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Abstract

In this paper we propose a surrogate model for advection-diffusion-
reaction problems characterized by a dominant direction in their dynamics.
We resort to a hierarchical-model reduction where we couple a modal rep-
resentation of the transverse dynamics with a finite element approximation
along the mainstream. This different treatment of the dynamics entails
a surrogate model enhancing a purely 1D description related to the lead-
ing direction. The coefficients of the finite element expansion along this
direction introduce a generally non-constant description of the transversal
dynamics. Aim of this paper is to provide an automatic adaptive approach
to locally select the dimension of the modal expansion as well as the finite
element step in order to satisfy a prescribed tolerance on a goal functional
of interest.

1 Introduction and motivations

In many applications involving an extensive use of scientific computing, a ma-
jor problem is the identification of an appropriate trade-off between reliability

∗This work has been partially supported by the PRIN 2010-2011 project “Innovative meth-
ods for water resources management under hydro-climatic uncertainty scenarios”.
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and computational cost of the numerical model. This leads in many cases to
the identification of a reduced or surrogate model which is expected to be com-
putationally affordable and mathematically reliable. As reference examples of
surrogate models, we may cite the geometrical multiscale modeling of the cir-
culatory system ([12, 9]), wavelet resolution of multiscale problems ([27]), pod
methods applied, e.g., to nonlinear dynamical systems ([19]), compressed sensing
([11]). These model reduction procedures are somehow different and complemen-
tary to surrogate solution approaches based on the smart combination of off-line
solutions of the full problem as, e.g., in a reduced basis approach ([24]).

In the proposal of an effective surrogate model one can take advantage of
particular features of the problem at hand such as, for instance, a prevalent di-
rection in the dynamics of interest. In this set, we include the design of networks,
e.g., of pipes in internal combustion engines or in oil transportation, of channels
when investigating waterways, of arteries in blood flow simulation. In all these
applications, a standard approach consists in reducing the local dynamics in the
single pipe to the axial component solely. Successively, the segments are con-
nected via proper interface conditions. The main drawback of this approach is
that local features of the investigated phenomena can be lost in the model reduc-
tion, yet they can be relevant for the global results. The presence of obstacles
in an arterial district or in a hydrodynamic configuration, as well as the pres-
ence of an air filter in an internal combustion engine may require indeed a more
precise model than the surrogate ones adopted for networks. For this reason,
different options have been proposed, coupling a sharp local description with a
global model. In this respect, it is worth recalling the coupling of dimensionally
heterogeneous models advocated in [17] and [26] for describing interactions at
different scales in hemodynamics and in river dynamics, respectively. Other ap-
proaches preserve the surrogate structure of the network model and introduce
modifications to account for transverse dynamics of interest triggered by local
features. In [33], for instance, the effect of the curvature of arteries is included
in a “psychologically” one-dimensional model of blood flow by resorting to the
so-called Cosserat director theory.

In a different way - yet with the same perspective of improving axial models
rather than replacing them with dimensionally heterogeneous ones - in [16, 31] we
have introduced a hierarchical model (hereafter shortened in Hi-Mod) reduction
procedure, where we perform a modal approximation of the transverse dynamics
coupled with a finite element discretization along the axial direction, in the spirit
of a separation of variables. The rationale behind this idea is that the transverse
dynamics can be suitably described with a few degrees of (modal) freedom,
resulting in an enriched one-dimensional model. This is expected to improve the
global reliability of a pure 1D model where we got rid of the transverse dynamics.
An additional important feature of this approach is that the selection of the
number m of transverse modes can vary along the axis of the domain. Thus, by
properly tuning m over different regions of the computational domain, we are
able to capture the local significant features of the solution with a relatively low
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number of degrees of freedom.
The main purpose of this work is to make the local selection of the transverse

modes automatic by introducing a model adaptive procedure. For this purpose,
we derive an a posteriori modeling error estimator. In particular, we rely upon
a goal-oriented approach, where the model prediction is driven by a goal func-
tional representing a physical quantity of interest. We exploit the hierarchical
structure characterizing the Hi-Mod approach in the a posteriori analysis as well.
In the second part of the paper we extend the model adaptivity via an adaptive
selection of the finite element partition to properly match possible local signifi-
cant variations of the dynamics along the mainstream.
The analysis presented here refers to steady two-dimensional linear advection-
diffusion-reaction problems and to linear goal functionals.

The paper is organized as follows. In Sect.2 we provide the geometric and
functional basic ingredients for a Hi-Mod reduction. Section 3 provides the
modeling error analysis, the corresponding model adaptive procedure and a nu-
merical assessment. In Sect. 4 we merge the model with the mesh adaptation by
deriving an a posteriori error estimator for the global error; an automatic proce-
dure to select both the model and the mesh is consequently proposed and then
validated on two test cases. Finally some perspectives are proposed in Sect. 5.

2 The hierarchical model reduction

Throughout the paper we refer to the following problem (weak form)

find u ∈ V ⊆ H1(Ω) s.t. a(u, v) = F(v) ∀v ∈ V, (1)

as to the full problem, where V is a suitable Hilbert space, a(·, ·) is a bilinear
continuous and coercive form on V ×V and F(·) is a linear continuous functional
on V . A standard notation is here adopted for the Sobolev spaces, as well as for
the space of the functions bounded almost everywhere in Ω (see, e.g., [23]).

2.1 The geometric setting

We introduce the geometric constraints required to accomplish a Hi-Mod reduc-
tion (for more details we refer to [16, 31]).
We assume that the domain Ω ⊂ R

d, with d ∈ {2, 3}, coincides with a d-
dimensional fiber bundle, i.e., Ω =

⋃
x∈Ω1D

{x}×γx, where Ω1D is the supporting

domain described by only one independent variable x, while γx ⊂ R
d−1 is the

tranverse fiber, which is in general a function of x. In particular, we align Ω1D

with the main dynamic exhibited by the problem at hand, while the fibers γx are
associated with the secondary transverse dynamics. For the sake of simplicity,
we choose Ω1D as the interval ]x0, x1[, the extension to curved domains being
however feasible (see [30]). The boundary ∂Ω of Ω is split into three parts, i.e.,
∂Ω = Γ0 ∪ Γ1 ∪ Γ∗, being Γi = {xi} × γxi

with i ∈ {0, 1}, and Γ∗ =
⋃

x∈Ω1D
∂γx.
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Figure 1: Example of the map Ψ in a 3D framework

We assume that either homogeneous Dirichlet or homogeneous Neumann bound-
ary conditions can be enforced on Γ0, Γ1 and Γ∗, as well as non-homogeneous
Dirichlet data can be assigned on Γ0 and Γ1.

We introduce the map ψx : γx → γ̂d−1 between the fiber γx and a reference
fiber γ̂d−1 ⊂ R

d−1. This application induces in turn the general map Ψ : Ω → Ω̂
between the physical domain Ω and the reference domain Ω̂ ≡

⋃
x∈Ω1D

{x}×γ̂d−1.

Thus a generic point in Ω (Ω̂) is referred to as ζ = (x,y)(ζ̂ = Ψ(ζ) = (x̂, ŷ),
with x̂ = x and ŷ = ψx(y)). Without loss of generality, we assume Ω1D to be
the subset of Ω with y = 0, i.e., Ω1D coincides with the centerline of the domain.
In 2D, ψx coincides with the linear transformation

ŷ = ψx(y) =
y

L(x)
, (2)

with L(x) = meas(γx). We postulate regularity for both ψx and Ψ: for all
x ∈ Ω1D, ψx is a C1−diffeomorphism and Ψ is differentiable with respect to ζ.
This essentially excludes the presence of kinks along Γ∗.
In Figure 1 we sketch the main geometric quantities involved in the Hi-Mod
reduction for d = 3.

2.2 The piecewise Hi-Mod reduction

We exploit the fiber structure introduced on Ω to fix the reduced formulation.
As pointed out in Section 1, the axial prevalent dynamics will be spanned by
one-dimensional H1-functions, while the transverse dynamics are expanded in
terms of a modal basis.

We introduce a number of definitions needed by the piecewise Hi-Mod frame-
work. We first introduce a d-dimensional partition TΩ = {Ωi}

s
i=1 of Ω into s sub-

domains Ωi =
⋃

x∈Ω1D,i
{x} × γx, with Ω1D,i = (σi−1, σi) the generic subinterval

of Ω1D such that σ0 ≡ x0, σs ≡ x1, ∪
s
i=1Ω1D,i = Ω1D, Ω1D,i ∩Ω1D,̃i = ∅ for i 6= ĩ

and i, ĩ ∈ {1, . . . , s}, and where we denote with Σj = {σj} × γσj
the interface

between Ωj and Ωj+1, for j ∈ {1, . . . , s − 1} (see Figure 2 for an example).
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Figure 2: Example of 2D partition TΩ for s = 3

Let H1(Ω, TΩ) be the d-dimensional broken Sobolev space associated with the
partition TΩ, properly modified according to the boundary conditions assigned
on ∂Ω ([22]); the trivial inclusion V ⊂ H1(Ω, TΩ) holds. Successively, we consider
a modal basis of functions {ϕk}k∈N+ ⊆ H1(γ̂d−1), orthonormal with respect to
the L2-scalar product on γ̂d−1 and compatible with the boundary conditions on
Γ∗.

