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Abstract

A Bayesian approach to covariance estimation and geostatistical inter-
polation based on flexible variogram models is introduced. In particular,
we consider black-box kriging models. These variogram models do not
require restrictive assumptions on the functional shape of the variogram;
furthermore, they can handle quite naturally non isotropic random fields.
The proposed Bayesian approach does not require the computation of an
empirical variogram estimator, thus avoiding the arbitrariness implied by
the construction of the empirical variogram itself. Moreover, it provides a
complete assessment of the uncertainty in the variogram estimation. The
advantages of this approach are illustrated via an extensive simulation study
and by application to a well known benchmark dataset.
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1 Introduction

Accurate variogram estimation is at the core of geostatistical interpolation
procedures and is crucial for making reliable predictions on the basis of
spatially correlated data. Traditionally, isotropy assumptions are required
and variogram estimation is achieved by generalized least square fitting pro-
cedures (see e.g. Christensen (1991), Cressie (1991), Wackernagel (1995),
Walden and Guttorp (1992) for a complete discussion). These fitting ap-
proaches require the construction of an empirical variogram estimator and
an assumption concerning the variogram shape. However, each of these
steps allows for remarkable arbitrariness. Empirical variogram estimators
are built clustering data pairs into classes according to the distance between
the two points, but the selection of such distance classes is not uniquely dic-
tated by the data. Their choice and that of the variogram model to be used
in the fit are mostly done ad hoc and require substantial user expertise in
order to give reasonable results.

These estimation procedures can be improved in two different ways. On
the one hand, the uncertainty in the variogram parameters can be modeled
in a Bayesian framework, in order to estimate their posterior distribution
with respect to the available data (the reader may refer e.g. to Bernardo
and Smith (1994) for an introduction to the basic concepts and defini-
tions of Bayesian statistics). This leads to the so called Bayesian kriging
approaches, proposed e.g. in Berger et al. (2001) and Handcock and Stein
(1993). On the other hand, variogram estimation procedures can be devised
that do not require so many restrictive ad hoc assumptions. For example,
more flexible variogram models have been proposed in Shapiro and Botha
(1991), where a cosine series variogram model was introduced, and in Im
et al. (2007), where a semiparametric form of the spectral density was con-
sidered, consisting in a combination of cubic splines for low frequencies and
of a polynomially decreasing tail for high frequencies. Other non parametric
approaches were proposed e.g. in Gorsich and Genton (2000).

An interesting proposal in the latter direction, albeit limited to fields
with second order moments, is the flexible variogram model introduced in
Barry and Ver Hoef (1996) and also known as black-box kriging approach.
This approach exploits a special representation theorem for variogram func-
tions that allows to characterize a subset of piecewise polynomial functions
as valid variograms with sill. Functions of this shape are then fitted to
the traditional empirical variogram estimates, thus yielding a very flexible
procedure that does not require to specify a variogram model of fixed func-
tional form. Indeed, it is proven in Barry and Ver Hoef (1996) that, in the
one-dimensional case, any generic variogram with sill can be approximated
by a valid piecewise linear one. Another advantage of this approach is that
it handles quite naturally non isotropic random fields.

In the present work, we propose a Bayesian approach to kriging with
flexible variogram models. The parameters characterizing a generic piece-
wise linear valid variogram, according to the representation theorem of
Barry and Ver Hoef (1996), are assumed to be random variables with a cho-
sen a priori distribution. The a posteriori distribution of these parameters
given the available data can be computed by an appropriate Markov Chain
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Monte Carlo (MCMC) scheme, and a complete assessment of the uncer-
tainty in the variogram estimation is achieved (see e.g. Gilks et al. (1998)
and Robert and Casella (2004) for an introduction to MCMC methods).
The proposed technique addresses both previously reviewed shortcomings
of traditional techniques and constitutes a further step towards reducing
the need for expert user intervention in the variogram model choice, that
restricts in many cases the applicability of geostatistical interpolation tech-
niques. With respect to the standard weighted least square variogram esti-
mation used in Barry and Ver Hoef (1996), the present Bayesian approach
does not require the computation of an empirical variogram estimator, thus
avoiding the potential arbitrariness implied in the construction of the em-
pirical variogram itself. Furthermore, as in Barry and Ver Hoef (1996),
anisotropy can be accounted for in a very straightforward way.

