
MOX–Report No. 2/2008

An Adaptive Gradient-DWR Finite Element
Algorithm for an Optimal Control

Constrained Problem

Stefano Berrone, Marco Verani

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 29 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it



 



An Adaptive Gradient-DWR Finite Element Algorithm

for an Optimal Control Constrained Problem

Stefano Berronea and Marco Veranib

11th January 2008

a Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129
Torino, Italy, (sberrone@calvino.polito.it).

b MOX - Modelling and Scientific Computing - Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Milano, Italy (marco.verani@polimi.it)

Abstract

We present an adaptive finite element algorithm for the numerical approximation
of distributed control constrained problems governed by second order elliptic PDEs.
The algorithm is based on a suitable co-operation between a gradient type descent
numerical scheme and the dual weighted residual (DWR) method. We assess the
efficiency of the algorithm on several test problems and compare its performances
with the ones of the residual based adaptive algorithm introduced in [17].
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1 Introduction

The numerical solution of infinite-dimensional constrained or unconstrained minimiza-
tion problems requires suitable approximation steps, which replace the infinite-dimensional
feasible set by a finite-dimensional one, where the approximate minimum is looked for.
The error of such an approximate minimum depends on the choice of the discrete feasible
set. In general there are two ways to make the error decrease:

• to enlarge the discrete feasible set, following an a priori approach, in such a way
that any element of the infinite-dimensional feasible set can be approximated, up
to a certain order of accuracy, by elements belonging to the new discrete feasible
set;

• to enlarge the discrete feasible sets with the help of information extracted from
data and previous approximated minima, by means of suitable a posteriori error
indicators.
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Among the methods sharing the second approach, adaptive finite element methods for
the solution of constrained or not-constrained optimal control problem governed by par-
tial differential equations (see e.g. [20]) have recently received great attention; see e.g.
[4, 3, 7, 25, 15, 16, 17, 19], where residual based a posteriori error estimator [1, 24, 2] or
dual weighted residual (DWR) type estimator [5, 6] have been used. In this paper we
consider the following optimal control constrained problem: find

u∗ = argmin
u∈Uad

J(y, u), (1)

where Uad is the set of admissible controls and y is the unique solution to the elliptic
problem Ay = f + u. We propose an adaptive iterative algorithm, where, at each it-
eration, the strategy of enlarging the feasible set aims at performing one (or both) of
the two tasks: (a) a more accurate approximated evaluation of the infinite-dimensional
functional J ; (b) a more accurate minimization. The choice between the two tasks is
done automatically, by means of a suitable dynamical criterion, and it allows to avoid
dangerous situations like investing the computational effort in the minimization of a
perturbed (and possibly very different) functional.

The outline of the paper is the following: in Section 2 we will state the optimal
control problem and we will recall the primal-dual active set (pdas) algorithm,
that will be important in the construction of our adaptive method; in Section 3 we will
introduce the finite element formulation of the optimal control problem; in Section 4
we will present an error estimate based on a suitable separation of the sources of the
approximation error; in Section 5 we will introduce and discuss our adaptive algorithm,
named ∇-DWR Algorithm; in Section 6 we will show several numerical experiments to
assess the numerical behavior of the ∇-DWR Algorithm.

2 Problem Formulation

Let Ω ⊂ R
2 be a bounded polygonal domain with boundary Γ = ∂Ω. We consider the

following distributed optimal control problem:
Let

J(y, u) :=
1

2

∫

Ω
(y − zd)

2dx+
α

2

∫

Ω
(u− ud)

2dx, (2)

with
−∆y = f + u in Ω, y = 0 on Γ = ∂Ω, (3)

where f ∈ L2(Ω), zd, ud ∈ L
∞(Ω), α > 0 and

Uad = {u ∈ L2(Ω) : u(x) ≤ b(x) a.e. in Ω} ⊂ L2(Ω), (4)

with b ∈ L∞(Ω). Find
u∗ = argmin

u∈Uad

J(y, u). (5)
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It is well known (see e.g. [20]) that (2)-(5) admits a unique solution (y∗, u∗) ∈
(H2(Ω) ∩H1

0 (Ω)) × L2(Ω) characterized by the following optimality system:







−∆y∗ = f + u∗ in Ω, y∗ = 0 on Γ,
−∆p∗ = zd − y∗ in Ω, p∗ = 0 on Γ,
(α(u∗ − ud) − p∗, v − u∗) ≥ 0, for all v ∈ Uad,

(6)

where p∗ ∈ H2(Ω) ∩ H1
0 (Ω) and (·, ·) denotes the L2(Ω) inner product. An equivalent

formulation of the optimality system (6) has been stated in [18] as follows:















−∆y∗ = f + u∗ in Ω, y∗ = 0 on Γ,
−∆p∗ = zd − y∗ in Ω, p∗ = 0 on Γ,

u∗ = ud + p∗−λ∗

α ,

λ∗ = cmax(0, u∗ + λ∗

c − b),

(7)

for every c > 0. This formulation is essential to motivate the primal-dual active set

(pdas) algorithm introduced in [9] for the approximate solution of the optimal control
problem (2)-(5). For the ease of the reader we now briefly recall this algorithm, here
stated at the continuous level, which will be used in the construction of the adaptive
strategy discussed in this paper.

Let us introduce the active and inactive sets which are respectively defined as follows:

A(u) = {x ∈ Ω : u = b a.e.} and I(u) = {x ∈ Ω : u < b a.e.}. (8)

The primal-dual active set algorithm reads as follows:

1. Initial Guess: y0, u0, λ0

2. Build the active and inactive sets as:

An = {x ∈ Ω : un−1 +
λn−1

c
> b a.e.}, In = {x ∈ Ω : un−1 +

λn−1

c
≤ b a.e.}

3. if An = An−1 then stop

4. else find (yn, pn) such that

−∆yn = f +

{

b in An,
ud + pn

α in In,

−∆pn = zd − yn in Ω,

and set

un =

{

b in An,
ud + pn

α in In.

5. set λn = pn − α(un − ud), update n = n+ 1 and goto 2.
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3 Finite Element Discretization

As a preliminary step towards the construction of our adaptive algorithm, we introduce
the finite element approximation of the optimal control problem (2)-(5). Let us first
consider the weak formulation of the optimality system (6): find (y∗, u∗) ∈ H1

0 (Ω)×L2(Ω)
such that

a(y∗, φ) = (f + u∗, φ) ∀φ ∈ H1
0 (Ω), (9)

a(p∗, φ) = −(y∗ − zd, φ) ∀φ ∈ H1
0 (Ω), (10)

u∗ = ud +
1

α
(p∗ − λ∗), (11)

(λ∗, v − u∗) ≤ 0 ∀v ∈ Uad ⊂ L2(Ω), (12)

where a(·, ·) : H1
0 (Ω) ×H1

0 (Ω) → R is the bilinear form defined as

a(φ1, φ2) =

∫

Ω
∇φ1 · ∇φ2dx ∀φ1, φ2 ∈ H1

0 (Ω).