Finally, we introduce the hierarchically reduced broken space

V b
m

(TΩ) =
{

vb
m

∈ L2(Ω) : vb
m
|Ωi

(x,y) =

mi∑

k=1

v i
k(x)ϕk(ψx(y)) ∀i ∈ {1, . . . , s},

v i
k ∈ H1(Ω1D,i) : ∀k̃ ∈ {1, . . . , mj

⊥
} with j ∈ {1, . . . , s − 1},

∫

bγd−1

(
vb
m
|Ωj+1

(σj , ψ
−1
σj

(ŷ)) − vb
m
|Ωj

(σj , ψ
−1
σj

(ŷ))
)
ϕk̃(ŷ) dŷ = 0

}
,

(3)

with m = {mi}
s
i=1 ∈ [N+]s a given modal multi-index, mj

⊥
= min(mj , mj+1).

According to definition (3), a different number of modal basis functions can
be employed in the subdomains Ωi: ideally, mi is large where the transverse
dynamics are relevant, while it is small where these dynamics are less important.
Thus, index m is piecewise constant. This explains the term piecewise Hi-Mod
reduction in contrast to the uniform approach (see [16, 31]), where the same
number of modal functions is employed on the whole Ω.

Space V b
m

(TΩ) is contained in H1(Ω, TΩ). In particular, let mmin be the min-
imum number of transverse modes over the entire domain. Then, the interface
condition in (3) weakly enforces the continuity of the first mmin modes in the
whole Ω. Different strategies can be pursued to enforce this condition. In [31]
we resort to an iterative substructuring Dirichlet/Neumann method (see, e.g.,
[32, 34]). Concerning the choice of the modal basis {ϕk}k∈N+ , several options
are available. We have tested sinusoidal functions and Legendre polynomials.

The piecewise hierarchically reduced problem reads: given a modal multi-
index m ∈ [N+]s, find ub

m
∈ V b

m
(TΩ) s.t.

aTΩ
(ub

m
, vb

m
) = FTΩ

(vb
m

) ∀vb
m

∈ V b
m

(TΩ), (4)
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with

aTΩ
(ub

m
, vb

m
) =

s∑

i=1

ai(u
b
m

∣∣
Ωi

, vb
m

∣∣
Ωi

), FTΩ
(vb

m
) =

s∑

i=1

Fi(v
b
m

∣∣
Ωi

)

where ai(·, ·) and Fi(·) are the restrictions to the subdomain Ωi of the bilin-
ear and linear form in (1), respectively for i ∈ {1, . . . , s}. Formulation (4)
is well-posed in V b

m
(TΩ), with respect to the broken energy norm ‖vb

m
‖TΩ

=( ∑s
i=1 ‖v

b
m

∣∣
Ωi
‖2

H1(Ωi)

)1/2
. The reduced solution ub

m
does not necessarily pro-

vide a H1-conforming approximation to the full solution u in (1): the continuity
on Ω of both the trace and the flux of ub

m
is guaranteed to the first mmin modal

components only. As proved in [31, Section 4.2.2], a conforming approximation
is yielded only if mi > mi+1, for any i ∈ {1, . . . , s − 1}.

Remark 2.1 The piecewise reduced formulation (4) admits, as a subcase, the
uniform formulation introduced in [16, 31], when m has constant components.

Remark 2.2 The broken space V b
m

(TΩ) is similar to a mortar space. Here,
the space spanned by the modal functions replaces the mortar trace space. In
addition, all the matching conditions are weakly imposed in (3); this is not the
case for the mortar approach (see, e.g., [8, 21]).

For the sake of numerical approximation, we introduce now the discrete coun-
terpart of (4). We perform a finite element discretization (see, e.g., [13]) along
Ω1D, while preserving the modal expansion along the transverse directions. We
introduce the subdivision T i

h of Ω1D,i into the subintervals Ki
l = (xi

l−1, x
i
l) of

width hi
l = xi

l − xi
l−1 for l ∈ {1, . . . , ni}, i ∈ {1, . . . , s} and ni ∈ N

+. The
hierarchically reduced discrete broken space is then given by

V b,h
m (TΩ, {T i

h}) =
{
vb,h
m ∈ V b

m
(TΩ) : vb,h

m |Ωi
(x,y) =

mi∑

k=1

v i,h
k (x)ϕk(ψx(y))

∀i ∈ {1, . . . , s}, v i,h
k ∈ V i,h

1D

}
⊂ V b

m
(TΩ),

(5)

where V i,h
1D ⊂ H1(Ω1D,i) is a finite element space associated with T i

h , such that

dim(V i,h
1D ) = N i

h < +∞. A density assumption is made on the spaces V i,h
1D ([13]).

Thus the piecewise hierarchically reduced discrete problem reads: given a modal
multi-index m ∈ [N+]s, find ub,h

m ∈ V b,h
m (TΩ, {T i

h}) s.t.

aTΩ
(ub,h

m
, vb,h

m
) = FTΩ

(vb,h
m

) ∀vb,h
m

∈ V b,h
m

(TΩ, {T i
h}). (6)

The unknowns in (6) are the modal coefficients u i,h
k of ub,h

m , for k ∈ {1, . . . , mi}
and i ∈ {1, . . . , s} . From a computational viewpoint, we solve s systems of
coupled 1D problems. Each system is characterized by a sparse mi × mi block
matrix and each N i

h ×N i
h block exhibits the sparsity pattern typical of 1D finite
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element approximations (tridiagonal for piecewise linear elements, pentadiagonal
for piecewise quadratic elements, etc.)

By subtracting (6) from (4) for vb
m

= vb,h
m , we get a standard Galerkin or-

thogonality property, i.e.,

aTΩ
(εb,h

m
, vb,h

m
) = 0 ∀vb,h

m
∈ V b,h

m
(TΩ, {T i

h}), (7)

where εb,h
m = ub

m
− ub,h

m is the discretization error associated with the discrete
formulation (6).

3 Automatic piecewise Hi-Mod reduction

Our aim is to devise an automatic procedure to select both the subdomains Ωi

and the modal multi-index m in (3). For this purpose, we propose an a posteri-
ori modeling error estimator. In particular, we are interested in agoal-oriented
framework where the accuracy of the adopted model is measured via a user-
defined functional, which represents a physical quantity to be measured (e.g.,
mean or local values, convective or diffusive fluxes, the lift and drag coefficients
around bodies in external flows, etc.).
Throughout this section we assume that the finite element partition associated
with the broken space (5) is sufficiently fine to neglect the discretization error.
This assumption will be removed in the next section.

3.1 A goal-oriented hierarchical modeling error estimator

Let J : H1(Ω, TΩ) → R be the output functional we are interested in. For
simplicity, we assume a linear functional. We approximate the goal value J(u)
via J(ub

m
), with u and ub

m
solution to (1) and (4), respectively. Our purpose is to

estimate the goal error J(u−ub
m

) via a computable quantity, and, in particular,
we aim at selecting the subdomains Ωi and the modal multi-index m to keep
the estimated error under a desired tolerance.

We introduce the piecewise hierarchically reduced dual problem associated
with (4) and J : given a modal multi-index m ∈ [N+]s, find zb

m
∈ V b

m
(TΩ) s.t.

aTΩ
(vb

m
, zb

m
) = J(vb

m
) ∀vb

m
∈ V b

m
(TΩ), (8)

where we mean J(·) =
∑s

i=1 Ji(·), denoting by Ji the restriction of J to the
subdomain Ωi, for i ∈ {1, . . . , s}.

Let V b
m

+(TΩ) be the enriched hierarchically reduced broken space, with m+ ∈
[N+]s such that m+ > m, i.e., m+

i > mi, for any i ∈ {1, . . . , s}. The inclusions
V b
m

(TΩ) ⊂ V b
m

+(TΩ) ⊂ H1(Ω, TΩ) hold. On V b
m

+(TΩ) we define the enriched
piecewise hierarchically reduced problem, find ub

m
+ ∈ V b

m
+(TΩ) s.t.

aTΩ
(ub

m
+ , vb

m
+) = FTΩ

(vb
m

+) ∀vb
m

+ ∈ V b
m

+(TΩ), (9)
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as well as the corresponding dual problem, find zb
m

+ ∈ V b
m

+(TΩ) s.t.

aTΩ
(vb

m
+ , zb

m
+) = J(vb

m
+) ∀vb

m
+ ∈ V b

m
+(TΩ). (10)

Inclusion V b
m

(TΩ) ⊂ V b
m

+(TΩ) guarantees the orthogonality relations

aTΩ
(ub

m
+ − ub

m
, vb

m
) = 0, aTΩ

(vb
m

, zb
m

+ − zb
m

) = 0 ∀vb
m

∈ V b
m

(TΩ). (11)

We can prove now the following preliminary result:

Proposition 3.1 For any m, m+ ∈ [N+]s with m+ > m,

J(δub
mm

+) = aTΩ
(δub

mm
+ , δzb

mm
+),

with δub
mm

+ = ub
m

+ − ub
m

and δzb
mm

+ = zb
m

+ − zb
m

.