The advantages of the present method are illustrated by an extensive
simulation study with synthetic one-dimensional data, as well as by an
application to the well known Wolfcamp aquifer benchmark dataset (see e.g.
Harper and Furr (1986), Cressie (1991) and Barry and Ver Hoef (1996)).
Kriging reconstructions obtained with the estimated variograms are also
presented and validated. It is shown that the estimates obtained by the
present approach yield significant improvements over the fitting technique
used in the original black-box kriging approach.

In section 2, the flexible black-box variogram models are reviewed. In
section 3, the Bayesian approach to flexible black-box variogram estimation
is introduced, while in section 4 the MCMC algorithm used to deal with the
proposed model is described. The results of simulation studies on synthetic
data and of applications to real data are presented in section 5, while in
section 6 we draw some conclusive remarks.

2 Flexible black-box variogram models

Geostatistical interpolation is usually formulated assuming that the data
consist in a realization of a random field Z : D × Ω → R, D ⊂ Rd with
a deterministic mean m(x) and a valid semivariogram function γ(h) =
E[(Z(x+h)−Z(x))2]/2. The classical characterizazion of valid variograms
is given in terms of conditionally negative definite functions, i.e., γ(h) is a
valid semivariogram function if and only if

n∑

i=1

n∑

j=1

aiajγ(xi − xj) ≤ 0,

for all n ∈ N, all xi,xj ∈ D and all a1, . . . , an ∈ R such that
∑n

i=1 ai =
0. In general, a piecewise linear function (in more than one dimension,
a piecewise multilinear one) is not conditionally negative definite, so that
simple interpolation of the values of an empirical variogram estimator does
not yield a valid variogram function.

It was proven in Barry and Ver Hoef (1996) that, for d = 1, under the
assumption that the semivariogram is constant for h > c, with c > 0 given,
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the function 2γ can be represented as

2γ(h) =
∫

R
[f(x)− f(x− h)]2dx, (1)

where f is a measurable function. The main point of the flexible variogram
model consists in choosing a piecewise constant function f, to yield as a
consequence piecewise linear valid variogram. More specifically, for any
positive integer k and vector of positive real numbers a = (a1, . . . , ak),
define the function f with support [0, c] by

f(x;a, c, k) =
k∑

j=1

ajI

(
(j − 1)c

k
< x ≤ jc

k

)
, (2)

where I(·) denotes the indicator function. The function f is piecewise
constant. Using (2) in the representation theorem (1), after some algebra we
have an explicit expression of the semivariogram. For convenience, values
at the nodal points h = mc/k, for m = 1, . . . , k, are first computed, and
the remaining values are then recovered by linear interpolation, which is
justified since the resulting function is indeed piecewise linear. The resulting
semivariogram can then be described as follows for h > 0:

• if h ≥ c

2γ(h;a, c, k) =
2c

k

k∑

i=1

a2
i ;

• if h < c and there exists an integer m such that h = mc/k,

2γ(h;a, c, k) =
2c

k

k∑

i=1

a2
i −

2c

k

k∑

i=m+1

aiai−m ;

• if h < c, but h is not an integer multiple of c/k,

2γ(h;a, c, k) = (1− V )2γ
(mlc

k
;a, c, k

)
+ V 2γ

(muc

k
;a, c, k

)

where ml = bhk/cc and mu = dhk/ce and V = (h − mlc/k)/(c/k),
that is, the value of the semivariogram is given by linear interpolation
of the two values at the nearest multiple integers of c/k enclosing h.

