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1 Introduction

In recent years, attention has been devoted to the development of efficient iter-
ative solvers for the solution of the linear system of equations arising from the
discontinuous Galerkin (DG) discretization of a range of model problems. In the
framework of two level preconditioners, scalable non-overlapping Schwarz meth-
ods have been proposed and analyzed for the h–version of the DG method in the
articles [9, 7, 1, 2, 6]. Recently, in [3] it has been proved that the non-overlapping
Schwarz preconditioners can also be successfully employed to reduce the condi-
tion number of the stiffness matrices arising from a wide class of high–order DG
discretizations of elliptic problems. In this article we aim to validate the the-
oretical results derived in [3] for the multiplicative Schwarz preconditioner and
for its symmetrized variant by testing their numerical performance. This article
is organized as follows. In Section 2 we introduce the model problem and its
DG approximation. In Section 3 we construct the Schwarz preconditioners, and
recall the main theoretical results shown in [3]. Finally, in Section 4 we present
some numerical results obtained with the multiplicative Schwarz preconditioner
and its symmetrized variant.
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2 Model problem and DG discretization

In this section we introduce the model problem under consideration and its DG
approximation, working, for the sake of simplicity, with the SIPG formulation
proposed in [4].

We consider, for simplicity, the weak formulation of the Poisson problem
with homogeneous Dirichlet boundary conditions: find U ∈ H1

0 (Ω) such that

(∇U ,∇v)Ω = (f, v)Ω ∀ v ∈ H1
0 (Ω), (1)

where Ω is a bounded polygonal domain in R
d, d = 2, 3, f ∈ L2(Ω) is a given

source term and (·, ·)Ω is the standard inner product in [L2(Ω)]d.

Let Th be a shape-regular, not necessarily matching partition of Ω into dis-
joint open elements K (with diameter hK), where each K is the affine image of
a fixed master element K̂, i.e., K = FK(K̂), where K̂ is either the open unit
d-simplex or the d-hypercube in R

d, d = 2, 3. We define the mesh-size h by
h := maxK∈Th hK, and assume that Th satisfies a bounded local variation prop-
erty: for any pair of neighboring elements K1,K2 ∈ Th, hK1

≈ hK2
.

For a given approximation order p ≥ 1, we define the DG space

Vh,p := {v ∈ L2(Ω) : v|K ◦ FK ∈ Mp(K̂) ∀K ∈ Th},

where Mp(K̂) is either the space of polynomials of degree at most p on K̂, if K̂
is the reference d-simplex, or the space of polynomials of degree at most p in
each variable on K̂, if K̂ is the reference d-hypercube.

Next, for any internal face F = ∂K+∩∂K− shared by two adjacent elements
K±, with outward unit normal vectors ~n±, respectively, we define

[[~τ ]] := ~τ+ · ~n+ + ~τ− · ~n−, [[v]] := v+~n+ + v−~n−,

{{~τ}} := (~τ+ + ~τ−)/2, {{~v}} := (~v+ + ~v−)/2,

where ~τ± and v± denote the traces on ∂K± taken from the interior of K± of the
(sufficiently regular) functions ~τ and v, respectively (cf. [5]). On a boundary
face F = ∂K ∩ ∂Ω, we set [[~τ ]] := ~τ · ~n, [[v]] := v ~n, {{~τ}} := ~τ , and {{v}} := v.

We collect all interior (respectively, boundary) faces in the set FI
h (respec-

tively, FB
h ), define Fh := FI

h ∪ FB
h , and introduce on Vh,p × Vh,p the following

the bilinear form

A(u, v) :=
∑

K∈Th

∫

K

∇u · ∇v dx+
∑

K∈Th

∫

K

∇u · R([[v]]) dx

+
∑

K∈Th

∫

K

R([[u]]) · ∇v dx+
∑

F∈Fh

∫

F

α
p2

|F |
[[u]] · [[v]] ds,
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where α > 0 is a parameter at our disposal. The lifting operator R(·) is defined
as: R(~τ) :=

∑
F∈Fh

rF (~τ), where rF : [L2(F )]d → [Vh,p]
d is given by

∫

Ω

rF (~τ) · ~η dx := −

∫

F

~τ · {{~η}} ds ∀~η ∈ [Vh,p]
d ∀F ∈ Fh.

