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Abstract

We propose a procedure aiming at reducing the computational cost in-
volved in the numerical approximation of (possibly nonlinear) advection-
diffusion-reaction systems. The idea is to suitably combine a model with a
mesh adaptive procedure. In particular we first derive, separately, a model
error estimator and an anisotropic estimator for the discretization error,
suited for driving a model and a mesh adaptivity algorithm, respectively.
These two strategies are then properly combined, allowing for a merged
model-mesh control. The whole procedure is finally assessed on some nu-
merical test cases, essentially inspired by ecological and environmental ap-
plications.

1 Introduction and motivations

Many of the problems of interest in Applied Sciences involve different temporal
and spatial scales as well as physical phenomena of different nature, often limited
to some portion of the whole computational domain. This issue, for instance,
is typical when monitoring the concentration of some pollutant in a river or in
air, rather than when interested in the fluid-dynamics in a river with obstacles,

∗This research was supported by PRIN 2006 “Approssimazione Numerica di Problemi Mul-
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as well as if dealing with the measurement of a solute concentration in a blood
vessel, or of the electric current at the terminals of a semiconductor electronic
device.
With a view to the numerical simulation of such phenomena, mesh adaptivity
plays an important role to manage the coexistence of different time and space
scales. The idea is to reduce the involved computational costs by selecting
small mesh spacing and time step only where and when strictly necessary. As a
matter of fact, mesh adaptive procedures have been actively investigated for the
numerical approximation of PDE’s models since the late ’70s (see, e.g., [4, 5, 53,
8, 7, 51]) and are standard tools in most of the main commercial softwares.

On the other hand, the dominance of some physical features in restricted
areas of the domain suggests giving up the employment of the full model on the
whole domain, locally replaced by a simpler model. This philosophy has led to
the more recent model adaptation. This approach covers distinct frameworks:
for instance the heterogeneous domain decomposition method matches different
boundary value problems associated with disjoint subregions of the computa-
tional domain (see, e.g., [45]); the geometric multiscale strategy couples models
characterized by a different spatial dimension (see, e.g., [21]); the hierarchi-
cal model reduction combines models with the same dimension but exhibiting
a different level of accuracy in describing the phenomenon at hand (see, e.g.,
[52, 1, 6, 19]).

In this paper we resort to an alternative technique. The idea is to merge the
full model with a reduced counterpart, obtained by dropping in the full model the
most expensive term from the computational viewpoint. For example, in the case
of an advection-diffusion problem, the advective term (the most troublesome to
deal with numerically) may be relevant (and thus included in the model) just in
a small part of the domain. This approach has been proposed in a goal-oriented
framework by, e.g., [38, 10]. A successive variant is provided in [43] and applied
to the approximation of the unsteady shallow water equations. The present work
aims at enriching the analysis in [43] with a suitable mesh adaptation procedure,
our reference full model being a general (possibly nonlinear) advection-diffusion-
reaction system. The combination of mesh and model adaptivity is not often
tackled in the literature (see, e.g., [10, 11, 49]). Our goal is to further lighten
the computational cost of a model-mesh adaptive procedure by advocating an
anisotropic mesh adaptation strategy (see, e.g., [13, 27, 18, 2, 16, 22, 48, 50, 44,
25, 28]). This turns out to be particularly convenient in the presence of strongly
directional features, such as the ones induced by a dominant advection.

The outline of the paper is the following one: We first focus on the model
adaptation only. In particular, Section 2 faces the linear case, while in Section 3
we deal with the nonlinear framework. In Section 4 we move to the mesh adapta-
tion by introducing the anisotropic setting, as well as a goal-oriented anisotropic
a posteriori analysis. Finally, in Section 5 the model and mesh adaptivities are
merged. The numerical test cases throughout the paper are both academic and
inspired by ecological and environmental applications.
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2 An a posteriori model analysis: the linear case

Aim of this section is to provide an a posteriori model error analysis for a general
linear variational problem. The idea is to be free from the Lagrangian approach
typical of the nonlinear case (see, e.g., [10, 11, 38, 39, 40, 41, 43]). Thus we are
led to a simplified setting, still hinging on the dual framework with a view to
a goal-oriented error control (see, e.g., [9, 26, 30, 37]). The proposed analysis
also includes the treatment of nonhomogeneous Dirichlet boundary conditions
as well as a Petrov-Galerkin formulation for both the primal and dual problems.
Let V and W be two real Hilbert spaces associated with the computational
domain Ω ⊂ R

2, and V0 ⊆ V,W0 ⊆ W be two corresponding subspaces. Let
c ∈ V and g ∈W be two fixed elements, related to the nonhomogeneous Dirichlet
data. Let us introduce the general linear problem to be approximated: find
u1 ∈ V0 + c s.t.

a(u1, w) + d(u1, w) = F (w) ∀w ∈W0, (1)

where a(·, ·), d(·, ·) are bilinear forms defined on V ×W and F : W → R is a
linear functional, possibly accounting for nonhomogeneous Neumann conditions.
Standard regularity assumptions are made on the problem data so that (1) is
well-posed. Notice the different function spaces employed for the solution and
the test function in the spirit of a Petrov-Galerkin formulation, V0 +c ⊆ V being
an affine space. Moreover we assume that the bilinear form d(·, ·) gathers the
most expensive part involved in the computation of (1).
Throughout the paper we refer to (1) as to the fine primal problem.

The actual goal is to estimate Jgoal(u1), where Jgoal : V → R is a linear
functional of interest identifying a certain physically meaningful quantity (see
Sections 2.2 and 3.1 for possible instances).
In particular we suppose to deal with physical problems where the influence
of the bilinear form d(·, ·) on the estimation of Jgoal(u1) is confined to small
portions of Ω. The idea is to propose an automatic tool able to detect these
areas (Ω1) of influence in order to contain the involved computational cost with
respect to the employment of the fine model on the whole Ω. We are thus led to
solve a variational problem where d(·, ·) contributes only “spotwise” or, likewise,
on certain regions (Ω0) of Ω we solve the so-called coarse problem identified by
the sole bilinear form a(·, ·).
For this purpose we introduce the adapted primal problem: find uα ∈ V0 + c s.t.

a(uα, w) + d(uα, αw) = F (w) ∀w ∈W0, (2)

where α ∈ L∞(Ω) takes on only the values 0 or 1. When α = 0 everywhere
we get the coarse model, whereas we recover (1) for α = 1 on the whole Ω.
In the general case none of these two situations occurs. On the contrary, the
choice α = χΩ1

yields a possible adapted model, the one to be actually solved,
χ denoting the characteristic function.
We point out that the second argument of d(·, ·) must not depend on any deriva-
tive, due to the regularity of α. Moreover, the form d(·, ·) must not change
the differential nature (elliptic, hyperbolic, etc) of the coarse problem associated
with the bilinear form a(·, ·).

With the aim of a goal-oriented analysis we define the fine dual problem
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associated with the primal one (1): find z1 ∈W0 + g s.t.

a(v, z1) + d(v, z1) = J(v) ∀v ∈ V0, (3)

where W0 + g ⊆ W is an affine space of W while J : V → R is a suitable linear
functional which will be related to Jgoal at the end of this section. Likewise we
introduce the adapted dual problem: find zα ∈W0 + g s.t.

a(v, zα) + d(v, αzα) = J(v) ∀v ∈ V0. (4)

To make the analysis below more straightforward we rewrite the primal and
dual problems above by exploiting the splitting uα = ũα + c, zα = z̃α + g, with
ũα ∈ V0 and z̃α ∈W0. This yields: find ũα ∈ V0 s.t.

a(ũα, w) + d(ũα, αw) = F (w) − a(c, w) − d(c, α w) = F̃α(w) ∀w ∈W0 (5)

with reference to problem (2); find z̃α ∈W0 s.t.

a(v, z̃α) + d(v, α z̃α) = J(v)− a(v, g) − d(v, α g) = J̃α(v) ∀v ∈ V0, (6)

for problem (4). The choice α = 1 in (5) and (6) yields the corresponding
reformulations of (1) and (3), respectively.

We anticipate some preliminary results before focusing on the main estimate.
We begin with proving the following model orthogonalities:

Lemma 2.1 Let ẽm = ũ1 − ũα = u1 − uα and ẽ ∗m = z̃1 − z̃α = z1 − zα be the
primal and dual model error, respectively. Then it holds

a(ẽm, w) + d(ẽm, w) + d(uα, (1− α)w) = 0 ∀w ∈W0; (7)

a(v, ẽ ∗m) + d(v, ẽ ∗m) + d(v, (1 − α) zα) = 0 ∀v ∈ V0. (8)

Proof. It follows on suitably subtracting the adapted formulations (5) and (6) from

their corresponding fine counterparts. �

By mimicking the relation leading to result (1.8) in [9] we establish

Lemma 2.2 The following relation links the primal with the dual model errors
on J̃1 and F̃1:

J̃1(ẽm) = F̃1(ẽ
∗
m) + d(ũα, (1 − α) zα)− d(uα, (1− α) z̃α).

Proof. Choosing v = ẽm in the dual problem (6) with α = 1, exploiting the model
orthogonalities (7) and (8) with w = z̃α and v = ũα, respectively, we get

J̃1(ẽm) = a(ẽm, ẽ
∗
m) + d(ẽm, ẽ

∗
m)− d(uα, (1− α) z̃α)

= a(ũ1, ẽ
∗
m) + d(ũ1, ẽ

∗
m) + d(ũα, (1− α) zα)− d(uα, (1− α) z̃α).