In Barry and Ver Hoef (1996), specific variograms were then obtained by
fixing k and c and estimating the ai from the data, starting from standard
empirical estimators such as those proposed in Cressie and Hawkins (1980)
and Hawkins and Cressie (1984), and applying a weighted least square
(WLS) algorithm. The integer k represents the number of equal size inter-
vals in which [0, c] is divided and over which the variogram is represented
by a different linear function; hence, k influences directly the complexity of
the variogram model. In general, k has to be smaller than the number of
different lags used in an empirical variogram estimator.

The representation theorem introduced above also holds in the multidi-
mensional case, so that for d > 1 one has

2γ(h) =
∫

Rd

[f(x)− f(x− h)]2dx. (3)

4



In the following, only the two-dimensional case shall be considered. More
specifically, along the lines of Barry and Ver Hoef (1996), we can define
piecewise constant functions on the two-dimensional rectangular domain
[0, c1]× [0, c2] as

f
(
(x1, x2);A, c,k

)
=

k1∑

i=1

k2∑

j=1

ai,jI

[(
(i− 1)c1

k1
< x1 ≤ ic1

k1

)(
(j − 1)c2

k2
< x2 ≤ jc2

k2

)]
(4)

where c = (c1, c2), k = (k1, k2) with k1, k2 positive integers, and A is a
matrix of positive real numbers with entries {A}ij = ai,j . Substituting (4)
into (3) yields then a valid variogram function. Since in general 2γ(h1, h2) =
2γ(−h1,−h2) and 2γ(h1, h2) 6= 2γ(h1,−h2), it is sufficient to compute the
variogram for h1 > 0 only. As for the one-dimensional case, values at
the nodal points (h1, h2) = (m1c1/k1,m2c2/k2), for m1 = 1, . . . , k1 and
m2 = −k2, . . . ,−1, 1, . . . , k2, are first computed, and the remaining values
are recovered by bilinear interpolation. The resulting anisotropic piecewise
bilinear semivariogram can be described as follows:

• if h1 ≥ c1 or |h2| ≥ c2,

2γ(h1, h2;A, c,k) =
2cd

k1k2

k1∑

i=1

k2∑

j=1

a2
i,j ;

• if 0 < h1 < c1 and 0 < h2 < c2, with h1 = m1c1/k1 and h2 = m2c2/k2

for some positive integers m1 and m2,

2γ(h1, h2;A, c,k) =
2cd

k1k2

k1∑

i=1

k2∑

j=1

a2
i,j

− 2cd

k1k2

k1∑

i=m1+1

k2∑

j=m2+1

ai,jai−m1,j−m2 ;

• if 0 < h1 < c1 and −c2 < h2 < 0, with h1 = m1c1/k1 and h2 =
m2c2/k2 for some integers m1 > 0 and m2 < 0,

2γ(h1, h2;A, c,k) =
2cd

k1k2

k1∑

i=1

k2∑

j=1

a2
i,j

− 2cd

k1k2

k1∑

i=m1+1

k2+m2∑

j=1

ai,jai−m1,j−m2 .

In the case of arbitrary lag values, the semivariogram is computed by bi-
linear interpolation between the values of the variogram on the corners
of the rectangle containing (h1, h2) whose vertices are the nearest integer
multiples of c1/k1 and c2/k2.

