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Abstract

Many biological tissues exhibit a non–standard continuum mechanics behavior: they are able to

modify their placement in absence of external loads. The activity of the muscles is usually represented

in solid mechanics in terms of an active stress, to be added to the standard one. A less popular approach

is to introduce a multiplicative decomposition of the tensor gradient of deformation in two factors: the

passive and the active one. Both approaches should satisfy due mathematical properties, namely frame

indifference and ellipticity of the total stress. At the same time, the constitutive laws should reproduce

the observed physiological behavior of the specific living tissue. In this paper we focus on cardiac

contractility. We review some constitutive examples of active stress and active strain taken from the

literature and we discuss them in terms of precise mathematical and physiological properties. These

arguments naturally suggest new possible models.
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Introduction

Mechanobiology is an area of increasing interest in continuum mechanics. The impressive improvements

of experimental techniques offer to scientists a huge number of data, at several spatial scales, ranging

from cells to big mammals. The accuracy of experimental measures and the novelty of the observed

phenomena make the mathematical modelling of biological phenomena a very attractive field. Molecu-

lar biology currently plays a major role, but there is quite a consensus that mechanics, and in particular

continuum mechanics, is the correct tool for an insight of several open questions as, for instance, mechan-

otrasduction [24].

One of the non–standard characteristics of living matter, that poses intriguing questions in continuum

mechanics, is the ability of a body to change its own placement, without external loads. This property
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is shared with several other mechanical systems: a few examples are thermally–induced strain in metals,

swelling gels, phase transitions. In the present context the internal dynamics is due to the action of mus-

cles, who spend energy at the microscale in order to produce a deformation at the macroscale. Our main

interest is in modelling specifically the cardiac muscle, which is probably the most important example of

“active biological material”. Some mathematical issues to be addressed in the paper have general validity,

while the modelling aspects are dictated by our specific interest in heart physiology.

The cardiac functionality can be sketched as follows. The electric signal, produced by self–excitable

cells specifically located, starts the mechanical activity. A voltage wave then travels along the conduction

fibers, depolarizes the cardiac cells, dictates the shortening of cardiomyocytes and the corresponding

contraction of the cardiac muscle, that pumps the blood through the arteries and in the whole body.

The mathematical description of such a process faces a number of difficulties. Restricting to the

solid mechanics issues only, the passive behavior of the cardiac wall is quite complex. The material is

non–homogeneous, composed by several layers; in each layer the fibers have a specific orientation and

their direction rotates for tens of degrees across the wall thickness, giving rise to a complex mechanical

characterization [9]. Boundary conditions are not a trivial issue, as they are externally due to the traction

exerted by other organs, while internally the blood, an incompressible fluid, prevents contraction until the

valves open up. Boundary traction and elastic moduli are typically known with a severe uncertainty.

The focus of this paper is on a specific aspect involved in the mathematical modelling of active

biological tissues and cardiac mechanics, in particular: we describe the heart as a continuum body and

our question is how to include the active tension, due to the contraction of cardiomyocytes, in the force

balance that determines its deformation. Two possible strategies are available in the literature. The most

popular approach is to add an active contribution to the stress of the material [22, 18, 8, 19]. In principle,

one first characterizes the passive mechanical properties of a specimen, provided that experiments are

carried out in physiological conditions, and obtains a standard strain energy. Then an additive stress

contribution is to be included in the force balance, typically dependent on fibre orientation, so that the

observed contraction and torsion is reproduced [20].

A different point of view, inspired by the theory of active materials, has been introduced by Taber and

Perucchio [25] and then deeply explored by Teresi and others [14, 5, 15]. They adopt a multiplicative de-

composition of the tensor gradient of deformation, reminiscent of the theory of plasticity and, in biology,

volumetric growth [21]. The deformation gradient rewrites then F = FeFa, where the active contribution

Fa has to be constitutively provided. The active strain Fa stores no energy, and it could be pictorially

understood as a distortion of the microstructure, that forms a kind of watermark defined in the whole

body. The elastic deformation Fe must accommodate the material in order to preserve the compatibility

of the deformation F, possibly undermined by the distortion Fa.

