1 do not limit the
anisotropic features of the elements, but ensure that the variation of these fea-
tures is smooth over ∆K [27].
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An equivalence result between the H1(∆K)-seminorm and a corresponding
anisotropic version is also useful for the a posteriori analysis.

Lemma 2.2 Let w ∈ H1(Ω) and K ∈ Th. For any β1, β2 > 0, it holds

min{β1, β2} ≤
β1(r

T
1,KG∆K

(w)r1,K) + β2(r
T
2,KG∆K

(w)r2,K)

|w|2
H1(∆K)

≤ max{β1, β2},

where G∆K
(·) is defined as in (9).

The proof of this result can be found in [24].
We have now all the theoretical tools required for tackling the anisotropic a

posteriori analysis.

2.3 The a Posteriori Error Estimator

The following proposition states the main result of the paper and provides a
variant on the anti-plane case addressed in [4].

Proposition 2.1 Let (uh, vh) ∈ [Xh]2×Xh be a critical point of JPAT
h according

to Definition 2.1. Then, for any pair of functions (w, z) ∈ [H1(Ω)]2 × H1(Ω),
with w = (w1, w2)

T , it holds

∣∣(JPAT (uh, vh;w, z)
)′∣∣ ≤ C

∑

K∈Th

{ 2∑

i=1

ρA
i,K(vh,uh)ωK(wi) + ρB

K(uh, vh)ωK(z)
}
,

(10)
where C = C(N , C∆), the residuals ρA

i,K(vh,uh) and ρB
K(uh, vh) are

ρA
i,K(vh,uh) = ‖2vhσi(uh) · ∇vh‖L2(K) + 1

λ2,K
‖v2

h − Ph(v2
h)‖L∞(K) ‖σi(uh)‖L2(K)

+1
2‖[[σi(uh)]]‖L∞(∂K) ‖v2

h + η‖L2(∂K)

(
hK

λ1,Kλ2,K

)1/2
+

|K|1/2 h2
K

λ2,K γA
|uh,i − gh,i(tk)|W 1,∞(K)

+
δK,ΩD

γA

(
‖uh,i − gh,i(tk)‖L2(K) + ‖gh,i(tk)− gi(tk)‖L2(K)

)
,

ρB
K(uh, vh) = ‖(σ(uh) : E(uh) + α)vh − α‖L2(K) + ε

2 ‖[[∇vh]]‖L2(∂K)

(
hK

λ1,Kλ2,K

)1/2

+
δK,CRk−1

γB
‖vh‖L2(K) +

h2
K

λ2,K

[
‖σ(uh) : E(uh) + α‖L2(K) +

|K|1/2δK,CRk−1

γB

]
|vh|W 1,∞(K),

with uh = (uh,1, uh,2)
T , the weights are

ωK(ξ) =
[ 2∑

i=j

λ2
j,K(rT

j,KG∆K
(ξ)rj,K)

]1/2
∀ξ ∈ H1(Ω),
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where

[[σi(uh)]] =

{
[σi(uh) · n]e e ∈ Eh ∩ Ω

2(σi(uh) · n)|e e ∈ Eh ∩ ∂Ω
, (11)

[[∇vh]] =

{
[∇vh · n]e e ∈ Eh ∩ Ω

2(∇vh · n)|e e ∈ Eh ∩ ∂Ω
(12)

denote the generalized jump of the i-th component of the normal Cauchy stress
tensor and of the normal derivative of vh, respectively, with [·]e the standard
jump across e, n the unit normal vector to the generic edge in Eh, σi(uh) the
i-th column of σ, gh is chosen as in (7), and δK,̟ = 1 if K∩̟ 6= ∅ and δK,̟ = 0
otherwise, with ̟ ⊂ Ω.