The variograms obtained by this procedure are clearly anisotropic. An
interesting point, apparently not dealt with in the original paper, is whether
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the isotropic piecewise linear one-dimensional model could be extended to
define an isotropic multidimensional model. Following the same approach
as in the one-dimensional case, one could define a function that is piecewise
constant in the radial direction

f̃(x;a, c, k) =
k∑

i=1

aiI ((i− 1)c/k < ‖x‖ ≤ ic/k) . (5)

However, substitution of (5) into (3) does not yield a piecewise linear va-
riogram, because when using polar coordinates to carry out the integration
analytically, the jacobian factor ρ dρ dθ leads to a piecewise quadratic func-
tion. More generally, for a generic d−dimensional field the jacobian of
the coordinate transformation to hyperspherical coordinates with angles
φ1, . . . , φd would be given by

ρd−1 sind−2(φ1) sind−3(φ2) . . . sin(φd−2)dρdφ1 . . . dφd−1,

so that piecewise polynomials of increasing order would arise. Thus, it
appears to be impossible to have a multidimensional variogram that is both
isotropic and piecewise linear using this representation theorem. Although
the piecewise quadratic form could possibly turn out to be useful, we have
not pursued its application within this work.

Finally, it should be noticed that the flexible variogram model defined
by (1)-(2) is not identifiable in the black-box parameters ai, i = 1, . . . , k,
and the same can be said for the two-dimensional flexible variogram model
defined by (3)-(4). For example, in the one-dimensional case with k = 2
one has

2γ
( c

2
; (a1, a2), c, k

)
=

c

2
a2
1 +

c

2
a2
2 −

c

2
a1a2,

that implies 2γ(c/2; (a1, a2), c, k) = 2γ(c/2; (a2, a1), c, k). Moreover, for
k > 2 the class of k-uples which yield the same value of γ is not just a per-
mutation of the vector (a1, . . . , ak), but a rather more complex symmetry
class. On the other hand, the real interest lies on the estimation of γ itself,
rather than on the black-box parameters ai, i = 1, . . . , k. Thus, we shall
regard the parameter space of the ai, i = 1, . . . , k as a quotient space with
equivalence classes identified by the corresponding values of γ(h;a, c, k)
(and similarly for the two-dimensional case).

3 A Bayesian approach for the estimation of
flexible variogram models

A novel Bayesian approach for the estimation of flexible black-box vario-
gram models is now introduced. The model for geostatistical data consid-
ered in the following shall consist of realizations of a Gaussian random field
Z : D × Ω → R, D ⊂ Rd (where d = 1, 2), that can be written as the sum
Z = µ + δ, where

- the mean field µ(x) =
∑p

j=0 βjgj(x) is given by a linear combination
of known functions gj(x) with random coefficients β = [β1, . . . , βp]T ;
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- the field δ is a second order stationary zero-mean Gaussian random
field with flexible semivariogram γ(h;A, c,k), where the parameters
A are random and the parameters c and k are fixed (recall in partic-
ular that k influences directly the complexity of the model).

As a result, the data Z = [Z(x1), . . . , Z(xN )]T , at N distinct locations
xi, . . . ,xN in space, can be represented as

Z = Xβ + ε, ε ∼ N (0,ΣA)

where {X}ij = gi(xj) is the design matrix and the covariance matrix has
entries

{ΣA}ij = γ(∞;A, c,k)− γ(xi − xj ;A, c,k).

The likelihood function is thus given by

l(Z|β,A) =
1

(2π)N/2
√
|ΣA|

exp
[
−1

2
(Z−Xβ)T Σ−1

A (Z−Xβ)
]
.

We assume that γ and β are stochastically independent a priori, i.e. that
the parameters A and β are a priori independent. For simplicity, we also
assume that the black-box parameters in A are a priori independent among
themselves. For these black-box parameters we shall always assume non-
informative priors. In the simulations and applications shown in Section
5 we will use exponential priors with large mean parameters; we will also
show that the results obtained are robust with respect to the choice of non-
informative priors with different forms, such us Gamma or Chi-squared non-
informative distributions. For β we choose a Gaussian prior distribution
with mean m and covariance matrix G (with m and G fixed). This prior
distribution has the advantage of being conjugate with the likelihood, so
that it is possible to derive analytically the conditional distribution of β
given Z and A. Denoting by πβ and πA the priors of β and A respectively,
we thus have that the joint posterior distribution of β and A is given by

