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Abstract

Atrial Fibrillation is the most common cardiac arrhythmia that natu-
rally tends to become a chronic condition and chronic Atrial Fibrillation
leads to an increase in the risk of death. The study of time series of time
intervals between an R peak in the electrocardiogram and the following one
is an effective way to investigate the presence of Atrial Fibrillation and to
detect when a single event starts and ends. This work presents a new statis-
tical method to deal with identification of Atrial Fibrillation events. Some
simulations in order to assess the performances of the proposed method
are detailed and the results obtained applying this method to real data
concerning patients affected by Atrial Fibrillation are discussed.
Keywords: Atrial Fibrillation, RR intervals, Time Series Analysis, Ljung-
Box statistic.
AMS Subject Classification: 62P10, 62M10

1 Introduction

Atrial Fibrillation (AF) is the most common cardiac arrhythmia and in-
volves the two upper chambers (atria) of the heart. During AF, the normal
electrical impulses generated by sinoatrial node are overwhelmed by disor-
ganized electrical impulses that originate in the atria and pulmonary veins,
leading to conduction of irregular impulses to the ventricles that generate
the heartbeat. The result is an irregular heartbeat, which may occur in
episodes lasting from minutes to weeks, or it could occur all the time for
years. The natural tendency of AF is to become a chronic condition and
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chronic AF leads to an increase in the risk of death.
The main device used in order to investigate the heartbeat is the Electro-
cardiogram (ECG). The ECG is a diagnostic tool that measures and records
the electrical activity of the heart in exquisite details. The interpretation
of these details allows for diagnosis of a wide range of heart diseases. The
stylized shape of an ECG is depicted in Figure 1 (upper panel) where atrial
contraction shows up as the P wave; ventricular contraction is identified as
a series of three waves, Q,R and S, known as the QRS complex. The third
wave in an ECG is the T wave which reflects the electrical activity produced
when the ventricles recharge for the next contraction (repolarization); for
further inquiry about clinical details on ECG see [7].

Figure 1: Upper panel: stylized shape of a physiological single beat, recorded on
ECG graph paper. Main relevant points, segments and waves are highlighted.
Bottom panel: some cardiac cycles recorded in one of the leads of the electro-
cardiogram with sampling frequency of 1000 Hz.

As we said before Atrial Fibrillation can be diagnosed by the ECG. Char-
acteristic findings are the absence of P waves, with unorganized electrical
activity in their place, and irregular RR intervals (the time between an R
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peak and the following one, see the bottom panel of Figure 1) due to irreg-
ular conduction of impulses to the ventricles.
The study of RR intervals is an effective way to investigate the presence of
AF and to detect when a single event starts and ends. Several examples ex-
ist in literature (see [1], [6],[9]), which are focused on the peculiar variance
of RR intervals during the AF process, which is much greater with respect
to the variance during the physiological heartbeat.
Anyway, in many situation, an AF event does not follow a physiological
time slot, but comes after other types of arrythmia. On the same time,
in many cases, the irregular heartbeat does not disappear when the event
finishes. According to these problems, analyzing the RR intervals, it may
be possible to look at an irregular heartbeat even when the AF event itself
is not already started or already finished. So a method based on detection
of changes in the variance of the process can result inaccurate and can fail
in those cases where AF episode has the characteristics described above.
Then methods which are not based on the analysis of the process variance
are needed, in order to identify suitable quantities to characterize the dif-
ferent phases, ‘pre AF’, ‘AF’ and ‘post AF’.
The main purpose of this work is to identify such quantities by means of
suitable statistical tools. To achieve this goal, we analysed some data of
8 patients affected by AF. In particular we had for each patients the RR
intervals sequence from two hours before to two hours after an event of AF.
The idea is to consider the process of RR intervals as a time series (see
[4], [5]), identifying specific parameters which enable us to detect when an
event of AF starts or ends and then pointing out suitable test statistics.
The paper is then organized as follows: in Section 2 we present some ele-
ments of time series processes theory, focusing especially on ARIMA mod-
els. In Section 3 we illustrate the new method we propose to deal with
identification of AF events. In Section 4 we show some simulations in order
to assess the performances of the proposed method. To conclude, in Sec-
tion 5, we present the results obtained applying our method to real data
consisting of RR intervals of patients affected by AF.
All the simulations and the analyses of real data are carried out using R

statistical software [11].