It can be seen that the inequality (12) is equivalent to the following complementarity
conditions:

λ∗ ≥ 0, b− u∗ ≥ 0, (λ∗, b− u∗) = 0 in Ω, (13)

or, by using (11), to:

α(u∗ − ud) − p∗ ≤ 0, b− u∗ ≥ 0, (α(u∗ − ud) − p∗, b− u∗) = 0 in Ω. (14)

Conditions (14) and (13) can be equivalently stated as

λ∗(x) ≥ 0 a.e. in Ω, (15)

λ∗(x) = 0 a.e. in I(u∗), (16)

λ∗(x) = p∗ − α(b− ud) a.e. in A(u∗). (17)

Let us now introduce the finite element discretization of (2)-(5). Let T a shape-regular
triangulation of the domain Ω, we denote by hT and |T | the diameter and the area of
an element T ∈ T . Let

V h = {vh ∈ C0(Ω)| vh|T ∈ P
1(T ), T ∈ T } (18)

be the continuous piecewise linear finite element space, and

W h = {wh ∈ L2(Ω)| wh|T ∈ P
0(T ), T ∈ T } (19)

be the (discontinuous) piecewise constant finite element space. Let V h
0 := V h ∩H1

0 (Ω).
Then a possible finite element approximation of (2)-(5) is as follows:

Let

J(yh, uh) :=
1

2

∫

Ω
(yh − zd)

2dx+
α

2

∫

Ω
(uh − ud)

2dx, (20)
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with
a(yh, φh) = (f + uh, φh) ∀φh ∈ V h

0 . (21)

Find
u∗h = argmin

u∈Uad,h

J(yh, uh), (22)

where
Uad,h = {wh ∈W h| wh|T ≤ bh|T , T ∈ T }, (23)

with bh|T := |T |−1
∫

T b(x)dx, T ∈ T .
In the rest of the paper we will work under the following simplifying assumption:

Assumption 3.1. Let b ∈ L∞(Ω) such that b ∈W h, i.e. b|T = bh|T , ∀T ∈ T .

The discretized control problem (20)-(22) has a unique solution (y∗h, u
∗
h) ∈ V

h
0 ×W h

which is characterized by the following optimality conditions:

a(y∗h, φh) = (f + u∗h, φh) ∀φh ∈ V h
0 , (24)

a(p∗h, φh) = −(y∗h − zd, φh) ∀φh ∈ V h
0 , (25)

u∗h = Π0ud +
1

α
(Π0p

∗
h − λ∗h), (26)

(λ∗h, vh − u∗h) ≤ 0 ∀vh ∈ Uad,h ⊂ L2(Ω), (27)

where Π0 is the projecting operator onto the piecewise constant space W h; on each
triangle T ∈ T it is defined as follows:

(Π0vh)|T = |T |−1

∫

T
vh(x)dx. (28)

As in the continuous case, the inequality (27) can be stated as the complementarity
problem

λ∗h ≥ 0, b− u∗h ≥ 0, (λ∗h, b− u∗h) = 0, (29)

which can be equivalently stated as

λ∗h(x)|T ≥ 0 T ∈ T , (30)

λ∗h(x)|T = 0 T ∈ I(u∗h), (31)

λ∗h(x)|T = (Π0p
∗
h)|T − α(b− Π0ud)|T T ∈ A(u∗h). (32)

4 Split of the Error and DWR type Error Estimate

The crucial step towards the construction of our adaptive algorithm is to provide an a
posteriori error estimate for the quantity |J(y∗, u∗)−J(y∗h, u

∗
h)|, being (y∗, u∗) the solution
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to the optimal problem (2)-(5) and (y∗h, u
∗
h) the solution to the Galerkin problem (24)-

(27). Having in mind to apply the DWR method [5, 6, 4] to the control problem (2)-(5),
we introduce the Lagrangian functional L : H1

0 (Ω) ×H1
0 (Ω) × L2(Ω) → R defined as

L(y, p, u) = J(y, u) + a(y, p) − (f + u, p). (33)

Let v∗ = (y∗, p∗, u∗) and vh = (y∗h, p
∗
h, u

∗
h) denote respectively the continuous and discrete

optimal triplets. Then the optimality conditions (9)-(10) and (24)-(25) yield

J(y∗, u∗) − J(y∗h, u
∗
h) = L(y∗, p∗, u∗) −L(y∗h, p

∗
h, u

∗
h). (34)

Now it is standard [5, 6, 25] to obtain the following equalities:

L(y∗, p∗, u∗) −L(y∗h, p
∗
h, u

∗
h) =

1

2
[∇L(v∗)(v∗ − vh) + ∇L(vh)(v

∗ − vh)] (35)

=
1

2
[a(y∗ − y∗h, p

∗
h) − (y∗h − zd, y

∗ − y∗h)]

+
1

2
[a(y∗h, p

∗ − p∗h) − (f + u∗h, p
∗ − p∗h)]

+
1

2
[(α(u∗ − ud) − p∗, u∗ − u∗h) + (α(u∗h − ud) − p∗h, u

∗ − u∗h)].

Using (12) and bearing in mind that λ∗ = p∗ − α(u∗ − ud), give the following inequality

(α(u∗ − ud) − p∗, u∗ − u∗h) = (λ∗, u∗h − u∗) ≤ 0, (36)

being Uad,h ⊂ Uad thanks to Assumption 3.1. Hence combining (34) and (35) yields

J(y∗, u∗) − J(y∗h, u
∗
h) ≤

1

2
[a(p∗h, y

∗ − y∗h) − (y∗h − zd, y
∗ − y∗h)]

+
1

2
[a(y∗h, p

∗ − p∗h) − (f + u∗h, p
∗ − p∗h)] + (α(u∗h − ud) − p∗h, u

∗ − u∗h)].(37)

Unfortunately, as already pointed out by [25] in Remark 4.3, the inequality (37) does
not provide an estimate for the absolute value |J(y∗, u∗) − J(y∗h, u

∗
h)|; to overcome this

difficulty and to derive a computable DWR based a posteriori error estimate to be used
in an adaptive strategy, various strategies have been recently proposed (see e.g. [25, 16]).
In this paper we propose a different approach, somehow related to what has been pre-
sented in [14]. Let us now describe our idea.

For every control finite element approximation uh ∈W h, we define the intermediate
primal and dual solutions (y(uh), p(uh)) ∈ H1

0 (Ω) ×H1
0 (Ω) as follows:

a(y(uh), v) = (f + uh, v)dx ∀v ∈ H1
0 (Ω), (38)

a(p(uh), v) = −(y(uh) − zd, v) ∀v ∈ H1
0 (Ω). (39)

We want to build a computable error estimator for the following quantity

|J(y∗, u∗) − J(yh(uh), uh)|, (40)
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where yh(uh) ∈ V h
0 is the Galerkin solution to (38). By using the triangle inequality we

obtain the following split of the error:

|J(y∗, u∗) − J(yh(uh), uh)| ≤ |J(y∗, u∗) − J(y(uh), uh)|

+ |J(y(uh), uh) − J(yh(uh), uh)|, (41)

which will be crucial for the design of our adaptive strategy. The right hand side of (41)
identifies two sources of error:

• the approximation of the optimal control u∗;

• the approximation of y(uh).

Let now us estimate each of the two terms appearing on the right hand side of (41).
Whenever uh is taken as an approximation to u∗, the first term |J(y∗, u∗)−J(y(uh), uh)|
measures the distance, in terms of the value of functional J , between the optimal solution
(y∗, u∗) and the exact intermediate solution (yh(uh), uh). This term can be approximated
by using the truncated first order Taylor expansion:

J(y∗, u∗) − J(y(uh), uh) ' DuJ(y(uh), uh)(u
∗ − uh)

= (α(uh − ud) − p(uh), u
∗ − uh), (42)

where DuJ(y(uh), uh)(u
∗ − uh) denotes the Gateaux derivative with respect to u of the

functional J in the direction u∗ − uh, evaluated at (y(uh), uh), see e.g. [20]. Approxi-
mating p(uh) with its Galerkin discretization ph(uh) yields

J(y∗, u∗) − J(y(uh), uh) ' (α(uh − ud) − ph(uh), u
∗ − uh). (43)

The right-hand side of (43) is still non-computable as it involves the unknown function
u∗; hence it cannot be used directly to drive an adaptive strategy. We will discuss in
Section 5 the construction of a computable version of (43) and its usage in the design of
our adaptive algorithm.