Proof. Since (uh, vh) is a critical point of JPAT
h , we have that

ah(vh;uh,wh) = 0 ∀wh ∈ [Xh]2, bh(uh; vh, zh) = 0 ∀zh ∈ Xh. (13)

Moreover, from (5), for any pair (w, z) ∈ [H1(Ω)]2 ×H1(Ω), it holds

|
(
JPAT (uh, vh;w, z)

)′| ≤ |a(vh;uh,w)|+ |b(uh; vh, z)|. (14)

Now, we analyze the two terms in (14) separately, starting from |a(vh;uh,w)|. Thanks
to (13), for any w ∈ [H1(Ω)]2 and wh ∈ [Xh]2, we have that

|a(vh;uh,w)| ≤ |a(vh;uh,w −wh)|+ |a(vh;uh,wh)− ah(vh;uh,wh)|. (15)

Let us focus on the first term on the right-hand side of (15). After splitting the integrals
on the mesh elements, and by exploiting integration by parts, we get

∣∣a(vh;uh,w−wh)
∣∣ =

∣∣∣
∑

K∈Th

{∫

K

(v2
h + η)σ(uh) : E(w −wh) dx

+
1

γA

∫

K

(uh − g(tk)) · (w −wh)χΩD
dx

}∣∣∣

=
∣∣∣

∑

K∈Th

{∫

K

−2vh σ(uh) (w −wh) · ∇vh dx +

∫

∂K

(v2
h + η)σ(uh) (w −wh) · n ds

+
1

γA

∫

K

[
(uh − gh(tk)) + (gh(tk)− g(tk))

]
· (w −wh)χΩD

dx
}∣∣∣,

where χ̟ denotes the characteristic function of the generic set ̟ ⊂ Ω. To preserve the
directional information, we now deal with the terms on the right-hand side componen-
twise. For this purpose, we define

a(vh;uh,w−wh) =

2∑

i=1

ai(vh;uh, wi − wh,i),

with wh = (wh,1, wh,2)
T , and

ai(vh;uh, wi − wh,i) =

∑

K∈Th

{ ∫

K

−2vhσi(uh) · ∇vh(wi − wh,i) dx +

∫

∂K

(v2
h + η)σi(uh) · n(wi − wh,i) ds

+
1

γA

∫

K

[
(uh,i − gh,i(tk)) + (gh,i(tk)− gi(tk))

]
(wi − wh,i)χΩD

dx
}
.
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Thanks to Hölder and Cauchy-Schwarz inequalities and definition (11)-(12), we obtain

∣∣ai(vh;uh, wi − wh,i)| ≤
∑

K∈Th

{
‖2vhσi(uh) · ∇vh‖L2(K) ‖wi − wh,i‖L2(K)

+
1

2
‖[[σi(uh)]]‖L∞(∂K)‖v2

h + η‖L2(∂K) ‖wi − wh,i‖L2(∂K) +
1

γA
‖(wi − wh,i)χΩD

‖L2(K)

(
‖(uh,i − gh,i(tk))χΩD

‖L2(K) + ‖(gh,i(tk)− gi(tk))χΩD
‖L2(K)

)}
.

Picking wh,i = Ch(wi) and thanks to Lemma 2.1, we obtain

∣∣ai(vh;uh, wi − wh,i)
∣∣ ≤ C

∑

K∈Th

{
‖2vhσi(uh) · ∇vh‖L2(K)

+
1

2
‖[[σi(uh)]]‖L∞(∂K)‖v2

h + η‖L2(∂K)

(
hK

λ1,Kλ2,K

)1/2

+
δK,ΩD

γA

(
‖uh,i − gh,i(tk)‖L2(K) + ‖gh,i(tk)− gi(tk)‖L2(K)

)}



2∑

j=1

λ2
j,K(rT

j,KG∆K
(wi)rj,K)




1/2

.

(16)
Now we deal with the second term on the right-hand side of (15), that we bound as

|a(vh;uh,wh)− ah(vh;uh,wh)| ≤
∣∣∣
∫

Ω

[
v2

h − Ph(v2
h)

]
σ(uh) : E(wh) dx

∣∣∣

+
1

γA

∣∣∣
∫

ΩD

(I − Ph)
(
(uh − gh(tk)) ·wh

)
dx

∣∣∣ +
1

γA

∣∣∣
∫

ΩD

(
gh(tk)− g(tk)

)
·wh dx

∣∣∣.