2 AutoRegressive Integrated Moving Aver-
age (ARIMA) models

In this section we present some elements of time series processes the-
ory, focusing especially on ARIMA models for linear stationary and non-
stationary processes.

2.1 Linear stationary processes

A time series is a set of observations generated sequentially in time. When
N successive values of such a series are available, they will be indicated
with z1, z2, ..., zN . Then we can regard zt as the observation at time t. In
the following we will consider a discrete time series arising by sampling a
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stochastic process representing a phenomenon. A statistical phenomenon
that evolves in time according to probabilistic laws is called a stochastic
process. The time series to be analysed may be seen as a particular real-
ization of the system under study, produced by such underlying process. In
other words, in analyzing a time series z1, ..., zN we regard it as a realiza-
tion of a stochastic process Z1, ..., ZN .
A particular class of stochastic processes, called stationary processes, is
based on the assumption that the process is in a particular state of statis-
tical equilibrium. A stochastic process is said to be strictly stationary if
its properties are unaffected by a change of time origin; that is, if the joint
probability distribution associated with m observations zt1 , ..., ztm , made
at any set of times t1, ..., tm, is the same as that associated with m observa-
tions zt1+k, ..., ztm+k, made at times t1 + k, ..., tm + k, for any lag k. From
now on we denote both the process and the observations as zt, according
to the literature of time series analysis.
In general, analyzing stationary process, there are three kind of linear mod-
els who are mainly used. The first is the Autoregressive Process of order p
(briefly AR(p)) which may be written as

zt = φ1zt−1 + ...+ φpzt−p + at (1)

where the white noise at may be regarded as a series of shocks which drive
the system and it is such that E[at] = 0, V ar[at] = σ2

a and Cov(at−i, at−j) =
0 for i 6= j and (φ1, ..., φp) ∈ R

p are the unknown parameters. Introducing
the backward shift operator B, defined as

Bzt = zt−1 Bjzt = zt−j

the model (1) may be written as

(1− φ1B − ...− φpB
p)zt = at

or shortly
φ(B)zt = at (2)

where φ(B) = 1−
∑p

j=1
φjB

j .
Another kind of model is called Moving Average process of order q (briefly
MA(q)). This process may be written as

zt = at − θ1at−1 − ...− θqat−q

zt = (1− θ1B − ...− θqB
q)at

or shortly
zt = θ(B)at (3)

where θ(B) = 1−
∑q

j=1
θjB

j and (θ1, ..., θq) ∈ R
q are the unknown param-

eters.
These two models may be combined, obtaining an ARMA(p, q) model

zt = φ1zt−1 + ...+ φpzt−p + at − θ1at−1 − ...− θqat−q

φ(B)zt = θ(B)at (4)
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Each of the model previously illustrated has some peculiar features. In
particular we focus on those expressed by autocorrelation and partial au-
tocorrelation function, that play a crucial role in the choice of the optimal
order (p, q) of the model. It may be shown that, according to the fashion
of autocorrelation and partial autocorrelation function, autoregressive and
moving average process have different behaviors. In fact, it may be proved
that the autocorrelation function of an AR(p) has infinite nonzero elements
and consists of a mixture of damped exponentials and damped sine waves.
On the other hand the autocorrelation function of a MA(q) process is zero
beyond the order q. In other words, the autocorrelation function of a Mov-
ing Average process has a cut-off at lag q.
The partial autocorrelation function of an AR(p) process, instead, is nonzero
only for the first p elements. In other words, the partial autocorrelation
function of an AR(p) process has a cut-off at lag p. Oppositely, the par-
tial autocorrelation function of a MA(q) process is infinite in extent and is
dominated by damped exponentials and/or damped sine waves.
For an ARMA(p, q), instead, both autocorrelation function and partial au-
tocorrelation function are infinite in extent. Further details on optimal
model order detection using autocorrelation and partial AC functions can
be found in [2].

