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Abstract

We develop a comprehensive framework for linear spatial prediction in
Hilbert spaces. We explore the problem of Best Linear Unbiased (BLU)
prediction in Hilbert spaces through an original point of view, based on
a new Operatorial definition of Kriging. We ground our developments on
the theory of Gaussian processes in function spaces and on the associated
notion of measurable linear transformation. We prove that our new set-
ting allows (a) to derive an explicit solution to the problem of Operatorial
Ordinary Kriging, and (b) to establish the relation of our novel predictor
with the key concept of conditional expectation of a Gaussian measure.
Our new theory is posed as a unifying theory for Kriging, which is shown
to include the Kriging predictors proposed in the literature on Functional
Data through the notion of finite-dimensional approximations. Our origi-
nal viewpoint to Kriging offers new relevant insights for the geostatistical
analysis of either finite- or infinite-dimensional georeferenced dataset.

Keywords: Geostatistics; Gaussian Processes; conditional expectations;
measurable linear transformations

1 Introduction

In recent years, the increasing availability of complex and high-dimensional
data has motivated a fast and extensive growth of Functional Data Analysis
(FDA, e.g., Ramsay and Silverman, 2005) and Object Oriented Data Analysis
(OODA, e.g., Marron and Alonso, 2014, and references therein). These new
branches of statistics share the same abstract approach in interpreting each
datum as a realization of a random element in a finite- or infinite-dimensional
space. Properties of the space to which data are assumed to belong directly
reflect on the methodologies that one can employ for the statistical analysis. For
instance, the geometry of a Hilbert space allows for a class of methods based on
the notions of inner product and norm (e.g., Bosq, 2000, and references therein),
whereas methods suitable for data in general metric spaces need to rely on the
notion of distance only.
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In this framework, a relatively large body of literature addresses the prob-
lem of the geostatistical characterization and prediction of spatially dependent
functional data. Early works in this field focused on L2 data to develop linear
spatial predictors (i.e., Kriging predictors) in the form of optimal linear combi-
nations of the data (e.g., Delicado et al., 2010; Giraldo et al., 2011; Caballero
et al., 2013). Even though the L2 embedding is commonly employed in FDA,
several environmental applications deal with constrained or manifold data, for
which the L2 geometry may be inappropriate. For instance, Menafoglio et al.
(2014a) deal with a set of constrained functional data in the form of particle-size
densities, i.e., probability density functions describing the distribution of grains
sizes within a given soil sample. In this case, the usual L2 geometry is not
appropriate, as it completely neglects the data constraints (see, e.g., Delicado,
2007, 2011).

These elements motivate the adoption of an abstract viewpoint, along the
line of OODA. In this setting, Menafoglio et al. (2013) establish a Kriging theory
for random field valued in any separable Hilbert space, allowing for the analy-
sis of a broad range of object data, such as curves, surfaces or images. These
authors rely on the notion of inner product and norm to define global defini-
tions of spatial dependence (i.e., trace-variography), and accordingly perform
predictions. Amongst the possible applications of this geometric perspective
we cite the works of (Menafoglio et al., 2014a,b). These authors analyze a set
of particle-size densities by embedding the problem within the Hilbert space
equipped with the Aitchison geometry proposed in (Egozcue et al., 2006; van
den Boogaart et al., 2014). Such a geometrical approach enables them to em-
ploy the Kriging theory of Menafoglio et al. (2013), while properly accounting
for the data constraints.

The present work stands in continuity with the approach of Menafoglio et al.
(2013), with whom we share the geometric viewpoint to the treatment of either
finite- or infinite- dimensional data as atoms of the geostatistical analysis. How-
ever, we here explore the problem of linear spatial prediction in Hilbert spaces
through an original point of view, based on a new operatorial definition of Krig-
ing. In this setting, the theory of Operatorial Kriging is here posed as a unifying
framework for Kriging, with the scope of including either the formulations of
Kriging for curves in L2 (e.g., Delicado et al., 2010) or that for Hilbert Data
(Menafoglio et al., 2013).

Our perspective aims to constitute a generalization of the formulation by
Nerini et al. (2010), who consider the problem of finding the best unbiased
predictor over the class of linear Hilbert-Schmidt transformations of the obser-
vations, assumed to belong to a Reproducing Kernel Hilbert Space (RKHS).
The RKHS-embedding is key to the well-posedness of the Kriging problem of
Nerini et al. (2010), but still appears a too restrictive setting, as, for instance,
the Hilbert space L2 is not a RHKS, even though it is commonly employed in
FDA.