The second term J(y(uh), uh) − J(yh(uh), uh) measures the error caused by the ap-
proximation of the functional value J(y(uh), uh) and it can be estimated by the standard
tools of the DWR method [5, 6]. Let Ih : H1

0 (Ω) → V h
0 be a suitable interpolation oper-

ator such that the following error estimates hold [12]:

‖y(uh) − Ihy(uh)‖0,T + h
1/2
T ‖y(uh) − Ihy(uh)‖0,∂T ≤ Ch‖∇y(uh)‖0,N (T ) (44)

‖p(uh) − Ihp(uh)‖0,T + h
1/2
T ‖p(uh) − Ihp(uh)‖0,∂T ≤ Ch‖∇p(uh)‖0,N (T ), (45)

where C is a constant not depending on h and N (T ) = {T ′ : T ∩ T ′ 6= ∅}. Then, by
using (38)-(39) and the Lagrangian functional (33), it holds

|J(y(uh), uh) − J(yh(uh), uh)| ≤ |
∑

T∈T

{(Rp, p(uh) − Ihp(uh))T + (rp, p(uh) − Ihp(uh))∂T }|

+|
∑

T∈T

{(Rd, y(uh) − Ihy(uh))T + (rd, y(uh) − Ihy(uh))∂T }|(46)

≤
∑

T∈T

ρpTω
d
T +

∑

T∈T

ρdTω
p
T ,
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with

Rp = 4yh(uh) + f, rp =

{

1
2 [νE · ∇yh(uh)] if E ⊂ ∂T \ ∂Ω,

0 if E ⊂ ∂Ω,
(47)

Rd = 4ph(uh)−(yh(uh)−zd), rd =

{

1
2 [νE · ∇ph(uh)] if E ⊂ ∂T \ ∂Ω,

0 if E ⊂ ∂Ω,
(48)

where [νE ·∇·] denotes the jump of the normal flux across the inter-element side E, and

ρpT := ‖Rp‖0,T + h
−1/2
T ‖rp‖0,∂T

ρdT := ‖Rd‖0,T + h
−1/2
T ‖rd‖0,∂T

ωpT := ‖y(uh) − Ihy(uh)‖0,T + h
1/2
T ‖y(uh) − Ihy(uh)‖0,∂T ∀T ∈ T

ωdT := ‖p(uh) − Ihp(uh)‖0,T + h
1/2
T ‖p(uh) − Ihp(uh)‖0,∂T ∀T ∈ T

Applying the interpolation error estimates (44)-(45) to (46) yields the following error
estimate:

|J(y(uh), uh)−J(yh(uh), uh)| ≤ C
∑

T∈T

hT ρ
p
T ‖∇p(uh)‖0,N (T ) +

∑

T∈T

hT ρ
d
T ‖∇y(uh)‖0,N (T ).

(49)
The right hand-side still involves the unknown quantities ∇y(uh),∇p(uh). By resorting
to the so-called Zienkiewicz-Zhu patch recovery technique [26, 27], we build two com-
putable quantities Gh(∇yh(uh)) and Gh(∇ph(uh)), which are respectively approximation
to ∇y(uh) and ∇p(uh). They enable us to define the error indicator E2,T on the element
T as

E2,T := hTρ
p
T ‖G(∇yh(uh))‖0,N (T ) + hT ρ

d
T ‖G(∇yh(uh))‖0,N (T ). (50)

Combining (43) and (49) yields the following heuristic estimate:

|J(y∗, u∗) − J(yh(uh), uh)| ' E1 + E2, (51)

where

E1 := |(α(uh − ud) − ph(uh), u
∗ − uh)|, (52)

E2 := C
∑

T∈T

E2,T . (53)

Remark 4.1. While the quantity E2 is computable, the term E1, as it stands, is not com-
putable, because it involves the unknown function u∗. In the next section we will propose
a computable version of E1 and an adaptive algorithm based on it for the approximate
solution of problem (2)-(5).
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5 The Adaptive Algorithm

In this section we describe our adaptive algorithm for the approximate solution of the
optimal control problem (2)-(5). In particular our adaptive scheme aims at approxi-
mating u∗ = argminUad,h

J(y, u) and it is based upon an iteration of the following main
steps:

minimize → estimate → select → include,

where

1. minimize applies the primal-dual active set algorithm providing us with an approx-
imation uh ∈ W h to u∗, that minimizes the functional J among all the functions
belonging to the actual piecewise constant finite element space W h.

2. estimate is based on a computable version of (51) that allows to check the fulfill-
ment of a suitable stopping test; if this is met then the algorithm stops; otherwise
the select and the include procedures are performed.

3. select is based on E2 and on a localized computable version of E1 and it aims at
selecting new basis functions to be added to the actual finite element spaces V h

0

and W h in order to perform the following tasks:

• enriching the set of descent directions with new feasible and effective direc-
tions, mainly governed by E1

• improving the accuracy of the approximate computation of the functional J ,
mainly governed by E2.

4. include adds the basis functions selected in the previous step to the actual finite
element spaces V h

0 and W h.

5.1 Haar wavelets on the triangles

As an intermediate step towards the construction of a computable version of E1, we need
to introduce the Haar wavelets on the triangles (for more detail on wavelets see [13],[21]).
It is easy to see that the finite element space W h is spanned by the Haar scaling basis
functions

φT (x) =
{ 1 x ∈ T,

0 otherwise,
(54)

for every T ∈ T . The quantity u∗−uh appearing in the definition (52) of E1 represents the
correction to be added to the current approximation uh in order to get u∗ and it belongs
to the orthogonal complement W h

⊥ of W h to L2(Ω). A basis for W h
⊥ can be obtained by

considering the Haar wavelet basis functions ψj,k,T , defined over each triangle T ∈ T .
Now we briefly explain their construction (see also Figure 1). Let us first subdivide each
triangle T ∈ T in four similar triangles T1,k, k = 0, .., 3, where |T1,k| = |T |/4. Then it is
easy to see that every function fT (x) which is defined on the triangle T and is constant
on each sub-triangle T1,k, k = 0, .., 3 can be written as a unique linear combination of
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Figure 1: Haar scaling and wavelet functions

the constant function φT and three piecewise constant functions ψ1,k,T , k = 1, 2, 3; i.e.
fT = αTφT + β1,Tψ1,1,T + β2,Tψ1,2,T + β3,Tψ1,3,T . This building process can be iterated
to define the Haar wavelet functions ψj,k,T of level j and position k, all with support
contained in the triangle T and the following orthogonality property holding for every
T ∈ T :

∫

T
φTψj,k,T = 0 ∀j, k ∈ N.

5.2 Approximation of E1

We now focus on the crucial step of building a computable version of the error indicator
E1. Let uh ∈ W h and ph(uh) be the Galerkin approximation to (39). We define the
following quantities:

δJh = α(uh − ud) − ph(uh), δJh,T = α(uh − ud)|T − ph(uh)|T ∀T ∈ T . (55)

In order to catch the bulk of E1 we compute the following indicators:

E1,ψ1,k,T
:= (δJh, ψ1,k,T )T , k = 1, .., 3, (56)

E1,T :=

3
∑

k=1

|E1,ψ1,k,T
|. (57)

Motivated by the fact that E1 is an approximation to the Gateaux derivativeDuJ(y(uh), uh)(u
∗−

uh), with u∗−uh ∈W h
⊥, we take the quantity E1,ψ1,k,T

as an approximation to the deriva-

tive DuJ(y(uh), uh)(ψ1,k,T ) of J in the test direction ψ1,k,T ∈ W h
⊥ and we consider the

quantity E1,T as an indicator of the magnitude of E1|T , at the resolution scale j = 1.
The combined information about the size of E1,T and the sign of δJh,T (see Remark 5.3)
will be used in our adaptive algorithm to decide whether to add or not new directions
to the set of feasible descent directions.

Remark 5.1. It is worth noticing that the idea of getting the bulk of a quantity of
interest, like E1 in our case, by testing it with functions belonging to the complement of
the actual space of discretization, has already been successfully exploited in the context
of adaptive wavelet methods for the solution of elliptic PDEs (see e.g. [10]), and in the
context of adaptive finite element methods for the solution of the obstacle problem [23].
The same idea has also been explored to design an adaptive finite element algorithm for
the solution of shape optimization problems [22].