In this paper we examine some mathematical and biological instances of these two approaches: frame

invariance, ellipticity of the stress tensor and compatibility with the expected physiological behavior. In

Section 1, elementary monotonicity arguments applied to a contractile rod illustrates the very difference

in the two approaches and how different models can ensure existence and uniqueness of the solution or

not. In Section 2 are resumed the basic definitions of ellipticity and convexity that are to be applied to

active tension models taken from the literature in Sections 4 and 5. A physiological characterization of

the stress–strain curve of cardiomyocytes under pre–stretch and pressure–volume curves in the cardiac

muscle are is illustrated in Section 3. Conclusions and possible developments are drawn in the final

section.

1 An elementary argument

Some elementary arguments on the active deformation of an elastic rod can turn useful to point out the

essence of the active stress and active strain approaches. Consider the active stress model first. In an ide-
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alized experiment, we load a one dimensional elastic rod, characterized by the homogeneous deformation

λ and a convex strain energy W (λ ). The balance of standard and active force reads:

dW

dλ
+ τ +σ = 0, (1.1)

where τ is the active tension, σ the external force. We are interested in an active tension able to produce

shortening (λ < 1, W ′ < 0), in absence of external load (σ = 0), i.e. τ > 0. For reasons to be discussed in

following sections, the models presented in the literature typically assume that the active tension depends

on the stretch: τ = τ(λ ). The non–trivial case we are interested in is when τ|λ=1 6= 0 so that the relaxed

state is not of equilibrium.

Eq. (1.1) provides the equilibrium strain; its existence and uniqueness are ensured if

d2W

dλ 2
+

dτ

dλ
≥ 0, ∀λ > 0. (1.2)

Notice that convexity of W (λ ) would be sufficient for our purposes if τ does not depend on λ , but this

case is not of much interest.

Depending on the specific functional forms W (λ ) and τ(λ ), the condition (1.2) may be satisfied or

not. Consider the following examples of active tension:

τ = κλ , (1.3a)

τ = κλ 2, (1.3b)

τ = κλ−1, (1.3c)

where κ > 0. It is an elementary calculation to check if the condition (1.2) is verified:

d2W

dλ 2
+κ > 0, (1.4a)

d2W

dλ 2
+2κλ > 0, (1.4b)

d2W

dλ 2
−κλ−2 > 0. (1.4c)

Relations (1.4a) and (1.4b) always apply. For a given strain energy, (1.4c) reads as a restriction on the

strain range that can be spanned; in particular, it might be not satisfied for large compression.

Consider the same problem illustrated above in terms of active strain: now we set W = W (λ/λa),
where λa, the active shortening, is given, and τ = 0. The force balance equation reads

dW

dλ

1

λa
+σ = 0.

The convexity condition at equilibrium state is:

d2W

dλ 2

1

λ 2
a

> 0.

In this case, existence and uniqueness of equilibrium are ensured by the mere convexity of the strain

energy function.

The elementary argument sketched above illustrates the motivation of this paper: to point out the

mathematical properties and physiological characteristics that a model for active contraction should pos-

sess and possibly propose new approaches that fulfill such requirements.

3



2 Introductory notions

The motion of a continuum body is an invertible smooth map from an open set of R
3 into R

3; the function

x = x(X, t) associates every point X in the initial (relaxed) configuration to its current placement x. The

gradient of this function is a tensor (the tensor gradient of deformation):

F = Gradx, Fi j =
∂xi

∂X j

, 1 ≤ i, j ≤ 3.

The tensor gradient of deformation belongs to the space on linear operators with strictly positive deter-

minant Lin+.

The tensional state in an elastic homogeneous continuum medium is described in material coordinates

by the Piola stress tensor P(F). The following definitions hold:

P = JTF−T, S = JF−1TF−T = F−1P,

where T is the Cauchy stress tensor, S is the second Piola stress tensor and J = det(F). For an hyperelastic

material, it exists a strain energy function W : Lin+ → R such that

P =
∂W

∂F
, (2.1)

where the symbol at the right hand side denotes the Fréchet derivative.