Finally the fine primal problem, i.e., (5) with α = 1, for the choice w = ẽ ∗
m provides us

with the desired result. �

Let us introduce the primal ρ̃(ũα, ·) : W0 → R and the dual ρ̃ ∗(·, z̃α) : V0 → R

model residuals given by

ρ̃(ũα, ·) = F̃1(·)− a(ũα, ·)− d(ũα, ·), ρ̃ ∗(·, z̃α) = J̃1(·)− a(·, z̃α)− d(·, z̃α), (9)

respectively. These quantities measure the extent the adapted solutions ũα and
z̃α fail to satisfy the corresponding fine problems.
An equivalent expression for the residuals in (9) can be obtained via the following
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Lemma 2.3 It holds

ρ̃(ũα, ·) = −d(uα, (1 − α) ·), ρ̃ ∗(·, z̃α) = −d(·, (1 − α) zα).

Proof. Using the definition (9)1 and adding and subtracting d(ũα, αw) yields

ρ̃(ũα, w) = F̃1(w) − a(ũα, w)− d(ũα, αw)− d(ũα, (1− α)w).

By relating F̃1(w) to F̃α(w) via (5), we get

ρ̃(ũα, w) = F̃α(w) − d(c, (1− α)w) − a(ũα, w) − d(ũα, αw) − d(ũα, (1− α)w).

The adapted primal formulation along with the splitting uα = ũα + c provides us with

the final result.

An analogous proof holds for the dual residual ρ̃ ∗(·, z̃α). �

Lemma 2.4 The primal and dual model error on J̃1 and F̃1 can be expressed
as

J̃1(ẽm) = min
ϕ∈W0

{
ρ̃(ũα, z̃1 − ϕ)− d(uα, (1 − α)ϕ)

}
. (10)

and
F̃1(ẽ

∗
m) = min

ψ∈V0

{
ρ̃ ∗(ũ1 − ψ, z̃α)− d(ψ, (1 − α) zα)

}
, (11)

respectively.

Proof. Thanks to the fine dual problem for v = ẽm and the model orthogonality (7)
with w = ϕ, for any ϕ ∈W0, we have

J̃1(ẽm) = a(ẽm, z̃1) + d(ẽm, z̃1) = a(ẽm, z̃1 − ϕ) + d(ẽm, z̃1 − ϕ)− d(uα, (1 − α)ϕ).

The definition of the primal model error ẽm combined with the fine primal problem for
w = z̃1 − ϕ yields

J̃1(ẽm) = F̃1(z̃1 − ϕ)− [a(ũα, z̃1 − ϕ) + d(ũα, z̃1 − ϕ)]− d(uα, (1− α)ϕ).

The thesis follows recalling the definition of the primal model residual (9)1 and from

the arbitrariness of ϕ in W0. Result (11) follows on suitably exchanging the role played

by the primal and dual problems in the proof of (10). �

The main result of this section provides an estimate for the model error on
J̃1 merging both the primal and dual contributions.

Proposition 2.1 Let ũ1 and ũα be the fine and the adapted primal solutions
associated with (5) and z̃1 and z̃α the corresponding dual solutions. Let ẽm and
ẽ ∗m be the primal and dual model errors as in Lemma 2.1. Then it holds

J̃1(ẽm) = −d(uα, (1 − α) z̃α) +
1

2

[
ρ̃(ũα, ẽ

∗
m) + ρ̃ ∗(ẽm, z̃α)

]
,

ρ̃(ũα, ·) and ρ̃ ∗(·, z̃α) being defined as in (9), and with uα solution to (2).

Proof. We proceed with the trivial splitting J̃1(ẽm) = 1

2
J̃1(ẽm) + 1

2
J̃1(ẽm). Then

we employ (10) in Lemma 2.4 on the first term and Lemma 2.2 combined with (11) in
Lemma 2.4 on the second one, for arbitrary ϕ ∈W0 and ψ ∈ V0:

J̃1(ẽm) = 1

2

[
ρ̃(ũα, z̃1 − ϕ)− d(uα, (1− α)ϕ)

]

+ 1

2

[
ρ̃ ∗(ũ1 − ψ, z̃α)− d(ψ, (1 − α) zα) + d(ũα, (1− α) zα)− d(uα, (1 − α) z̃α)

]
.
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Now by suitably rearranging the terms on the right-hand side we have

J̃1(ẽm) = 1

2

[
ρ̃(ũα, z̃1 − ϕ) + ρ̃ ∗(ũ1 − ψ, z̃α)

]

− 1

2

[
d(uα, (1− α)ϕ) + d(ψ, (1 − α) zα)− d(ũα, (1− α) zα) + d(uα, (1− α) z̃α)

]
,

i.e., the final result after choosing ϕ = z̃α and ψ = ũα. �

Remark 2.1 In a similar fashion we can prove the equality

F̃1(ẽ
∗
m) = −d(ũα, (1 − α) zα) +

1

2

[
ρ̃(ũα, ẽ

∗
m) + ρ̃ ∗(ẽm, z̃α)

]
.

With reference to Proposition 2.1 we highlight that only the first term on
the right-hand side is fully computable whereas the second one depends (to first
order accuracy) on both the primal and dual errors. Thus, with a view to the
adaptive procedure in Section 2.1, we can introduce the model error estimator
ηα for J̃1(ẽm) given by

ηα = −d(uα, (1− α) z̃α)
(
≡ ρ̃(ũα, z̃α)

)
. (12)

As the actual goal is to estimate Jgoal(ẽm), it is convenient, in the light of

Proposition 2.1, to choose J̃1 = Jgoal. As a consequence the functional J in the
fine dual problem (3) is given by J(v) = Jgoal(v) + a(v, g) + d(v, g).

2.1 The model adaptive procedure

We aim at devising a reliable iterative procedure, referred to as model adaptation
procedure, able to “translate” the error estimator ηα in (12) into a practical
criterion for selecting the fine (Ω1) and coarse (Ω0) areas in Ω.
With a view to the actual computation of the adapted problems (2) and (6), we
introduce a conformal partition Th = {K} of Ω into Nh triangles K. At this
stage we assume that Th is sufficiently fine so that the discretization error is
negligible.

To initiate the iterative procedure, we select reference primal and dual so-
lutions computationally cheap, i.e., we let uα = u0 and z̃α = z̃0. This leads
to identify the initial guess for the model error estimator with η0 = −d(u0, z̃0),
according to definition (12). The final goal of the procedure is to identify the
suitable function α = χΩ1

so that |J(u1 − uα)| ≤ τm, with τm a user-defined
tolerance, and such that the measure of Ω1 be as small as possible.

The main steps of the model adaptation algorithm are listed in the following
α-adaptive procedure:

1. set α
∣∣
K

= 0,∀K ∈ Th;

2. solve (2) and (6);

3. compute ηα via (12);
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4. if |ηα| ≤ τm break

5. for i=1,Nmax

6. localize ηα on each K ∈ Th : ηα,K = ηα
∣∣
K
;

7. if |ηα,K | > δ
τm
Nh

, α
∣∣
K
← 1;

8. solve (2) and (6);

9. compute ηα via (12);

10. if |ηα| ≤ τm break

end

The localization in step 6. simply relies on the additive property of the integrals
defining the bilinear form d(·, ·). The check at step 7. is meant in the spirit of an
equidistribution of the total model error over the triangles. This mimics what
is typically done in the mesh adaptivity framework. Through the parameter
δ > 1 we aim at limiting the model refinement only to the “worst” elements. In
practice this value is chosen so that, at each iteration, the variation of the fine
area Ω1 is at most the 5% of the whole area |Ω|. The adopted criterion avoids
the continuous switching on and off of the fine model in the same element caused
by the factor 1− α in (12).
Step 10. aims at guaranteeing the reliability of the estimator (12). Indeed ηα
neglects the model residuals ρ̃(ũα, ẽ

∗
m) and ρ̃ ∗(ẽm, z̃α). Moreover since step 7.

provides a “prediction” for a new distribution of the function α, we need to check
the goodness of such a prediction via steps 8.-10..
Finally, to ensure the termination of the adaptive procedure in the case of a
failure in satisfying the global tolerance, we have fixed a maximum number Nmax
of iterations.
We point out that the α-adaptive procedure is not guaranteed to be efficient,
i.e., the area returned for Ω1 is not necessarily a minimum. However both the
choices made for the initial guess and the equidistribution criterion serve to meet
this goal.

2.2 Some examples

We assess the reliability of the error estimator ηα in (12) as well as the efficiency
of the α-adaptive procedure on the well-established scalar advection-diffusion-
reaction (ADR) equation





−µ∆u+ b · ∇u+ σu = f in Ω,

u = c1 on ΓD,

µ
∂u

∂n
= c2 on ΓN ,

(13)
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with µ ∈ R
+; Ω ⊂ R

2 is a regular bounded domain; σ ∈ L∞(Ω) with σ ≥ 0 a.e.
in Ω, b ∈ [L∞(Ω)]2 with ∇·b ∈ L∞(Ω) such that −1

2∇·b+σ ≥ 0 a.e. in Ω and

b ·n ≥ 0 on ΓN , c1 ∈ H
1/2(ΓD), c2 ∈ L

2(ΓN ) and f ∈ L2(Ω) are given functions;
∂u/∂n = ∇u · n is the normal derivative of u, n being the unit outward normal
vector to the boundary ∂Ω of the domain.
Here and throughout the paper we use a standard notation to denote both
the Lebesgue and the Sobolev spaces of functions and the corresponding norms
([29]). The regularity demanded above for the data ensures the well-posedness
of the weak formulation of (13).
In Sections 2.2.1 and 2.2.2 we particularize the model analysis above for two
different choices of the bilinear forms a(·, ·) and d(·, ·) in (1). In both cases the
goal functional Jgoal is identified by the general representation

Jgoal(v) =

∫

ω

jω v dω +

∫

Γ

jγ v ds, (14)

where ω ⊆ Ω, Γ ⊆ ΓN , while jω ∈ L
2(Ω) and jγ ∈ L

2(Γ) are suitable density
functions.