π(β,A|Z) = C πβ(β)πA(A) l(Z|β,A) (6)

where C is a normalizing constant. This posterior distribution cannot be
easily computed analytically, so that an appropriate MCMC sampler must
be employed. In the next section we shall describe in detail a MCMC
scheme that can be used for sampling from (6). As a result of this numer-
ical sampling, information about the a posteriori variability of γ can be
recovered. In particular, the posterior estimate of the semivariogram γ̂ is
computed by averaging the semivariograms determined along the Markov
chain:

γ̂(·) =
1

V −W

V∑

v=W+1

γ(·;A[v], c,k)

where A[v] are the black-box parameters sampled at the v-th iteration, V is
the total number of iterations and W is the number of initial iterations dis-
carded as burn-in of the Markov chain (to reduce the correlation among ad-
joining values of the chain, the estimate γ̂ may also be computed averaging
only the semivariograms computed each M iterations, for M large enough).
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Furthermore, the predictive distribution and the posterior kriging variance
distribution can be recovered by solving the standard universal kriging
equations. More specifically, we can compute the optimal linear estimate
Ẑ(x0) =

∑N
i=1 λiZ(xi) at some point x0 where no data is available, proceed-

ing as follows. Define the vector γ̂U = [γ̂(x0,x1), · · · , γ̂(x0,xN ), 1, · · · , 1]
and the universal kriging matrix

Γ̂U =




γ̂(x1,x1) . . . γ̂(x1,xN ) g1(x1) . . . gp(x1)
γ̂(x2,x1) . . . γ̂(x2,xN ) g1(x2) . . . gp(x2)

. . . . . . . . . . . . . . . . . .
γ̂(xN ,x1) . . . γ̂(xN ,xN ) g1(xN ) . . . gp(xN )

g1(x1) . . . g1(xN ) 0 . . . 0
. . . . . . . . . 0 . . . 0

gp(x1) . . . gp(xN ) 0 . . . 0




.

The kriging coefficients λ1, · · · , λN can then be computed by solving the
linear system Γ̂UλU = γ̂U , where λU = [λ1, · · · , λN , β0, · · · , βp]T ; further-
more, the kriging variance can be computed as

σ̂2
U (x0) = E

(
Z(x0)− Ẑ(x0)

)2

= λT
U γ̂U = γ̂T

U Γ̂
−1

U γ̂U .

This is one of the distinctive advantages of Bayesian kriging, since in this
way the complete one-dimensional distribution of the reconstructed field is
estimated, which is exactly the type of information required in many appli-
cations. It should be remarked that, in this estimation process, no empirical
variogram estimator is employed, thus avoiding the potential arbitrariness
implied in the construction of the empirical variogram itself.

4 The MCMC sampler

We now give the details of a MCMC algorithm that samples from the
posterior distribution of β and A. A Gibbs sampling algorithm for sampling
from (6) alternates the following steps:

1. simulation of β, conditional on the observations Z and the current
value of the parameter A;

2. simulation of A, conditional on the observations Z and the current
value of the parameter β.

The update of β is straightforward. Having chosen a conjugate prior for β,
it is possible to derive analytically the conditional distribution of β given
Z and A, which is still Gaussian with mean vector

(G−1 + XT Σ−1
A X)−1(G−1m + XT Σ−1

A Z)

and variance matrix
(G−1 + XT Σ−1

A X)−1.

The first step is thus performed by sampling directly from this conditional
distribution.
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The update of the semivariogram γ(·;A, c,k), which is performed via
the update of the black-box parameters A, is computationally more de-
manding. If the parameters ai,j in A are chosen to be a priori independent
among themselves, i.e. πA(A) =

∏k1
i=1

∏k2
j=1 πa(ai,j), where πa is the com-

mon prior distribution of the parameters ai,j , then step 2 can be carried
out as follows:

2. for i ∈ {1, . . . , k1} and j ∈ {1, . . . , k2}, simulation of ai,j conditional
on the observations Z and the current values of the parameters β and
A∼(i,j), where A∼(i,j) is the set of parameters in A with ai,j removed.