10



5.3 The adaptive algorithm

Our method iteratively solves the discrete problem (24)-(27) on the given triangula-
tion T (k), by means of the primal dual active set (pdas) algorithm and adaptively
builds the new triangulation T (k+1), by means of the error indicators Ei,T , i = 1, 2. The
discrete active and inactive sets built by the primal dual active set algorithm are defined
as suitable subsets of the triangulation T (k); in particular at each iteration k the primal
dual active set algorithm builds the two sets as follows:

I(k) := {T ∈ T (k) : u
(k)
h +

λ
(k)
h

c
≤ b in T},

A(k) := {T ∈ T (k) : T /∈ I(k)}.

Let J
(k)
h := J(y

(k)
h , u

(k)
h ) denote the value of the functional at the iteration k, then we

introduce the following quantity that will play an important rôle in the algorithm:

dJ/dN (k) := |J
(k)
h − J

(k−1)
h |/(N

(k)
dofs −N

(k−1)
dofs ),

where N
(k)
dofs is the number of degrees of freedom of the discrete problem on T (k). The

size of dJ/dN (k) drives the selection of the refinement strategy among the following
three ones:

• If dJ/dN (k) is “large”(dJ/dN (k) ≥ TOLstop
δJh

), then refine according to the gradient-
type error indicator E1;

• If dJ/dN (k) is “small” (dJ/dN (k) ≤ TOLstart
DWR), then refine according to the DWR-

type error indicator E2;

• If dJ/dN (k) is “of medium size” (TOLstop
δJh

< dJ/dN(k) < TOLstart
DWR), then refine

according to E1 and E2;

where TOLstart
DWR > TOLstop

δJh
> 0 are given universal parameters.

Let TOLstop > 0 be a user defined stop tolerance, then our adaptive algorithm, named
∇-DWR Algorithm, reads as follows:

Algorithm ( ∇-DWR Algorithm)

Set k = 0

initialize

while
(

dJ/dN (k) > TOLstop or dJ/dN (k−1) > 10TOLstop
)

11



{

k = k + 1

Apply the pdas algorithm on T (k) and compute J
(k)
h

if
(

dJ/dN (k) > TOLstop
δJh

)

compute E1,T ∀T ∈ T (k)

if
(

T ∈ A(k) and δJh,T < 0
)

set E1,T = 0

if
(

dJ/dN (k) < TOLstart
DWR

)

compute E2,T ∀T ∈ T (k)

M
(k)
T = mark(T (k))

T (k+1) = refine(M
(k)
T )

}

Remark 5.2. The stopping criterion aims at predicting when the adaptive minimization
starts to produce negligible effects: this is measured looking at the variation of the
functional Jh with respect to the number of degrees of freedom. It is important to
notice that spurious oscillations of the functional value coupled with the simpler stopping
criterion {dJ/dN (k) < TOLstop} may led to an early stop of the algorithm. For that
reason the safeguarded version {dJ/dN (k) < TOLstop or dJ/dN (k−1) < 10TOLstop} has
been implemented.

Remark 5.3. Condition if
(

T ∈ A(k) and δJh,T < 0
)

set E1,T = 0 aims at not refining

an element T , when it belongs to the active set A(k) and the inequality δJh,T < 0 is
satisfied. Indeed these two conditions guarantee, through (32), that T belongs to the
exact active set A(uh). In the actual implementation of the algorithm, we substitute
the condition δJh,T < 0, which is tricky in its evaluation at every point of T , with the
more feasible condition Π1(δJh,T )(xi) < 0 for every vertices xi of the triangle T , where
Π1 is the projector on the set of linear functions. We remark that if ud is a piecewise
linear function on T , then the fulfillment of the new condition still implies, through (32),
T ∈ A(uh).

Remark 5.4. The mark and refine procedures have to perform clever balancing between
the two terms E1,T and E2,T in order to avoid dangerous combinations, like a poor
resolution of the functional J coupled with a rich set of descent directions. For instance
this latter situation may lead to a very accurate minimization of a “perturbed” (and in
principle different) functional.

The mark procedure is based on a bulk criterion which uses the elemental quantities
E1,T and E2,T , two tolerances TOLstart

DWR > TOLstop
δJh

and other two universal constants

12



ΘδJh
and ΘDWR to build a set MT of triangles to be refined.

Algorithm (mark)

set MT = ∅

if
(

dJ/dN (k) > TOLstop
δJh

)

while



ΘδJh

∑

T∈T

E1,T ≤
∑

T∈MT

E1,T



 {

let Tmax the triangle that maximize E1,T in T \MT

set MT = MT ∪ Tmax}

if
(

dJ/dN (k) < TOLstart
DWR

)

while



ΘDWR

∑

T∈T

E2,T ≤
∑

T∈MT

E2,T



 {

let Tmax the triangle that maximize E2,T in T \MT

set MT = MT ∪ Tmax}

6 Numerical results

In this section we present a documentation of the numerical performances of the ∇-DWR

Algorithm. In particular we consider three examples: two taken from the literature
[9, 8] and the third derived from [19]. In the following we denote by Ndofs the number
of degrees of freedom used by the pdas algorithm, by #I (k) the number of triangles
contained in the discrete inactive region I (k), by #A(k) the number of triangles contained

in the discrete active region A(k), by dJ/dN (k) the ratio |J
(k)
k −J

(k−1)
k |/(N

(k)
dofs−N

(k−1)
dofs ),

by E1,MT
the sum

∑

T∈MT
E1,T and by E2,MT

the sum
∑

T∈MT
E2,T , where MT is the

set of marked triangles for refinement. In order to asses the robustness of the algorithm
we perform each numerical test for several values of the parameters ΘδJh

and ΘDWR. For
each example we provide the plot of the adapted meshes, the history of the functional
value with respect to Ndofs and some characteristic quantities. We also consider the
influence of a modified marking step introduced in [17]: after performing the marking
step described in Section 5, we enforce an extra-refinement of the elements belonging
to I(k) and A(k) having an edge in I (k) ∩ A(k). The results of such extra-refinements,
labeled with RefForce = 1, are displayed in some pictures; more detailed results can
be found in [11]. Finally the numerical results of the ∇-DWR Algorithm are compared
with the ones obtained by the Residual-based Algorithm: a slight modification of the
adaptive algorithm presented in [17] and briefly recalled in Section 8.

For our computations we always set c = 0.1 in the pdas algorithm.
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Table 1: Example 1, ΘδJh
= 0.6, ΘDWR = 0.6, TOLstart

DWR = 1.0E−8, TOLstop
δJh

= 5.0E−10,

TOLstop = 1.0E − 11

Ndofs #I(k) #A(k) Jh dJ/dN (k) E1,MT
E2,MT

802 113 143 4.192961E-02 0.0 8.1238E-04 0.0000E+00

1242 253 159 4.192891E-02 1.5751E-09 5.5672E-04 6.3780E-03

2620 565 324 4.191468E-02 1.0327E-08 3.9268E-04 0.0000E+00

4232 1042 387 4.191371E-02 6.0086E-10 2.6551E-04 3.6840E-03

9992 2167 1206 4.190961E-02 7.1255E-10 1.8127E-04 2.4434E-03

19258 4512 1927 4.190882E-02 8.4618E-11 0.0000E+00 1.6708E-03

41654 9013 4932 4.190837E-02 2.0311E-11 0.0000E+00 1.1651E-03

82284 17971 9525 4.190819E-02 4.3663E-12 0.0000E+00 8.1084E-04

Table 2: Example 1, Θ1,2,3,4 = 0.6, TOLstop = 1.0E − 11

Ndofs #I(k) #A(k) Jh dJ/dN (k) η2
y,p,T,E µ2 + osc2

802 113 143 4.192961E-02 0.0 3.1180E-03 4.3970E-05

2382 378 415 4.192057E-02 5.7172E-09 1.3364E-03 1.8571E-05

3278 586 507 4.191296E-02 8.4903E-09 7.3766E-04 4.7958E-06

5078 933 784 4.191088E-02 1.1607E-09 4.2835E-04 2.0272E-06

9402 1758 1405 4.190943E-02 3.3533E-10 2.3088E-04 6.6809E-07

25150 5213 3323 4.190866E-02 4.8635E-11 1.0556E-04 2.2669E-07

38436 7284 5620 4.190835E-02 2.3545E-11 5.6781E-05 5.1092E-08

66792 12675 9730 4.190820E-02 5.0649E-12 3.2278E-05 1.8370E-08

6.1 Example 1

The first test problem is taken from [9]:
Ω = (0, 1) × (0, 1), α = 0.01, ud(x1, x2) = 0, b(x1, x2) = 0, f(x1, x2) = 0,

zd(x1, x2) = sin(2πx1) sin(2πx2)
exp(2x1)

6
.