2.2.1 ADR versus AD

As first example we swap between (13) and the advection-diffusion (AD) problem
obtained by omitting the term σu in (13). The corresponding adapted primal
problem is thus identified by (2) by letting

a(uα, w) =

∫

Ω

µ∇uα · ∇w dΩ +

∫

Ω

(b · ∇uα)w dΩ, d(uα, αw) =

∫

Ω

ασuαw dΩ,

F (w) =

∫

Ω

fw dΩ +

∫

ΓN

c2w ds,

the function spaces being V = W = H1(Ω), V0 = W0 = H1
ΓD

(Ω).
According to (12) the model error estimator is now

ηα = −d(uα, (1 − α) z̃α) = −

∫

Ω

(1 − α)σuαz̃α dΩ, (15)

z̃α being the weak solution to the dual problem




−µ∆z̃α −∇ · (bz̃α) + ασz̃α = jω in Ω,

z̃α = 0 on ΓD,

(µ∇z̃α + bz̃α) · n = jγ on Γ,

(µ∇z̃α + bz̃α) · n = 0 on ΓN\Γ.

(16)

To exemplify the α-adaptive procedure associated with the estimator (15),
we consider the following data: µ = 10−3, b = (x2,−x1)

T , σ = 0.5, f = 0

8



Figure 1: ADR vs AD (model adaptation): domain, advective field and target
region (left), fine primal (middle) and dual (right) solutions.

and Ω = (0, 1)2 (see Fig. 1 (left)). Concerning the boundary data, we assign a
homogeneous Neumann condition on ΓN = {(x1, x2) : x2 = 0}, i.e., c2 = 0 in
(13); a homogeneous Dirichlet condition on {(0, x2) : 0 < x2 < 0.8} and u = 1
elsewhere. The corresponding fine solution is displayed in Figure 1 (center).
The functional Jgoal coincides with the mean value of the solution on the area
E = (0.3, 0.9) × (0.1, 0.2) (see Fig. 1 (left)), i.e.,

Jgoal(v) =
1

|E|

∫

E
v dE,

|ω| denoting the measure of the general set ω ⊂ R
2. This choice implies jω =

|ω|−1, with ω = E, and jγ = 0 in (14), i.e., in (16). We refer to Figure 1 (right)
where the fine dual solution is shown. Finally, the value τm = 10−2 is selected
for the tolerance in the α-adaptive procedure.
Figure 2 gathers the main steps of such a procedure which terminates after 5
iterations. In the first column we find the distribution of the areas Ω1 (dark)
and Ω0 (light), in correspondence with the second, third and fifth iterations.
The middle column collects the adapted primal solution computed on the areas
distribution on the left. The last column furnishes the elementwise distribution
of ηα evaluated on the adapted solutions in the center and on the corresponding
dual variables.
The areas of influence detected by ηα are confined to the regions most meaningful
for the goal functional, that is the ones around the circular internal layer of u1

but upwind the observation region E. This is justified also by the behaviour of
the dual solution in Figure 1 (right).
The percentage of the fine region Ω1, at the last iteration, is only the 30% of
|Ω|. A comparison between the fine primal solution in Figure 1 (center) and the
fifth adapted primal solution in Figure 2 (bottom-center) highlights the absence
of the reaction contribution in the upper-right part of Ω.
Concerning the distribution of the error estimator, we observe that, during the
adaptive procedure, its value decreases where the fine model is switched on until,
at the last iteration, only a thin shell outside Ω1 is somehow still meaningful.

A more quantitative analysis is provided in Table 1, where the percentage
of the fine area, the estimator of the relative error, the actual relative error,
and the model effectivity index E.I. = ηα/|Jgoal(u1)−Jgoal(uα)| are summarized
throughout all the five iterations. The fine areas cover a larger and larger portion
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Figure 2: ADR vs AD (model adaptation): distribution of the areas Ω1 and
Ω0 (left column), adapted primal solution (middle column) and elementwise
distribution of ηα (right column) at the second (first row), third (second row)
and fifth (third row) iteration.

up to about one third of the whole domain, while both the estimator and the
error decrease steadily. The values of E.I., always close to 1, assess the robustness
of the estimator ηα in (15).

2.2.2 ADR versus DR

As a second instance we alternate the ADR model with the diffusion-reaction
problem (DR) obtained by dropping in (13) the advective term.
We recover the adapted formulation (2) by picking the function spaces as in

10



# it |Ω1|%
|ηα|

|Jgoal(u1)|
|Jgoal(u1)−Jgoal(uα)|

|Jgoal(u1)| E.I.

1 0.00 1.39 · 10+00 1.00 · 10+00 1.39
2 5.00 8.02 · 10−01 6.18 · 10−01 1.30
3 15.00 2.28 · 10−01 1.87 · 10−01 1.22
4 25.00 3.72 · 10−02 3.21 · 10−02 1.16
5 30.00 9.58 · 10−03 8.47 · 10−03 1.13

Table 1: ADR vs AD (model adaptation): iteration, percentage of fine areas,
estimator of the relative error, actual relative error, model effectivity index.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3: ADR vs DR (model adaptation): domain and advective field (left),
fine primal (middle) and dual (right) solutions.

Section 2.2.1 and taking

a(uα, w) =

∫

Ω

µ∇uα · ∇w dΩ +

∫

Ω

σuαw dΩ, d(uα, αw) =

∫

Ω

α(b · ∇uα)w dΩ,

F (w) =

∫

Ω

fw dΩ +

∫

ΓN

c2w ds.

The model error estimator (12) is thus

ηα = −d(uα, (1 − α)z̃α) = −

∫

Ω

(1− α)(b · ∇uα)z̃α dΩ, (17)

where z̃α is the weak solution to the dual problem




−µ∆z̃α −∇ · (αbz̃α) + σz̃α = jω in Ω,

z̃α = 0 on ΓD,

(µ∇z̃α + αbz̃α) · n = jγ on Γ,

(µ∇z̃α + αbz̃α) · n = 0 on ΓN\Γ.

To assess the performance of the estimator (17), we pick the L-shaped domain in
Figure 3 (left). The physical parameters are chosen as: µ = 10−3; σ = 10−4; b =
(V sin(θ),−V cos(θ))T , where θ = arctan(x2/x1), V = exp(−(r − 4)2/0.01) and
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Figure 4: ADR vs DR (model adaptation): distribution of the areas Ω1 and
Ω0 (left column) and adapted primal solution (right column) at the second (top
row) and last (bottom row) iteration.

r =
√
x2

1 + x2
2 (see Fig. 3 (left)); f = 0. We enforce a homogeneous Neumann

condition (c2 = 0) along ΓN = {(4, x2) : 0 < x2 < 4}∪{(x1, 0) : 2 < x1 < 4}; the
nonhomogeneous Dirichlet condition u = 1 on the edge {(0, x2) : 2 < x2 < 4},
while u = 0 elsewhere.

The choice made for the data leads to a fine solution u1 characterized by a
thin circular internal layer around r = 4 (see Fig. 3 (middle)). The functional
Jgoal is now related to a boundary observation, i.e., to the convective flux

Jgoal(v) =

∫

Γ
b · n v ds,

with Γ = {(x1, 0) : 2 < x1 < 4}.
For a global model tolerance τm = 10−2, the α-adaptive procedure yields

four iterations. The fine/coarse area distribution and the corresponding adapted
primal solution at the second and last iteration are provided in Figure 4. It can be
noticed that, at the second iteration, the area where the advective contribution
is solved is very small, and consequently the corresponding adapted solution
exhibits a predominant diffusive behaviour (Fig. 4 (top)). On the contrary,
at the last iteration, the advective term is switched on in a meaningful zone
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embracing the internal layer (Fig. 4 (bottom-left)). This identifies an adapted
solution where the convective features are evident (see Fig. 4 (bottom-right)). As
expected, the dominant advective character of the problem at hand, associated
with an outflow boundary observation area, lead the estimator ηα to identify the
regions most sensitive to the field b.

The same quantities as in Table 1 are computed also for this test case (see
Table 2). At the last iteration, the fine model is solved on only one fourth of Ω.
Both the relative estimator and error decrease throughout the iterations. The
effectivity index, just at the fourth iteration reaches a value corroborating the
robustness of the estimator (17). Notice the large overestimation by ηα at the
first iteration due to the complete neglecting of the advection, crucial to control
the boundary flux.

# it |Ω1|%
|ηα|

|Jgoal(u1)|
|Jgoal(u1)−Jgoal(uα)|

|Jgoal(u1)| E.I.

1 0.00 1.71 · 10+02 1.01 · 10+00 169.81
2 5.00 1.16 · 10+02 1.39 · 10+00 83.29
3 15.00 7.64 · 10+00 4.44 · 10−01 17.20
4 25.00 3.32 · 10−03 1.25 · 10−03 2.66

Table 2: ADR vs DR (model adaptation): iteration, percentage of fine areas,
estimator of the relative error, actual relative error, model effectivity index.