The aim of this work is to establish an Operatorial Kriging theory able
to fill this theoretical gap, relying upon the key notion of measurable linear
transformation associated to a Gaussian measure (Mandelbaum, 1984; Luschgy,
1996). This broad class of operators includes linear Hilbert-Schmidt operators,
and is here shown to allow for the Best Linear Unbiased (BLU) prediction in
any finite- or infinite-dimensional separable Hilbert space.

The remaining part of this work is organized as follow. The theory of Gaus-
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sian measures on Hilbert spaces upon which we ground our developments is
recalled in Section 2. Section 3 introduces the Operatorial Kriging theory for
random fields under the assumption of known mean (i.e., Simple Kriging). Even
though this assumption is often too restrictive in real-world applications, this
case appears insightful, as it allows obtaining interesting interpretations in terms
of conditional expectations. In Section 4 we focus on the case of unknown mean,
in the stationary setting. Here, we propose an original formulation of the Op-
eratorial Kriging problem and provide its explicit solution. The relation of our
new theory with the existing literature works of Nerini et al. (2010); Menafoglio
et al. (2013) is investigated in Section 5. Finally, Section 6 concludes the work.

2 Gaussian measures on Hilbert spaces

In this Section, we recall some preliminaries on Gaussian measures in Hilbert
spaces and set the notation that will be used hereafter. We refer the reader to
(Bogachev, 1998; Da Prato and Zabczyk, 2014) for a deep dissertation on the
topic.

We denote with the symbol H (or H1, H2) a real separable Hilbert space with
norm ‖ · ‖H and inner product 〈·, ·, 〉H, equipped with its Borel σ-algebra B(H).
We call L(H,H1) the Banach space of continuous linear operators on H in H1.
Further, we denote with H⋆ the dual of H, i.e., the space L(H,R) of linear and
continuous functional on H, which is identified with H⋆ via Riesz representation
theorem. Given an operator A in L(H,H1), we denote with A′ ∈ L(H1,H) its
adjoint.

Given a probability space (Ω,F,P), a H-valued random variable X is a mea-
surable function on (Ω,F,P) in (H,B(H)), X : (Ω,F) → (H,B(H)). We denote
with µX the law of X , i.e., the probability measure on (H,B(H)) defined, for
A ∈ B(H), as µX (A) = P(X−1(A)).

Given a H-valued random variable X , we will always assume that E[‖X‖2H] <
∞. In this setting, we define the expected value of X as

mX = E[X ] =

ˆ

H

xµX (dx),

where the integral is interpreted as a Bochner integral. In particular, for any
A ∈ L(H,H1), one has E[A(X )] = AE[X ]. Moreover, the covariance operator
CX : H → H is defined, for every x ∈ H, as

CXx = E[〈(X −mX ), x〉H(X −mX )].

A covariance operator is symmetric and positive definite. If X1 and X2 are
H1- and H2-valued random variables, the cross-covariance operator CX1X2

∈
L(H2,H1) is defined as

CX1X2
x2 = E[〈X2 −mX2

, x2〉H(X1 −mX1
) ],

for every x2 ∈ H2.
We say that a H-valued random variable X , with expected value mX and

covariance operator CX , has a Gaussian distribution –and we write µX =
N(mX , CX )– if 〈x,X〉H has a Gaussian distribution for every x ∈ H.
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It is possible to associate to a given Gaussian measure µX on a separable
Hilbert space, another Hilbert space HµX

⊂ H, which is called the Cameron-
Martin space of µX (Bogachev, 1998). The Cameron-Martin space coincides
with the image of the operator C

1/2
X .

We finally introduce the notion of measurable linear transformation (Luschgy,
1996) with respect to a given probability measure µX .

Definition 1. (Mandelbaum (1984); Luschgy (1996)) A Borel measurable map
L : H2 → H1 is said to be a measurable linear transformation with respect
to µX (µX -mlt) if L is linear on a subspace DL ∈ B(H2) with µX (DL) = 1.
A measurable linear transformation L : H2 → R is called measurable linear
functional (µX -mlf).

In the following, we focus on measurable linear transformations with respect
to Gaussian measures associated to injective covariance operators. In this case,
the following result holds.

Theorem 2 (Mandelbaum (1984)). (i) Let L : H2 → H1 be µX -mlt, where
µX = N(mX , CX ) on H2. Then L is linear on HµX

and the operator

T = LC
1/2
X : H2 → H1 (1)

is Hilbert-Schmidt.