The conditional distribution distribution of ai,j given Z, β and A∼(i,j)

is proportional to π(ai,j) l(Z|A, β), and cannot be sampled directly. An
appropriate Metropolis-Hastings step is thus required. We can for example
use a multiplicative random walk sampler. Setting wi,j = log(ai,j), from the
current state ai,j = exp{wi,j} we propose a move to a∗i,j = exp{wi,j + N}
where N ∼ N (0, σ2), for some fixed σ. With the change of variable from
ai,j to wi,j the invariant distribution becomes ai,jπa(ai,j)l(Z|A,β), so that
the move is accepted with probability

min
{

1,
a∗i,j πa(a∗i,j) l(Z|A∗, β)
ai,j πa(ai,j) l(Z|A, β)

}

where A∗ coincides with A apart for the (i, j)-entry which is replaced by
a∗i,j . In particular, σ can be chosen by tuning its value over short chains, in
order to achieve a sufficient acceptance ratio. Note that instead of updating
the parameters ai,j in some fixed order, these can also be updated in a ran-
dom order, by sampling, at each MCMC iteration, a random permutation
of the indices.

5 Simulation studies and applications to real
data

We now illustrate the Bayesian flexible black-box variogram estimation via
simulation studies and an application to a real data set. In particular,
Section 5.1 deals with simulated one-dimensional Gaussian random fields,
while Section 5.2 shows an application to a well known benchmark in geo-
statistical interpolation, the Wolfcamp aquifer dataset, that was originally
described in Harper and Furr (1986).

We thoroughly compare the proposed technique to the original flexi-
ble variogram estimation procedure used in Barry and Ver Hoef (1996),
highlighting the advantages of the Bayesian approach.

5.1 One-dimensional synthetic data

We consider the model Z : [0, L] × Ω → R, Z = δ, where δ is a stationary
zero-mean Gaussian random field having semivariogram γ. In particular,
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Figure 1: Three considered semivariograms: γ1 (dash and dot line), γ2 (dashed line)
and γ3 (solid line).

we shall consider different semivariogram shapes:

γ1(h) =
L

2

(
1− exp

{
− h

L

})
,

γ2(h) =
L

2

(
1− exp

{
− h

L/4

})
,

γ3(h) =
L

8

(
1− L

100
sin(100h/L)

h

)
+

L

4

(
1− L

10
sin(10h/L)

h

)
,

for 0 < h < L, L = 20. The three above semivariograms are shown in
Figure 1.

For either semivariogram, we simulate the field (at N randomly chosen
locations) as described e.g. in Cressie (1991). From the sampled field, we
estimate the semivariogram by a black-box semivariogram with k black-
box parameters, using the WLS technique described in Barry and Ver Hoef
(1996), and using the Bayesian approach proposed here. In particular, the
Bayesain black-box kriging estimates are obtained by running the Hastings-
within-Gibbs algorithm, that has been described in Section 4, under the
following specifications: the prior for the black-box parameters are inde-
pendent exponentials with mean 10; the algorithm is run for 5000 iterations
and estimates are obtained using the values sampled every 50 iterations of
the chain.

The estimates obtained by Bayesian black-box kriging and by WLS
black-box kriging are thus compared in term of the following errors:

- the L1 relative error ‖γ̂ − γ‖1 / ‖γ‖1, where γ is the true variogram,
γ̂ is the variogram estimate, and ‖·‖1 is the L1 norm over the interval
[0, L];

- the leave-one-out root mean squared error (RMSE).

In particular, we proceed along the following simulation scheme. For 100
times,
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- we sample N independent locations from a uniform distribution over
the interval [0, L];

- we generate the random field at the N sampled locations;

- we compute the Bayesian black-box kriging estimate, with k black-box
parameters, and compute its L1 relative error and RMSE;

- we compute the WLS black-box kriging estimate, with k black-box
parameters, and compute its L1 relative error and RMSE.