3 An a posteriori model analysis: the nonlinear case

With a view to the modelization of real-life phenomena, it is unavoidable to deal
with nonlinear problems. Nonetheless the corresponding analysis is no doubt
more cumbersome. The standard mathematical approach used to handle a goal-
oriented analysis in a nonlinear framework is based on a reformulation of the
problem at hand as a constrained minimization problem, hinging on a suitable
Lagrangian functional. In general the most critical issues to be tackled in the
definition of the Lagrangian are the treatment of the nonhomogeneous Dirichlet
boundary data as well as the inclusion of possible stabilization terms in the
discrete variational formulation.
Concerning the extension of the model error analysis in Section 2 to the nonlinear
case, the approach that manages nonhomogeneous conditions via suitable affine
function spaces can still be pursued. This would entail a generalization of the
analysis in [9, 26, 33] to the model setting. However, the later merging of the
model with the discretization analysis suggests undertaking a simpler approach,
based on the weak imposition of the nonhomogeneous Dirichlet conditions (see,
e.g., [14, 3]).

Let us consider the general weak formulation of the differential problem at
hand:

find u1 ∈ V : a(u1)(w) + d(u1)(w) = F (w) ∀w ∈W, (18)

where a(·)(·) and d(·)(·) are semilinear forms, i.e. linear with respect to the
second argument and nonlinear in the first one. Analogously to the linear case
a(·)(·) identifies the coarse model, whereas d(·)(·) represents the correction lead-
ing to the fine model. Assumptions similar to the ones advanced on d(·, ·) in
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Section 2 are demanded also in this case. We point out that (18) is still a
Petrov-Galerkin formulation. Moreover the forms a(·)(·) and F (·) suitably take
into account the nonhomogeneous Dirichlet boundary conditions, thus weakly
enforced.
Let us then introduce the adapted problem depending on α:

find uα ∈ V : a(uα)(w) + d(uα)(αw) = F (w) ∀w ∈W, (19)

α being defined as in the previous section.

Let Jgoal : V → R be the target functional of interest, now possibly nonlin-
ear. We aim at finding a computable error estimator ηα of the output model
error Jgoal(u1)−Jgoal(uα). For this purpose, we introduce the following (trivial)
constrained minimization problem ([9]), after assuming the existence and the
uniqueness of the solution uα to (19) in V :

find uα ∈ V : inf
v∈Mα

Jgoal(v) = Jgoal(uα), (20)

where Mα = {v ∈ V : a(v)(ξ) + d(v)(αξ) = F (ξ),∀ξ ∈W}. This formulation
allows us to resort to the standard Lagrangian theory to enforce the constraint.
We introduce the adapted Lagrangian Lα : V ×W → R

Lα(uα, zα) = Jgoal(uα) + F (zα)− a(uα)(zα)− d(uα)(αzα), (21)

zα being the Lagrange multiplier associated with the constraint in Mα.
The solution to (20) is equivalent to finding the saddle-point of (21), such that

L′α(uα, zα)(ψ, φ) = 0 ∀(ψ, φ) ∈ V ×W.

We are consequently led to solve problem (19) together with the dual adapted
problem

find zα ∈W : a′(uα)(zα, ψ) + d′(uα)(αzα, ψ) = J ′
goal(uα)(ψ) ∀ψ ∈ V, (22)

where a′(uα)(·, ψ) and d′(uα)(·, ψ) denote the Fréchet derivatives of a(uα)(·) and
d(uα)(·), respectively, with respect to uα and evaluated at ψ.
With a view to the desired estimator ηα, the Lagrangian L1 associated with the
fine problem can be related to the adapted one Lα via relation

L1(u, z) = Lα(u, z) − d(u)((1 − α)z), ∀(u, z) ∈ V ×W.

Let us introduce the primal ρ(uα)(·) : W → R and the dual ρ∗(uα)(zα, ·) :
V → R model residuals given by

ρ(uα)(·) = F (·)− a(uα)(·)− d(uα)(·),

ρ∗(uα)(zα, ·) = J ′
goal(uα)(·) − a′(uα)(zα, ·)− d

′(uα)(zα, ·).

By mimicking the proof of Lemma 2.3, we obtain the identities

ρ(uα)(·) = −d(uα)((1 − α)·), ρ∗(uα)(zα, ·) = −d′(uα)((1 − α)zα, ·).

We are in a position to state the a posteriori model output error control:
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Proposition 3.1 For a(·)(·), d(·)(·) and Jgoal(·) smooth enough, we have

Jgoal(u1)− Jgoal(uα) = −d(uα)((1− α)zα) +
1

2

[
ρ(uα)(ez) + ρ∗(uα)(zα, eu)

]
+R,

(23)
where eu = u1 − uα and ez = z1 − zα are the primal and dual model error,
respectively, while

R =
1

2

∫ 1

0
L′′′1 (uα + seu, zα + sez)({eu, ez}, {eu, ez}, {eu, ez})s(s− 1)ds,

is the remainder, with z1 the fine dual solution to (22) for α identically equal to
1.

Proof. We refer to the appendix in [43]. �

We stress that relation (23) provides us with an exact representation of the
model error Jgoal(u1)−Jgoal(uα) though not explicitly computable as depending
on the fine solutions u1 and z1. Thus we adopt as model error estimator ηα the
only computable term in (23), namely

ηα = −d(uα)((1 − α)zα)
(
≡ ρ(uα)(zα)

)
. (24)

In [10] some theoretical assumptions are supplied to justify the dropping of the
two residuals ρ(uα)(ez) and ρ∗(uα)(zα, eu) and of the remainder R in (23), while
in [43] these hypotheses are numerically corroborated in the unsteady shallow
water setting.

Remark 3.1 On comparing the definitions of the model estimators in (12) and
(24), we see that the two estimators coincide formally. Indeed, the dual solution
zα to (22) can be shown to satisfy homogeneous Dirichlet boundary conditions
(see, e.g., [31]), analogously to z̃α in the linear case.

3.1 Some examples

The model estimator for the nonlinear case is assessed on two 2D test cases,
scalar and vector, respectively. The corresponding model adaptive procedure
coincides exactly with the one in Section 2.1.

3.1.1 A scalar problem: a logistic population model

As an instance of nonlinear scalar problem we consider the logistic population
model typical of population dynamics (see, e.g., [35, 36]). We are interested in
the study of diffusion mechanisms, modeling the movement of many individuals
in an environment or media. The individuals can be very tiny (e.g., bacteria,
molecules, cells) or large objects (e.g., animals, plants). In particular we deal
with the stationary case by assuming that the spatial distribution of the indi-
vidual density u at hand has reached the steady state. The reference model
is 




−µ∆u+ b · ∇u− σu+ γu2 = f in Ω,

u = 0 on ΓD,

µ
∂u

∂n
= c2 on ΓN ,

(25)
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Figure 5: Logistic population (model adaptation): domain, advective field and
target region (left), fine primal (middle) and dual (right) solutions.

with σ, γ > 0 a.e. in Ω, and where all the other data satisfy the same regularity
assumptions as in Section 2.2. However, to guarantee the well-posedness of the
weak form associated with (25) some further conditions have to be demanded
on the data.
The positiveness of σ and γ instills the logistic growth feature to the considered
population, since the global reactive term −σu+ γu2 in (25)1 can be rewritten
in the standard form −σu (1− γ/σu), with σ the linear reproduction rate and
σ/γ the carrying capacity of the environment ([35, 36]).
The diffusive term in (25) models the random dispersion of the species, the
advective term takes into account some possible transport phenomenon while f
describes an external injection or withdrawal. Concerning the assigned boundary
conditions, the boundary ΓD mimics a hostile portion of the borders while the
Neumann datum specifies an immigration or emigration flux.
We refer to [42] and [47] for a theoretical investigation about variants of model
(25).

We employ here the logistic model (25) for describing the motion of a school
of fishes in a small area off sea. This is reasonable under the assumption that
the vertical motion of the fishes is negligible and that the portion of the sea
is sufficiently large compared to the dimension of the fishes. In particular, the
domain Ω coincides with the square (−1, 1)2. The other data are µ = 10−3,
b = (x2−0.1x1, 3(−x1−0.1x2))

T , with∇·b = −0.4, σ = 10−2, γ = 2×10−2, f =
100χE , with E = (0.45, 0.55) × (0.45, 0.55) (see Fig. 5 (left)). Full homogeneous
Dirichlet boundary conditions are assigned on ∂Ω. The fine primal solution is
heavily dominated by the spiral shaped field b, as evident in Figure 5 (center).
The damping of the solution towards the center of the domain is due to both
the negative divergence of b and to the logistic term.

As we are interested in measuring the fish flux across a rectangular creel
Cr = (−0.05, 0.05) × (−1, 0) (see Fig. 5 (left)), we identify the functional Jgoal
as

Jgoal(v) = −

∫

Cr

b1v dCr,

where b1 is the first component of b.
With reference to the model adaptation framework, (25) identifies the fine

problem. On the other hand to define the coarse problem we give up the com-
putationally most expensive term, that is the nonlinear contribution γu2. This
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Figure 6: Logistic population (model adaptation): distribution of the areas Ω1

and Ω0 (left column), adapted primal solution (middle column) and elementwise
distribution of ηα (right column) at the second (first row), third (second row)
and fourth (third row) iteration.

amounts to allowing for a simple Malthusian growth ([35, 36]). Consequently
the adapted primal problem turns out to be





−µ∆uα + b · ∇uα − σuα + αγu2
α = f in Ω,

uα = 0 on ΓD,

µ
∂uα
∂n

= c2 on ΓN ,

(26)

whose weak form coincides with (19), where V = W = H1(Ω), and where the

17



# it |Ω1|%
|ηα|

|Jgoal(u1)|
|Jgoal(u1)−Jgoal(uα)|

|Jgoal(u1)| E.I.