In Tables 1 and 3 we report the evolution of the main quantities in the adaptive
process of our algorithm. When a zero appears in the columns labeled with E1,MT

or
E2,MT

means that the corresponding marking step of Algorithm mark is not applied to
adapt the mesh; for example if a zero appears in the column labeled with E1,MT

, then
the refinement is performed only according to the DWR-type error indicator E2.

In Tables 2 and 4 we report the results obtained by applying the residual based
adaptive algorithm introduced in [17]. The labels of the last two columns are defined as

14



Table 3: Example 1, ΘδJh
= 0.4, ΘDWR = 0.4, TOLstart

DWR = 1.0E−8, TOLstop
δJh

= 5.0E−10,

TOLstop = 1.0E − 11

Ndofs #I(k) #A(k) Jh dJ/dN (k) E1,MT
E2,MT

802 113 143 4.192961E-02 0.0 8.1238E-04 0.0000E+00

1062 201 151 4.193105E-02 5.5731E-09 6.3624E-04 6.9939E-03

1484 298 195 4.192084E-02 2.4214E-08 5.0402E-04 0.0000E+00

2012 449 221 4.191666E-02 7.9003E-09 4.0811E-04 5.2807E-03

3424 808 354 4.191424E-02 1.7191E-09 3.1855E-04 3.9531E-03

5370 1185 616 4.191095E-02 1.6868E-09 2.5336E-04 3.0804E-03

9666 2044 1203 4.190952E-02 3.3372E-10 0.0000E+00 2.3975E-03

14792 3444 1531 4.190912E-02 7.8790E-11 0.0000E+00 1.9022E-03

23322 4800 3001 4.190861E-02 5.9719E-11 0.0000E+00 1.5077E-03

39010 8348 4718 4.190839E-02 1.3999E-11 0.0000E+00 1.2015E-03

60236 13860 6301 4.190828E-02 5.2016E-12 0.0000E+00 9.5602E-04

Table 4: Example 1, Θ1,2,3,4 = 0.4, TOLstop = 1.0E − 11

Ndofs #I(k) #A(k) Jh dJ/dN (k) η2
y,p,T,E µ2 + osc2

802 113 143 4.192961E-02 0.0 3.1180E-03 4.3970E-05

2150 336 376 4.192269E-02 5.1285E-09 1.7901E-03 2.6336E-05

8056 1316 1379 4.191553E-02 1.2134E-09 7.1830E-04 1.2143E-05

8502 1397 1439 4.191213E-02 7.6095E-09 4.8014E-04 3.5931E-06

9346 1542 1582 4.191073E-02 1.6647E-09 3.4474E-04 1.3933E-06

11262 1948 1818 4.190986E-02 4.5085E-10 2.3069E-04 5.5512E-07

14508 2789 2054 4.190894E-02 2.8483E-10 1.6003E-04 2.2680E-07

33202 7081 4152 4.190854E-02 2.1346E-11 9.0362E-05 1.0644E-07

39190 8002 5193 4.190838E-02 2.6144E-11 6.2812E-05 5.6212E-08

49332 9946 6594 4.190826E-02 1.1735E-11 4.4322E-05 2.8711E-08

103900 20473 14646 4.190818E-02 1.4508E-12 2.7545E-05 1.6572E-08
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Figure 2: Example 1: convergence his-
tory of the functional Jh, for different
values of ΘδJh

and ΘDWR
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tory of the functional Jh, for different
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and ΘDWR - detail of the
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Figure 7: Example 1: co-control func-
tion λh at iteration k = 7 of Table 3

follows:

η2
y,p,T,E =

∑

E∈E

η2
y,E + η2

p,E +
∑

T∈T

η2
y,T +

(

η
(1)
p,T

)2
+

(

η
(2)
p,T

)2
,

µ2 + osc2 =
∑

T∈T

µ2
T (ud) + µ2

T (b) + osc2T (yd) + osc2T (f),

where we refer to Section 8 for more details.
From Tables 1-2 we conclude that the two algorithms produce comparable results:

the Residual-based Algorithm satisfies the stopping criterion with a slightly smaller
number of degrees of freedoms, but the value of the functional Jh is slightly larger with
respect to the one obtained by the ∇-DWR Algorithm. In Table 3 we report the results
obtained by using the ∇-DWR Algorithm with different values of ΘδJh

and ΘDWR, which
influence the growth of the number of degrees of freedom employed by the algorithm; a
similar conclusion, but now in ∇-DWR Algorithm’s favor, can be drawn from Tables 3-4.

In Figure 2 we display the history of convergence of the ∇-DWR Algorithm, for
different values of ΘδJh

and ΘDWR (see Figure 3 for a zoom of the first iterations or [11]
for the corresponding tables).

In Figure 4 we plot the discrete control uh obtained at the seventh adaptive step
with ΘδJh

= ΘDWR = 0.4, in Figure 5 we report the corresponding adapted mesh, while
in Figures 6-7 we show the functions yh and λh, respectively.

From all the Tables concerning the ∇-DWR Algorithm and from Figures 2-3 it is
evident the strong relative reduction of the functional value when the mesh is adapted
according to the indicator E1, which is an approximation of the gradient of the functional
Jh.

Remark 6.1. The histories of convergence reported in Figures 2-3 and in the correspond-
ing Tables show the ability of ∇-DWR Algorithm to capture the essential features of
the optimal control variable u∗ in order to make the functional decrease, also when the
absolute variation of the functional value (and this is typical of inverse problems) is
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Table 5: Example 2, ΘδJh
= 0.6, ΘDWR = 0.6, TOLstart

DWR = 1.0E−8, TOLstop
δJh

= 5.0E−10,

TOLstop = 1.0E − 11

Ndofs #I(k) #A(k) Jh dJ/dN (k) E1,MT
E2,MT

802 222 34 9.593094E-02 0.0 2.4756E-03 0.0000E+00

1702 517 51 9.593092E-02 2.8475E-11 0.0000E+00 3.5537E-02

2780 782 143 9.588493E-02 4.2661E-08 1.3466E-03 0.0000E+00

5526 1682 161 9.586335E-02 7.8585E-09 9.4288E-04 2.1082E-02

10644 3071 476 9.585014E-02 2.5802E-09 6.4825E-04 1.3612E-02

25938 7530 1198 9.584305E-02 4.6364E-10 0.0000E+00 9.1163E-03

49282 14124 2332 9.583968E-02 1.4466E-10 0.0000E+00 6.3567E-03

106164 29886 5674 9.583869E-02 1.7342E-11 0.0000E+00 4.4203E-03

212284 60930 10018 9.583799E-02 6.6153E-12 0.0000E+00 3.0900E-03

restricted to the fourth or fifth digit. This effective behavior is strongly related to the
use of the gradient method combined with the DWR error estimate. The same kind of
conclusions can be drawn from the results of Example 2 and Example 3, where the latter
is particular meaningful, as the exact value of the optimal control is known.