Proof. We choose in (10) vb
m

+ = δub
mm

+ ∈ V b
m

+(TΩ) and then we exploit the
orthogonality property (11)1 with vb

m
= zb

m
∈ V b

m
(TΩ), to get

J(δub
mm

+) = aTΩ
(δub

mm
+ , zb

m
+) = aTΩ

(δub
mm

+ , δzb
mm

+).

2

Should we assume that ub
m+ is a better approximation of ub

m, we obtain a
two-side bound for the functional modeling error.

Proposition 3.2 Let eb
m

= u − ub
m

∈ H1(Ω, TΩ) be the modeling error associ-
ated with the reduced formulation (4). Correspondingly, eb

m
+ = u − ub

m
+ is the

enhanced error, belonging to the same space. Let us assume that there exists a
positive constant βm < 1 and a modal multi-index M0 ∈ [N+]s, such that, for
m,m+ ∈ [N+]s with m+ > m ≥ M0,

|J(eb
m

+)| ≤ βm |J(eb
m

)|. (12)

Then,
|J(δub

mm
+)|

1 + βm

≤ |J(eb
m

)| ≤
|J(δub

mm
+)|

1 − βm

. (13)

Proof. Result (13) is a straightforward consequence of the linearity of J , assumption

(12) and the triangle inequality. 2

Now relation (13) combined with Proposition 3.1 leads us to define the value

ηb
mm

+ = |aTΩ
(δub

mm
+ , δzb

mm
+)|. (14)

This is our a posteriori modeling error estimator for the functional modeling
error |J(eb

m
)|: in particular, the lower and the upper bound in (13) represents

the corresponding efficiency and a reliability estimate, respectively1.
Estimator ηb

mm
+ is a goal-oriented hierarchical a posteriori modeling error

estimator since it exhibits the typical structure of a hierarchical error estimator
yet in a goal functional setting. This allows us to combine the easy computability
typical of a hierarchical estimator with the high versatility proper of a goal
functional analysis as far as concerns the quantity of interest.

1From (12)-(13), the further upper bound |J(eb
m

+)| ≤ βm/(1 − βm) |J(δub
mm

+)| trivially
descends.
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Remark 3.1 Hypothesis (12) is a saturation assumption. This hypothesis is
rather usual in a hierarchical framework: in [5, 15, 6, 1], for instance, this
assumption is introduced in the context of an a posteriori analysis for the energy
norm of the discretization error associated with a finite element approximation.
Requirement (12) essentially generalizes a standard saturation hypothesis to the
context of a modeling error analysis, by including the functional used to measure
the error. This sounds reasonable in a goal-oriented framework. This assumption
will be discussed further in Section 3.3 upon numerical evidence.

3.2 The m-adaptive procedure

The m-adaptive procedure we aim at introducing is intended to provide the
number and the location of the subdomains Ωi, together with the associated
modal size mi. To this aim, we suggest here a possible strategy based on the
modeling error estimator (14).
To evaluate ηb

mm
+ , we replace the piecewise hierarchically reduced primal and

dual solutions with the discrete approximations ub,h
m , zb,h

m ∈ V b,h
m (TΩ, {T i

h}) and

ub,h
m

+ , zb,h
m

+ ∈ V b,h
m

+(TΩ, {T i
h}), where V b,h

m (TΩ, {T i
h}) and V b,h

m
+(TΩ, {T i

h}) are de-

fined according to (5). Then, it suffices to evaluate the quantity (δzb,h
mm

+)T Kδub,h
mm

+ ,

with δzb,h
mm

+ = zb,h
m

+ − zb,h
m , δub,h

mm
+ = ub,h

m
+ − ub,h

m , and where K is the stiffness
matrix associated with the enriched formulation (9). Notice that the matrix K
is already available and does not need additional computations.

We address below the two distinct steps of the m-adaptive procedure we are
proposing.

3.2.1 Phase 1: subdomain identification

The subdomains Ωi are selected once and for all at the beginning of the m-
adaptive procedure via a thresholding technique.

For this purpose, we begin with the uniform framework, as advocated in
[16, 31]: we compute the value of ηb

mm
+ by employing m̃ and m̃+ modes on

the whole Ω2. To contain the computational costs, it is worth choosing small
values for both m̃ and m̃+. In particular, we compute the estimator normalized
by its maximum value, that we denote by η̆b

em em+ . In this way, we may assume

the estimate to be in the range [η̆b
em em+,min

, 1], with η̆b
em em+,min

the minimum value

assumed by the normalized estimator on Ω.
We select a threshold φ ∈ (0, 1). If the threshold is less than η̆b

em em+,min
, this

means that the initial guess for the modal truncation is too coarse; we refine
uniformly m̃ and m̃+ and recompute the normalized estimator. Hereafter, we
assume φ ≥ η̆b

em em+,min
.

2We usually set em+ = m + 2; due to the parity of sinusoidal functions the simplest choice
em+ = m + 1 is completely useless when dealing with solutions symmetric with respect to fiber
Ω1D.
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We introduce now a uniform finite element partition {Kl} on Ω1D and we
assign the value η̆b

em em+

∣∣
Kl

to the barycenter of Kl. We denote by ξj , with j ∈

{1, . . . , ŝ}, the intersections between η̆b
em em+ and φ, and by σj the corresponding

closest finite element node. The set {σj} induces the partition TΩ = {Ωi}
s
i=1,

with s ≡ ŝ+1, σ0 = x0, σs = x1, and with Σj = {σj}×γσj
the interface between

Ωj and Ωj+1.

Remark 3.2 There are two critical situations that may occur when selecting
the threshold φ. If a root of the equation φ − η̆b

em em+ = 0 has multiplicity strictly
greater than one, the algorithm for identifying the subdomains fails. This can
be avoided by a proper selection of φ driven by a check of the first derivative
of η̆b

em em+. On the other hand, if η̆b
em em+ presents several oscillations around a

range of values, these values are not good candidates to be the threshold, since
this would lead to the identification of many subdomains, making the numerical
procedure ineffective. As a limit case, if the oscillation ranges over the entire
codomain, the present approach is not appropriate. In the numerical simulations
illustrated later on, the threshold has been selected by direct inspection to avoid
all these critical situations.

At the end of this thresholding approach, we can also provide the initial

guess m(0) = {m
(0)
i }s

i=1 ∈ [N+]s for the modal multi-index which feeds the
second phase of the m-adaptive procedure. In particular,

m
(0)
i =

{
m̃ if η̆b

em em+

∣∣
Kl

< φ, ∀Kl s.t. Kl ∩ Ω1D,i 6= ∅,

m̃ + δ if η̆b
em em+

∣∣
Kl

≥ φ, ∀Kl s.t. Kl ∩ Ω1D,i 6= ∅,

with δ ∈ N
+ the modal update. Likewise, we define the initial guess m+(0) for

the multi-index m+.

3.2.2 Phase 2: mode adaptivity

Once we have detected the subdomains, we compute the modal multi-index m to
satisfy the requirement ηb

mm
+ ≤ TOLM. Starting from the initial guess obtained

at the end of phase 1, we update m relying upon an equidistribution criterion
on the subdomains Ωi. This means that we demand a uniform error distribution
over TΩ, i.e., η b,i

mm
+ = TOLM/s, where η b,i

mm
+ = η b

mm
+

∣∣
Ωi

denotes the modeling

error estimator associated with the subdomain Ωi for i ∈ {1, . . . , s} (see lines 9.
and 11. in the subsequent pseudo-code).
The main steps of the mode adaptivity procedure are listed below:

1. set m = m(0) and m+ = m+(0);

2. solve the primal problems (4) and (9);

3. solve the dual problems (8) and (10);

4. compute ηb
mm

+ via (14);

10



5. if ηb
mm

+ ≤ TOLM, break;

6. for k=1:NmaxM

7. for i=1:s

8. compute η b,i
mm

+;

9. if η b,i
mm

+ > deltaM1
TOLM

s

10. m
(k)
i

= m
(k−1)
i

+ δ; m
+(k)
i

= m
+(k−1)
i

+ δ;

11. elseif η b,i
mm

+ ≤ deltaM2
TOLM

s

12. m
(k)
i

= max(1, m
(k−1)
i

− δ), m
+,(k)
i

= max(1, m
+,(k−1)
i

− δ);

end

13. solve the primal problems (4) and (9);

14. solve the dual problems (8) and (10);

15. compute ηb
mm

+ via (14);

16. if ηb
mm

+ ≤ TOLM, break;

end

As usual, we have introduced a maximum number NmaxM of allowed iterations.
If this procedure terminates within this number, the piecewise hierarchically
reduced solution ub

m
associated with the detected multi-index partition is such

that J(ub
m

) ≃ J(u) within a tolerance equal to TOLM.
We may notice that our algorithm takes care of both model refinement and

coarsening. When coarsening, we force the minimal value of admissible modes
to be at least equal to one (line 12. of the pseudo-code).
In particular, the parameters deltaM1 and deltaM2 limit the occurrence of model
refinement and coarsening, respectively for the sake of algorithm robustness (and
computational efficiency).

The control of the fulfillment of the desired tolerance for the estimator is
performed at steps 5. and 16.: in the first case, we check if the initial guess
m(0) predicts a sufficiently rich model; in 16. we make the same check after the
new prediction for m at steps 10. and 12..