2.2 Linear non-stationary processes

Many empirical time series have no constant mean. Even so, they exhibit
a sort of homogeneity in the sense that, apart from local level, or perhaps
local level and trend, one part of the series behaves much like any other
part. Models which describe such homogeneous non stationary behavior
can be obtained by supposing some suitable difference of the process to
be stationary. We may consider the properties of the important class of
models for which the d-th difference (∇dzt = zt − zt−d) is a stationary
ARMA process.
Then, let us consider the model

φ(B)∇dzt = θ(B)at (5)

We call the process (5) an AutoRegressive Integrated Moving Average
(ARIMA) process. If the autoregressive operator φ(B) in (5) is of order
p and the moving average operator θ(B) is of order q, then we say we have
an ARIMA(p, d, q) process.

2.3 Model diagnostic checking

Let consider the following ARIMA model

φ(B)∇dzt = θ(B)at (6)

and suppose to fit it obtaining ML estimates (φ̂,θ̂) for the parameters.
Then we shall refer to the quantities

ât = θ̂−1(B)φ̂(B)∇dzt (7)
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as the residuals. As the length increases, the ât become closer to the white
noise at.
Now suppose the form of the model were correct and that we knew the true
parameter values φ and θ. Then the estimated autocorrelation rk(a) of
the process a would be distributed approximately normally with zero mean
(see [3]). Now, in practice, the time value of the parameters is unknown

and only the estimates (φ̂,θ̂) are available for calculating the â. Then,
autocorrelation rk(â) of the â can yield valuable evidence concerning the
lack of fit. An interesting way to analyze the goodness of fit of the model
is then to consider the rk(â) not individually, but taken as a whole. Let
suppose that we have the first K autocorrelations rk(â) (k = 1, 2, ...,K)
from any ARIMA(p, d, q) process. Then it is possible to show (see [8]) that,
if the fitted model is appropriate, the statistic

Q = ñ(ñ+ 2)

K∑

k=1

r2k(â)/(ñ− k) (8)

is approximately distributed as χ2(K − p − q), where ñ = n − d, with n
equal to the number of observations. Therefore, an approximate test of the
hypothesis of model adequacy may be performed. The statistic Q is called
Ljung-Box statistic.

3 A method to detect changes in a time series

We now consider a situation where a phenomenon evolves according an
ARIMA process. We wish to analyse a time series and to detect when such
a phenomenon starts and/or ends. If this specific phenomenon is char-
acterized by an higher (or lower) variability with respect to the current
situation, then there is a huge number of methods known to be effective
in detecting these changes in variability. Examples are control charts (see
[10]) and methods based on graphical analysis among others (see [9]). How-
ever, there are a lot of situations where a phenomenon is not characterized
by a modification in the variability, but by a change in the process that
generates the observations. In these cases methods such those mentioned
above are useless. We wish to present here an ad hoc method for dealing
with such situations.
In particular the main goal is to identify the beginning and the end of
a specific phenomenon generated by an ARIMA process. This means to
identify the model parameters, i.e., values of d, p and q. As we have pre-
viously presented, in the case of a stationary model the autocorrelation
and partial autocorrelation function will quickly die out. Knowing that
the estimated autocorrelation function tends to follow the behavior of the
theoretical autocorrelation function, failure of this estimated function to
die out rapidly might logically suggest that we should treat the underly-
ing stochastic process as non-stationary in zt, but possibly as stationary in
∇dzt. Once identified one or more possible values for d, we move to the
choice of p and q. This may be done considering the specific behaviors of
the autocorrelation and partial autocorrelation functions and correspond-
ing cut-off.
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Then to identify the starting and ending times of the phenomenon of inter-
est we propose the following procedure. Consider the first N observations
(with N much smaller then the number n of observations) and fit the iden-
tified model over this sub-sample. Then the p-value of the Ljung-Box test
(choosing a value for K) is recorded. These operations have to be repeated
over the sub-sample from the second to the N + 1-th observation. Once
reached the last observation, the procedure ends producing a ”time series”
of the p-values which may be used to detect the beginning and the end of
the phenomenon of interest.
The purpose now is to construct a test for checking the null hypothesis
that the phenomenon is present against the alternative hypothesis that the
phenomenon is absent. This may be written in a more rigorous way as
follow:

H0 : p = p ∧ d = d ∧ q = q vs. H1 : p 6= p ∨ d 6= d ∨ q 6= q (9)

In order to build the critical region for the test (9) the first M p-values can
be considered and the rejection region can be constructed according to the
following decisional criterion: the null hypothesis is rejected if at least 1 of
the M p-values considered are less than a certain number, say y. In this
way we are able to evaluate an approximate level α thanks to a Bonferroni
inequality. More specifically:

α = PH0
(
M⋃

i=1

(pi < y)) ≤

M∑

i=1

PH0
(pi < y) ≤

M∑

i=1

y = My (10)

where pi is the i-th p-value and the property of valid p-value holds. If we
call α∗ the value of α established, we set y = α∗/M .
The method to detect start and/or end of a specific phenomenon evolves
according the following steps:

1. implement the test in (9)-(10) over the firstM p-values. At theN+M -
1-th observation, the output is setted at 0 if there is statistical evi-
dence to reject the null hypothesis, while is setted at 1 otherwise;

2. repeat the step 1 after a shift of one observation until the last one is
reached.

Once the procedure ends, an output of 0’s and 1’s is available. 1 indicates
the presence of the phenomenon, 0 the absence. Starting and end points
can be then detected through this last 0/1 time series.

4 Simulations

In order to validate the proposed method, different situations have been
tested and analysed, with the following aims:

• to point out settings where our method performs at best

• to assess the robustness of the method varying α∗ and N

• to make a sensitivity analysis over the parameter K of the Ljung-Box
statistics
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The method presented in this paper is a technique to detect modification
in the process underlying the observed phenomenon. We chose an ARIMA
(0,1,1) as reference process (RP), considering a sequence of 7000 realizations
from a process, say Ppre, then 40000 realizations from the reference model
and finally 7000 realizations from another different process, say Ppost. For
all the simulations the value of M was fixed equal to 100.
In order to investigate the performances of the proposed method, we tested
it in different situations: in the first, second and third simulation, Ppre and
Ppost are very different from RP, whereas in the fourth are not. In partic-
ular we set Ppre ≡ Ppost, and we considered an ARIMA (4,1,2), ARIMA
(5,1,3) ARIMA (2,2,0) and ARIMA (1,1,1) respectively. For all these set-
tings, we assumed K = 5, N = 600 and α∗ = 0.01.
Figures 2a, 2b and 2c show that our method works very well in the first 3
settings, where it is appreciable the correspondence among the real starting
end end points (red lines) and the 0/1 sequence.
In the fourth simulation, instead, the method is not able to catch the phe-
nomenon under study, as it is shown in Figure 2d.
This behavior may be explained by the fact that this method works very
well when the modification of the process underlying the generation of ob-
servations is considerable. On the other hand, when the modification is not
so significant, the method loses efficiency.

(a) Output of the method: before and after
the phenomenon under study the process is
an ARIMA(4,1,2).

(b) Output of the method: before and after
the phenomenon under study the process is
an ARIMA(5,1,3).

(c) Output of the method: before and after
the phenomenon under study the process is
an ARIMA(2,2,0).

(d) Output of the method: before and after
the phenomenon under study the process is
an ARIMA(1,1,1).