1 0.00 1.49 · 10−01 1.28 · 10−01 1.17
2 5.51 4.51 · 10−02 3.90 · 10−02 1.16
3 16.52 1.19 · 10−02 1.10 · 10−02 1.08
4 21.63 5.60 · 10−03 5.35 · 10−03 1.05

Table 3: Logistic population (model adaptation): iteration, percentage of fine
areas, estimator of the relative error, actual relative error, model effectivity
index.

forms a(·)(·), d(·)(·) and F (·) are defined by

a(uα)(w) =

∫

Ω

µ∇uα · ∇w dΩ +

∫

Ω

(b · ∇uα)w dΩ−

∫

Ω

σuαw dΩ + λ

∫

ΓD

uαw ds,

d(uα)(αw) =

∫

Ω

αγu2
αw dΩ, F (w) =

∫

Ω

fw dΩ +

∫

ΓN

c2w ds,

(27)
with λ a suitable penalty parameter used to impose weakly the Dirichlet datum.
Thus, according to the general recipe (24), the model error estimator for the
logistic population model (25) is

ηα = −d(uα)((1− α) zα) = −

∫

Ω

(1− α)γu2
αzα dΩ, (28)

zα being the solution to the adapted dual problem




−µ∆zα −∇ · (bzα)− σzα + 2αγuαzα = −b1χCr in Ω,

zα = 0 on ΓD,

(µ∇zα + bzα) · n = 0 on ΓN .

We remark the linearity of the adapted dual problem leading to a corresponding
Malthusian growth provided by the linear reproduction rate σ − 2αγuα.

The α-adaptive procedure is run with a global tolerance τm = 10−2 and
stops after 4 iterations. Figure 6 collects the distribution of the fine and coarse
areas (first column), the corresponding adapted primal solution (middle column)
and the elementwise distribution of the estimator in (24) at the second (first row),
third (second row), and fourth (third row) iteration. The fine regions gradually
crowd around the streamlines stemming from the release area E. We point out
that also a portion of the central region of Ω contributes to the fine model,
as shown by the transition from the third to the fourth iteration, though to a
lesser extent as in the meantime the density of the fishes moving inward has
decreased. The distribution of ηα keeps up with this gradual updating of the
fine regions and takes on a maximum absolute value of about 10−7 on the last
adapted model. No macroscopic difference can be appreciated on comparing the
three adapted primal solutions in Figure 6.

The good performance of both the error estimator in (24) and the α-adaptive
procedure are confirmed by the values reported in Table 3.
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3.1.2 A vector problem: a predator-prey system

Different species interact in ecological problems (foxes and rabbits, lions and
gazelles, etc) as well as different substances react and produce new compounds
in chemical reactions. In all these events systems of differential equations are
used to model the phenomena (e.g., predator-prey, Gierer-Meinhordt, Gray-
Scott models, see [35, 36]). In the following we analyze system





−µu∆u+ b · ∇u− σuu+ γuv = fu in Ω,

−µv∆v + b · ∇v + σvv −Kγuv = fv in Ω,

u = hu on ΓD,

v = hv on ΓD,

µu
∂u

∂n
= gu on ΓN ,

µv
∂v

∂n
= gv on ΓN ,

(29)

i.e., a variant of the standard Lotka-Volterra predator-prey model, enriched with
convective and source terms. As in the previous section we are still interested in
the steady solution. In particular, u and v stand for the prey and the predator
density, respectively; the coefficients µu, µv ∈ R

+ are the corresponding species
diffusion constants; σu, σv, γ ∈ L∞(Ω) are positive functions a.e. in Ω and
represent the prey growth rate, the predator death rate and the death rate per
encounter of preys due to predation, respectively; the constant K measures the
efficiency of turning the preys into predators; fu, fv ∈ L2(Ω) model possible
sources external to the system at hand; b ∈ [L∞(Ω)]2, with ∇ · b ∈ L∞(Ω),
introduces an advection (for instance, a flow in a chemical reactor); ΓD is the
portion of the ecological system border where Dirichlet data (hu and hv) are
assigned, while gu, gv ∈ L

2(ΓN ) describe inward/outward random walks of the
two species. All these parameters are tuned so that a unique (weak) solution to
(29) is guaranteed.

In more detail, we consider a square domain Ω = (0, 1)2 where two species
of interest are released. The first species (prey) is able to sustain itself with
other natural resources, while the second is a species of predators and survives
eating the prey. The concentration of the two populations takes on the values
u = 1 and v = 0 on {(0, x2) : 0.6 < x2 < 0.65} ∪ {(0, x2) : 0.75 < x2 < 0.8},
and u = 0 and v = 0.1 on {(0, x2) : 0.65 < x2 < 0.75} ∪ {(1, x2) : 0.7 <
x2 < 0.8}. Moreover homogeneous Neumann conditions are imposed on ΓN =
{(x1, 0) : 0.4 < x1 < 0.6} while homogeneous Dirichlet conditions are assigned
elsewhere. Both species move in the domain by a random diffusion motion
(µu = µv = 5× 10−4) and are drifted by the advective field b in Figure 7 (left),
which represents the solution to the Navier-Stokes equations characterized by a
Reynolds number Re = 100 and completed with the following boundary data:
parabolic profiles with average value 0.02 and 0.01 are enforced at the inflow
boundaries {(0, x2) : 0.6 < x2 < 0.8} and {(1, x2) : 0.7 < x2 < 0.8}, respectively;
a homogeneous Neumann condition is assigned at the outflow ΓN = {(x1, 0) :
0.4 < x1 < 0.6}, while no slip conditions hold elsewhere.
Concerning the other data in (29), we have: σu = 10−2, σv = 10−1, γ = 1,
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Figure 7: Predator-prey system (model adaptation): domain, advective field and
observation area (left); fine primal solution (middle), u (top) and v (bottom);
fine dual solution (right), zα,1 (top) and zα,2 (bottom).

K = 0.1, fu = 0 and fv = 0.
Figure 7 (middle) collects the fine solutions u and v to (29). Note the different
distribution of the prey (top) and predator (bottom), strongly influenced by the
boundary conditions and the field b.

Our goal is to measure the average concentration of the preys in an area of
interest OA = (0.4, 0.6)× (0.1, 0.2) (see Fig. 7 (left)). This amounts to selecting
as target functional

Jgoal(u) =
1

|OA|

∫

OA

u dOA. (30)

The corresponding dual solution is displayed in Figure 7 (right). Qualitatively,
the first dual component seems to be the most relevant for influencing Jgoal.

With a view to the model adaptation, both the nonlinear terms in (29) are
switched on/off. The corresponding adapted system is thus





−µu∆uα + b · ∇uα − σuuα + αγuαvα = fu in Ω,

−µv∆vα + b · ∇vα + σvvα − αKγuαvα = fv in Ω,

uα = hu on ΓD,

vα = hv on ΓD,

µu
∂uα
∂n

= gu on ΓN ,

µv
∂vα
∂n

= gv on ΓN .

The vector feature of the problem at hand leads us to introduce a proper nota-
tion. Let U = (u, v) and Uα = (uα, vα) be the pairs of fine and adapted primal
solutions, respectively, both belonging to the space V = W = [H1(Ω)2]. The
weak form of the adapted primal problem is given by

find Uα ∈ V : a(Uα)(W) + d(Uα)(αW) = F (W) ∀W = (w1, w2) ∈W,
(31)
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where

a(Uα)(W) =

∫

Ω

µu∇uα · ∇w1 dΩ +

∫

Ω

(b · ∇uα)w1 dΩ −

∫

Ω

σuuαw1 dΩ

+

∫

Ω

µv∇vα · ∇w2 dΩ +

∫

Ω

(b · ∇vα)w2 dΩ +

∫

Ω

σvvαw2 dΩ

+λ

∫

ΓD

uαw1 ds+ λ

∫

ΓD

vαw2 ds,

d(Uα)(αW) =

∫

Ω

αγuαvα(w1 −Kw2) dΩ,

F (W) =

∫

Ω

(fuw1 + fvw2) dΩ +

∫

ΓN

(guw1 + gvw2) ds + λ

∫

ΓD

huw1 ds

+λ

∫

ΓD

hvw2 ds.