The DG discretization of problem (1) reads:

Find u ∈ Vh,p such that A(u, v) =

∫

Ω

fv dx ∀v ∈ Vh,p. (2)

Let ϕj , j = 1, . . . , Np
h := dim(Vh,p), be a set of basis functions that span Vh,p,

then (2) can be written in the following equivalent form:

Find u ∈ R
N

p

h such that Au = f, (3)

where here (and in the following) we use the bold notation to denote the spaces
of degrees of freedom (vectors) and discrete linear operators (matrices). The
following result provides an estimate for the spectral condition number of A; we
refer to [3] for the proof.

Proposition 2.1 ([3]). For a set of basis functions which are orthonormal on the
reference element K̂ ⊂ R

d, d = 2, 3, the condition number κ(A) of the stiffness
matrix A can be bounded by

κ(A) . α
p4

h2
.

Remark 2.2. We are working, for the sake of simplicity, with the SIPG formula-
tion proposed in [4], but the results shown in Proposition 2.1 and in Theorem 3.1
below also hold for a wide class of DG methods; we refer to [3] for details.

3 Two level non-overlapping Schwarz precondition-

ers

In this section we introduce the non-overlapping Schwarz preconditioners.

Subdomain partition. We decompose the domain Ω into N non-overlapping
subdomains Ωi, i.e., Ω = ∪N

i=1Ωi. Next, we consider two levels of nested parti-
tions of the domain Ω: i) a coarse partition TH (with mesh-size H); ii) a fine
partition Th (with mesh-size h). We will suppose that the subdomain partition
does not cut any element of TH (and therefore of Th).

Local solvers. For i = 1, . . . , N , we define the local DG spaces as

V i
h,p := {v ∈ L2(Ωi) : v|K ◦ FK ∈ Mp(K̂) ∀ K ∈ Th,K ⊂ Ωi}.
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Denoting by RT
i : V i

h,p −→ Vh,p the classical injection operator from V i
h,p to Vh,p,

the local solvers Ai : V
i
h,p × V i

h,p −→ R are defined as

Ai(ui, vi) := A(RT
i ui, R

T
i vi) ∀ui, vi ∈ V i

h,p, i = 1, . . . , N.

Coarse solver. For an integer 0 ≤ q ≤ p, we define the coarse space V 0
H,q as

V 0
H,q := {v ∈ L2(Ω) : v|D ◦ FD ∈ M

qD(K̂) ∀ D ∈ TH},

and the coarse solver A0 : V
0
H,q × V 0

H,q −→ R as

A0(u0, v0) := A(RT
0 u0, R

T
0 v0) ∀u0, v0 ∈ V 0

H,q, (4)

where RT
0 : V 0

H,q −→ Vh,p is the classical injection operator from V 0
H,q to Vh,p.

Let the local projection operators be defined as

P̃i : Vh,p → V i
h,p : Ai(P̃iu,R

T
i vi) := A(u,RT

i vi) ∀vi ∈ V i
h,p, i = 1, . . . , N,

P̃0 : Vh,p → V 0
H,q : A0(P̃0u,R

T
0 v0) := A(u,RT

0 v0) ∀v0 ∈ V 0
H,q,

and define the projection operators as Pi := RT
i P̃i : Vh,p −→ Vh,p, i = 0, 1, . . . , N .