3.3 Numerical assessment of the m-adaptive procedure

We present in this section a test case where the analytical solution is known
so to check the robustness of the estimator ηb

mm
+ as well as of the m-adaptive

procedure both from a qualitative and a quantitative viewpoint. The numerical
validation here and in the entire paper is carried out in 2D. In particular, we
employ affine finite elements to discretize the problem along Ω1D, while we resort
to sinusoidal functions to model the transverse dynamics. The increment δ is set
to 1. We finally evaluate the integrals of the sine functions via suitable Gaussian
quadrature formulas, based on, at least, four quadrature nodes per wavelenght.

11
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Figure 3: Full solution (left); normalized estimator η̆b
13 (center) and η̆b

35 (right)

We solve the standard Poisson problem −∆u = f on the rectangular domain
Ω = (0, 2) × (0, π), completed with full homogeneous Dirichlet boundary con-
ditions. In particular, the source term f is chosen such that the exact solution
u ∈ V ≡ H1

0 (Ω) to the full problem (1) is

u(x, y) =
(256 − x8)(256 − (2 − x)8)

64800

{
100

247
y(π − y)(2 − x)

+ y
(π

5
− y

)(π

3
− y

)(3

5
π − y

)(3

4
π − y

)
(π − y)

(
1 + tanh(10x − 10)

)}
.

This particular solution has been selected to trigger different transverse dynam-
ics in different parts of the computational domain. Figure 3, left shows the
contour plots of u approximated via a 2D finite element scheme on a uniform
unstructured grid of about 25300 elements. On the left hand side of the domain,
the solution exhibits a transverse behavior characterized by low frequencies, as
opposed to the right hand side, where higher frequencies are active. In this exam-
ple, we control the mean value of the full solution on Ω, i.e., we choose the goal
functional in (8) as Jmean(v) = [meas(Ω)]−1

∫
Ω v(x, y) dz, for any v ∈ L1(Ω).

Due to the self-adjointness of the Poisson equation, the dual problem coincides
with the primal one except for the forcing term which is the density function
j(x, y) = [meas(Ω)]−1χΩ(x, y) associated with Jmean. Full homogeneous Dirich-
let boundary conditions complete the dual formulation.

Let us introduce some preliminary heuristic considerations about the satu-
ration assumption (12).

Calibration of the saturation constant. In this particular case, we can take
advantage of the explicit analytic solution to provide an estimate for βm in
(12). More precisely, we compute the errors eb

m
and eb

m
+ and estimate the

constant βm via the quotient |J(eb
m

+)|/|J(eb
m

)|. We do this in the uniform
framework, to avoid the estimate to be affected by the possible non-conformity
of the reduced model so that the actual estimator for βm in (12) becomes

12



βestim
m = |J(eb

m+)|/|J(eb
m)|, with eb

m and eb
m+ the modeling errors associated

with a uniform Hi-Mod reduction.
Table 1 displays the values of βestim

m for different choices of the uniform
modal indices and for different (uniform) finite element discretizations of the
supporting domain Ω1D. As expected, the value of βestim

m gets progressively closer
to one when m and m+ increase. Notice that the choice of the discretization
step h has only a moderate effect on the estimated value. In particular, we
pessimistically select 0.8971 as approximate value for βm in (12). Noticing that
1/(1 − βm) = 9.7181, in the numerical test presented hereafter the goal error
|J(eb

m
)| is estimated by 9.7181 η b

mm
+ . Should we get rid of the factor 1/(1−βm)

in (13), the actual error would be underestimated.3

Table 1: Approximate values βestim
m for the saturation constant in (12)

m m+ h = 0.1 h = 0.05 h = 0.025

1 3 0.7031 0.7001 0.6994
3 5 0.6141 0.6088 0.6074
5 7 0.7941 0.7895 0.7883
7 9 0.8971 0.8942 0.8935

The m-adaptive procedure. For the input parameters we select m̃ = 1, m̃+ =
3; φ = 0.3; δ = 1; TOLM = 0.14; deltaM1 = 0.5; deltaM2 = 1.5; NmaxM = 10; a
uniform finite element partition of size h = 0.1 is introduced on Ω1D.

The first phase of the procedure identifies the point σ1 = 0.9 (see Figure 3,
center), namely the two subdomains Ω1 = (0, 0.9) × (0, π) and Ω2 = (0.9, 2) ×
(0, π). Moreover, the modal multi-indices predicted as initial guess for the mode
adaptivity are the pairs m(0) = {1, 2} and m+(0) = {3, 4}, respectively.

The second phase of the m-adaptive procedure converges after five iterations,
with the final prediction for m = m(5) = {1, 7}; in particular, a single mode is
employed on Ω1 for the whole adaptive procedure, while the number of modal
functions gradually increases from 2 to 7 in Ω2. The final mode distribution
reasonably matches the solution heterogeneity. Four domain decomposition it-
erations are on average demanded to reach a tolerance of 10−3 at the interface
Σ1 = {0.9} × γ0.9.
Figure 4 collects the piecewise hierarchically reduced solution together with the
distribution of the corresponding error estimator for the starting guess and for
the odd iterations of the adaptive procedure. As expected, a model discontinu-
ity occurs at the interface Σ1 since m1 < m2. Concerning the error estimator
distribution, the blue line corresponds to η b,1

mm
+ while the green one is associated

with η b,2
mm

+ .
Table 2 provides some more quantitative information. The sequence of columns

3In practice, when the exact solution is not known, one can simply set βm to zero or
introduce an appropriate ”safety factor” in the error estimation.
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Figure 4: Piecewise hierarchically reduced solution and distribution of the cor-
responding modeling error estimator for m = {1, 2}, m+ = {3, 4} (top-left),
m = {1, 3}, m+ = {3, 5} (top-right), m = {1, 5}, m+ = {3, 7} (bottom-left),
m = {1, 7}, m+ = {3, 9} (bottom-right)

gathers the iteration number k, the modal multi-index m = {m1, m2}, the exact
goal error and the value of the estimator 1/(1 − βm) η b

mm
+ , with βm = 0.8971.

We omit to report on the even iterations, since they do not bring substantial
benefit when m2 commutes from an odd to an even value. This is justified by
the choice of the goal functional. As a matter of fact, the parity of sinusoidal
functions sin(qy), with q even, implies that they do not contribute to control the
mean value of the solution.
The error estimator slightly over-estimates the actual error as confirmed by the
values of the modeling effectivity index E.I.m = η b

mm
+/[(1 − βm) |J(u − u b

m
)|]

displayed in Table 3, for different choices of the finite element discretization
step h. The effectivity index gradually diminishes while the mode adaptivity
proceeds. A finer finite element discretization does not improve the quality of
the modeling error estimator in this case. This most likely points out that
the discretization error is dominated by the modal discretization, so that the
reduction of the mesh size h is not useful and only deteriorates the conditioning
of the problem.

In order to test the sensitivity of the m-adaptive procedure to the initial guess
for the uniform modal indices m̃ and m̃+, we present also the results associated
with the choices m̃ = 3, m̃+ = 5 and m̃ = 5, m̃+ = 7, while preserving the same
values for all the other input parameters. For both the pairs of indices, the same
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Table 2: Quantitative information about the second phase of the m-adaptive
procedure for m̃ = 1, m̃+ = 3

k m |J(u − u b
m

)| η b
mm

+

1 {1, 3} 1.42 · 10−1 6.75 · 10−1

3 {1, 5} 7.81 · 10−2 2.46 · 10−1

5 {1, 7} 5.80 · 10−2 1.27 · 10−1

Table 3: E.I.m for different discretization steps h

k h = 0.1 h = 0.05 h = 0.025

1 4.75 5.71 6.13
3 3.15 4.45 5.17
5 2.18 3.60 4.58

subdomains as in Figure 4 are identified (Ω1 = (0, 0.9)×(0, π) and Ω2 = (0.9, 2)×
(0, π)), with an initial guess for the mode adaptivity given consequently by
m(0) = {3, 4}, m+(0) = {5, 6} and m(0) = {5, 6}, m+(0) = {7, 8}, respectively.

The number of m-adaptive iterations reduces in both the cases. For m̃ = 3,
m̃+ = 5, the tolerance TOLM = 0.14 is achieved after three iterations with the
final prediction m = m(3) = {2, 7} (see Figure 5, left): at the first iteration
the number of modes on Ω1 decreases by one and it remains unchanged in the
successive iterations; on the contrary, the number of modal functions on Ω2

increases from 4 to 7.
For m̃ = 5, m̃+ = 7, a single iteration yields a reduced model with an error
estimator ηb

mm
+ below tolerance, with a final prediction for the modal multi-

index equal to m = m(1) = {4, 7} (see Figure 5, right).
The convergence of the domain decomposition algorithm with an accuracy of
10−3 is guaranteed also in these two last cases after an average of four iterations.

Tables 4 and 5 collect the most significant results concerning these two cases.
We stress the improvement in the values of E.I.m: in particular, the choice m̃ = 5,
m̃+ = 7 leads to an actual robust modeling error estimator.