(17)
We anticipate the auxiliary result based on the equivalence of norms on a finite-dimensional
space,

|ϕhψh|H2(K) ≤ 4 |ϕh|W 1,∞(K) ‖∇ψh‖L2(K) ∀ϕh, ψh ∈ Xh, ∀K ∈ Th, (18)

which follows by straightforward calculus. Using the definition (7) of gh(tk), the last
term in (17) turns out to be zero. Considering again (17) componentwise, employing
Hölder and Cauchy-Schwarz inequalities together with the standard isotropic estimate
for the L2-norm of the interpolation error associated with Ph, we get

|ai(vh;uh,wh)− ai,h(vh;uh,wh)| ≤ C
∑

K∈Th

{ |K|1/2 h2
K

γA
|(uh,i − gh,i(tk))wh,i|H2(K)

+‖v2
h − Ph(v2

h)‖L∞(K) ‖σi(uh)‖L2(K) ‖∇wh,i‖L2(K)

}
,
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where the constant C does not depend on the aspect ratio sK of K. Then, we employ
(18) together with estimate (8) and Lemma 2.2 with β1 = λ2

1,K , β2 = λ2
2,K , to obtain

|ai(vh;uh,wh)− ai,h(vh;uh,wh)| ≤ C
∑

K∈Th

{( |K|1/2 h2
K

γA
|uh,i − gh,i(tk)|W 1,∞(K)

+‖v2
h − Ph(v2

h)‖L∞(K) ‖σi(uh)‖L2(K)

)
‖∇wh,i‖L2(K)

}

≤ C
∑

K∈Th

{( |K|1/2 h2
K

γA
|uh,i − gh,i(tk)|W 1,∞(K) + ‖v2

h − Ph(v2
h)‖L∞(K) ‖σi(uh)‖L2(K)

)

(
‖∇wh,i −∇wi‖L2(K) + ‖∇wi‖L2(K)

)}

≤ C
∑

K∈Th

{( |K|1/2 h2
K

γA
|uh,i − gh,i(tk)|W 1,∞(K) + ‖v2

h − Ph(v2
h)‖L∞(K) ‖σi(uh)‖L2(K)

)

1

λ2,K

[ 2∑

j=1

λ2
j,K(rT

j,KG∆K
(wi)rj,K)

]1/2}
.

(19)
Therefore, collecting (16) and (19), we are able to bound componentwise the first term
on the right-hand side of (14), as

|a(vh;uh,w)| ≤ C
∑

K∈Th

2∑

i=1

ρA
i,K(vh,uh)ωA

K(wi).

The estimate of the second term on the right-hand side of (14) can be carried out exactly
as the corresponding one in the proof of Proposition 3.3 in [4], after replacing |∇uh|2
with σ(uh) : E(uh). This yields

4|b(uh; vh, z)| ≤ C
∑

K∈Th

ρB
K(uh, vh)ωK(z).

�

To make estimate (10) useful in practice, we have to pick the pair of functions
(w, z). Mimicking the considerations in [4], we choose w = uh and z = vh. This
leads us to define the error estimator

η =
∑

K∈Th

ηK(uh, vh),

where the local estimator is

ηK(uh, vh) =

2∑

i=1

ρA
i,K(vh,uh)ωK(uh,i) + ρB

K(uh, vh)ωK(vh). (20)

Osservazione 2.2 Although in this work we deal with a specific case of linear
elasticity constitutive law, we do believe that it is possible to extend the a poste-
riori analysis to a more general model, for instance, the one recently introduced
in [9].
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3 The Numerical Anisotropic Procedure

The numerical minimization of (6) is not a trivial task since it is a nonconvex
functional due to the presence of the term Ph(v2

h)σ(uh) : E(uh). In particu-
lar, the methods available in the literature do not guarantee, in general, the
convergence to global minimizers (see, e.g., [5]) but only to local minima.

In the first part of this section, we introduce the procedure exploited to
convert the anisotropic estimator (20) into an actual anisotropic tool. In the
second part of this section, we merge this approach with a suitable minimization
algorithm, extending the method in [4].

3.1 A Metric-Driven Approach

Following [15, 25], we use a metric-based mesh adaptive approach (see, e.g., [20]).
In particular, we predict the mesh with the least number of elements ensuring a
given accuracy on the global estimator η.