The multiplicative Schwarz operator and its symmetrized variant are then de-
fined as

Pmu := I − (I − PN )(I − PN−1) · · · (I − P0), (5)

P S
mu := I − (I − P0)

T · · · (I − PN )T (I − PN ) · · · (I − P0), (6)

respectively (cf. [10]). The Schwarz method consists in solving, by a suitable
Krylov-subspace type method, one of the following linear systems of equations

Pmuu = gmu, P S
muu = gSmu,

for suitable right hand sides gmu and gSmu, respectively. It can be shown that the
operator defined in (6) is symmetric and positive definite; we therefore consider
the conjugate gradient (CG) algorithm for the solution of P S

muu = gSmu. An
estimate of the condition number of P S

mu is

κ(P S
mu) :=

λmax(P
S
mu)

λmin(P S
mu)

,

where λmax(P
S
mu) and λmin(P

S
mu) are the extremal eigenvalues of the operator

P S
mu. On the other hand, the multiplicative operator Pmu is non-symmetric; we

therefore consider a Richardson iteration applied to Pmuu = gmu, and show that
the norm of the error propagation operator Emu := (I−PN )(I−PN−1) · · · (I−P0)
is strictly less than one, i.e.,

‖Emu‖
2
A := sup

v∈Vh,p

v 6=0

A(Emuv,Emuv)

A(v, v)
< 1,
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and therefore a Richardson iteration applied to the preconditioned system con-
verges. The following result provides a bound for the norm of the error prop-
agation operator of the multiplicative Schwarz operator, and for the condition
number of the symmetrized Schwarz operator (we refer to [3] for the proof).

Theorem 3.1 ([3]). There exists constants C1, C2 ≥ 1, independent of the mesh-
size and the polynomial degree, such that

‖Emu‖
2
A ≤ 1−

h

C1αp2H
, κ(P S

mu) ≤ C2αp2
H

h
.

Theorem 3.1 also guarantees that the multiplicative Schwarz method can
be accelerated with the GMRES iterative solver. Indeed, according to [8], the
GMRES method applied to the preconditioned system Pmuu = gmu does not
stagnate (i.e., the iterative method makes some progress in reducing the residual
at each iteration step) provided that: i) ‖Pmu‖A is bounded; ii) the symmetric
part of Pmu is positive definite, i.e., there exists cp > 0 such that A(v, Pmuv) >
cpA(v, v) for all v ∈ Vh,p. Condition i) follows directly from the definition of
Pmu and Theorem 3.1: ‖Pmu‖A = ‖I − Emu‖A ≤ 1 + ‖Emu‖A < 2. To prove
condition ii), it can be shown that

A(Pmuv, v) = A(v, v)−A(Emuv, v) ≥ (1− ‖Emu‖A) A(v, v).

Therefore, condition ii) holds true with cp = 1− ‖Emu‖A which is positive due
to Theorem 3.1.

4 Numerical results

In this section we present some numerical experiments to highlight the practical
performance of the multiplicative and symmetrized non-overlapping Schwarz
preconditioners. Throughout this section we have set the penalty parameter α :=
10 (see (2)). We consider a subdomain partition consisting of N = 16 squares,
and consider the initial Cartesian and unstructured triangular partitions shown
in Figure 1, and denote by H0 and h0 the corresponding initial coarse and fine
mesh-sizes, respectively. We consider n successive global uniform refinements of
these initial grids so that the resulting mesh-sizes are Hn = H0/2

n and hn =
h0/2

n, with n = 0, 1, 2, 3, respectively. The (relative) tolerance is set equal to
10−9 (respectively, 10−6) for the CG (respectively, GMRES) iterative solver.

We first address the performance of the multiplicative Schwarz preconditioner
by keeping the mesh fixed, and varying the polynomial approximation degree p.
In Table 1 we compare the GMRES iteration counts for both the preconditioned
and non-preconditioned (in parenthesis) systems, for different polynomial ap-
proximation degrees and different mesh configurations. These results have been
obtained on unstructured triangular grids (cf. Figure 1). Comparing the itera-
tion counts of the preconditioned systems with the unpreconditioned ones for a
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(a) Initial coarse grids (mesh-size H0) (b) Initial fine grids (mesh-size h0)

Figure 1: Initial Cartesian and triangular coarse and fine grids on a 16 subdomain
partition.