The model error estimator for the predator-prey system (29) is thus

ηα = −d(Uα)((1− α)Zα) = −

∫

Ω

(1− α)γuαvα(zα,1 −Kzα,2) dΩ, (32)

Zα = (zα,1, zα,2) being the solution to the adapted dual problem




−µu∆zα,1 −∇ · (bzα,1)− σuzα,1 + αγvα(zα,1 −Kzα,2) =
1

|OA|
χOA

in Ω,

−µv∆zα,2 −∇ · (bzα,2) + σvzα,2 + αγuα(zα,1 −Kzα,2) = 0 in Ω,

zα,1 = zα,2 = 0 on ΓD,

(µu∇zα,1 + bzα,1) · n = 0 on ΓN ,

(µv∇zα,2 + bzα,2) · n = 0 on ΓN

associated with the functional in (30) and with the primal problem (31).
The α-adaptive procedure is tested on this configuration with a global toler-
ance τm = 10−2. The stopping criterion is met after 4 iterations.
Figure 8 shows the distribution of the regions Ω1 and Ω0 at the last three iter-
ations. The zones firstly detected are those where the predator-prey interaction
is stronger, i.e., where the “overlapping” between the predator and prey fluxes is
meaningful. Successively, the influence of the dual solution and of the advective
field leads to enrich the initial fine area with the contribution of the central and
upper-right parts of the domain (compare Fig. 8 (right) with Fig. 7 (right)).
In Figure 9, we gather the prey (left) and predator (center) concentration at the
first iteration, when the full coarse problem is approximated (top), and at the
last α-adaptive iteration (bottom). For both species, the main difference
can be appreciated in the top-right part of the domain. In the right column
of Figure 9, the model estimator in (32) is plotted on each element K ∈ Th
at the first (top) and last (bottom) iteration. The values of ηα reduce con-
siderably at the end of the model adaptive procedure, passing from an order
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Figure 8: Predator-prey system (model adaptation): distribution of the fine and
coarse areas at the second (left), third (middle) and fourth (right) iteration.

Figure 9: Predator-prey system (model adaptation): adapted prey (left) and
predator (middle) density, and elementwise distribution of ηα at the first (top)
and last (bottom) iteration.

of 10−6 down to 10−8. Finally, Table 4 provides us with some quantitative
information about the procedure in Section 2.1. At the final step, the final
model is activated only on the 20% of Ω; both the quantities |ηα|/|Jgoal(u1)| and
|Jgoal(u1)−Jgoal(uα)|/|Jgoal(u1)| decrease all along the iterations; the effectivity
index confirm the good robustness of ηα, even though, in this case, it is slightly
under estimating.

4 An anisotropic a posteriori analysis for the dis-

cretization error

We introduce the anisotropic setting used to enrich the model error analysis with
directional information. In particular, in Section 4.1 we introduce the anisotropic
framework, while in Section 4.2 a goal-oriented anisotropic error estimator is
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# it |Ω1|%
|ηα|

|Jgoal(u1)|
|Jgoal(u1)−Jgoal(uα)|

|Jgoal(u1)| E.I.

1 0.00 1.18 · 10−01 1.20 · 10−01 0.99
2 5.00 6.16 · 10−02 6.32 · 10−02 0.97
3 15.00 2.15 · 10−02 2.21 · 10−02 0.97
4 20.02 7.93 · 10−03 8.23 · 10−03 0.96

Table 4: Predator-prey system (model adaptation): iteration, percentage of
fine areas, estimator of the relative error, actual relative error, model effectivity
index.

provided for a scalar nonlinear problem.

4.1 The anisotropic framework

We resort to the anisotropic setting in [22]. Let TK : K̂ → K be the invertible
affine map from the reference triangle K̂ to the general one K, where K̂ is the
equilateral triangle inscribed in the unit circle centered at the origin. The map
TK is defined as

x = (x1, x2)
T = TK(x̂) = MK x̂ + tK ∀=(x1, x2)

T ∈ K, (33)

where MK ∈ R
2×2 and tK ∈ R

2 denote the Jacobian of TK and a shift, re-
spectively. The map TK strains the circle circumscribed to K̂ into an ellipse
circumscribing K, centered at the barycenter of K.
We exploit the spectral properties of TK to describe the orientation and the
shape of each K. With this aim we factorize MK by a polar decomposition
as MK = BKZK , where BK is symmetric positive definite and ZK is or-
thogonal. Then we further factorize BK in terms of its eigenvalues λ1,K , λ2,K

(with λ1,K ≥ λ2,K) and eigenvectors r1,K , r2,K , as BK = RTKΛKRK , with
ΛK = diag(λ1,K , λ2,K) and RTK = [r1,K , r2,K ].
The geometric features of each element K are thus completely characterized by
the eigenvectors ri,K and the eigenvalues λi,K , with i = 1, 2: as a matter of
fact, they identify the directions and the lengths of the semi-axes of the ellipse
circumscribing K, respectively (see Fig. 10). We measure the aspect ratio of K
with respect to K̂ by the so-called stretching factor sK = λ1,K/λ2,K ≥ 1,
with sK = 1 whenever K is an equilateral triangle.

Starting from these decompositions, anisotropic interpolation error estimates
have been derived for both the Lagrange and the Clèment interpolants ([22, 23]).

In particular, the Clément operator in [15] turns out to be prone to the a
posteriori analysis below. In the case of affine finite elements, it is given by
I1
h : L2(Ω)→ X1

h , such that

I1
hv(x) =

∑

Nj∈Nh

Pjv(Nj)ϕj(x) ∀v ∈ L2(Ω), (34)

where ϕj is the Lagrangian basis function associated with the node Nj, X
1
h =

span{ϕj}, while Pj denotes the L2-projection onto the affine functions associated
with the patch ∆j of the elements sharing node Nj, defined by the relations

∫

∆j

(Pjv − v)ψ d∆j = 0 with ψ = 1, x1, x2.
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TK

1

λ1,K

K

λ2,K

bK

r1,K

r2,K

Figure 10: Geometrical interpretation of the map TK and main anisotropic quan-
tities.

The sum in (34) runs on the set Nh of the vertices of Th except those where
Dirichlet data are strongly enforced.

Now for any function v ∈ H1(Ω), let GK(v) ∈ R
2×2 be the symmetric positive

semi-definite matrix given by

[
GK(v)

]
i, j

=

∫

∆K

∂v

∂xi

∂v

∂xj
d∆K , with i, j = 1, 2,

and with ∆K the union (patch) of all the elements sharing at least a vertex with
K.
Then as proved in [22, 23], we have:

Lemma 4.1 Let v ∈ H1(Ω). Then under the assumptions that, for any K in
Th, card(∆K) ≤M and diam(∆ bK) ≤ Ĉ, with ∆ bK = T−1

K (∆K), it holds

‖v − I1
hv‖L2(K) ≤ C1

[ 2∑

i=1

λ2
i,K

(
rTi,K GK(v) ri,K

)]1/2

, (35)

|v − I1
hv|H1(K) ≤ C2

(
hK

λ1,Kλ2,K

)[ 2∑

i=1

λ2
i,K

(
rTi,K GK(v) ri,K

)]1/2

, (36)

‖v − I1
hv‖L2(e) ≤ C2

(
he

λ1,Kλ2,K

)1/2 [ 2∑

i=1

λ2
i,K

(
rTi,K GK(v) ri,K

)]1/2

,(37)

where Ci = Ci(M, Ĉ), for i = 1, 2, 3.

Notice the explicit dependence of these estimates on the anisotropic quantities
highlighted in Figure 10. In particular, when λ1,K ≃ λ2,K ≃ hK , that is when the
triangle is equilateral, estimates (35), (36) and (37) reduce to the corresponding
isotropic results in [15].
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The reference patch ∆ bK in Lemma 4.1 is obtained by mapping back all the

elements T ∈ ∆K by means of the same transformation T−1
K . The hypotheses in

Lemma 4.1 essentially rule out too distorted patches in the reference framework.
However the anisotropic features (stretching factor and orientation) of each T ∈
∆K are not constrained by these requirements; only the variation over ∆K of
the anisotropic quantities is affected (see [34] for more details).

4.2 The anisotropic goal-oriented error estimator

We relax now the assumption made at the beginning of Section 2.1 of working
on an “extra fine” computational grid in order to focus only on the model error.
We allow now for the presence of a discretization error also, still controlled in
the spirit of a goal-oriented analysis. This is already a long-established area of
research, covering a broad range of problems and applications. The first works
were developed essentially in an isotropic framework (see, e.g., [9, 26, 30, 37]),
whereas, more recently, the interest has moved to an anisotropic setting (see,
e.g., [16, 23, 20, 44, 25, 17, 28, 33].
Since the main objective of the present work is in model adaptation and in
its interplay with mesh adaptivity, we limit the analysis below to highlighting
the principal modifications to be carried out in a goal-oriented framework when
interested in an anisotropic analysis. In particular, as far as the discretization
error is concerned, the full results concerning the ADR problem can be found
in [24, 20, 17], while an example of anisotropic output functional control for a
nonlinear vector problem is provided in [33], where the incompressible Navier-
Stokes equations are addressed.
The later part of this section simply supports the anisotropic a posteriori error
estimate for one of the problems solved in the above test cases, with the aim
of underlining the typical structure of such an anisotropic analysis. As crucial
observation, notice that the model involved in the anisotropic investigation is
the adapted one.

Let us consider the adapted logistic population problem. Before stating
the desired result, some notation are in order. We denote by uα,h the discrete
approximation of (26), solution to the following variational problem: find uα,h ∈
Vh ≡ X

1
h ⊂ V s.t.

a(uα,h)(wh) + d(uα,h)(αwh) + sα,h(uα,h, f)(wh) = F (wh) ∀wh ∈ Vh, (38)

where the forms a(·)(·), d(·)(·) and F (·) are defined as in (27), while sα,h(·)(·)
identifies a consistent stabilization term with a view to strongly advective prob-
lems. Then we define the internal and boundary residuals given by

ρK(uα,h) = (f + µ∆uα,h − b · ∇uα,h + σuα,h − αγu
2
α,h)|K (39)

and

je(uα,h) =





2
(
λuα,h + µ

∂uα,h
∂n

)
∀e ∈ ΓD

2
(
− c2 + µ

∂uα,h
∂n

)
∀e ∈ ΓN

[
µ
∂uα,h
∂n

]
e

∀e ∈ Eh,

(40)
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respectively, with e a general edge of the triangulation and Eh the set of the
internal edges of Th.