The strain energy of soft biological tissues typically depends on the orientation and elongation of fibers

of different nature. Denoting by n(X), the (unique) orientation of the fibers in the point X of the body in

its referential configuration, we have W = W (F;n), where the dependence of the strain energy on n is

of parametric nature [12]. For the sake of simplicity, we omit to indicate explicitly such a dependence in

the following, but the results illustrated in the present work remain valid in the general anisotropic case.

In particular, if the strain energy function is invariant with respect to rotations of the form n⊗n, then it

depends on n only through a set of scalar quantities like1 I4 = Fn ·Fn and I5 = F−Tn ·F−Tn [11].

The constitutive relation for an elastic material P = P(F) is strictly monotone if

(
P(F+αH)−P(F)

)
: H > 0,

for each F ∈ Lin+, H 6= 0 and α ∈ (0,1] such that det(F+αH) > 0. (2.2)

In case of hyperelastic material, the definition (2.2) corresponds to the strict convexity of the strain energy

function:

αW (F)+(1−α)W (F+H) > W
(
F+(1−α)H

)
,

for each F ∈ Lin+, H 6= 0 and α ∈ (0,1) such that det
(
F+(1−α)H

)
> 0. (2.3)

If P(F) is differentiable, the condition (2.2) is equivalent to say that the second derivative of the energy is

a positive definite linear operator (cfr. (2.1)):

H :
∂P(F)

∂F
: H > 0, for each F ∈ Lin+ and H 6= 0. (2.4)

Despite its appeal, strict monotonicity is a too restrictive condition for several reasons [2]. A well

established weaker characterization is the strong ellipticity condition: inequality (2.4) must hold for any

1We use standard enumeration for these invariants.
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increment H of rank–one. Analogously, a strain energy is rank–one convex if (2.4) holds for any incre-

ment H of rank–one. Notice that the set of the rank–one tensors is represented by the dyads a⊗b where

a,b ∈ R
3.

Finally, if the material is incompressible, the condition det(F+αH) = 1 should be added in (2.2) and,

for a smooth enough strain energy function, this condition translates into F−T : H = 0 in inequality (2.4).

If the increment is a rank–one tensor, i.e. H = a⊗b, then it must be F−T : H = a ·F−1b = 0.

3 Physiological facts

While the mathematical results illustrated in the next sections may apply to any active material, the mod-

elling issues refer to the specific problem that we have in mind, namely the heart contraction. A milestone

of the physiological literature in this respect is that a mathematical model designed to predict the solid

mechanics behavior of the cardiac muscle should be able to reproduce the active tension according to the

Frank–Starling law. Its qualitative statement is the following: “the greater the volume of blood entering

the heart during diastole (end–diastolic volume), the greater the volume of blood ejected during systolic

contraction (stroke volume) and vice-versa”. In dynamic terms, this means that the larger the passive

strain of the cardiac muscle originated by the venous pressure before contraction, the larger the active

stress. This relation has a clear functional motivation: the muscle applies a bigger force when a greater

work has to be performed, thus pumping a larger volume of blood.

This self–regulation mechanism at a tissue level has a striking counterpart at a cellular level, where a

quantitative evidence is offered by several experiments. Cardiomyocytes stretched up to 1.3 times of their

original length apply an active force, after electric stimulus, that grows linearly with the pre–stretch [10].

This relation is apparent in the plot of Figure 1 (a sketch of the results reported by Iribe et al. [10]). A
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Figure 1: Cardiomyocytes electrically stimulated under isometric conditions: the produced force grows

linearly with the pre-stretch [sketch from Figure 5A of [10]].

cardiomyocyte undergoes isometric contractions after pre–stretch at different ratios (lower straight line).

The cell is activated by a voltage difference while kept at a constant length. The produced force depends

linearly on the pre–stretch (difference between the value of the two lines) at fixed length.
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While the active–passive stress–strain relations are well understood at a cellular level, to our knowl-

edge a quantitative Frank–Starling law at a tissue scale has not been stated yet. The prototypical setup to

state a force–strain relation at the macroscale is the pressure–volume curve that occurs in the heart during

its cycle. Figure 2 shows the different pressure–volume loops that can be obtained in a ventricle by tuning
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Figure 2: Pressure–volume loops in a ventricle allow to determine the curve of the passive and active

normal stress at the cardiac wall [sketch from Figure 12 of [7]].

the aortic pressure. This plot provides the quantitative dependence of the active stress on the deformation

[4, 15]: the upper and lower dashed lines denote the pressure of the fluid, i.e. the radial stress at the inner

wall, both when the stress is purely passive (lower curve) and when the stress is actively produced (upper

curve).