(ii) Let T : H2 → H1 be Hilbert-Schmidt. Then there exists a unique (up to
µX -equivalence) µX -mlt L : H2 → H1 such that

L = TC
−1/2
X on HµX

. (2)

(iii) In both (1) and (2) , the Hilbert-Schmidt norm of T is equal to

‖L‖2µX
=

ˆ

H2

‖Lx‖2H1
µX (dx). (3)

Finally, the following Corollary of Theorem 2 will be useful in the following.

Corollary 3 (Mandelbaum (1984)). The space MX of µX -mlt on H2 in H1 is
a Hilbert space with the norm (3). It is isometric to the space of Hilbert-Schmidt
operators via the correspondence (1) and (2).

3 Spatial prediction in Hilbert Spaces via condi-

tional expectations

In this Section we address the problem of spatial prediction in the presence of a
partial observation of a Gaussian random field with known mean. We consider
a H-valued random field {Xs, s ∈ D}, i.e., a collection of random variables on
(Ω,F,P) in H, indexed by a continuous spatial variable s ∈ D. We here focus
on Gaussian random fields. These are characterized by having all the finite
dimensional laws Gaussian, i.e.,

∀N > 0, s1, ..., sN ∈ D, X = (Xs1
, ...,XsN

) ∼ N(mX , CX ).
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Given s1, ..., sn in D and the observation of the random field {Xs, s ∈ D} at
these locations, Xs1

, ...,Xsn
, we aim to predict the unobserved element Xs0

at
the location s0. To ease the notation, hereafter in this Section we assume the
mean function mXs

= E[Xs] to be zero over the entire domain D.
We call Hn the Hilbert space H× ...×H, with the inner product 〈x, y〉Hn =∑n

i=1
〈xi, yi〉H, and CX ∈ L((Hn),Bn) the covariance operator of (Xs1

, ...,Xsn
)T ∈

Hn, which is defined, for x = (x1, ..., xn)
T ∈ Hn, as

CXx =




n∑

j=1

C(si, sj)xj




i=1,...,n

where C : D ×D → L(H,H) is the Gaussian covariance function

C : D ×D → L(H,H)

(si, sj) 7→ {C(si, sj) : H → H,H ∋ x 7→ E[〈(Xsi
−mXsi

), x〉H(Xsj
−mXsj

)]}.

Mandelbaum (1984) considers the problem of predicting a random element
in a separable Hilbert space, given another random element in the same space,
based on their joint (Gaussian) distribution. This author shows that the condi-
tional expectation of the former given the latter is a measurable linear transfor-
mation and further derives the associated Hilbert-Schmidt operator. Luschgy
(1996) considers a twofold generalization of the result of Mandelbaum (1984):
(a) Banach-space valued Gaussian random elements are considered, and (b) the
conditioning variable is allowed to be valued in a different space than the el-
ement to be predicted. For the purpose of our study, we here illustrate the
general result of Luschgy (1996), embedded into the Hilbert space setting.

Hereafter we denote with µZ = N(mZ , CZ) the law of a random element Z in
H1, with expected value mZ and covariance operator CZ . Analogous notation
is kept for the random element Y in H2. We call CYZ the cross-covariance
operator between Y and Z. The following Theorem recalls the main result of
Luschgy (1996) for the case of an injective covariance operator CZ .

Theorem 4 (Luschgy (1996)). Let Y and Z be jointly Gaussian random vectors
in H1 and H2, respectively. Assume that mY = mZ = 0. Then

E[Y|Z] = LZ,

where L : H2 → H1 is the µZ-mlt

L = TC
−1/2
Z

associated with the Hilbert-Schmidt operator T : H2 → H1

T = CYZC
−1/2
Z .

In our setting the result of Luschgy (1996) applies when interpreting the
previous notation as follow. The random element Z is interpreted as the random
vector X on Hn, with law µX = N(0, CX ). Hereafter, we assume CX to be
injective. The random element Y to be predicted is in our context Xs0

, and the
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cross-covariance operator CXs0
X ∈ L(Hn,H) between X and Xs0

is defined, for
x = (x1, ..., xn)

T ∈ Hn as

CXs0
Xx =

n∑

j=1

C(s0, sj)xj .

Therefore, the conditional expectation of Xs0
given X is obtained as the

µX -mlt L : Hn → H
E[Xs0

|X ] = LX (4)

with L = TC
−1/2
X

and

T = CXs0
XC

−1/2
X

.