The main result of this section can thus be stated.

Proposition 4.1 Let uα ∈ V be the weak solution to the adapted primal problem
(26) and zα ∈ V be the associated dual solution for a general goal functional
Jgoal. Let uα,h and zα,h ∈ Vh be the corresponding finite element approximations
associated with a SUPG stabilization scheme. Then it holds

|Jgoal(uα)− Jgoal(uα,h)| ≤ C
∑

K∈Th

αKRK(uα,h)ωK(ezα,h), (41)

where C = C(M, Ĉ), αK = (λ1,Kλ2,K)3/2,

RK(uα,h) =
1

(λ1,Kλ2,K)1/2

(
‖ρK(uα,h)‖L2(K)

(
1 +

τKhK‖b‖L∞(K)

λ1,Kλ2,K

)

+
‖je(uα,h)‖L2(∂K)

2

(
he

λ1,Kλ2,K

)1/2
)
,

(42)

ωK(ezα,h) =
1

(λ1,Kλ2,K)1/2

(
sK(rT1,KGK(ezα,h)r1,K)+s−1

K (rT2,KGK(ezα,h)r2,K)
)1/2

,

with ezα,h = zα − zα,h the adapted dual discretization error.

Proof. We provide the proof of result (41) in the Appendix. �

The right-hand side of (41) still involves, via ezα,h, the exact adapted dual
solution, thus not being directly computable. To make such a quantity practical
with a view to the mesh adaptation, we resort to a suitable recovery procedure.
Namely, as the weights ωK(ezα,h) depend on the first order partial derivative of
zα via the matrix GK , we exploit the standard area-weighted Zienkiewicz-Zhu
gradient recovery procedure ([53, 54, 46]). Hence the matrix GK(ezα,h) is replaced
by G∗

K(ezα,h), where

[
G∗
K(ezα,h)

]
i, j

=

∫

∆K

(
∇ZZ,izα,h−

∂zα,h
∂xi

)
(∇ZZ,jzα,h−

∂zα,h
∂xj

)
d∆K , with i, j = 1, 2,

and where ∇ZZzα,h =
(
∇ZZ,1zα,h,∇

ZZ,2zα,h
)T

stands for the recovered gradient
of zα,h.
The global estimator for the output functional discretization error |Jgoal(uα) −
Jgoal(uα,h)| supplied from Proposition 4.1 is consequently given by

ηh =
∑

K∈Th

ηh,K

where ηh,K = αKRK(uα,h)ω
∗
K(ezα,h) is the corresponding local contribution with

ω∗
K(ezα,h) =

(
sKrT1,KG

∗
K(ezα,h)r1,K + sK

−1rT2,KG
∗
K(ezα,h)r2,K

)1/2
.

The local estimator ηh,K enjoys the typical structure of the goal-oriented analy-
sis, consisting of a residual associated with the primal framework and a weight
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depending on the dual problem (i.e., on the target functional). The addi-
tional multiplicative coefficient αK gathers all the area |K| information, since
|K| = λ1,Kλ2,K |K̂|. It will play a crucial role in the anisotropic management of
the mesh.
We point out that when λ1,K ≃ λ2,K ≃ hK , estimator ηh reduces to the standard
isotropic a posteriori error estimator (see, e.g., [9, 26, 38]). The added value of
result (41) with respect to the isotropic analysis is the presence of anisotropic
information, essentially lumped in the weights. Finally, notice that the constant
C in (41) does not appear in the definition of ηh. It may be taken into account
by a suitable tuning, since C depends only on quantities associated with the
reference framework.

4.2.1 The mesh adaptation procedure

To turn the error estimator ηh into an actual mesh adaptation algorithm, we
apply a metric-based adaptive procedure. The leading idea of this algorithm
is to employ in a predictive fashion the estimator ηh to identify the new adapted
mesh. In more detail, at the j-th iteration of such a procedure, we follow this

three-step algorithm: let T
(j)
h be the previous (background) mesh. Then:

1. Solve the adapted discrete primal and dual problems;

2. build up the new metric M (j+1) induced by the estimator ηh;

3. construct the new mesh T
(j+1)
h matching the metric M (j+1).

Concerning step (2), we pursue the two standard criteria of the mesh-optimization
strategy in [9], relying on equidistributing the estimator (ηh,K = const, for any

K ∈ T
(j+1)
h ), and on minimizing the number of mesh elements for a fixed accu-

racy of ηh. With an eye on the structure of the element error estimator ηh,K , this
essentially amounts to minimizing the weights with respect to the anisotropic
quantities r1,K and sK , since the area information is compressed in αK and
RK(uα,h) is just a pointwise value (at least for a sufficiently fine mesh). We
refer to [20, 32, 17, 33] for the details of such an approach.
With reference to step (3), we exploit the matching condition between a metric
and a mesh (see, e.g., Definition 5.1 in [33]).

5 Merging model and mesh adaptation

This section collects both the model and the discretization analyses. For this
purpose, we simply exploit the straightforward splitting

J(u1)− J(uα,h) = J(u1)− J(uα)︸ ︷︷ ︸
model error

+ J(uα)− J(uα,h)︸ ︷︷ ︸
discretization error

.

This suggests the introduction of the model-discretization estimator

ηα,h = |ηα|+ ηh

for the functional model-discretization error |J(u1)− J(uα,h)|. The actual issue
is to devise a unique procedure suitably merging both the model and the mesh
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spacing adaptations.
We aim at guaranteeing that the global error |J(u1) − J(uα,h)| be within to a
given tolerance τ . We consequently split τ into two contributions, a model one
τm and a discretization one τd, so that

τ = τm + τd. (43)

In particular, to meet the global tolerance τ , we iterate until |ηα| ≤ τm and, si-
multaneously, ηh ≤ τd. This gives rise to the following (α, h)-adaptive procedure:

1. select an initial grid T
(0)
h , set j = 0, flag grid = 0, and α

∣∣
K

=

0,∀K ∈ T
(0)
h ;

2. solve the adapted discrete primal and dual problems;

3. compute the estimators ηα, ηh and ηα,h;

4. if ηα,h ≤ τ break

5. for i=1,Nmax

6. if |ηα| > τm

7. localize ηα on each K ∈ T
(j)
h : ηα,K = ηα

∣∣
K
;

8. if |ηα,K | > δ
τm

N
(j)
h

, α
∣∣
K
← 1;

9. if ηh > τd

10. set flag grid = 1;

11. build up the metric M (j+1) induced by ηh;

12. construct the new mesh T
(j+1)
h matching the metric M (j+1);

13. if flag grid = 1 interpolate α on T
(j+1)
h ;

14. solve the adapted discrete primal and dual problems;

15. compute the estimators ηα, ηh and ηα,h;

16. if ηα,h ≤ τ break

17. j ← j + 1, flag grid = 0

end

The (α, h)-adaptive algorithm tries to balance both sources of error through
the splitting (43). The model and the discretization phases can be swapped due
to the intrinsic commutativity of the algorithm. The quantities Nmax, δ and

N
(j)
h involved in the model step preserve exactly the same meaning as in the

α-adaptive procedure.

5.1 Numerical validation

We complete two of the test cases used in the numerical validation of the
α-adaptive algorithm by adding mesh adaptation.
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# it N
(j)
h |Ω1|%

|ηα|
|Jgoal(u1)|

ηh

|Jgoal(u1)|
ηα,h

|Jgoal(u1)|
|Jgoal(u1)−Jgoal(uα,h)|

|Jgoal(u1)| E.I.

1 341 0.00 2.02 · 10+00 4.06 · 10−01 2.42 · 10+00 1.79 · 10+00 1.36
2 4432 5.10 9.83 · 10−01 2.37 · 10−02 1.01 · 10+00 8.55 · 10−01 1.18
3 4970 15.12 2.26 · 10−01 2.20 · 10−03 2.28 · 10−01 1.82 · 10−01 1.25
4 4970 25.13 2.97 · 10−02 1.82 · 10−03 3.16 · 10−02 2.26 · 10−02 1.39
5 4970 30.13 7.42 · 10−03 1.44 · 10−03 8.86 · 10−03 6.42 · 10−03 1.38

Table 5: ADR vs AD (model plus mesh adaptation): iteration, number of mesh
elements, percentage of fine areas, estimators of the model, of the discretization
and of the total relative error, actual model-grid relative error, effectivity index.
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Figure 11: ADR vs AD (model plus mesh adaptation): distribution of the fine
and coarse areas (left), adapted mesh (middle) and elementwise distribution of
ηα (right) at the last iteration.

5.1.1 ADR versus AD

We go back to Section 2.2.1 while keeping all of the data unchanged. As sup-
plementary information we take τ = 10−2, and τd = τm = 0.5 · 10−2. With this
choice, the model-grid adaptation stops after 5 steps. In Table 5 some of the
main quantities characterizing the (α, h)-adaptive procedure can be found.

The second column keeps track of the number of mesh elements N
(j)
h ; in the

third column, the percentage of the whole |Ω| occupied by Ω1 is indicated; the
estimators of the model, of the discretization, and of the total relative error are
provided in the fourth, fifth and sixth column, respectively; the seventh column
collects the actual model-grid relative error, while in the last column we have
the effectivity index E.I. = ηα,h/|Jgoal(u1)− Jgoal(uα,h)|.
From the second column it is evident that the anisotropic mesh adaptation phase
reaches quickly its target value, i.e., just at the third global iteration. Vice versa,
the model adaptation lags behind, five steps being necessary to meet the exit
criterion.
On comparing the sixth with the seventh column, we realize that ηα,h is reliable
throughout all of the iterations. The robustness of the whole procedure finds a
further confirmation in the values assumed by the effectivity index, always really
close to 1.