Table 4: Quantitative information about the second phase of the m-adaptive
procedure for m̃ = 3, m̃+ = 5

k m |J(u − u b
m

)| η b
mm

+ E.I.m

0 {3, 4} 1.53 · 10−1 5.73 · 10−1 3.74
1 {2, 5} 7.81 · 10−2 2.46 · 10−1 3.15
3 {2, 7} 5.80 · 10−2 1.27 · 10−1 2.19
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Figure 5: Piecewise hierarchically reduced solution and distribution of the cor-
responding modeling error estimator for m = {2, 7}, m+ = {4, 9} (left) and for
m = {4, 7}, m+ = {6, 9} (right)

Table 5: Quantitative information about the second phase of the m-adaptive
procedure for m̃ = 5, m̃+ = 7

k m |J(u − u b
m

)| η b
mm

+ E.I.m

0 {5, 6} 9.45 · 10−2 1.88 · 10−1 1.99
1 {4, 7} 6.92 · 10−2 8.65 · 10−2 1.25

4 Automatic piecewise Hi-Mod reduction coupled with

mesh adaptivity

We remove now any assumption on the size of the mesh for the finite element
discretization of the mainstream dynamics.
For this purpose, we introduce the global error eb,h

m = u − ub,h
m ∈ H1(Ω, TΩ),

which collects the contribution of both the modeling error (eb
m

= u − ub
m

) and

the discretization error (εb,h
m = ub

m
− ub,h

m ). An a priori analysis for the global
error is furnished in [31, Section 4.2.2], under the assumption that the Dirichlet-
Neumann scheme converges.

4.1 A goal-oriented global error estimator

We adapt both the hierarchically reduced model and the discretization along
Ω1D to provide a reliable approximation, J(ub,h

m ), of the exact goal value J(u),

so that the estimated error |J(u) − J(ub,h
m )| is below a global tolerance TOL. To

this aim, it is crucial to derive an a posteriori estimator for the global error
where the contributions of the modeling and of the discretization errors are kept
separated.

We can prove this first result:

Proposition 4.1 Under saturation assumption (12), the following inequality
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holds

|J(eb,h
m

)| ≤
1 + βm

1 − βm

(
|J(δub

mm
+)| + |J(εb,h

m
)|

)
(15)

for any m and m+ ∈ [N+]s with m+ > m ≥ M0, M0 being the modal multi-
index involved in Proposition 3.2.

Proof. We split eb,h
m

as follows

eb,h
m

= eb
m

+ εb,h
m

= eb
m

+ + δub
mm

+ + εb,h
m

, (16)

with eb
m

+ = u − ub
m

+ . We distinguish two cases.
case a) |J(eb

m
)| ≥ |J(εb,h

m
)|: by exploting (16), assumption (12) and the linearity of

J , we get

|J(eb
m

)| − |J(εb,h
m

)| ≤ |J(eb
m

+ εb,h
m

)| = |J(eb
m

+ + δub
mm

+ + εb,h
m

)|

≤ βm|J(eb
m

)| + |J(δub
mm

+)| + |J(εb,h
m

)|,
(17)

yieding

|J(eb
m

)| ≤
1

1 − βm

{
|J(δub

mm
+)| + 2|J(εb,h

m
)|
}

. (18)

Now, by suitably combining (17) with (18), we obtain

|J(eb,h
m

)| ≤
1

1 − βm

|J(δub
mm

+)| +
1 + βm

1 − βm

|J(εb,h
m

)|, (19)

that is (15), since βm is a positive constant.
case b) |J(eb

m
)| < |J(εb,h

m
)|: we move from the second splitting in (16); the saturation

assumption together with inequalities |J(eb
m

)| < |J(εb,h
m

)| and βm < 1, yields

|J(eb,h
m

)| ≤ βm |J(eb
m

)| + |J(δub
mm

+)| + |J(εb,h
m

)|

≤
1 + βm

1 − βm

|J(εb,h
m

)| +
1

1 − βm

|J(δub
mm

+)|,

so that we recover relation (19), i.e. (15), also in this case. 2 Moving from (15),

we may choose as a posteriori estimator for the global functional error |J(eb,h
m )|

the quantity
|J(δub

mm
+)| + |J(εb,h

m
)|. (20)

In particular, relation (15) provides us with the corresponding reliability esti-
mate. As expected, the modeling and the discretization contributions in (20)
are distinct. In particular, the former component coincides with (14).

To prove the efficiency of (20) we have to add a further hypothesis, which
essentially relates the modeling with the discretization error.

Proposition 4.2 Let us assume that there exists a positive constant γ < 1 such
that

|J(εb,h
m

)| ≤ γ |J(eb
m

)|. (21)
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Then, under saturation assumption (12), it holds

|J(eb,h
m

)| ≥
1 − γ

3 + βm − γ

[
|J(δub

mm
+)| + |J(εb,h

m
)|

]
(22)

for any m and m+ ∈ [N+]s with m+ > m ≥ M0, and with M0 the modal
multi-index involved in (12).

Proof. We bound both |J(δub
mm

+)| and |J(εb,h
m

)| in terms of the global error |J(eb,h
m

)|.
From (21) and (16), it immediately follows

(
1 − γ

)
|J(eb

m
)| ≤ |J(eb,h

m
)|. (23)

By combining this relation with the saturation assumption and with the definition
δub

mm
+ = eb

m
− eb

m
+ , we get

|J(δub
mm

+)| ≤ |J(eb
m

)| + |J(eb
m

+)| ≤ (1 + βm) |J(eb
m

)| ≤
1 + βm

1 − γ
|J(eb,h

m
)|. (24)

As for the term |J(εb,h
m

)|, since εb,h
m

= eb,h
m

− eb
m

and thanks again to relation (23), we
have

|J(εb,h
m

)| ≤ |J(eb,h
m

)| + |J(eb
m

)| ≤
2 − γ

1 − γ
|J(eb,h

m
)|. (25)

By adding (24) and (25), we obtain (22). 2

Notice that the efficiency constant in (22) is always strictly greater than
(1 − γ)/(4 − γ) > 0.

Remark 4.1 Assumption (21) essentially establishes a ratio between the mod-
eling and the discretization errors. It can be interpreted as a sufficient grid
resolution requirement. Moreover, even though γ may depend on h and m, we
do not add any index to γ for easiness of notation. As shown in Section 4.2, rela-
tion (21) will be advantageously exploited in setting up the model-mesh adaptive
procedure.

While the model contribution in (20) coincides exactly with the modeling
error estimator in (14), we have to properly estimate the discretization contri-

bution |J(εb,h
m )|. The goal-oriented analysis advocated, e.g., in [4, 7, 18, 20, 28]

cannot be applied straightforwardly to the Hi-Mod reduction context. The pos-
sible presence of non-conformity as well as the intrinsic dimensionally hybrid
nature of the reduced model calls for some specific adjustements.

For the sake of simplicity, we now assume Ω ⊂ R
2 and we complete problem

(1) with full homogeneous Dirichlet boundary conditions.
We denote by Ri

l the region of Ωi defined by
⋃

x∈Ki
l
{x}×γx with {Ki

l }
ni

l=1 defined

as in Section 2.2, while the interface between Ri
t and Ri

t+1 is indicated by ζi
t , for

t ∈ {1, . . . , ni − 1} and i ∈ {1, . . . , s} (see Figure 6).
Then, we define the internal and the boundary residual associated with the

piecewise hierarchically reduced discrete solution ub,h
m and with Ri

l , given by

rRi
l
(ub,h

m
) =

(
f −Aiu

b,h
m

)
∣∣
Ri

l

(26)
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Figure 6: Partition of Ω ⊂ R
2 into s = 3 subdomains (left) and zoom on the

highlighted subdomain (right)

and

jRi
l
=





[∂νu
b,h
m ]e if e ≡ ζi

t with t ∈ {1, . . . , ni − 1}

0 if e ∩ Γ∗ 6= ∅

0 if e ≡ Σi−1, Σi,

(27)

respectively, with l ∈ {1, . . . , ni} and i ∈ {1, . . . , s}, where Ai represents the

differential operator inducing the bilinear form ai(·, ·), [∂νu
b,h
m ]e is the jump of

the (co)-normal derivative of ub,h
m across e ⊂ ∂Ri

l , and where Σ0 ≡ Γ0, Σs = Γ1.

We denote by
{
∂νu

b,h
m

}
e

the mean of ∂νu
b,h
m across the generic edge portion e

and by

K̃i
l =





Ki
1 ∪ Ki

2, for l = 1,

Ki
l−1 ∪ Ki

l ∪ Ki
l+1 for l ∈ {2, . . . , ni − 1},

Ki
ni−1 ∪ Ki

ni
for l = ni

(28)

the patch associated with the subinterval Ki
l , for l ∈ {1, . . . , ni} and i ∈ {1, . . . , s}.

Finally, let PΣj
be the L2-projection operator onto the interface space Ξ

mj

⊥

=

span{ϕk(ψσj
(y))}

mj

⊥

k=1, with mj
⊥

= min(mj , mj+1) and j ∈ {1, . . . , s − 1}.
We have now all the ingredients to prove the following result.