We note that in case of a Gaussian random field with nonzero mean mXs
,

(4) reads
E[Xs0

|X ] = mXs0
+ L(X −mX ), (5)

with mX = (mXs1
, ...,mXsn

)T .
We remark that the conditional expectation is an unbiased predictor and

minimizes the mean squared prediction error E[‖Xs0
− f(X )‖2H], among all the

measurable functions f : Hn → H (e.g., Luschgy, 1996). Therefore, for a
Gaussian random field, the best spatial predictor –in the mean squared norm
sense– coincides with the Best Linear Unbiased Predictor (BLUP) (i.e., the
Simple Kriging predictor), if this is interpreted as the µX -measurable linear
transformation minimizing the mean squared prediction error. In this sense,
similar to the finite-dimensional setting, the conditional expectation E[Xs0

|X ]
solves the following Simple Kriging problem in H.

Problem 5 (Operatorial Simple Kriging). Given X = (Xs1
, ...,Xsn

)T and with
the previous notation, find the BLUP for Xs0

, i.e., X ∗
s0

= Λ∗
X , where Λ∗ :

Hn → H is the µX -mlt minimizing

E[‖Xs0
−X ∗

s0
‖2H] subject to E[X ∗

s0
] = E[Xs0

].

These observations motivates the introduction of a new Operatorial Ordinary
Kriging formulation, which is addressed in Section 4 for stationary random fields.

4 An Operatorial Ordinary Kriging predictor for

Hilbert-space valued random fields

In most real applications, the mean function of the random field which is par-
tially observed is actually unknown. This renders the founding hypothesis of
Simple Kriging too restrictive. In this Section, we address the problem of spatial
prediction for Gaussian random fields with unknown mean, and we focus on the
case of stationary processes.

Let {Xs, s ∈ D} be a Gaussian random field on (Ω,F, P ) in H, with (un-
known) mean function mXs

and Gaussian covariance function C. We assume
that process {Xs, s ∈ D} is strictly stationary, i.e.,

(i) E[Xs] = m for any s ∈ D (spatially constant mean);
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(ii) E[〈Xsi
− m,x〉H(Xsj

− m)] = C(h), for any si, sj ∈ D, h = si − sj
(Gaussian covariance function depending only on the increment vector h).

Given a set of locations s1, ..., sn and the observation of the process at these
locations, Xs1

, ...,Xsn
, we aim to predict Xs0

via the operatorial Ordinary Krig-
ing predictor, i.e., to solve the following Problem.

Problem 6 (Operatorial Ordinary Kriging). Given X = (Xs1
, ...,Xsn

)T and
with the previous notation, find the BLUP for Xs0

, i.e., X ∗
s0

= Λ∗
X , where

Λ∗ : Hn → H is a µX -mlt and minimizes

E[‖Xs0
−XΛ

s0
‖2H] subject to E[XΛ

s0
] = m,

where XΛ
s0

= ΛX , with Λ : Hn → H a µX -mlt.

A similar problem is addressed in (Nerini et al., 2010) for the particular case
of Reproducing Kernel Hilbert Spaces (RKHS). These authors focus on linear
predictors of the kind

X̂s0
=

n∑

i=1

BiXsi
, (6)

where Bi : H → H are Hilbert-Schmidt linear operators. In this context they
derive Kriging equations, and provide an explicit solution for random processes
valued in a k-dimensional Hilbert space (k < ∞) equipped with the L2 inner
product. Similar results are obtained in (Giraldo, 2009). Nevertheless, Nerini
et al. (2010) acknowledge that the RKHS setting is quite restrictive, as, for
instance, the Hilbert space L2 is not a RHKS, even though it is commonly em-
ployed in FDA. Moreover, we note that the solution of the Simple Kriging prob-
lem in an infinite-dimensional Hilbert space generally is not a Hilbert-Schmidt
linear operator, but a µX -mlt. Therefore, a predictor of the form (6) cannot be,
in general, the solution of Problem 6, even if it is for H RKHS. In the following
paragraphs we show that Problem 6 is well-posed, instead.

Unbiasedness constraint To formulate the objective functional, we consider
first the unbiasedness constraint. We define the operator 1 : H → Hn acting on
x ∈ H as x 7→ 1x = (x, x, ..., x)T . This enables to formulate the constraint as

Λ1m = m for any m ∈ H. (7)

Here we have exploited the fact that, for a µX -mlt Λ, E[ΛX ] = ΛE[X ] (see e.g.,
Picard, 2006, p.64).