6.2 Example 2

The second test problem is taken from [8]:
Ω = (0, 1) × (0, 1), α = 0.01, ud(x1, x2) = 0, b(x1, x2) = 1, f(x1, x2) = 0,

zd(x1, x2) =

{

200x1x2(x1 −
1
2)2(1 − x2), if 0 < x1 ≤ 1/2,

200(x1 − 1)x2(x1 −
1
2 )2(1 − x2), if 1/2 < x1 ≤ 1.

In Tables 5-8, we report the main adaptive quantities as in the previous example.
From Tables 5-6 we conclude again that the two algorithms produce comparable results;
the ∇-DWR Algorithm satisfies the stopping criterion with a slightly smaller number of
degrees of freedoms, although the value of the discrete functional Jh is slightly larger
with respect to the Residual-based Algorithm. A similar comparison, with similar
conclusions, can be applied to Tables 7-8.

In Figure 8 we display the history of convergence of the ∇-DWR Algorithm, for
different values of ΘδJh

and ΘDWR (see Figure 9 for a zoom of the first iterations or [11]
for the corresponding tables).

In Figures 10-13 we plot the adapted functions uh, yh, λh and the corresponding
mesh obtained at the ninth adaptive step for ΘδJh

= ΘDWR = 0.4.
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Table 6: Example 2, Θ1,2,3,4 = 0.6, TOLstop = 1.0E − 11

Ndofs #I(k) #A(k) Jh dJ/dN (k) η2
y,p,T,E µ2 + osc2

802 222 34 9.593094E-02 0.0 1.6402E-02 5.6518E-05

2280 616 138 9.588860E-02 2.8649E-08 6.8084E-03 2.4081E-05

3602 1053 145 9.585918E-02 2.2258E-08 3.6631E-03 8.5921E-06

6274 1555 558 9.585136E-02 2.9258E-09 2.1744E-03 3.0231E-06

10846 3077 578 9.584453E-02 1.4932E-09 1.1529E-03 1.0922E-06

21264 5356 1824 9.584125E-02 3.1454E-10 6.5632E-04 4.2832E-07

34442 9288 2317 9.583963E-02 1.2289E-10 3.6541E-04 1.2760E-07

71052 18918 4933 9.583854E-02 2.9808E-11 1.9541E-04 3.1471E-08

276418 72969 19723 9.583779E-02 3.6540E-12 5.6099E-05 7.7475E-09

Table 7: Example 2, ΘδJh
= 0.4, ΘDWR = 0.4, TOLstart

DWR = 1.0E−8, TOLstop
δJh

= 5.0E−10,

TOLstop = 1.0E − 11

Ndofs #I(k) #A(k) Jh dJ/dN (k) E1,MT
E2,MT

802 222 34 9.593094E-02 0.0 2.4756E-03 0.0000E+00

1346 407 41 9.594140E-02 1.9218E-08 1.9525E-03 0.0000E+00

1986 600 70 9.592415E-02 2.6952E-08 1.5462E-03 0.0000E+00

2806 837 88 9.588509E-02 4.7635E-08 1.2352E-03 0.0000E+00

4832 1512 100 9.587344E-02 5.7502E-09 9.8955E-04 2.3628E-02

7752 2324 278 9.585864E-02 5.0671E-09 7.8091E-04 1.6801E-02

11550 3254 578 9.584749E-02 2.9371E-09 6.2151E-04 1.3069E-02

21256 6190 945 9.584416E-02 3.4290E-10 0.0000E+00 1.0105E-02

31492 8850 1714 9.584255E-02 1.5699E-10 0.0000E+00 8.0230E-03

48864 13977 2317 9.583965E-02 1.6717E-10 0.0000E+00 6.3838E-03

81630 23450 3941 9.583911E-02 1.6278E-11 0.0000E+00 5.0770E-03

123594 34563 6808 9.583857E-02 1.2952E-11 0.0000E+00 4.0412E-03

191908 54987 9091 9.583802E-02 7.9996E-12 0.0000E+00 3.2249E-03
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Table 8: Example 2, Θ1,2,3,4 = 0.4, TOLstop = 1.0E − 11

Ndofs #I(k) #A(k) Jh dJ/dN (k) η2
y,p,T,E µ2 + osc2

802 222 34 9.593094E-02 0.0 1.6402E-02 5.6518E-05

1642 416 131 9.590818E-02 2.7096E-08 8.9544E-03 3.5329E-05

5674 1385 530 9.588058E-02 6.8446E-09 3.9673E-03 2.1019E-05

6174 1548 532 9.586827E-02 2.4628E-08 2.6919E-03 1.0111E-05

7588 1975 576 9.585211E-02 1.1432E-08 1.8193E-03 2.1292E-06

10194 2855 578 9.584721E-02 1.8801E-09 1.2347E-03 8.6504E-07

16390 4580 932 9.584229E-02 7.9427E-10 8.3560E-04 4.2248E-07

55292 15178 3492 9.584007E-02 5.6955E-11 3.9839E-04 1.3011E-07

218258 59355 13942 9.583839E-02 1.0291E-11 1.4919E-04 5.6534E-08

221888 60523 13947 9.583804E-02 9.6623E-11 1.0292E-04 2.3603E-08

238626 65055 14923 9.583787E-02 1.0338E-11 7.3661E-05 1.1608E-08

278318 74685 18385 9.583775E-02 2.9094E-12 5.0356E-05 2.6525E-09
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Figure 8: Example 2: convergence his-
tory of the functional Jh, for different
values of ΘδJh

and ΘDWR
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Figure 9: Example 2: convergence his-
tory of the functional Jh, for different
values of ΘδJh

and ΘDWR - detail of the
first iterations
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iteration k = 9 of Table 7
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at iteration k = 9 of Table 7
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6.3 Example 3

The third test problem is:
Ω = (0, 1) × (0, 1), α = 1, b(x1, x2) = 0, zd(x1, x2) = 0,

ud(x1, x2) = sin(
π

2
x1) + sin(

π

2
x2) − 1,

moreover we define:

p(x1, x2) = −A exp(−a(x1 − v1)
2)x1(1.0 − x1) exp(−a(x2 − v2)

2)x2(1.0 − x2),

y(x1, x2) = zd(x1, x2) + 4p(x1, x2),

f(x1, x2) = −4y(x1, x2) − u(x1, x2),

with A = 5.0E − 2, a = 1000, v1 = v2 = 0.85. As boundary conditions for the primal
and dual problems we choose the exact values of y and p on ∂Ω. The explicit exact
solution is known and is

u(x1, x2) = min{ud(x1, x2) + p(x1, x2)/α, 0}.

This test problem is derived by modifying the one presented in [19]; in particular the
primal solution y exhibits a singular behaviour inside the contact region.

In all the tables we report the error ‖u − uh‖0 for the control function u and the
error |y − yh|1 for the state function y, where | · |1 denotes the H1 semi-norm.