Proposition 4.3 The following inequality holds

|J(εb,h
m

)| ≤ C
(
ηh + ηNCF + ηNC

)
(29)

with C = C(maxi mi),

ηh =
s∑

i=1

ηh,i with ηh,i =

ni∑

l=1

ρRi
l
(ub,h

m
)ωRi

l
(zb

m
− zb,h

m
), (30)

ηNCF =
s−1∑

j=1

ρ̌Σj
(ub,h

m
) w̌Σj

(zb
m

− zb,h
m

), (31)
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ηNC =
s−1∑

j=1

ρΣj
(ub,h

m
)wΣj

(zb
m

− zb,h
m

), (32)

where ηh controls essentially the discretization error, ηNCF is related to the
presence of non-conforming fluxes, ηNC takes into account the non-conformity
of the reduced model, with

ρRi
l
(ub,h

m
) = hi

l‖rRi
l
(ub,h

m
)‖L2(Ri

l
) +

1

2
(hi

l)
1/2 ‖jRi

l
‖L2(∂Ri

l
), (33)

ωRi
l
(zb

m
− zb,h

m
) =

(
max
x∈Ki

l

L(x)
)1/2

mi∑

k=1

∥∥z i
k − z i,h

k

∥∥
H1( eKi

l
)
, (34)

ρ̌Σj
(ub,h

m
) =

∥∥[∂νu
b,h
m

]Σj

∥∥
L2(Σj)

, (35)

w̌Σj
(zb

m
− zb,h

m ) = (hj
nj )

1/2
(

max
x∈Kj

nj

L(x)
)1/2

mj∑

k=1

∥∥z j
k − z j,h

k

∥∥
H1( eKj

nj
)

+(hj+1
1 )1/2

(
max

x∈Kj+1

1

L(x)
)1/2

mj+1∑

k=1

∥∥z j+1
k − z j+1,h

k

∥∥
H1( eKj+1

1
)
,

(36)

ρΣj
(ub,h

m
) =

∥∥{
∂νu

b,h
m

}
Σj

− PΣj

{
∂νu

b,h
m

}∥∥
L2(Σj)

, (37)

ωΣj
(zb

m
− zb,h

m
) = w̌Σj

(zb
m

− zb,h
m

), (38)

with rRi
l
(ub,h

m ), jRi
l
and K̃i

l defined as in (26), (27) and (28), respectively, L(x) =

meas(γx) as in (2), hl
i the length of the generic subinterval Ki

l for l ∈ {1, . . . , ni}

and i ∈ {1, . . . , s}, z i
k and z i,h

k the modal coefficients associated with the solu-

tion zb
m

to the dual problem (8) and with the corresponding discretization zb,h
m ,

respectively.

Proof. By properly combining the dual formulation (8), the Galerkin orthogonality
(7) and the reduced formulation in (4), we first get

|J(εb,h
m

)| = |aTΩ
(εb,h

m
, zb

m
− vb,h

m
)| = |FTΩ

(zb
m

− vb,h
m

) − aTΩ
(ub,h

m
, zb

m
− vb,h

m
)|

=
∣∣∣

s∑

i=1

{
Fi((z

b
m

− vb,h
m

)
∣∣
Ωi

) − ai(u
b,h
m

∣∣
Ωi

, (zb
m

− vb,h
m

)
∣∣
Ωi

)
}∣∣∣.

(39)

Now, by suitably integrating by parts on the regions Ri
l and thanks to the definitions

(26) and (27), we obtain

|J(εb,h
m

)| ≤
s∑

i=1

ni∑

l=1

{ ∣∣∣
∫

Ri
l

rRi
l
(ub,h

m
) (zb

m
− vb,h

m
)
∣∣
Ri

l

dRi
l

∣∣∣

+
1

2

∣∣∣
∫

∂Ri
l

jRi
l
(zb

m
− vb,h

m
)
∣∣
∂Ri

l

d∂Ri
l

∣∣∣
}

+

s−1∑

j=1

∣∣∣
∫

Σj

[
∂νub,h

m
(zb

m
− vb,h

m
)
]
Σj

dΣj

∣∣∣,
(40)
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with [·]Σj
the jump across the interface Σj . No contribution is associated with Σ0 and

Σs due to the choice made for the boundary conditions on ∂Ω.
Let us analyze, separately, the three integrals in (40). According to the definition of the
spaces V b

m
(TΩ) and V b,h

m
(TΩ, {T i

h}), we introduce the following expansions

(zb
m

− vb,h
m

)
∣∣
Ri

l

=

mi∑

k=1

(z i
k − v i,h

k )|Ki
l
(x)ϕk(ψx(y)),

(zb
m

− vb,h
m

)
∣∣
ζi

t

=

mi∑

k=1

(z i
k − v i,h

k )(xi
t)ϕk(ψxi

t
(y)).

Thanks to the orthonormality of the modal basis,

‖zb
m

− vb,h
m

‖2
L2(Ri

l
)

≤ C̃

mi∑

k=1

∫

Ki
l

[∫

bγ1

ϕ2
k(ŷ)

∣∣J−1(x, ψ−1
x (ŷ)

∣∣ dŷ
]
[(z i

k − v i,h
k )|Ki

l
(x)]2 dx

≤ C̃

mi∑

k=1

max
x∈Ki

l

L(x) ‖z i
k − v i,h

k ‖2
L2(Ki

l
),

(41)

with C̃ = mi, and where J (x, ψ−1
x (ŷ) = L(x)−1 denotes the Jacobian associated with

the map in (2) while γ̂1 is the reference fiber for the 2D case. Analogously, we have

‖zb
m

− vb,h
m

‖2
L2(ζi

t)
≤ C̃

mi∑

k=1

[(z i
k − v i,h

k )(xi
t)]

2

∫

bγ1

ϕ2
k(ŷ)

∣∣J−1(xi
t, ψ

−1
xi

t

(ŷ)
∣∣ dŷ

= C̃

mi∑

k=1

[(z i
k − v i,h

k )(xi
t)]

2 L(xi
t) ≤ C̃

mi∑

k=1

max
x∈Ki

l

L(x) [(z i
k − v i,h

k )(xi
t)]

2,

(42)

with C̃ the same constant as in (41). From now on C̃ will be used for a constant whose
value can change from line to line.
In the sequel, we choose in (39) vb,h

m
= zb,h

m
−I1(zb

m
−zb,h

m
), with I1(·) the one-dimensional

Clément quasi-interpolant ([14]). Thanks to the Cauchy-Schwarz inequality, we bound
the first integral in (40) as

∣∣∣
∫

Ri
l

rRi
l
(ub,h

m
) (zb

m
− vb,h

m
)
∣∣
Ri

l

dRi
l

∣∣∣ ≤ ‖rRi
l
(ub,h

m
)‖L2(Ri

l
) ‖z

b
m

− vb,h
m

‖L2(Ri
l
)

≤ C hi
l ‖rRi

l
(ub,h

m
)‖L2(Ri

l
)

(
max
x∈Ki

l

L(x)
)1/2

mi∑

k=1

∣∣z i
k − z i,h

k

∣∣
H1( eKi

l
)
,

(43)

with K̃i
l defined as in (28), and where we have exploited relation (41) together with the

standard estimate associated with I1 to control the L2-norm of the interpolation error.
Let us consider now the second integral in (40). The Cauchy-Schwarz inequality

yields
∣∣∣
∫

∂Ri
l

jRi
l
(zb

m
− vb,h

m
)
∣∣
∂Ri

l

d∂Ri
l

∣∣∣ ≤ ‖jRi
l
‖L2(∂Ri

l
) ‖z

b
m

− vb,h
m

‖L2(∂Ri
l
).
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Norm ‖zb
m
− vb,h

m
‖L2(∂Ri

l
) reduces to the sum ‖zb

m
− vb,h

m
‖L2(ζi

l−1
) + ‖zb

m
− vb,h

m
‖L2(ζi

l
) for

l ∈ {2, . . . , ni − 1}, and to the norm ‖zb
m

− vb,h
m

‖L2(ζi
1)

or ‖zb
m

− vb,h
m

‖L2(ζi
ni−1

) only, for

l = 1 and l = ni, respectively. Thus, relation (42), employed once or twice according to
the value of l, and combined with the trace estimate for L2-norm of the interpolation
error associated with the quasi-interpolant I1, yields the bound

∣∣∣
∫

∂Ri
l

jRi
l
(zb

m
− vb,h

m
)
∣∣
∂Ri

l

d∂Ri
l

∣∣∣

≤ C (hi
l)

1/2 ‖jRi
l
‖L2(∂Ri

l
)

(
max
x∈Ki

l

L(x)
)1/2

mi∑

k=1

∥∥z i
k − z i,h

k

∥∥
H1( eKi

l
)
.

(44)

Finally, we focus on the third integral in (40). Thanks to standard relations between
jumps and averages (see, e.g., [3]) and to the orthogonality relation implied by definition
(3), we first rewrite the jump term as

[
∂νub,h

m
(zb

m
− vb,h

m
)
]
Σj

=
[
∂νub,h

m

]
Σj

{
zb
m

− vb,h
m

}
Σj

+
{
∂νub,h

m

}
Σj

[
zb
m

− vb,h
m

]
Σj

=
[
∂νub,h

m

]
Σj

{
zb
m

− vb,h
m

}
Σj

+
({

∂νub,h
m

}
Σj

− PΣj

{
∂νub,h

m

}) [
zb
m

− vb,h
m

]
Σj

.