There exists a tight relation between metric and mesh. Actually, with an
assigned mesh Th, we can associate a corresponding piecewise constant metric
given by MK = RT

KΛ−2
K RK , for any K ∈ Th, where matrices RK and ΛK are

exactly the same as in Sect. 2.2. Likewise, for a given metric fieldM : Ω→ R
2×2,

we can build a mesh, say TM, such that MK = M|K coincides with MK , for
any K ∈ TM.

To build the new adapted mesh, we adopt a two-step procedure. First, we
derive a metric M out of the error estimator (20). Then, we generate the new
mesh induced by this metric using the metric-based mesh generator in FreeFem++

[21].
To obtain M, we resort to an iterative procedure. At each iteration, say l,

we deal with three quantities:

i) the actual mesh T (l)
h ;

ii) the new metric M(l+1) computed on T (l)
h ;

iii) the updated mesh T (l+1)
h induced by M(l+1).

The new metric is predicted by suitably rewriting the local estimator ηK(uh, vh)
to single out the geometric information and then by applying an error equidis-
tribution criterion combined with the minimization of the number of elements.
The re-arranged local estimator is

ηK(uh, vh) = µK

{ 2∑

i=1

ρA
i,K(vh,uh)ωK(uh,i) + ρB

K (uh, vh)ωK(vh)
}
, (21)

where µK = |K̂|
(
λ1,Kλ2,K

)3/2
lumps all the area |K| information,

ρA
i,K(vh,uh) =

ρA
i,K(vh,uh)

(
|K̂|λ1,Kλ2,K

)1/2
, ρB

K (uh, vh) =
ρB

K(uh, vh)
(
|K̂|λ1,Kλ2,K

)1/2
,
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with i = 1, 2, are approximately pointwise values (at least for a sufficiently fine
mesh), while the anisotropic information associated with K is collected in the
scaled weights

ωK(ξh) =
[
sK rT

1,K G∆K
(ξh) r1,K +

1

sK
rT
2,K G∆K

(ξh) r2,K

]1/2
,

with ξh = uh,1, uh,2, vh, and G∆K
(·) = G∆K

(·)/(|K̂ |λ1,Kλ2,K). In principle, each
term in (21) provides a metric. For practical reasons, however, we merge this
information to obtain a single metric, thus avoiding metric intersection. To do
this, we follow the approach in Sect. 4 of [26], which allows us to rewrite (21) as

ηK(uh, vh) = µKΥK

with

ΥK =
[
sK rT

1,K ΓK r1,K +
1

sK
rT
2,K ΓK r2,K

]1/2
, (22)

where the local matrix

ΓK =

2∑

i=1

[
ρA

i,K(vh,uh)
]2
G∆K

(uh,i) +
[
ρB

K (uh, vh)
]2
G∆K

(vh) (23)

gathers the anisotropic information provided by uh and vh, suitably weighted
via the local residuals.

We minimize now the number of mesh elements by maximizing the area of
each element K with an error equidistribution constraint, i.e., we enforce that,

for each element K ∈ T (l+1)
h , ηK(uh, vh) = µK ΥK = TOL/#T (l)

h , where TOL and

#T (l)
h are the user-defined global tolerance and the number of mesh elements in

T (l)
h , respectively. The constant value TOL/#T (l)

h is ensured with an element of
maximal area only if ΥK is minimized with respect to sK and r1,K , i.e., we solve
elementwise the constrained minimization problem

min
sK≥1,rm,K ·rn,K=δmn

ΥK(r1,K , sK), (24)

δmn being the Kronecker symbol. For computational convenience, all the quan-

tities appearing in (23) are evaluated on the background grid T (l)
h . On the other

hand, the aspect ratio sK and the unit vector r1,K in (22) represent our ac-
tual unknowns. According to Proposition 4.2 in [26], we can state the desired
minimization result.

Proposition 3.1 Let {γi,K , gi,K} be the eigenvector-eigenvalue pair of ΓK with
g1,K ≥ g2,K > 0. Then, the minimum (24) is obtained for the choices

r1,K = γ2,K and sK =

(
g1,K

g2,K

)1/2

, (25)

yielding the value
(
2
√
g1,Kg2,K

)1/2
for ΥK .
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The minimization problem (24) can be solved analytically via (25) without re-
sorting to any numerical optimization tool.