Observing Tables 9-10 we conclude that the ∇-DWR Algorithm satisfies the stopping
criterion with much less degrees of freedoms than the Residual-based Algorithm, al-
though the value of the functional Jh is slightly larger. The final values of the errors
‖u − uh‖0 and |y − yh|1 are comparable. Similar conclusions can be drawn from Ta-
bles 11-12.
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Table 9: Example 3, ΘδJh
= 0.6, ΘDWR = 0.6, TOLstart

DWR = 1.0E−7, TOLstop
δJh

= 5.0E−9,

TOLstop = 1.0E − 10

Ndofs #I(k) #A(k) Jh dJ/dN (k) E1,MT
E2,MT

‖u− uh‖0 |y − yh|1
802 70 186 1.165817E-01 0.0 3.45E-02 0.00E+00 4.006E-04 5.286E+01

1202 199 192 1.164708E-01 2.77E-07 2.36E-02 0.00E+00 1.793E-04 5.286E+01

1646 302 236 1.164268E-01 9.92E-08 1.53E-02 2.17E-01 9.830E-05 5.286E+01

3082 764 257 1.164932E-01 4.63E-08 1.07E-02 2.78E-01 4.707E-05 3.149E+01

5100 1312 384 1.164614E-01 1.57E-08 7.21E-03 2.32E-01 2.358E-05 2.668E+01

10610 3079 462 1.171805E-01 1.30E-07 5.01E-03 0.00E+00 1.169E-05 1.190E+01

18986 5670 664 1.171774E-01 3.63E-10 0.00E+00 1.68E-01 5.714E-06 1.190E+01

19250 5670 760 1.177129E-01 2.03E-06 3.45E-03 0.00E+00 5.716E-06 6.431E+00

39918 12534 790 1.177115E-01 6.94E-11 0.00E+00 1.36E-01 2.849E-06 6.431E+00

40552 12542 998 1.179301E-01 3.45E-07 2.41E-03 0.00E+00 2.846E-06 2.696E+00

77624 24391 1512 1.179293E-01 1.99E-11 0.00E+00 9.07E-02 1.377E-06 2.696E+00

78966 24391 1977 1.180388E-01 8.16E-08 1.67E-03 6.39E-02 1.377E-06 1.317E+00

162452 51177 3043 1.180795E-01 4.87E-10 0.00E+00 4.35E-02 6.907E-07 5.657E-01

168444 51181 5082 1.181016E-01 3.69E-09 0.00E+00 3.03E-02 6.909E-07 3.232E-01

180274 51177 9070 1.181150E-01 1.14E-09 0.00E+00 2.06E-02 6.907E-07 1.336E-01

205818 51177 17641 1.181191E-01 1.57E-10 0.00E+00 1.43E-02 6.907E-07 7.713E-02

257500 51177 34999 1.181224E-01 6.50E-11 0.00E+00 9.89E-03 6.907E-07 3.382E-02

Table 10: Example 3, Θ1,2,3,4 = 0.6, TOLstop = 1.0E − 10

Ndofs #I(k) #A(k) Jh dJ/dN (k) η2
y,p,T,E µ2 + osc2 ‖u− uh‖0 |y − yh|1

802 70 186 1.165817E-01 0.0 1.89E+02 9.08E+03 4.006E-04 5.286E+01

1762 236 350 1.165363E-01 4.72E-08 5.35E+02 1.69E+03 1.302E-04 3.155E+01

2732 268 636 1.165697E-01 3.44E-08 4.77E+02 4.43E+02 1.022E-04 2.576E+01

6136 858 1192 1.172744E-01 2.07E-07 2.26E+02 5.35E+01 3.887E-05 9.200E+00

10172 1038 2362 1.175920E-01 7.87E-08 1.23E+02 1.12E+01 2.686E-05 5.150E+00

19088 2910 3451 1.177928E-01 2.25E-08 7.39E+01 4.78E+00 1.264E-05 3.197E+00

38696 4120 8847 1.180459E-01 1.29E-08 2.31E+01 8.51E-01 6.912E-06 8.689E-01

61294 6609 13807 1.180847E-01 1.72E-09 1.24E+01 2.13E-01 5.271E-06 4.482E-01

135642 15318 30094 1.181085E-01 3.20E-10 4.99E+00 6.36E-02 1.979E-06 1.949E-01

201932 17080 50337 1.181159E-01 1.12E-10 2.77E+00 1.52E-02 1.604E-06 9.920E-02

442174 56810 90815 1.181187E-01 1.16E-11 1.60E+00 5.14E-03 5.754E-07 5.842E-02
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Table 11: Example 3, ΘδJh
= 0.4, ΘDWR = 0.4, TOLstart

DWR = 1.0E−7, TOLstop
δJh

= 5.0E−9,

TOLstop = 1.0E − 10

Ndofs #I(k) #A(k) Jh dJ/dN (k) E1,MT
E2,MT

‖u− uh‖0 |y − yh|1
802 70 186 1.165817E-01 0.0 3.45E-02 0.00E+00 4.006E-04 5.286E+01