Figure 2: Analysis of the output of the method changing the process underlying
the observations before and after the phenomenon. Red lines represent the start
and the end of the phenomenon.
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In the following we focus on the first situation, where the generating process
is an ARIMA (0,1,1), anticipated and followed by a process of observations
generated from an ARIMA (5,1,3), because cases (2a) and (2c) give similar
results. We analysed how the power of the test in (9)-(10) is affected by α∗

and N . For this analysis we considered K = 5.
If α∗ was the real probability of the I type error, the power would increase
as α∗ grows. We do not have the real probability of the I type error, but
only an upper estimate. In spite of this fact, we would observe the power
growing up as long as α∗ increases. Another parameter that affects the
power of the test is N . Again, the bigger is N , the greater the power of
Ljung-Box test. So also the power of the global test should raise.
In Figure 3 the output of the method varying α∗ (along the rows) and
N (along the columns) is shown. It can be inferred that the behavior of
the method is consistent, since the number of errors before and after the
phenomenon decreases as long as α∗ and N increase, as we expected.
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Figure 3: Output of the method varying α∗ (along the rows) and N (along the columns).
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In Table 1 we show the average number of observations of II type error for
40 simulations (we consider α∗ = 0.05). The obtained results suggest that
it is possible to increase the power of the test tuning N in a suitable way.
Then, one could think to set a very high value of N in order to obtain a
satisfactory power. However, this is not costless. In fact, increasing values
of N reflects on delay in starting and end points detection.

N Average number of Standard deviation of

observations of II type error observations of II type error

400 4999 1157

600 2283 1030

800 883 673

Table 1: Average number of observations of II type error varying N .

Hence the choice of the parameter N is regulated by a trade-off between the
desired power of the test and the delay in the detection of the phenomenon.

Figure 4: Output of the method varying K.

To conclude the simulations’s analysis we would like to infer about the
parameter K of the Ljung-Box statistics in order to understand if the
method is affected by a modification of its value. Let consider the situ-
ation where observations before and after the phenomenon were generated
by an ARIMA(5,1,3), and fix α∗ = 0.01 and N = 600. In Figure 4 the
output of the method for different values of K (5,10,15 and 20) is shown.
Although the outputs are different, it does not appear any pattern of depen-
dence on K. Therefore we can observe that the dependency of the method
from K is feeble.
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5 An application to Atrial Fibrillation

Let consider now an application of the method proposed in this paper to
real data. Specifically we analysed RR intervals of 8 patients during Atrial
Fibrillation (AF).
The data available are the RR intervals of such patients from two hours
before to two hours after an event of AF. The duration of the phenomenon
is different between patients and it is displayed in Table 2.

Pat. Duration AF Number of
num. (min.) observations

1 521 41085

2 613 43178

3 433 52937

4 13 1066

5 56 4326

6 442 52661

7 319 28229

8 229 17989

Table 2: Duration and number of observations of the event of AF.

The main goal is to detect the event of AF starting from the time series of
RR intervals.
In some cases, the variability of RR intervals during AF is very high with
respect to the physiological heartbeat. However this remarkable change in
the variability of the phenomenon could be absent, so the traditional meth-
ods based on the variability are inefficient in detecting AF starting point.
The first step consists in the identification of a model for the RR intervals
during AF. According to the rule presented in Section 3, we used the au-
tocorrelation and partial autocorrelation functions to determine a suitable
model. As it is shown in Figure 5, the autocorrelation function of ∇zt is
truncated after the lag number one, while that of ∇2zt is zero after the
lag two. This behaviour, as it has been presented in Section 2, is typical
of an ARIMA (0,1,1) and (0,2,2). We then set RP≡ARIMA (0,1,1). Once
identified a model to describe the RR intervals during AF, we would like to
analyse the performances of the method in detecting start and end of such
a phenomenon.
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Figure 5: Patient 1: autocorrelation (left panels) and partial autocorrelation
(right panels) functions for the time series of RR intervals, of the differences of
order one and of the differences of order two.