In this paper we do not enter further physiological details and the reader interested in cardiac phys-

iology may refer to the cited literature. We just point out that it is not trivial to match the cellular and

tissutal experiments in order to state a macroscopic constitutive equation. At the macroscale, the curves

reported in the literature clearly show a strongly nonlinear dependence of the active stress (measured by

the pressure of the fluid) and the strain (represented by the change in volume). In fact, the hoop stress in

a hollow elastic sphere filled by a fluid at pressure p obeys the Laplace formula:

TΘΘ =
rp

2h
,

where r is the radius, h the thickness of the wall and TΘΘ is an averaged hoop stress (basically the active

stress, in our case). For an incompressible material, the constant volume of the solid body is ≃ r2h and

therefore, as a rule of thumb,

TΘΘ =
rp

2h
≃ r3 p ≃ r6, (3.1)

where the dependence of the pressure on the volume has been exported by the curve in Figure 1. As the

hoop strain is proportional to r, it follows from (3.1) that the active stress grows very nonlinearly with

the deformation. Quoting Downey: “increasing end–diastolic volume actually diminishes the heart’s
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ability to convert its fiber tension into pressure. In the physiological range, this disadvantage is greatly

overshadowed by the increase in force generation that results from the longer fiber length”. As a matter

of fact, Teresi and coworkers reproduce the plot of Figure 2 in an active strain framework choosing a

constitutive law for the stress that grows with the sixth power of the strain [15].

We close this section mentioning that active stress models reported in the literature are sometimes

inspired by experimental evidence at a cell–scale, sometimes they account for a macroscopic behavior

directly. The first approach is clearly more satisfactory from a methodological point of view and the

efficacy of the active constitutive relation at a tissue scale is to be verified a posteriori, typically on the

basis of numerical simulations.

4 Active stress

We address first the question whether ellipticity of the Piola stress tensor is ensured when adopting an

active stress approach. The aim is to investigate the mathematical characteristics of the equilibrium

predicted by models currently adopted in numerical codes, as well as to discuss their physiological basis.

In general there is no reason why the active stress tensor should arise from a potential, and in fact it

is not a conservative force. We therefore investigate ellipticity by direct derivation of the total stress. If

now W = W (F), the total Piola stress reads

P =
∂W

∂F
+Pa

where Pa = FSa is the active Piola stress to be prescribed, possibly depending on F.

If the material is hyperelastic in its passive mechanical behavior, the condition (2.4) rewrites now

H :
∂ 2W

∂F∂F
: H+H :

∂Pa

∂F
: H > 0, ∀F ∈ Lin+, H 6= 0, (4.1)

with the additional constraint F−T : H = 0 in the case of incompressible material.

Given for granted that W = W (F) is a rank–one convex function, inequality (4.1) reads as a condition

on the functional form of the active stress. In this section we address the ellipticity of the total stress P by

checking the positivity of the second term at the right hand side of (4.1) for some specific models taken

from the literature. If the active term in (4.1) is not positive, the inequality can still hold, depending on

the specific strain energy W (F), but conditions can apply on the admissible strain range.

Notice that possible strong mathematical properties of the active stress Pa (as strict monotonicity) are

not to be deprecated, because the sum of two functions retains the (good) properties of the weaker one.

Conversely, if Pa is not at least rank–one elliptic, the existence of the solution might be not ensured.

4.1 Examples from the literature

One possible form of the active tension that does not involve an active role for the fibers is proposed by

Panfilov et al. [18] in terms of second Piola–Kirchhoff active stress tensor:

Sa = S̃aC−1 (4.2)

where C = FTF. In an electromechanical model, the scalar quantity S̃a depends on the activated state

of the material, possibly thanks a delay equation; however such a dependence is not of interest herein,
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where balance of forces applies in static form, and we take it constant. Notice that the Cauchy stress

corresponding to (4.2) is spherical. Here the first Piola stress reads

P =
∂W

∂F
+ S̃a F−T,

where W is a strain energy of a compressible material. The ellipticity can be checked by further deriva-

tion:

H :
∂ 2W

∂F∂F
: H− S̃a F−THTF−T : H > 0. (4.3)

The last term at the right hand side can be negative (take, for instance, H = a⊗ a) and, depending on

the specific form of the strain energy, the total stress might not be unconditionally strongly elliptic. In

particular the condition (4.3) may be not satisfied for large compressions.