1058 157 186 1.165007E-01 3.16E-07 2.75E-02 0.00E+00 2.386E-04 5.286E+01

1292 223 198 1.164557E-01 1.92E-07 2.11E-02 0.00E+00 1.513E-04 5.286E+01

1528 270 229 1.164295E-01 1.11E-07 1.62E-02 0.00E+00 1.033E-04 5.286E+01

2394 554 236 1.164119E-01 2.03E-08 1.28E-02 2.16E-01 6.862E-05 5.286E+01

3248 815 260 1.165613E-01 1.75E-07 1.02E-02 0.00E+00 4.222E-05 3.154E+01

4094 1040 317 1.165533E-01 9.40E-09 7.98E-03 2.98E-01 2.657E-05 3.154E+01

7272 2050 372 1.164002E-01 4.82E-08 6.27E-03 2.40E-01 1.813E-05 2.967E+01

10624 3094 450 1.166251E-01 6.71E-08 4.98E-03 1.59E-01 1.162E-05 1.741E+01

13762 4009 582 1.171687E-01 1.73E-07 3.95E-03 0.00E+00 7.191E-06 1.172E+01

24826 7614 670 1.171675E-01 1.08E-10 0.00E+00 1.65E-01 4.815E-06 1.172E+01

25002 7616 731 1.175918E-01 2.41E-06 3.14E-03 0.00E+00 4.815E-06 7.133E+00

37720 11832 757 1.175910E-01 6.75E-11 0.00E+00 1.39E-01 3.101E-06 7.133E+00

37980 11840 842 1.177642E-01 6.66E-07 2.51E-03 0.00E+00 3.101E-06 4.806E+00

49750 15577 1026 1.177636E-01 4.87E-11 0.00E+00 1.14E-01 1.915E-06 4.806E+00

50230 15565 1200 1.179626E-01 4.15E-07 2.00E-03 0.00E+00 1.914E-06 2.454E+00

89782 28429 1530 1.179623E-01 8.32E-12 0.00E+00 9.12E-02 1.260E-06 2.454E+00

90554 28435 1797 1.180233E-01 7.90E-08 1.59E-03 7.10E-02 1.260E-06 1.707E+00

142782 45391 2268 1.180344E-01 2.13E-10 0.00E+00 5.57E-02 8.215E-07 1.065E+00

144638 45391 2892 1.180755E-01 2.21E-08 1.27E-03 4.36E-02 8.215E-07 5.816E-01

194158 60400 4416 1.180999E-01 4.94E-10 0.00E+00 3.48E-02 5.102E-07 4.223E-01

199496 60404 6203 1.181083E-01 1.57E-09 0.00E+00 2.72E-02 5.103E-07 2.452E-01

207440 60396 8875 1.181143E-01 7.55E-10 0.00E+00 2.12E-02 5.101E-07 1.381E-01

220896 60396 13417 1.181176E-01 2.45E-10 0.00E+00 1.68E-02 5.101E-07 1.067E-01

241706 60396 20380 1.181201E-01 1.20E-10 0.00E+00 1.32E-02 5.101E-07 6.691E-02

273416 60396 31006 1.181220E-01 5.78E-11 0.00E+00 1.05E-02 5.101E-07 3.710E-02

24



Table 12: Example 3, Θ1,2,3,4 = 0.4, TOLstop = 1.0E − 10

Ndofs #I(k) #A(k) Jh dJ/dN (k) η2
y,p,T,E µ2 + osc2 ‖u− uh‖0 |y − yh|1

802 70 186 1.165817E-01 0.0 1.89E+02 9.08E+03 4.006E-04 5.286E+01

1390 211 249 1.165537E-01 4.75E-08 5.35E+02 1.69E+03 1.634E-04 3.155E+01

1960 242 413 1.164547E-01 1.74E-07 5.06E+02 7.44E+02 1.237E-04 2.967E+01

2664 260 629 1.175206E-01 1.51E-06 2.51E+02 2.18E+02 1.068E-04 2.032E+01

3682 392 827 1.173007E-01 2.16E-07 2.14E+02 5.34E+01 8.713E-05 1.020E+01

6078 854 1178 1.174618E-01 6.72E-08 1.65E+02 2.23E+01 3.889E-05 8.788E+00

14770 2828 2144 1.177903E-01 3.78E-08 7.02E+01 6.31E+00 1.839E-05 3.690E+00

23776 4362 3676 1.179745E-01 2.04E-08 3.16E+01 1.62E+00 1.312E-05 1.750E+00

26522 4437 4483 1.180549E-01 2.93E-08 2.28E+01 8.61E-01 1.201E-05 1.054E+00

36316 5086 7119 1.180685E-01 1.39E-09 1.51E+01 3.69E-01 7.854E-06 6.564E-01

50248 5452 11472 1.181035E-01 2.51E-09 8.63E+00 1.54E-01 6.372E-06 3.301E-01

61372 5664 14929 1.181052E-01 1.47E-10 6.24E+00 7.51E-02 5.773E-06 2.357E-01

95518 12110 19853 1.181098E-01 1.35E-10 4.32E+00 2.94E-02 3.000E-06 1.652E-01

143886 15102 33169 1.181163E-01 1.35E-10 2.84E+00 1.66E-02 2.037E-06 1.004E-01

248506 22194 61630 1.181197E-01 3.27E-11 1.73E+00 7.70E-03 1.606E-06 6.309E-02
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Figure 16: Example 3: discrete control
function uh at iteration k = 12 of Ta-
ble 11
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Figure 17: Example 3: adapted mesh at
iteration k = 12 of Table 11
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Figure 18: Example 3: state function yh
at iteration k = 12 of Table 11
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Figure 19: Example 3: co-control func-
tion λh at iteration k = 12 of Table 11
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Figure 20: Example 3: co-state function
ph at iteration k = 12 of Table 11
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In Figures 14 and 15 we depict the behaviour of the functional Jh during the adaptive
process of the ∇-DWR Algorithm.

All the Tables concerning the ∇-DWR Algorithm show that each refinement based
on E1 yields a strong reduction of the error ‖u− uh‖0 and each refinement based on E2

yields a strong reduction of the error |y − yh|1.
In Figures 16-20 we plot the adapted mesh after 12 iterations and the corresponding

discrete solutions yh, ph, uh, λh obtained for ΘδJh
= ΘDWR = 0.4.

Remark 6.2. It is important to comment on the histories of convergence depicted in
Figures 14-15 and detailed in the corresponding Tables. At first sight, they may seem to
be in contrast with the basic feature of the ∇-DWR Algorithm (i.e. being a descent-type
method). However, a more careful analysis shows that the value of the functional

(a) decreases when the refinement is based only on E1 (the size of the gradient);

(b) increases when the refinement is based also on E2 (the DWR method).

This latter behavior is not surprising due to the highly singular behavior of the exact
solution y∗ and to the aim of the DWR method at improving the accuracy in the com-
putation of the functional. Indeed, whenever E2 is used, the algorithm corrects the value
of the functional Jh, which, due to the singularity of y∗, can vary substantially from one
iteration to the other.

7 Conclusions

In this paper we presented a gradient-type adaptive finite element algorithm based on the
DWR method for the approximate solution of an optimal control constrained problem
governed by an elliptic PDE. The algorithm is based on the principle of separating the
sources of the error in the adaptive process and to automatically choose the source to
work on, in order to reduce the corresponding error. All the numerical experiments
assess the effectiveness of this adaptive mechanism. In particular they show that:

• the refinement driven by E1 aims at reducing the functional value, by mainly work-
ing on the approximation of the control function u;

• the refinement driven by he DWR-based quantity E2 aims at keeping the discrete
functional Jh close, up to a certain precision, to the continuous functional J , by
mainly working on the approximation of the state variable y;

• the two refinement processes can co-operate and they yield the combined effect of
minimizing the discrete functional, while increasing its accuracy.

Finally the overall behavior of our scheme shows that it is competitive with the well-
established algorithm introduced in [17].

27



8 Appendix: Residual based adaptive algorithm

For the ease of the reader we briefly recall the essential ideas of the adaptive finite
element algorithm introduced in [17], which is based on a residual type error estimator
consisting of easily computable element and edge residuals with respect to the finite
element approximations yh and ph of the state (or primal) function y and the co-state
(or dual) function p, as well as of data oscillations.

Let us define the element residuals ηy,T , η
(i)
p,T , i = 1, 2 and the edge residuals ηy,E, ηp,E

as follows:

ηy,T := hT ‖f + uh‖0,T ,

η
(1)
p,T := hT ‖zd − yh‖0,T ,

η
(2)
p,T := hT ‖Π0ph − ph‖0,T ,

ηy,E := h
1/2
E ‖νE · [∇yh]‖0,E ,

ηp,E := h
1/2
E ‖νE · [∇ph]‖0,E ,

where E = T1 ∩ T2, Ti ∈ T , i = 1, 2 and νE is the exterior unit normal vector on E
directed towards T2, whereas [∇yh] and [∇ph] denote the jumps of ∇yh,∇ph across E.

Moreover, let us define the low order data oscillations:

µh(ud) := ‖ud − Π0ud‖0,T ,

µh(b) := ‖b− bh‖0,T ,

as well as the data oscillations:

oscT (yd) := hT ‖zd − Π0zd‖0,T ,

oscT (f) := hT ‖f − fh‖0,T .

In what follows we drop for simplicity the iteration index k, when there will be no
ambiguity.
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Algorithm (Residual-based Algorithm)

k = 0

initialize

apply the pdas algorithm and compute Jh

while
(

dJ/dN (k) > TOLstop or dJ/dN(k−1) > 10TOLstop
)

{

k = k + 1

apply the pdas algorithm and compute Jh

compute ηy,E, ηp,E, ∀E ∈ E

compute ηy,T, η
(1)
p,T, η

(2)
p,T, µT (ud), µT (b), oscT (yd), oscT (f), ∀T ∈ T

mark

refine(MT) }
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Algorithm (mark)

set ME = ∅, MT = ∅

while



Θ1

∑

E∈E

η2
y,E + η2

p,E ≤
∑

E∈ME

η2
y,E + η2

p,E



 {

let Emax the edge that maximize η2
y,E + η2

p,E in E\ME

set ME = ME ∪Emax}

set MT = {T ∈ T | card(E(T ) ∩ME) > 2}

while



Θ2

∑

T∈T

η2
y,T +

(

η
(1)
p,T

)2
+

(

η
(2)
p,T

)2
≤

∑

T∈MT

η2
y,T +

(

η
(1)
p,T

)2
+

(

η
(2)
p,T

)2



 {

let Tmax the triangle that maximize η2
y,T +

(

η
(1)
p,T

)2
+

(

η
(2)
p,T

)2
in T \MT

set MT = MT ∪ Tmax}

while



Θ3

∑

T∈T

µ2
T (ud) + µ2

T (b) ≤
∑

T∈MT

µ2
T (ud) + µ2

T (b)



 {

let Tmax the triangle that maximize µ2
T (ud) + µ2

T (b) in T \MT

set MT = MT ∪ Tmax}

while



Θ4

∑

T∈T

osc2T (yd) + osc2T (f) ≤
∑

T∈MT

osc2T (yd) + osc2T (f)



 {

let Tmax the triangle that maximize η2
y,T +

(

η
(1)
p,T

)2
+

(

η
(2)
p,T

)2
in T \MT

set MT = MT ∪ Tmax}
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