Objective Functional Following the Lagrange multiplier method, we con-
sider the following objective functional

Φ = E
[
‖Xs0

− ΛX‖2H
]
+ 2ϕζ (Λ 1− I), (8)

where I : H → H is the identity operator and ϕζ is a Lagrange multiplier, i.e.,
a functional acting on the space of µX0

-mlt.
To develop further the expression of functional (8), we introduce the fol-

lowing notation. We call µX 0
= N (mX 0

, CX 0
) the law of the random vector
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X 0 =
(
Xs0

,X T
)T

in Hn+1, with expected value mX 0
=

(
m, (1m)T

)T
and

covariance operator CX 0
: Hn+1 → Hn+1, expressed in block form as

CX 0
=

(
CXs0

CXs0
X

CXXs0
CX

)
.

Moreover, we call P0 : Hn+1 → H, Pn : Hn+1 → Hn the operators acting on
x = (x0, x1, ..., xn)

T ∈ Hn+1 as P0x = x0 and Pnx = (x1, ..., xn)
T , respectively.

We note that both P0 and Pn are µX 0
-mlt.

In the light of Corollary 3, the space MX 0
of µX 0

-mlt from Hn+1 in H is a
Hilbert space if endowed with the inner product

〈L1, L2〉MX0
=

ˆ

Hn+1

〈L1x, L2x〉HµX 0
(dx), L1, L2 ∈ MX 0

.

Similarly, the space MX of µX -mlt from Hn into H is a Hilbert space if equipped
with the inner product 〈L1, L2〉MX

=
´

Hn〈L1x, L2x〉HµX (dx), L1, L2 ∈ MX ,
and the space MXs0

of µXs0
-mlt from H into H is a Hilbert space with the inner

product 〈L1, L2〉MXs0
=
´

H
〈L1x, L2x〉HµXs0

(dx), L1, L2 ∈ MXs0
.

With this notation and denoting with tr(·) the trace operator, we can develop
the first term of the objective functional (8) as

E[‖Xs0
− ΛX‖2H] = E

[
‖Xs0

‖2H
]
+ E

[
‖ΛX‖2H

]
− 2E [〈Xs0

,ΛX 〉H] =

= 〈P0, P0〉MX0
+ 〈ΛPn,ΛPn〉MX0

− 2 〈P0,ΛPn〉MX0
=

= 〈P0C
1/2
X 0

, P0C
1/2
X 0

〉HS + 〈ΛPnC
1/2
X 0

,ΛPnC
1/2
X 0

〉HS − 2 〈P0C
1/2
X 0

,ΛPnC
1/2
X 0

〉HS =

= tr(CXs0
) + tr(ΛCXΛ′)− 2 tr(ΛCXXs0

),

where 〈·, ·〉HS denotes the inner product in the space of Hilbert-Schmidt oper-
ators.

Moreover, we can express the Lagrange penalty in terms of the Riesz repre-
sentative ζ of ϕζ

ϕζ (Λ 1− I) = 〈ζ, (Λ 1− I)〉MX0
=

= 〈ζC
1/2
X0

, (Λ 1− I)C
1/2
X0

〉HS =

= tr(ζ1(Λ 1− I)),

with ζ1 = ζCX0
.

Hence, the objective functional reduces to

Φ = tr(CXs0
) + tr(ΛCXΛ′)− 2 tr(ΛCXXs0

) + 2 tr(ζ1(Λ 1− I)). (9)

Kriging system To minimize functional (9) we compute its differential with
respect to Λ and ζ1.

ΦΛ : MX ∋ h 7→ ΦΛ(h) = 2 tr(h(CXΛ′ − CXXs0
+ 1ζ1)) (10)

Φζ1 : MX0
∋ g 7→ Φζ1(g) = 2 tr(g(Λ 1− I)).

Differentials (10) lead to the following Kriging system of operatorial equations:
{

ΛCX − CXs0
X + ζ1 1

′ = 0;
Λ 1− I = 0,

(11)
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where 1′ : Hn → H acts as Hn ∋ (x1, ..., xn)
T 7→ 1′ x =

∑n
i=1

xi. System (11)
admits the following matrix representation

(
Λ ζ1

)( CX 1
1′ 0

)
=

(
CXs0

X I
)
. (12)

We note that system (12) is consistent with its finite dimensional counterpart.