Table 1: GMRES iteration counts. Multiplicative Schwarz preconditioner with
a piecewise constant coarse solver (q = 0). Unstructured triangular grids.

h = h0/2 h = h0/4 h = h0/4

H = H0 H = H0 H = H0/2

p = 1 23 (94) 33 (199) 25 (199)
p = 2 45 (259) 64 (540) 49 (540)
p = 3 66 (470) 93 (996) 74 (996)
p = 4 85 (713) 124 (1546) 97 (1546)
p = 5 105 (1004) 153 (2187) 123 (2187)
p = 6 124 (1342) 183 (2924) 144 (2924)
p = 7 143 (1727) 209 (3742) 167 (3742)
p = 8 162 (2148) 235 (4673) 189 (4673)

p− rate 0.93 (1.63) 0.88 (1.66) 0.93 (1.66)

fixed p, it is clear that the proposed preconditioner is very efficient. Indeed, we
observe a reduction in the number of iterations needed to achieve convergence of
around one order of magnitude when the proposed preconditioner is employed.
The last row of Table 1 shows the computed growth rate in the number of iter-
ations: we observe that the number of iterations needed to obtain convergence
increases linearly as a function of p for the preconditioned system of equations,
whereas this quantity grows almost quadratically for the non-preconditioned
problem.

In Figure 2 we report the condition number estimates of the symmetrized
Schwarz operator and the corresponding iteration counts versus the polynomial
degree p. The solid lines refer to the mesh configuration h = h0/2, H = H0,
whereas the dashed lines refer to the mesh configuration h = h0/4, H = H0/2.
This set of numerical experiments has been obtained on Cartesian meshes, em-
ploying a piecewise linear coarse solver. As predicted by the theoretical esti-
mates, the condition number of the preconditioned system grows quadratically
as a function of p. Moreover, we clearly observe that, for fixed p, by refining both
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Figure 2: Condition number estimates of the symmetrized Schwarz operator
and corresponding iteration counts versus the polynomial degree p on Cartesian
grids for different discretization steps (solid line: h = h0/2, H = H0; dashed line
h = h0/4, H = H0/2). Piecewise linear coarse solver.

the fine and the coarse grid, but keeping the ratio of the fine and coarse mesh-
sizes constant, the condition number (and therefore the number of iterations
needed to obtain convergence) remains constant.

Next, we consider the performance of the symmetrized Schwarz precondi-
tioner when varying the coarse and fine mesh-size, and keeping the polynomial
approximation degree p fixed. In Table 2 (top) we report the condition number
estimates for the symmetrized Schwarz operator employing piecewise biquadratic
elements (p = 2) and a piecewise constant coarse solver (q = 0); whereas, in Ta-
ble 2 (bottom) the analogous results obtained with piecewise bicubic elements
(p = 3) and a piecewise linear coarse solver (q = 1) are shown. We clearly
observe that the condition number grows as O(Hh−1), as predicted by Theo-
rem 3.1. Moreover, we clearly observe that employing a piecewise linear coarse
solver (q = 1) rather than a piecewise constant coarse solver (q = 0) significantly
improves the performance of the preconditioner. Indeed, comparing the condi-
tion number estimates of the preconditioned system with the analogous ones
obtained for the non-preconditioned problem (last row of Table 2) we clearly
observe that the condition number of the non-preconditioned system is reduced
with respect to the condition number of the preconditioned system by approxi-
mately 5 orders of magnitude for q = 1 and 4 orders of magnitude for q = 0.
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Table 2: Condition number estimates for the symmetrized Schwarz operator
with p = 2, q = 0 (top) and p = 3, q = 1 (bottom). Cartesian grids.

h ↓ H → H0 H0/2 H0/4 H0/8

h0 5.32e2 1.12e3 4.01e3 7.08e3
h0/2 2.74e2 4.71e2 2.80e3 5.59e3
h0/4 – 2.60e2 1.18e3 3.42e3
h0/8 – – 3.45e2 1.75e3

κ(A) 2.88e5 1.18e6 4.89e6 1.99e7

h ↓ H → H0 H0/2 H0/4 H0/8

h0 4.81e1 9.59e1 1.92e2 3.91e2
h0/2 2.14e1 4.35e1 8.70e1 1.75e2
h0/4 – 2.09e1 4.24e1 8.44e1
h0/8 – – 2.05e1 4.26e1

κ(A) 7.44e5 2.81e6 1.11e7 4.55e7
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