Finally, the optimal metric M(l+1) is generated by exploiting again the
equidistribution constraint, i.e., by solving the equations

|K̂|
(
λ1,Kλ2,K

)3/2 (
2
√
g1,Kg2,K

)1/2
=

TOL

#T (l)
h

and
λ1,K

λ2,K
= sK =

(
g1,K

g2,K

)1/2

.

(26)
System (26) provides us with the distinct values

λ1,K =

(
1

|K̂|
√

2

(
g1,K

g2
2,K

)1/2
TOL

#T (l)
h

)1/3

, λ2,K =

(
1

|K̂|
√

2

(
g2,K

g2
1,K

)1/2
TOL

#T (l)
h

)1/3

.

(27)
Eventually, the optimal metricM(l+1) is characterized by r1,K in (25), λ1,K and
λ2,K in (27), with r2,K ⊥ r1,K .

3.2 The Whole Adaptive Procedure

In this section we propose a numerical algorithm which combines a suitable min-
imization method for the nonconvex functional JPAT

h with the mesh adaptation
procedure of the previous section.

The algorithm is a generalization of the Algorithms 2 and 3 proposed in
[4]. In practice, we switch from mesh adaptation, driven by the tolerance
TOL = REFTOL ≪ 1, to minimization of JPAT

h , until both the mesh and the
functional stagnate to within given thresholds, MESHTOL≪ 1 and VTOL≪ 1, re-
spectively. The minimization of the functional exploits the alternate minimiza-
tion algorithm proposed in [8] for dealing with nonconvex functionals, relying on
the convexity only along the directions identified by uh and vh. In particular,
our new algorithm carries out mesh adaptation after a maximum number, nMIN,

of minimization steps. Given an initial mesh, T (0)
h , we proceed as follows: The

minimization of the functional with respect to uh and vh is performed by solv-
ing the corresponding Euler-Lagrange equations, since the functional is actually
(strictly) convex with respect to the individual variables. In both cases, the
equations are standard linear elliptic problems.

The interpolation operator Πn→n+1(zh) is used to map the finite element
function zh defined on T n

h onto the new mesh T n+1
h , before restarting any new

optimization or time loop.
The convergence of the mesh adaptivity is assessed by checking the relative

variation of the number of elements. The main novelty with respect to the al-
gorithms in [4] is that, through nMIN, the functional JPAT

h is not necessarily
exactly minimized after the inner while loop. Algorithms 2 and 3 represent
particular cases of the algorithm above. Selecting nMIN = ∞, we recover Al-
gorithm 2, which is suited to deal with slowly advancing fractures, because the
coupling between optimization and adaptation is not so tight. Setting nMIN = 1,
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we get back Algorithm 3, which alternates optimization and mesh adaptation
more closely. However, in such a case, the crack evolution may be biased by
the mesh which is adapted to nonoptimal fields, uh, vh. These values of nMIN
represent two extreme choices. In general, we may pick any intermediate value,
e.g., nMIN = 7 in the section below.

Algorithm 3.1 Optimize(nMIN)-while-Adapt

1: Set k = 0, l = 0;
2: If k = 0, set v1

h = 1; else v1
h = vh(tk−1);

3: Set l = 0; errmesh= 1; err= 1;
4: while errmesh ≥ MESHTOL | err ≥ VTOL do
5: Set i = 1; err=1;
6: while err ≥ VTOL& i ≤ nMIN do
7: ui

h = argmin
zh∈[X

(l)
h ]2

JPAT
h (zh, v

i
h);

8: vi+1
h = argmin

zh∈X
(l)
h

JPAT
h (ui

h, zh);

9: err = ‖vi+1
h − vi

h‖L∞(Ω);
10: i← i+ 1;
11: end while
12: Compute the new metric M(l+1) based on ui−1

h and vi
h;

13: Build the adapted mesh T (l+1)
h ;

14: errmesh = |#T (l+1)
h −#T (l)

h |/#T
(l)

h ;
15: Set v1

h = Πl→l+1(v
i
h);

16: l← l + 1;
17: end while
18: uh(tk) = Πl−1→l(u

i−1
h ); vh(tk) = Πl−1→l(v

i
h); T k

h = T (l)
h ;

19: Set T (0)
h = T k

h ;
20: k ← k + 1;
21: if k > F , stop; else goto 2.