Thus, via the Cauchy-Schwarz inequality, we have

∣∣∣
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Σj

[
∂νub,h

m
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m
− vb,h

m
)
]
Σj

dΣj
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∥∥[
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∥∥
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∥∥{
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− vb,h
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}
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∥∥
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− PΣj
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L2(Σj)
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L2(Σj)
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(45)
Now, by mimicking the computations leading to (44) on the average term, we obtain

∥∥{
zb
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− vb,h
m

}
Σj

∥∥2

L2(Σj)
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{∥∥(zb
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∥∥(zb
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)
∣∣
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∥∥2
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≤ C
[ mj∑
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max
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L(x)hj
nj
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H1( eKj
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)
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max
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∥∥2
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1 )

]
,

with C = C(mj ,mj+1). An analogous estimate can be derived for the jump contribution∥∥[
zb
m

− vb,h
m

]
Σj

∥∥
L2(Σj)

in (45), so that we can bound the integral on Σj in (40):
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(46)
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In view of definitions (30)-(38) estimate (29) now promptly follows by applying inequal-

ities (43), (44) and (46) to (40). 2

By exploiting estimate (29) to make computable the discretization contri-
bution in (20), we identify as the actual a posteriori estimator for the global

functional error |J(eb,h
m )| the quantity

ηb,h
mm

+ = ηb
mm

+ + ηh
mm

+ , (47)

with ηb
mm

+ the a posteriori modeling error estimator and

ηh
mm

+ = ηh + ηNCF + ηNC (48)

the a posteriori error estimator for the discretization error.
All the three contributions in (48) share the structure typical of a goal-oriented
analysis since coinciding with the product of a residual depending on the primal
problem and a weight depending on the dual problem. In more detail, the fiber
structure characterizing the Hi-Mod reduction procedure leads to a peculiar
definition for the weights where the contribution along the x- and y-directions
remains separate.
Of course, to make computable the estimator ηh

mm
+ we have to replace the

(unknown) dual solution zb
m

with a suitable discrete counterpart. In particular,

we resort to the discrete enriched dual solution zb,h
m

+ .

Remark 4.2 Estimator (29) can be extended to more general boundary condi-
tions on ∂Ω, provided that the definition of the boundary residual jRi

l
is modified

accordingly. A generalization of (29) to a 3D framework is also possible with a
proper choice of the map ψx. Indeed, the orthonormality of the modal basis can
be exploited in (43) and (44) only if J −1(x, ψ−1

x (ŷ)) does not depend on ŷ. This
is always guaranteed in a 2D setting while it has to be explicitly required in a 3D
framework.

4.2 The mh-adaptive procedure

Moving from the estimator ηb,h
mm

+ , the ultimate goal of this work is to provide
an effective way to automatically select the macro-partition TΩ of Ω with the
corresponding modal multi-index m as well as the finite element subdivision
T i

h = {Ki
l }

ni

l=1 of Ω1D,i with i ∈ {1, . . . , s}. In more detail, with this choice

we aim at estimating the global functional error |J(u) − J(ub,h
m )| within a fixed

(global) tolerance TOL.
The crucial issue is how to combine the model with the mesh adaptivity. Dif-

ferent strategies are proposed in the literature to balance the two sources of error
(see, e.g., [2, 10, 25]). The approach we follow here iteratively alternates model

with mesh adaptivity until the desired accuracy on |J(u) − J(ub,h
m )| is achieved.

We stress again that the structure of the estimator ηb,h
mm

+ specifically fits for this
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purpose since the model and the mesh error contributions are separated.
The m-adaptive phase corresponds to the same procedure detailed in Section 3.2.
Concerning the h-adaptive phase, it is anticipated to be a straightforward step
since the finite element discretization is applied to a one-dimensional domain.
At the beginning of the h-adaptive phase, the partition TΩ and the modal multi-
index m are fixed, while the finite element partition {T i

h} is uniform on each
Ω1D,i for i ∈ {1, . . . , s}. The goal is to adapt the distribution of the finite ele-
ment nodes along Ω1D to fit the solution dynamics along the mainstream and
to guarantee the fulfillment of a given tolerance TOLH on the functional discrete
error. As usual, the finite element mesh is updated via an error equidistribu-
tion criterion on the subintervals Ki

l , i.e., we demand that ηh,i,l
mm

+ = TOLH/Nh

for l ∈ {1, . . . , ni} and i ∈ {1, . . . , s} (see lines 8. and 10. in the subsequent

pseudo-code), where ηh,i,l
mm

+ = ηh
mm

+

∣∣
Ri

l

denotes the discretization error estima-

tor associated with Ri
l , while Nh stands for the cardinality of the current finite

element mesh {T i
h}

s
i=1 on Ω1D.

The main steps of the h-adaptive procedure are here coded:

1. set k=0;

2. compute ηh
mm

+ via (48);

3. while( ηh
mm

+ > TOLH & k < NmaxH ) {

4. for i=1:s

5. for l=1:ni

6. compute ηh,i,l
mm

+;

7. if ηh,i,l
mm

+ > deltaH1
TOLH

Nkh

8. bisect Ki

l
;

9. elseif max(ηh,i,l
mm

+ , ηh,i,l−1

mm
+ ) < deltaH2

TOLH

Nkh
& l>1

10. merge Ki

l
and Ki

l−1
;

end

end

end

11. k=k+1;

12. compute ηh
mm

+ via (48); }

A maximal number NmaxH of iterations is allowed, while Nkh denotes the cardi-
nality of the k-th adapted grid. As usual, the mesh coarsening is a more difficult
task with respect to mesh refinement: the local error estimator associated with
at least two consecutive subintervals has to be sufficiently small before glueing
the subintervals (line 10. of the pseudo-code). The parameters deltaH1 and
deltaH2 limit the mesh refinement and coarsening to “the worst” and “the best”
subintervals, respectively.
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Loop at line 3. is entered only if the model predicted by the m-adaptive proce-
dure discretized on the initial uniform mesh does not ensure the desired accuracy.
We highlight that the evaluation of the error estimator at step 12. requires a
projection of the reduced solutions ub,h

m , zb,h
m , zb,h

m
+ on the new mesh.

The final output of the h-adaptive procedure is a new finite element partition
of Ω1D given by the union ∪s

i=1T̃
i

h , where T̃ i
h = {K̃i

l }
eni

l=1 denotes the adapted
partition predicted for the subinterval Ω1D,i. The lenght of the adapted intervals

K̃i
l can now vary along Ω1D,i as well as the number ñi of intervals may change

from subdomain to subdomain.
Now we are ready to set up the whole mh-adaptive procedure. We denote

by TOL the global tolerance demanded on the global error |J(u) − J(ub,h
m )|. The

idea of separately dealing with model and mesh adaptivity suggests us to define
two distinct tolerances to adapt independently the model and the mesh. For this
purpose, we set TOLM = θ TOL and TOLH = (1− θ) TOL with 0 ≤ θ ≤ 1. The value
θ establishes a ratio between modeling and discretization error, in agreement
with what stated in Remark 4.1.
The mh-adaptive procedure can be listed as follows:

1. set k=0;

2. compute ηb,h
mm

+ via (47);

3. if ηb,h
mm

+ ≤ TOL, break;

4. while( ηb,h
mm

+ > TOL & k < Nmax ) {

6. m-adaptive procedure;

7. h-adaptive procedure;

8. k=k+1;

9. compute ηb,h
mm

+ via (47);

10. if ηb,h
mm

+ ≤ TOL, break; }

A maximum number Nmax of iterations guarantees the end of the mh-adaptive
procedure. Again we point out that a projection on the updated mesh of the
reduced solutions involved in the estimators is required before each new iteration
of the whole procedure.

4.3 Numerical assessment of the mh-adaptive procedure

This section presents two test cases. The first test is essentially meant to assess
the mh-adaptive procedure from a qualitative viewpoint: in particular, we an-
alyze the sensitivity of the predicted model and discretization with respect to
the chosen goal functional. The second case focuses on a configuration of some
interest in hydrodynamics.

For both the test cases, we show that one single iteration of the mh-adaptive
procedure suffices.

25



4.3.1 Test case: diffusion heterogeneity

We solve the pure diffusive problem −∇· (µ∇u) = f , completed with full homo-
geneous Dirichlet boundary conditions, on the trapezoidal domain Ω bounded,
counterclockwise, by the straight lines x = 0, for 0 ≤ y ≤ 1; y = −0.1x,
for 0 ≤ x ≤ 4; x = 4, for −0.4 ≤ y ≤ 1.4; y = 1 + 0.1x, for 0 ≤ x ≤ 4.
In particular, the viscous coefficient µ coincides with the Gaussian function
1 + 100 exp(−[(x− 1)2 + (y − 0.32)2]/0.05), while the source term is set to one.
Figure 7 shows the corresponding full solution computed on a uniform unstruc-
tured grid of about 110000 triangles. The shape of the contour plots highlights
the localized nature of the viscous coefficient.