An explicit solution to the Kriging system To derive an explicit solution
of Kriging system (12), we exploit the following identity

(
CX 1
1′ 0

)−1

=

(
C−1

X
[I − 1(1′C−1

X
1)−11′C−1

X
] C−1

X
1(1′C−1

X
1)−1

(1′C−1
X

1)−11′C−1
X

−(1′C−1
X

1)−1

)
, (13)

which can be proved by direct verification. Identity (13) leads to the following
explicit solution of system (12)

Λ∗x = M∗x+ L(x− 1M∗x), x ∈ Hn, (14)

where, for x ∈ Hn, M∗x = TMC
−1/2
X

x with TM = (1′C−1
X

1)−11′C
−1/2
X

, and

Lx = TLC
−1/2
X

x with TL = CXs0
XC

−1/2
X

. We recognize in expression (14) the
same form as (5), since the operator L is the µX -mlt defining the conditional
expectation in (4). Moreover, M∗x plays the role of the mean appearing in (5):
operator 1M∗ is a (non-orthogonal) projection, which enables one to obtain the
Best Linear Unbiased Estimator (BLUE), in the operatorial sense, of the mean
vector mX = (m, ...,m)T ∈ Hn. Indeed, operator M∗ is found by solving the
following Problem.

Problem 7 (Operatorial Ordinary Kriging of the Mean). Given X = (Xs1
, ...,Xsn

)T

and with the previous notation, find the BLUE for m, i.e., m∗ = M∗
X , where

M∗ : Hn → H is µX -mlt and minimizes

E[‖Xs0
−mM‖2H] subject to E[mM ] = m,

where mM = MX , with M : Hn → H µX -mlt.

The solution of Problem 7 is obtained by following the same strategy intro-
duced to solve Problem 6 (not shown).

Therefore, the operatorial Ordinary Kriging predictor X ∗
s0

= Λ∗
X is found

by summing the estimated mean m∗ = M∗
X to the plug-in conditional expec-

tation L(X −1M∗
X ), which is obtained by applying the operator of conditional

expectation L to the estimated residuals (X − 1M∗
X ).

5 Operatorial Kriging as a unifying theory: finite

dimensional approximations

In this Subsection, we focus on characterizing the existing Kriging formula-
tions within the general framework here introduced. To this end, we introduce
finite-dimensional approximations of the Operatorial Ordinary Kriging Predic-
tor derived in Section 4.

We call discretization an operator DK ∈ L(H,HK), K > 1, such that
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(i) DK(H) = HK ⊂ H;

(ii) HK is a K-dimensional Hilbert space (K < ∞).

For instance, given an orthonormal basis {ek, k ≥ 1}, a valid discretization De
K

is the projection into the space generated by the first K elements of the basis.
Hereafter, we denote with the superscript K the quantities referring to a given
discretization DK .

Having fixed a discretization DK , we consider the following Discretized Op-
eratorial Ordinary Kriging Problem.

Problem 8 (Discretized Operatorial Ordinary Kriging). Given X
K = (XK

s1
, ...,XK

sn
)T ,

XK
si

= DKXsi
, i = 1, ..., n, and with the previous notation, find the BLUP for

XK
s0

, i.e., XK∗
s0

= ΛK∗
X

K , where ΛK∗ : Hn
K → HK is a µXK -mlt and minimizes

E[‖XK
s0

−XΛ
K

s0
‖2H] subject to E[XΛ

K

s0
] = mK ,

where XΛ
K

s0
= ΛK

X
K , with ΛK : Hn

K → HK a µXK
-mlt.

In the following, we show two possible solutions to the discretized problem,
providing useful insights into the existing formulations of Kriging.

5.1 A Cokriging solution

To derive a version of the discretized predictor, we note that the solution of
Problem 8 can be expressed in the form (6), as any finite dimensional Hilbert
space is a RKHS. Moreover, the image of H under DK is isometrically isomorphic
to R

K , by assumption. We call ι : HK → R
K such an isometric isomorphism.

The operator ι being an isometry, one has

E[‖XK
s0

−XΛ
K

s0
‖2H] = E[‖ξs0

− ξ∗
s0
‖2
RK ], (15)

with ξs0
= (ξs0,1, ..., ξs0,K)T = ιXK

s0
and ξ∗

s0
= (ξ∗

s0,1, ..., ξ
∗
s0,K

)T = ιXΛ
K

s0
.

Without loss of generality, hereinafter we denote with ξs the vector of Fourier
coefficients in s, with respect to an orthonormal basis {vj , j ≥ 1} of HK , i.e.,
ξj
s
= 〈XK

s
, vj〉H.

Further, we note that ΛK
X =

∑n
i=1

ΛK
i Xsi

, where ΛK
i ∈ L(HK ,HK).

Hence, each ΛK
i , i = 1, ..., n, admits a matrix representation: for every x ∈ HK

ΛK
i x =

K∑

j=1

K∑

l=1

(ΛK
i )jlxjvl,

with (ΛK
i )jl = 〈ΛK

i vj , vl〉H, xj = 〈x, vj〉H. Therefore, one can express the
predictor as

XΛ,K
s0

=

n∑

i=1

K∑

j=1

K∑

l=1

(ΛK
i )jlξsi,jvl, (16)

and the unbiasedness constraint as

ΛK1 = I on HK ,

10



which reduces to
n∑

i=1

(ΛK
i )jl =

{
0, j 6= l;
1, j = l.