4 Numerical Assessment

We verify Algorithm 3.1 on two numerical tests inspired by [7, 16]. The second
test case turns out to be particularly challenging.

4.1 Traction of a Fiber-Reinforced Matrix

We consider the rectangular domain Ω = (0, 3)×(0, 3.5) in Fig. 2 left, comprising
a nonelastic circular fiber of radius 0.5 centered at (1.5, 1.5), for t ∈ [0, 0.5], uni-
formly partitioned with a total number of F = 50 time steps. On the subdomain
ΩD = (0, 3)× (3, 3.5) we enforce the load g, with gD = (0, t)T . The fiber is held
fixed while a uniform vertical displacement is induced by gD on the top side of
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Ω

θ

Ω

Ω
D+

ΩD

Ω
D−

Figure 2: Geometric configurations for the traction of a fiber-reinforced matrix
(left) and for the crack branching test (right)

the matrix. The other sides of the domain are traction-free. As a function of
time, at the beginning the matrix behaves elastically; then, an asymmetric crack
suddenly develops and eventually cuts the matrix in two parts. The parameters
involved in (3) are set to

ε = 10−1, η = 10−3, γA = γB = 10−7, λ =
Y p

(1 + p)(1− 2p)
µ =

Y

2(1 + p)
,

where Y = 30 is Young’s modulus and p = 0.18 is the Poisson coefficient. The
values of the tolerances required by Algorithm 3.1 are

VTOL = 5 · 10−3, CRTOL = REFTOL = 10−3, MESHTOL = 10−2.

Figure 3 shows the vh-field at three time levels as well as the associated anisotropic
adapted mesh. At time t = 0.25 a crack on top of the fiber is created and starts
propagating slowly and symmetrically with respect to the fiber. At time t = 0.35
the symmetry is broken and the crack splits the matrix on one side only. Af-
terwards, at time t = 0.39, the domain is thoroughly split into two parts. This
behavior is not essentially affected by ε. Actually, a reduction of this parameter
by one order of magnitude yields the results in Fig. 4, which share the same pat-
tern as in Fig. 3, although with a sharper crack. In all cases, the adapted meshes
are very fine close to the fracture and in the area of higher stress. Moreover,
the correct path of the crack is detected in a very efficient way, i.e., with quite
few elements. In particular, in Fig. 3 and 4 (bottom-right), the meshes consist
only of 1810 and 12381 elements, respectively. The maximum aspect ratio of the
three meshes in Fig. 3 is 16, 32 and 109.
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Figure 3: Traction of a fiber-reinforced matrix. Time evolution of the vh-field
(left): t = 0.25 (top), t = 0.35 (center), and t = 0.39 (bottom); corresponding
adapted meshes (right) with ε = 10−1
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Figure 4: Traction of a fiber-reinforced matrix. Time evolution of the vh-field
(left): t = 0.30 (top), t = 0.38 (center), and t = 0.40 (bottom); corresponding
adapted meshes (right) with ε = 10−2
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Figure 5: Traction of a fiber-reinforced matrix. Time evolution of the energy

Figure 5 shows the time evolution of the energy. The elastic energy (dashed
line) is associated with the first term in the integral over Ω in (6), while the
fictitious crack energy (dash-dotted line) represents the second term. The black
line is the sum of these two contributions. Theoretically, we expect the elastic
energy to disappear after the collapse of the domain. On the contrary, a residual
energy remains, due to the regularization parameter η in the model. Moreover,
three sudden increases of the crack energy occur: the first at time t = 0.24, when
a finite-length crack appears on top of the fiber; the second at time t = 0.37,
when the domain breaks on one side; and the last takes place when the domain
breaks down, at t = 0.39. This behavior is qualitatively comparable with the
ones in Fig. 4 in [16] and in Fig. 3 in [7]. This corroborates the fact that
anisotropic meshes do not affect the crack dynamics.