This simulation scheme is repeated for two different values of N , N =
20, 30, and for each of the three semivariograms, γ1, γ2, γ3; moreover, the
semivariogram estimates are computed for two different values of k, k = 4, 8.
We thus have 12 different cases (depending on the semivariogram, the value
of N , and the value of k), each composed of 100 simulations.

γ N k Bayes bbk WLS bbk p- Bayes bbk WLS bbk p-
L1 rel. err. L1 rel. err. value RMSE RMSE value

γ1 20 4 0.345 (0.302) 0.590 (0.486) <0.001 0.607 (0.206) 0.665 (0.210) <0.001
γ1 20 8 0.324 (0.371) 0.597 (0.592) <0.001 0.563 (0.159) 0.662 (0.242) <0.001
γ1 30 4 0.407 (0.374) 0.492 (0.487) 0.04 0.512 (0.123) 0.536 (0.160) <0.001
γ1 30 8 0.564 (0.557) 0.527 (0.563) 0.02 0.489 (0.113) 0.587 (0.210) <0.001
γ2 20 4 0.337 (0.209) 0.518 (0.659) <0.001 1.165 (0.368) 1.307 (0.497) <0.001
γ2 20 8 0.471 (0.190) 0.573 (0.874) <0.001 1.042 (0.332) 1.230 (0.405) <0.001
γ2 30 4 0.187 (0.128) 0.466 (0.498) <0.001 0.988 (0.243) 1.063 (0.352) <0.001
γ2 30 8 0.295 (0.189) 0.494 (0.454) <0.001 0.987 (0.225) 1.199 (0.417) <0.001
γ3 20 4 0.333 (0.167) 0.519 (0.758) <0.001 1.510 (0.503) 1.585 (0.682) <0.001
γ3 20 8 0.444 (0.195) 0.556 (0.682) <0.001 1.315 (0.332) 1.623 (0.523) <0.001
γ3 30 4 0.235 (0.121) 0.447 (0.571) <0.001 1.305 (0.404) 1.393 (0.436) <0.001
γ3 30 8 0.267 (0.140) 0.473 (0.527) <0.001 1.189 (0.252) 1.374 (0.376) <0.001

Table 1: Median (inter-quantile range) of L1 relative error and RMSE for Bayesian
black-box kriging estimates and WLS black-box kriging estimates; results of nonpara-
metric paired Wilcoxon tests.

Table 1, reports, for each of the 12 cases, the median and inter-quantile
range of the L1 relative error and RMSE for the 100 semivariograms es-
timates obtained by Bayesian black-box kriging, and for the 100 semivari-
ograms estimates obtained by WLS black-box kriging. For each of the 12
cases, we perform a nonparametric paired Wilcoxon test (see, e.g., Hollan-
der and Wolfe, 1999), to verify if the distribution of the L1 relative error
of Bayesian estimates is stochastically lower than the distribution of the
L1 relative error of WLS estimates; the same is done for the distributions
of RMSE. The p-values of these tests, reported in the sixth and ninth col-
umn of the table, show that the L1 relative errors and RMSEs of Bayesian
black-box kriging estimates are significantly lower than the ones of WLS
black-box kriging estimates. Figure 2 illustrates graphically the superiority
of Bayesian black-box kriging estimates over WLS black-box kriging esti-
mates, displaying the boxplots of the distributions of L1 relative error and
RMSE, for the case N = 20, k = 4. The analysis of the boxplots shows that
the errors of Bayesian estimates not only are lower, but also have a smaller
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Figure 2: Boxplots of the distributions of L1 relative error and RMSE, for the case
N = 20, k = 4.

variability, i.e., Bayesian black-box kriging estimates, besides being more
accurate, are also more robust than WLS black-box kriging estimates.