A constitutive equation for active stress that accounts for the orientation of the fibers can be written

in a general form as follows:

Pa = Sa(I4)Fn⊗n (4.4)

where Sa is a positive function of I4 = Fn ·Fn (in the range of interest). A popular choice, firstly proposed

by Smith et al. [22] and then adopted by other groups, is a dependence of the following type:

Sa(I4) = S̃a

1+β
(√

I4 −1
)

I4
, (4.5)

where β and S̃a are constant in this context and the active stress works only when the fibers are elongated

(I4 > 1). The numerator of the r.h.s. term encodes the Frank–Starling effect while the denominator can

be interpreted as a normalization factor accounting that Sa is a Cauchy stress per unit fiber length.

Böl et al. [3] propose

Sa(I4) = f0 + S̃a

(
1− e−η(

√
I4−1)

)
, (4.6)

which accounts for the Frank–Starling effect directly at a macroscopic level.

Finally Pathmanathan et al. [19] adopt a form of the active stress tensor that can be obtained deriving

a scalar function:

Pa = S̃a
∂

∂F

(
log(Fn ·Fn)

)
= 2

S̃a

I4
Fn⊗n. (4.7)

Such a scalar function should not be understood as a strain energy, as no conservation applies: the pos-

sibility to derive the stress from a scalar is just a technical tool that simplifies the analysis. As a matter

of fact, the Piola stress (4.7) is not even rank–one elliptic and therefore, for a given generic passive strain

function, strong ellipticity of the total stress holds under condition.

Irrespective of the specific form at hand, the strong ellipticity of the active stress forms illustrated

above can be checked by direct derivation of (4.4). In fact, strong ellipticity for a given deformation F0,

with H = a⊗b reads as follow:

H :
∂Pa

∂F

∣∣∣∣
F0

: H =
[
2S ′ (F0n ·a)2 +S (a ·a)

]
(b ·n)2 ≥ 0, (4.8)

and here we denote

S = Sa|F0
, S ′ =

dSa

dI4

∣∣∣∣
F0

.
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The condition F−1
0 a · b = 0 on the admissible virtual displacements dictated by the incompressibility

constraint is accomplished taking a = F0m, with m such that m ·b = 0.

We start observing that strict inequality is not satisfied in (4.8) if b · n = 0. In the other cases the last

factor can be dropped and the following condition remains:

2S ′ (F0n ·a)2 +S (a ·a) ≥ 0. (4.9)

If Sa(I4) is a monotone increasing function of its argument, the inequality (4.9) is always verified. Con-

versely, if Sa(I4) is a monotone decreasing function, by application of the Cauchy-Schwarz inequality,

2S ′ (F0n ·a)2 +S (a ·a) ≥ 2S ′ (F0n ·F0n)(a ·a)+S (a ·a) ,

we can state the following sufficient condition for the rank–one ellipticity of active stress tensors of the

form (4.4):

2S ′ (F0n ·F0n)+S ≥ 0.

Remark If an active stress model is not rank–one elliptic, an equilibrium solution of the force bal-

ance equation may not exist, at least for some range of the strain. In the numerical approximation of

the momentum equation, the absence of equilibrium configurations might be interpreted as a numerical

instability to be addressed by a more careful numerical discretization. However, no numerical strategy

can cure an ellipticity loss of the differential equations.

4.2 A physiologically motivated active stress

In this section we introduce an active stress form that satisfies rank–one ellipticity, frame indifference

and, for infinitesimal strains of for homogeneous deformations along the direction of the fibers n, accom-

modates the Frank–Starling law in its cell–scale version. Consider

T =
1

J

∂W

∂F
FT +

Sa

J

Fn⊗Fn√
I4

,

and, in terms of Piola stress,

P =
∂W

∂F
+Sa

Fn⊗n√
I4

. (4.10)

The active component of the Piola tensor (4.10) is a strictly monotone linear operator. A simple way to

prove it is to notice that such a specific constitutive form can be obtained by derivation of scalar function

Wa = Sa

√
I4.