(17)

We recognize in condition (17), predictor (16) and in the quadratic loss (15), the
corresponding counterparts found in classical multivariate Ordinary Cokriging.
Therefore, Problem 8 reduces to a multivariate Ordinary Cokriging (Cressie,
1993) of the vectors ιXK

si
, i = 1, ..., n. The matrices Li = [(ΛK

i )jl] are thus
found as solution of the following linear system




C11 · · · C1,n IK

...
. . .

...
...

Cn1 · · · Cnn IK

IK · · · IK 0







L1

...
Ln

Z


 =




C01

...
C0n

IK


 , (18)

where Cij is the cross-covariance matrix between ξsi
and ξsj

, IK is the identity
matrix in R

K , and Z is the matrix of Lagrange multiplier. Therefore, the explicit
solution to the Kriging problem in RKHS proposed by Nerini et al. (2010) is
found by embedding this result into a finite dimensional L2 space.

5.2 A Trace-Kriging solution

We now focus on the case when the dimension K of the discretized space is
lower than or equal to the number n of data, which is representative of most
real applications. This case appears interesting, as the solution of the discretized
problem can be significantly simplified. The aim of this Subsection is to prove
that the finite dimensional approximation solving Problem (8) is equivalently
found as solution of the following Problem.

Problem 9 (Ordinary Trace-Kriging). Given X
K = (XK

s1
, ...,XK

sn
)T , XK

si
=

DK(Xsi
), i = 1, ..., n, and with the previous notation, find the BLUP, in the

trace sense, for XK
s0

, i.e., Xλ,K∗
s0

=
∑n

i=1
λ∗
iX

K
si

, where λ∗
1, ..., λ

∗
n ∈ R minimize

E[‖XK
s0

−Xλ,K
s0

‖2H] subject to E[Xλ

s0
] = mK ,

where Xλ,K
s0

=
∑n

i=1
λiX

K
si

, with λ1, ..., λn ∈ R.

The solution of Problem 9 can be found through the methodology proposed
in (Menafoglio et al., 2013), embedded into the finite-dimensional Hilbert space
HK . These authors address the problem of the spatial prediction via linear
combinations of the data by introducing global notions of spatial dependence
and stationarity. Specifically, given a H-valued random field {Ys, s ∈ D}, they
propose to describe the spatial dependence through the trace-covariogram Ctr :
D ×D → R, which is defined, under stationarity, as

Ctr(si − sj) = E[〈Ysi
−m,Ysj

−m〉H],

i.e., through the trace of the associated cross-covariance operator CYsi
Ysj

(Menafoglio
et al., 2013, Proposition 3). Moreover, these authors prove that the unique so-
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lution of Problem 9 can be found by solving the linear system



Ctr(0) · · · Ctr(s1 − sn) 1
...

. . .
...

...
Ctr(sn − s1) · · · Ctr(0) 1

1 · · · 1 0







λ1

...
λn

ζtr


 =




Ctr(s0 − s1)
...

Ctr(s0 − sn)
1


 ,

(19)
where ζtr ∈ R is a Lagrange multiplier, accounting for the unbiasedness con-
straint. Note that the optimal weights λ∗

1, ..., λ
∗
n can be uniquely determined

through the trace-covariogram, without the need of specifying the entire struc-
ture of spatial dependence. Hereafter, we call Trace-Kriging predictor the so-
lution of Problem 9, as opposed to the Operatorial Kriging predictor solving
Problem 8, detailed in Subsection 5.1.

To accommodate the form of the Cokriging predictor in expression (16) and
to ease the comparison, we rewrite the Trace-Kriging predictor Xλ,K

s0
as

Xλ,K
s0

=

n∑

i=1

λiX
K
si

=

n∑

i=1

K∑

l=1

λiξsi,lvl =

n∑

i=1

K∑

j=1

K∑

l=1

(Λi)jlξsi,jvl

with

(ΛK
i )jl =

{
0, j 6= l;
λi, j = l, ...,K

for i = 1, ..., n.
In the stationary case, the unbiasedness constraint in Problem 9 reads