In order to achieve this goal, let fix the parameters of K = 5, α∗ = 0.01
and M = 100, and analyse the output of the proposed method varying N ,
that in Section 4 has been noted to be the most important parameter that
affects the performance of our method. Figure 6 shows the output of the
method applied to patients 1 and 5, varying N . We present here only the
output for two patients, because the results for the other patients are quite
similar.
Some practical considerations can be extrapolated observing the Figure 6.
First of all we may point out to the behavior of the method as long as
N increases and how this behavior relates to the corresponding simulation
case. Then we may analyse the delay in the detection of start and end of
AF and the number of errors.
Dealing with the delay, since each observation is the time between an R
peak and the following one, we can evaluate the time of the delay in the
detection of the event of AF and not only the number of observations. As
it is shown in Table 3, the delay in detecting the phenomenon is negligible
if compared with the duration of AF. Moreover, in some cases the method
is able to detect in advance the event of AF.
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Figure 6: Output of the method for the patients 1 (left panels) and 5 (right panels) varying N .
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Another important point which we should focus on is the number of errors
made by the method. From a first qualitative analysis, from Figure 6, we
can observe that the most part of errors seems to involve a few number of
consecutive observations.

Pat. N=400 N=600 N=800
num. (min.) (min.) (min.)

1 4.4 5 5.4

2 4.2 6 6.6

3 -2.4 0.3 -4.6

4 4 5.9 8.4

5 -1.5 2.7 5.5

6 -2.2 1.1 1.1

7 16.8 16.9 29.2

8 4.8 5.6 7.7

(a) Delays detecting the start of AF.

Pat. N=400 N=600 N=800
num. (min.) (min.) (min.)

1 2.6 4.5 5.1

2 5.5 8.3 11.9

3 6.7 7.2 7.7

4 7.3 9.7 9.6

5 4.9 4.9 3.5

6 -1.8 -6.4 -5.7

7 3.2 4.8 7

8 19.1 5.3 7.1

(b) Delays detecting the end of AF.

Table 3: Delays of the method’s output.

Then a correction can be implemented in order to reduce the number of
errors (in this case, the whole time interval during the ‘pre AF’ and ‘post
AF’ phases detected in a wrong way is considered as an error). We intro-
duced an artificial time delay: if the output is indicating the absence of the
phenomenon under study (then is set to zero), the first time the method
signals a one we wait a prefixed time to set the output to one; if after this
time the method is still indicating the presence of the phenomenon, we set
the output to one, else we don’t change the output. The introduction of this
correction and its duration are problem driven. Since AF is not a dead risk
pathology, the problem concerning the number of errors is more important
than the detection delay, then we chose to insert an artificial time delay of
3 minutes. Doing that, we decreased noticeably the number of errors, as
shown in Table 4.

Pat. I type I type II type II type Duration AF
num. errors errors errors errors (min.)

(pre) (post) (pre) (post)

1 1 0 3 2 521

2 0 0 0 0 613

3 17 6 1 1 433

4 0 0 5 3 13

5 1 0 4 1 56

6 23 6 4 1 442

7 7 0 10 3 319

8 0 0 10 5 229

Total 49 12 37 16

Table 4: Number of errors before and after the introduction of the artificial time
delay (we fixed N = 600).
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6 Conclusions

In this paper we proposed a statistical tool to identify, analysing the RR
intervals series, starting and ending point of an event of AF, a common
cardiac arrhythmia characterized by an irregular heartbeat. We presented
a method based on time series analysis and we performed a statistical test
to automatically recognize the phases ‘pre AF’, ‘AF’ and ‘post AF’, espe-
cially in those situations where the AF event does not follow a physiological
time slot and/or the irregular heartbeat does not disappear when the event
finishes.
Then we tested the proposed method on different simulated data, taking a
reference ARIMA model for the AF phase, and varying the model of ‘pre
AF’ and ‘post AF’ phases. When the reference model was quite different
from the others, we obtained good results.
Then we applied the method to real RR intervals data. The results we
obtained confirmed the goodness of the proposed method, that seems to
be able to identify starting and ending of an event of AF even when AF
follows or comes before irregular heartbeat time slots. This fact provide us
that this methodology may become an helpful tool for the detection of AF.
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