5.2 The Wolfcamp Aquifer dataset

We now show an application to a well known benchmark in geostatistical
interpolation, the Wolfcamp aquifer dataset (see, e.g., Harper and Furr,
1986; Cressie, 1991; Barry and Ver Hoef, 1996). This dataset consists of a
set of 85 measurement of piezometric head scattered over a rectangular do-
main of approximately 350km times 250km centered over Amarillo, Texas.
A thorough description of classical kriging reconstructions for these data
is presented in Cressie (1991), highlighting the need for rather complex
analyses to achieve an appropriate data detrending and to account for data
anisotropy. On the contrary, as remarked in section 2, flexible black-box
variogram models can adapt naturally to the characteristics of anisotropic
data.

For the application of the flexible black-box variogram model to the
Wolfcamp dataset, we set m1 = 4, m2 = 5. In the WLS approach, the
deterministic trend has to be removed from the dataset to perform vario-
gram estimation. We thus carry out a recursive generalized least square
detrending procedure (see, e.g., Cressie, 1991). The anisotropic analog of
the estimator proposed by Cressie-Hawkins in Hawkins and Cressie (1984)
is used to compute an empirical variogram.

In the Bayesian approach, we use the model described in Section 3,
with g0(x) = 1, and β = β0. We run the Hastings-within-Gibbs algorithm
under the following specifications: the prior for the black-box parameters
are independent exponentials with mean 10; the algorithm is run for 7000
iterations and estimates are obtained using the values sampled every 50
iterations of the chain.

The leave-one-out RMSE of the Bayesian and WLS estimates are 5.35
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Figure 3: Kriging reconstruction of the Wolfcamp Aquifer data: predicted values with
Bayesian (a) and WLS (b) black-box variogram estimates.
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Figure 4: Kriging reconstruction of the Wolfcamp Aquifer data: standard deviation
with Bayesian (a) and WLS (b) black-box variogram estimates.
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and 5.46, respectively; the p-values of the Shapiro-Wilks normality test
(see, e.g., Shapiro and Wilk, 1965) on the rescaled residuals of Bayesian and
WLS estimates are 0.21 and 0.14, respectively. Figures 3 and 4 display the
predicted values obtained with the Bayesian and WLS black-box variogram
estimates, and the corresponding standard deviations, showing consistency
of the results provided by the two approaches. On the other hand, the
Bayesian approach, with respect to the WLS approach, yields a complete
assessment of the uncertainty in the variogram estimation, providing the
complete posterior distributions of the variogram at any location of the
field, and the complete predicted distributions of a new realization at any
location of the field.

6 Conclusions

We have developed a Bayesian approach to covariance estimation and geo-
statistical interpolation based on flexible black-box variograms. These va-
riogram models, originally introduced by Barry and Ver Hoef (1996), do
not require restrictive assumptions on the functional shape of the vario-
gram; moreover, they can handle quite naturally non isotropic random
fields. These variogram models exploit a special representation theorem for
variogram functions that allows to characterize a subset of piecewise poly-
nomial functions as valid variograms with sill. In the Bayesian framework,
the parameters characterizing a generic piecewise linear valid variogram,
according to this representation theorem, are assumed to be random vari-
ables with a chosen a priori distribution. The a posteriori distribution of
these parameters given the available data can be computed by an appro-
priate Markov Chain Monte Carlo (MCMC) scheme, yielding a complete
assessment of the uncertainty in the variogram estimation. The proposed
Bayesian approach, with respect to the standard WLS variogram estimation
described in Barry and Ver Hoef (1996), does not require the computation
of an empirical variogram estimator, thus avoiding the arbitrariness implied
by the construction of the empirical variogram itself. Moreover, an exten-
sive simulation study has shown that the estimates provided by Bayesian
black-box kriging are significantly more accurate and more robust than the
one provided by WLS black-box kriging.
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