∑n
i=1

λi =
1, which is equivalently expressed in terms of (ΛK

i )jl as (17). Therefore, the
solution of Problem 9 is an admissible solution of Problem 8. To prove the
equivalence of the two solutions, one is left to prove that the solution of Prob-
lem 8 admits the form Xλ,K

s0
=

∑n
i=1

λiX
K
si

, with λ1, ..., λn ∈ R. To this end, we
recall that a system of K linearly independent vectors x1, ...,xK in R

K , with
xi = (xi1, ..., xiK), i = 1, ...,K, constitutes a basis of R

K , that is, for every
y ∈ R

K , there exist λ1, ..., λK such that y =
∑K

i=1
λixi. Moreover, given n vec-

tors x1, ...,xn in R
K , these constitute a basis of RK if and only if rank(X) = K,

where Xik = xik. The elements XK
s1
, ...,XK

sn
form almost surely a basis of HK ,

or, equivalently, ξs1
, ..., ξsn

, with ξsi
= ιXK

si
, i = 1, ..., n, constitute almost

surely a basis of RK i.e.,

rank




ξs1,1 · · · ξs1,1

...
. . .

...
ξsn,1 · · · ξsn,K


 = K a.s. (20)

Hence, the optimal predictor XK∗
s0

= ΛK∗
X

K is almost surely expressed as
Xλ,K∗

s0
=

∑n
i=1

λ∗
iX

K
si

, where λ∗
1, ..., λ

∗
n satisfy




ξ∗
s0,1
...

ξ∗
s0,K


 =

(
λ∗
1 · · · λ∗

n

)



ξs1,1 · · · ξs1,1

...
. . .

...
ξsn,1 · · · ξsn,K


 .

Therefore, the Kriging predictor of Menafoglio et al. (2013) is here inter-
preted as the best approximation of the Operatorial Kriging predictor within
the finite-dimensional Hilbert space generated by the observations.

12



6 Conclusion and further research

In this work we established a novel theoretical framework for Object Oriented
Operatorial Kriging, which is grounded on the theory of Gaussian processes in
Hilbert spaces. Our research led to the following key conclusions.

1. Under the assumption of stationarity and known mean, it is possible to
develop a comprehensive theory of spatial prediction in Hilbert spaces by
relying on the notions on measurable linear transformations. Similar to
the finite-dimensional context, this setting allows to derive the formal rela-
tion between the Operatorial Simple Kriging predictor and the conditional
expectation of a Gaussian measure.

2. We addressed the problem of Kriging in case of unknown mean, based on
the same formal basis leading to the Operatorial Simple Kriging. Here,
we focused on stationary Gaussian random fields. In this setting, we were
able to formally and explicitly derive an Operatorial Ordinary Kriging
predictor, based on the isometry between the space of measurable linear
transformation and that of Hilbert-Schmidt operators.

3. We showed the unifying nature of our new theoretical framework through
the notion of discretized kriging problem. The attained results appear
particularly relevant, as (a) we recovered consistency with the predictor
of (Nerini et al., 2010) when a finite-dimensional L2 space is considered
and (b) we proved that the best approximation of the Operatorial Or-
dinary Kriging problem in the space generated by the observations coin-
cides almost surely with the Trace-Kriging obtained via trace-variography
(Menafoglio et al., 2013). As such, our new setting includes the Kriging
methods of FDA, besides those of CoDa and multivariate analysis. The
generalization of these results to Banach space constitutes an on-going
research along this line.

4. The attained theoretical results are key to address a number of computa-
tional issues in both functional and multivariate settings. Based on the re-
sults in Subsection 5.2 – which hold in most practical situations –, one can
actually compute the K-dimensional approximation of the Operatorial Or-
dinary Kriging predictor equivalently by (18) or (19). We remark that the
difference in terms of complexity is relevant: solving Trace-Kriging system
(19) has a complexity O(n3), as opposed to the complexity O(n3(K+1)3)
of solving the Cokriging system (18). Moreover, the optimal linear predic-
tor can be obtained by relying on trace-covariography only, instead of the
complete characterization of the cross-covariance operator required in sys-
tem (18). We remark that these observations hold for any Hilbert space,
an particularly for the Euclidean space R

p, 1 ≤ p < ∞, where multivariate
geostatistics is performed. Hence, our results – although worked out in a
complete generality – appears to be influential even in the classical set-
ting. In fact, the trace-covariography is posed as a convenient alternative
to the linear model of coregionalization which is commonly employed to fit
the cross-variograms in multivariate geostatistics, guaranteeing the same
degree of precision on the results. These observations open new and rele-
vant perspectives for the Cokriging of large and high-dimensional datasets,
which is one of the most challenging topic in modern geostatistics.
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