Figure 7: Full solution u

We run the mh-adaptive procedure with two different choices for the func-
tional of interest J . We control first a global and then a local quantity, the
last task being, in general, more challenging. In more detail, we pick J1(v) =
[meas(Ω)]−1

∫
Ω v(x, y) dz and J2(v) = [meas(̟)]−1

∫
̟ v(x, y) dz with v ∈ L1(Ω),

to control the mean value of the solution on the whole domain Ω and on the
region ̟ = Ω ∩ {(x, y) : x < 1.5}, respectively.

We make the same choice for the input parameters of the mh-adaptive proce-
dure for both the functionals. Concerning the modeling phase, we select m̃ = 1,
m̃+ = 3; φ = 0.16; δ = 1; deltaM1 = 0.5; deltaM2 = 1.5; NmaxM = 8; then, a
uniform finite element partition of size h = 0.2 is introduced on Ω1D = (0, 4). As
far as the mesh adaptivity is concerned, the parameters deltaH1 and deltaH2

are set to 0.5 and 1.5, respectively while the maximum number NmaxH of itera-
tions is fixed to 15. Notice that the initial mesh is selected to be significantly
coarse. Finally, we choose a global tolerance TOL = 0.1, the parameter θ = 0.05
and a maximum number Nmax= 10 of mh-adaptive iterations.
For the sake of simplicity, we do not perform any calibration of the saturation
constant βm in (12), simply by setting βm = 0 in (13).

For both the functionals the m-adaptive procedure identifies three subdo-
mains: for J = J1 we get Ω1 = (0, 0.6) × (−0.4, 1.4) ∩ Ω, Ω2 = (0.6, 1.8) ×
(−0.4, 1.4)∩Ω, Ω3 = (1.8, 4)×(−0.4, 1.4)∩Ω; for J = J2 we obtain Ω1 = (0, 0.6)×
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(−0.4, 1.4) ∩Ω, Ω2 = (0.6, 1.6)× (−0.4, 1.4) ∩Ω, Ω3 = (1.6, 4)× (−0.4, 1.4) ∩Ω.
The modal multi-indices predicted as initial guess for the m-adaptive phase are
m(0) = {1, 2, 1} and m+(0) = {3, 4, 3} for both the goal functionals. A tolerance
of 10−3 is set in the domain decomposition algorithm at both the interfaces.
A single iteration suffices to achieve the accuracy TOLM for both the choices of
J and the final prediction for the modal multi-index is m = m(1) = {1, 3, 1} in
both the cases. As expected, the largest number of modes is employed in Ω2,
i.e., where the significant transverse dynamics take place. Notice that the global
nature of the control via J1 reflects into the selection of a domain Ω2 which is
slightly wider than for J2. Figure 8 shows the piecewise hierarchically reduced
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Figure 8: Piecewise hierarchically reduced solution and distribution of the cor-
responding estimator for m = {1, 3, 1}, m+ = {3, 5, 3} and for the control of J1

(top) and J2 (bottom)

solution predicted by the m-adaptive procedure for J1 (top) and J2 (bottom)
together with the distribution of the corresponding error estimator (the three

different colors correspond to the modeling error estimators η b,i
mm

+ associated
with the subdomains Ωi for i ∈ {1, . . . , 3}). The control of the mean value leads
to a reduced solution which is very similar to the full one. The coarseness of the
finite element mesh motivates the irregular contour lines in Figure 8, especially
in Ω1 and Ω2 where the solution exhibits an irregular trend along the horizontal
direction. Finally, in accordance with the conformity analysis in [31], the model
discontinuity is more evident along Σ1 = {0.6} × γ0.6 since m1 < m2.

The h-adaptive procedure converges after three iterations for both the choices
of J . We show in Figure 9 the corresponding adapted meshes which consist of
47 and 62 elements, respectively. The two meshes exhibit a distinct distribution
of the subintervals which matches the selected goal-functional. As expected, the
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control of J2 locates most of the nodes in the left part of Ω1D: the control of
the global mean value predicts 29 subintervals on (0, 1.8) while 50 subintervals
are predicted on (0, 1.6) when J = J2. These results confirm the sensitivity of
the h-adaptive (and consequently of the mh-adaptive) procedure with respect
to the selected J .
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−0.5

0

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

186 23 14 1236

Figure 9: Adapted meshes associated with J1 (left) and J2 (right); the numbers
refer to the number of intervals on each Ω1D,i

4.3.2 Third test case

We model the water dynamics in a straight channel Ω = (0, 10)× (0, 1.5) whose
bed is restricted by a pier. In particular, to guarantee the regularity demanded
for the map Ψ in Section 2, we approximate the shape of the pier with a
gaussian profile (see Fig. 10 (top)). We solve the advection-diffusion problem

Figure 10: Domain Ω and advective field b (top); full solution u (bottom)

−µ∆u+b·∇u = f , with µ = 0.1, f(x, y) = (x−4)2+(y−0.75)2 < 0.5, while b is
the velocity field in Fig. 10 (top). The advection-diffusion problem is completed
by full homogeneous Dirichlet boundary conditions. As reference model, we are
interested in the dynamics of pollutant flowing in the channel Ω; more precisely,
we aim at controlling the mean value of the concentration u of pollutant over
the whole domain. We set therefore J(v) =

∫
Ω v(x, y) dz, for v ∈ L1(Ω). In

Fig. 10 (bottom) we show the contour plots of the full solution approximated
on a uniform unstructured mesh of about 18000 elements. The picture clearly
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shows how the contour lines are affected by the presence of the pier.
We stress that the analysis below is far from any quantitative interpretation of
the pollutant convection; it has to be meant just as an academic test case to
assess the mh-adaptive procedure on a configuration of some interest in hydro-
dynamics.

We run the mh-adaptive procedure with the following input parameters. For
the modeling phase, we choose m̃ = 1, m̃+ = 3, φ = 0.1, δ = 1, deltaM1 = 0.5,
deltaM2 = 1.5, NmaxM = 10 and a uniform finite element partition of size h = 0.2
to discretize Ω1D = (0, 10). The mesh adaptivity is set with deltaH1 = 0.5,
deltaH2 = 1.5, NmaxH= 15. Finally, we fix a global tolerance TOL = 5, the
parameter θ = 0.0018, Nmax= 10 and the saturation constant βm = 0.

The m-adaptive procedure detects the three subdomains Ω1 = (0, 4.6) ×
(0, 1.5), Ω2 = (4.6, 5.2)×(0, 1.5) and Ω3 = (5.2, 10)×(0, 1.5). The reduced exten-
sion of Ω2 essentially suggests that the thresholding procedure identifies the area
around the pier as the most troublesome for the control of J . The initial guess
predicted for the modal multi-indices are m(0) = {1, 2, 1}, m+(0) = {3, 4, 3}.
As far as the domain decomposition algorithm is concerned, the presence of
the advective field b immediately raises an important issue with respect to the
well-posedness of both the primal and the dual problems. We have to properly
select the Dirichlet and the Neumann interface according to the field direc-
tion. Thus, a Neumann/Dirichlet condition is assigned at Σ1 = {4.6} × γ4.6

and Σ2 = {5.2} × γ5.2 when solving the primal problem; conversely, a Dich-
let/Neumann condition is enforced for the dual problem. We fix a tolerance
equal to 10−2 for the domain decomposition algorithm at both Σ1 and Σ2. At
this stage the average number of iterations to guarantee the desired accuracy is
nine.
Two model adaptivity iterations are enough to reach the tolerance TOLM, with a
final prediction for the modal multi-index m = m(2) = {3, 2, 3}. To control J ,
an additional mode is employed where the pollutant is released as well as in the
wake area, behind the pier.

The h-adaptive procedure converges at the fourth iteration. During the first
three iterations the mesh is preserved uniform on both Ω1D,1 and Ω1D,3, while
it is gradually refined on Ω1D,2 (the number of nodes increases from 7 to 24).
At the last iteration, only a coarsening of the mesh on Ω1D,1 occurs (notice that
the first internal node coicides with 3). Figure 12 (left) shows the four adapted
meshes together with a corresponding zoom in on Ω1D,2 (right) to highlight the
crowding of the nodes in the area around the pier.
In Figure 11 we show the piecewise hierarchically reduced primal (top) and
dual (bottom) solutions computed on the last adapted mesh. As expected, the
control of the mean value leads to a reduced primal solution similar to the full
one (compare Fig. 10 (bottom) with Fig. 11 (top)). Moreover, since the goal
quantity is distributed on Ω, the dual problem identifies the whole domain as
influencing the functional J . Finally, in Figure 11 (middle) we show the reduced
dual solution computed on the third adapted grid. Notice that the dual solution
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Figure 11: Piecewise hierarchically reduced solutions for m = {3, 2, 3}: primal
(top) and dual (bottom) solution on the last adapted mesh; dual solution on the
third adapted mesh (middle)

on the last mesh overestimates the size of the boundary layer along Γ0 because
of the the coarseness of the finite element mesh in the first part of Ω1D,1.

5 Future developments

Possible extensions of the Hi-Mod reduction include the generalization of our
approach to time-dependent and nonlinear problems. Moreover, in view of prac-
tical problems, we plan to implement the proposed approach in a 3D setting.
Different modal bases (see [29] for a first example in such a direction) as well
as coupling algorithms alternative to the Dirichlet/Neumann scheme represent
also topics of some interest.
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