Figure 11 shows the distribution of the fine and coarse areas (left), the final
adapted mesh (middle), and the elementwise model estimator distribution (right)
at the last iteration. The detected fine region is about 30% of the whole domain,
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# it N
(j)
h |Ω1|%

|ηα|
|Jgoal(u1)|

ηh

|Jgoal(u1)|
ηα,h

|Jgoal(u1)|
|Jgoal(u1)−Jgoal(uα,h)|

|Jgoal(u1)|
E.I.

1 1346 0.00 1.27 · 10−01 1.65 · 10−01 2.91 · 10−01 1.17 · 10−01 2.48
2 3891 18.38 5.08 · 10−02 5.03 · 10−03 5.58 · 10−02 4.48 · 10−02 1.25
3 4323 31.85 1.34 · 10−02 2.84 · 10−03 1.63 · 10−02 1.30 · 10−02 1.25
4 4323 40.00 6.40 · 10−03 2.72 · 10−03 9.11 · 10−03 6.63 · 10−03 1.37

Table 6: Logistic population (model plus mesh adaptation): iteration, num-
ber of mesh elements, percentage of fine areas, estimator of the model, of the
discretization and of the total relative error, actual model-grid relative error,
effectivity index.
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Figure 12: Logistic population (model plus mesh adaptation): distribution of the
fine and coarse areas (left), adapted mesh (middle) and elementwise distribution
of ηα (right) at the last iteration.

and no relevant difference can be appreciated with respect to the corresponding
fine area distribution yielded by the sole model adaptation (see Fig. 2 (bottom-
left)). The anisotropic features of the last adapted grid are evident. The elements
align along the circular internal layer, up to the observation area. The strong
refinement of the inflow can be ascribed to both the primal and dual solutions
(see Fig. 1 (middle) and (right), respectively), here exhibiting sharp layers. To
sum up, the zones detected as critical by both the model and discretization
adaptive procedures are roughly the same. Notice that the model refinement
involves a slightly smaller region. Moreover, the mesh adaptation seems to be
able to identify sharper details, such as the edges on the right-hand side of
the observation area. Finally, the distribution of the model error estimator in
Figure 11 (right) highlights that ηα is underestimating only on a small portion
of Ω.

5.1.2 The logistic population model

We enrich the analysis in Section 3.1.1 with the (α, h)-adaptive procedure.
The total and partial tolerances are set equal to τ = 10−2, τd = τm = 0.5 · 10−2,
the other data being preserved. Four iterations suffice to guarantee the desired
convergence. Table 6 shares the same structure as Table 5. The mesh adaptation
reaches first the corresponding tolerance, just after three iterations. On the
other hand, a further step is required to guarantee the convergence of the model
adaptation process. The span covered by Ω1 at the last iteration is 40% of |Ω|.
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The last three columns confirm the reliability and efficiency of the estimator ηα,h
and of the whole adaptive algorithm.

The plot on the left in Figure 12 refers to the localization of Ω1 and Ω0 at
the last (α, h)-iteration. The fine area crowds around the streamlines leaving
the release area E. On comparing this distribution with the one in Figure 6
(bottom-left), we observe that essentially the same zones are detected by the
two adaptive procedures. The final anisotropic adapted grid in the middle of
Figure 12 sharply recognizes the region more strongly affecting the fish flux
across the creel, as well as a portion of the boundary of the creel itself. To a
lesser extent also the remaining part of the main streamline feeding the creel is
refined. The stretching factor of the elements in the circular internal layer on the
right is clearly high. On the right of Figure 12, the elementwise distribution of
ηα is provided. It resembles the one in Figure 6 (bottom-right). The combined
effect of the model with the mesh adaptivity seems to allowing for a more loose
control of the error in the areas around the fine region (compare the lighter zones
in the two corresponding plots), yet guaranteeing a maximum absolute value of
the order of 10−6.

6 Some conclusive remarks

Results in Sections 2.2, 3.1 and 5.1 confirm the satisfactory reliability of the
adaptive procedures proposed in this paper. In particular the less robust results
are those related to the ADR versus DR coupling. This can be essentially as-
cribed to the dominant advective nature of the analyzed problems.
The investigation carried out about the interplay between model and mesh sug-
gests that the mesh adaptation procedure is able to enrich the information pro-
vided by the model analysis with details essentially associated with geometrical
or data heterogeneities.
A more thorough investigation about the model adaptivity is scheduled, also
including a model coarsening step. This likely would allow us to draw more
specific conclusions about the model-mesh interaction. More general nonlinear
ADR systems including reactive terms different from the logistic and predator-
prey models are also under study, still in an ecological-environmental setting.

Appendix. Proof of Proposition 4.1. Starting point is Proposition 2.6 in
[9], according to which the discretization functional error coincides with

Jgoal(uα)− Jgoal(uα,h) = min
φh∈Vh

ρ̌h(uα,h)(zα − φh) +Rh, (44)

with

ρ̌h(uα,h)(·) = F (·)− a(uα,h)(·) − d(uα,h)(α·) − sα,h(uα,h, f)(·),

Rh = s̃ ′α,h(uα, f)(zα, e
u
α,h)− s

′
α,h(uα, f)(zα, e

u
α,h)

+

1∫

0

{
a′′(uα,h + seuα,h)(zα, e

u
α,h, e

u
α,h) + d′′(uα,h + seuα,h)(αzα, e

u
α,h, e

u
α,h)

+ s′′α,h(uα,h + seuα,h, f)(zα, e
u
α,h, e

u
α,h)− J

′′
goal(uα,h + seuα,h)(e

u
α,h, e

u
α,h)

}
s ds,
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euα,h = uα − uα,h the adapted primal discretization error and s̃ ′α,h(uα, f)(·, ·) the
stabilization term associated with the adapted dual problem, possibly coincid-
ing only with a part of s ′α,h(uα, f)(·, ·). By neglecting the remainder term Rh
(quadratic with respect to euα,h) and by choosing φh = zα,h + I1

h(zα − zα,h), we
derive from (44) the following estimate

Jgoal(uα)− Jgoal(uα,h) ≃ ρ̌h(uα,h)(e
z
α,h − I

1
he
z
α,h).

Now, let us suitably rewrite the truncation error ρ̌h(uα,h)(φ), with φ a generic
function in V . Definitions (27) combined with a SUPG stabilization (see [12])
yield

ρ̌h(uα,h) =
∑

K∈Th

{∫

K

(
fφ− µ∇uα,h · ∇φ− b · ∇uα,hφ+ σuα,hφ− αγu

2
α,hφ

)
dK

−λ

∫

∂K∩ΓD

uα,hφds− τK

∫

K

(f + µ∆uα,h − b · ∇uα,h + σuα,h − αγu
2
α,h)(b · ∇φ) dK

+

∫

∂K∩ΓN

c2φ ds
}
,

i.e., thanks to an elementwise integration by parts and to (39) and (40)

ρ̌h(uα,h) =
∑

K∈Th

{∫

K

ρK(uα,h)(φ− τKb · ∇φ) dK −
1

2

∫

∂K

je(uα,h)φds
}
.

The choice φ = ezα,h − I
1
he
z
α,h together with the anisotropic estimates in Lemma

4.1 immediately provide us with result (41).
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[17] L. Dedè, S. Micheletti and S. Perotto, Anisotropic error control for environ-
mental applications, Appl. Numer. Math., 58 No. 9 (2008), pp. 1320–1339.

[18] J. Dompierre, M.-G. Vallet, Y. Bourgault, M. Fortin, and W.G. Habashi,
Anisotropic mesh adaptation: towards user-independent, mesh-independent
and solver-independent CFD. III. Unstructured meshes, Internat. J. Numer.
Methods Fluids, 39 No. 8 (2002), pp. 675–702.

[19] A. Ern, S. Perotto and A. Veneziani, Hierarchical model reduction for
advection-diffusion-reaction problems, to appear in Proceedings of ENU-
MATH 2007, the 7th European Conference on Numerical Mathematics and
Advanced Applications, Springer-Verlag, Berlin Heidelberg, K. Kunisch,
G. Of, O. Steinbach Eds. 2008.

[20] L. Formaggia, S. Micheletti and S. Perotto, Anisotropic mesh adaptation
in Computational Fluid Dynamics: application to the advection diffusion
reaction and the Stokes problems, Appl. Numer. Math. 51 (2004), pp. 511–
533.

33



[21] L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani, Multiscale mod-
elling of the circulatory system: a preliminary analysis, Comput. Visual.
Sci., 2 (1999), pp. 75-83.

[22] L. Formaggia and S. Perotto, New anisotropic a priori error estimates,
Numer. Math., 89 (2001), pp. 641–667.

[23] L. Formaggia and S. Perotto, Anisotropic error estimates for elliptic prob-
lems, Numer. Math., 94 (2003), pp. 67–92.

[24] L. Formaggia, S. Perotto and P. Zunino, An anisotropic a-posteriori error
estimate for a convection-diffusion problem, Comput. Visual. Sci., 4 No. 2
(2001), pp. 99–104.

[25] E.H. Georgoulis, E. Hall and P. Houston, Discontinuous Galerkin methods
for advection-diffusion-reaction problems on anisotropically refined meshes,
SIAM J. Sci. Comput., 30 No. 1 (2007), pp. 246–271.
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