4.2 Crack Branching

The domain for the second test case is the cracked rectangular elastic sample
shown in Fig. 2, right. The initial crack is horizontal and parallel to the upper
end lower sides of the sample, while a displacement field of increasing magnitude
and fixed orientation, θ, to the x1-axis, is applied to the horizontal sides. The
later crack evolution is monitored for several values of θ. The final time is set
to T = 0.2, and the total number of uniform time steps is F = 20. The final
time is chosen when the crack is about to turn towards the bottom right corner
of the domain. The key issues of this problem is the correct prediction of the
actual branching angle of the crack, in particular when the applied displacement
field is not orthogonal to the domain border. For this purpose, we resort to a
suitable mesh adaptation strategy.
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Figure 6: Crack branching. Distribution of the vh-field around the
tip of the initial crack (left) and final adapted mesh (right) for θ =
π/2, π/4, π/6, π/20, π/60, 0, top-down

In particular, we identify Ω with the square domain (−1.5, 1.5)2, ΩD = ΩD−∪
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ΩD+ with ΩD− = (−1.5, 1.5) × (−1.5,−1.3) and ΩD+ = (−1.5, 1.5) × (1.3, 1.5),
gD is

gD(t) =

{
(t cos(θ), t sin(θ)) on ΩD+

(−t cos(θ),−t sin(θ)) on ΩD−

(28)

and the model parameters are

ε = 10−2, η = 10−5, γA = γB = 10−5, λ =
Y p

(1 + p)(1− 2p)
, µ =

Y

2(1 + p)
,

with Y = 45 and p = 0.18. The tolerances of Algorithm 3.1 are

VTOL = 10−4, CRTOL = 3 · 10−4, REFTOL = 10−3, MESHTOL = 10−2.

Figure 6 gathers the vh-field and the corresponding anisotropic adapted mesh
at the final time, for several orientations θ. The cardinality of the meshes in
Fig. 6 is 2941, 1268, 1652, 1302, 1570, 3804, in top-down order. Notice that the
mesh adaptive procedure identifies the configurations associated with θ = π/2
and θ = 0 as being the most challenging. In all cases, the mesh closely matches
the crack path, with a very thin thickness of the adapted area. The anisotropic
features of the meshes are highlighted by the values of the maximum aspect
ratio, which varies between 28, for θ = π/20, and 384, for θ = 0. Moreover,
when θ = 0, in contrast to [7], where it appears an unphysical symmetric crack
branching, we obtain a crack which moves straight a very short distance, before
turning downwards but with a slightly smaller angle than expected. In practice,
we are able to predict reliably the crack branching for θ & 3◦. Figure 7 shows the
branching angle as a function of the orientation θ. This angle has been computed
by picking the angle at which the distribution of the unit vectors, r1,K , gathered
in bins of 20 angles each, over the rectangle [0, 0.08] × [−0.08, 0] is a maximum.
On comparing our results with the ones in [7], we observe a good agreement,
with the additional capability of correctly simulating the physical behavior for
3◦ . θ . 7◦, by enlarging the range of reliability of the numerical tool in [7]
where θ & 7◦.

Figure 7: Crack branching. Branching angle as a function of the impressed
displacement orientation
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5 Conclusions

We have extended the anisotropic approach provided in [4] for the anti-plane
case to the more challenging plane-strain framework. This implies moving from
a scalar to a vector elastic problem. The proposed Algorithm 3.1 has been
shown to correctly identifying the physical crack path, under reasonable choices
of the physical and algorithmic parameters, aware also of the theoretical limits
of the adopted mechanical model. In particular, in the crack branching test
case, the proposed procedure allowed us to broaden the range of applicability
of this model, with respect to what studied in [7]. Another interesting issue
to be investigated is a proper tuning of the modeling parameters, such as ε,
η, and also of the physical parameters λ and µ. In Sect. 4.1, we tackle to a
some extent the sensitivity to ε by highlighting the actual influence of ε on
the crack thickness. A more thorough investigation has been carried out in
[3] in the anti-plane case. We have also introduced a generalized version of
the algorithm proposed in [4]. In particular, Algorithm 3.1 employs the new
parameter, namely nMIN, through which we can adjust in a more precise way
the interplay between the minimization of the functional and the adaptation of
the mesh. In future developments, we shall be concerned with the study of more
general mathematical models, such as the ones introduced in [9], for a possible
comparison with actual experimental tests.
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