As Wa is convex, the corresponding active stress tensor is monotone. In fact the inequality

αWa(F)+(1−α)Wa(G) ≥ Wa

(
αF+(1−α)G

)
,

for each F,G ∈ Lin+ and α ∈ (0,1) such that det(αF+(1−α)G) > 0.

follows from

|Fn||Gn| ≥ |Fn ·Gn|.
Notice that the sum of two functions retains the regularity properties of the less regular one; in our case

strict rank–one convexity of W and convexity of Wa ensure strict rank–one convexity of W +Wa.
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4.3 Boundary conditions

The active stress is originated by fiber contraction, their orientation being n in the reference configuration

and Fn in the current one. As the fibers are tangential to the surface at the boundary, a reasonable

requirement is that they do not contribute to the traction balance at the boundary itself, i.e.

Pam = 0,

where m is the normal to the boundary in the reference configuration. The reader can notice that such a

characterization is satisfied by the active stress tensors (4.4) and (4.10).

5 Active strain

Consider now a modified convex energy of the form W = W (Fe), where F = FeFa. The meaning of this

assumption is as follows: in absence of external forces the minimum of energy (the relaxed configuration)

is shifted by the internal active forces to the configuration F = F−1
a and no energy is stored by the action

of the internal active forces [6]. The corresponding Piola stress, evaluated in the reference configuration,

is obtained by a pull back of the Frechet derivative of the strain energy:

P(F) = det(Fa)
∂W

∂Fe
F−T

a .

We start checking if convexity is preserved. The answer is positive: ∀H 6= 0 it holds

H :
∂ 2W

∂F∂F
: H = H :

(
∂ 2

∂F∂F
W (FF−1

a )

)
: H = HF−1

a :
∂ 2W

∂F∂F
: HF−1

a > 0.

Rank–one convexity is granted by the properties of W ; in fact if H is a rank–one tensor, also HF−1
a is a

rank–one tensor.

For a frame invariant strain energy, here the principle of material indifference for change in observer

is abided if the gradient of deformation in its factorial representation transforms correctly:

F∗ = QF ⇒ F∗
eF∗

a = QFeFa,

for any rotation Q. The simplest way to obey this prescription is to choose Fa invariant: F∗
a = Fa. It

follows that

F∗
e = F∗(F∗

a)
−1 = QF(Fa)

−1 = QFe.

The Cauchy stress is,

T = PFT =
∂W

∂F
FT = (detFa)W

′ F−T
a FT (5.1)

where W ′ denotes differentiation of W with respect to its argument.

Since, in general, there are no apparent passive and active stress herein, it is not immediate to argue

the physiological admissibility of the model in terms of “Cauchy stress growing with strain”, along the

same lines exposed in the previous sections. However specific constitutive forms allow to outline an

analogy.

A frame invariant constitutive equation for the active strain Fa that naturally accounts for the contrac-

tion of the fibers is

Fa = 1− γ n⊗n,
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where γ is a positive constant, 1 > γ > 0, and 1 is the identity tensor. The determinant and the inverse of

Fa can be explicitly calculated (see Appendix A)

det(Fa) = 1− γ, F−1
a = 1+

γ

1− γ
n⊗n.

Let us suppose that the strain energy of the inert material be the sum of a neo–Hookean isotropic contri-

bution plus a transverse isotropic one, as follows:

W (Fe) =
µ1

2
Fe : Fe +

µ2

2
Fen ·Fen.

According to (5.1), the corresponding Cauchy (total) stress is2 (see Appendix B)

T = µ1

(
FFT − γ FFT + γ

2− γ

1− γ
Fn⊗Fn

)
+ µ2

(
1+

γ

1− γ

)
Fn⊗Fn. (5.2)

The polynomial strain energy allows here to recover an interpretation of the active strain in terms of active

stress. We devise in (5.2) a standard passive Cauchy stress plus an extra one: all the terms depending on

γ can be understood as active dynamic contribution. The same comment would not apply for a non–

polynomial energy and, as a matter of fact, exponential strain energies are common in biomechanics.

Notice that all the active contributions (5.2) are quadratic in the deformation, a direct consequence of the

quadratic form of the neo–Hookean Cauchy stress.

Final remarks

In this paper we have addressed the correct mathematical statement of the contractility of a muscle, with

a focus on the cardiac system. While the mathematical results have a general validity, the physiological

characterization pertains the specific system at hand.

An acceptable mathematical model for the active behavior of the cardiac muscle should satisfy math-

ematical and biological requirements.

• Correct biological behavior: when the effective potential wave activates the muscle, the material

should contract in the direction of the fibers. It is experimentally observed that the cardiac wall

produces an active stress that grows with the stretch. The dependence between stretch and active

stress is linear at a cell level, typically nonlinear at a tissue level, an issue that remains to be better

understood.

• The total stress must obey frame invariance and a suitable sign preserving condition (rank–one

ellipticity, in the present work).

A constitutive form of the active stress should be prescribed with the due attention to the properties listed

above. If the active stress in itself is not at least rank–one elliptic, a condition on the ellipticity of the

total stress can arise, typically limiting the maximum admissible strain [19]. On the other hand, the active

stress can have strong sign–preserving properties, possibly stronger than the ones typically advocated for

the standard stress, as the due weakness will be ensured by the standard part of the stress. Provided that

2A neo–Hookean hyperelastic material is incompressible and the Lagrange multiplier corresponding to such a constrain should

appear in the Cauchy stress (5.2). However, we are here interested in investigating the rank–one ellipticity of the stress tensor, the

pressure does not perform any work because −pF−T : H = 0 and we omit such a term for the sake of simplicity. The same argument

applies for possible incompressible materials of the previous sections.
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the sought mathematical characterization is abided, the active stress approach ensures the flexibility to

reproduce the observed physiological behavior.

The active strain approach is mathematically more robust, as frame invariance and rank–one elliptic-

ity are simply inherited from the corresponding properties of the standard strain energy of the material.

Conversely, the analysis of the physiological predictions in terms of dependence of the active force on

the stretch is more involved. The active strain approach is more rigid and allows no chance for mod-

elling the physiological behavior after that the inert properties of the material are prescribed. When a

reinterpretation of the active strain in terms of active stress is possible, no new free parameters are to be

fitted: the new dynamic contribution naturally arises from the visible stretch, because the kinematics of

the microstructure is directly encoded in the equations. While the mathematical derivation of the model

is more elegant, as no active stress function is to be tuned, the physiological effectiveness of the obtained

model remains to be addressed. A few investigations into the physiological relevance of the multiplicative

decomposition has been done for smooth muscles with promising results, see, e.g., [13] and [23].
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Appendix A

Introduce e1 = (1,0,0)T and let Q be the rotation such that Qe1 = n. The following identity holds:

(1− γ n⊗n)−1 = (1− γ Qe1 ⊗Qe1)
−1 =

(
QQT − γ Q(e1 ⊗ e1)QT

)−1

=
(
Q(1− γ e1 ⊗ e1)QT

)−1
= Q(1− γ e1 ⊗ e1)

−1
QT

= Q

(
1+

γ

1− γ
e1 ⊗ e1

)
QT = 1+

γ

1− γ
n⊗n.

Appendix B

The Cauchy stress is

T = det(Fa)
∂W

∂Fe
F−T

a FT = det(Fa)
(
µ1Fe + µ2Fen⊗n

)
F−T

a FT.

The first term at the right hand side is

det(Fa)FeF−T
a FT =det(Fa)FF−1

a F−T
a FT

=(1− γ)F

(
1+

γ

1− γ
n⊗n

)(
1+

γ

1− γ
n⊗n

)T

FT

=(1− γ)FFT + γ
2− γ

1− γ
Fn⊗Fn.

Noting that

Fen = FF−1
a n =

1

1− γ
Fn,

the second term at the right hand side rewrites

(1− γ)Fen⊗nF−T
a FT = (1− γ)Fen⊗Fen =

1

1− γ
Fn⊗Fn.
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