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Abstract

Stochastic approaches to structural health monitoring (SHM) are often inevitably limited by
computational constraints. For instance, for Markov chain Monte Carlo algorithms relying
upon computationally expensive finite element models it is almost infeasible to sample the
probability distribution of the structural state. To provide instead real-time procedures,
this work proposes a non-intrusive surrogate modeling strategy, leveraging model order
reduction and artificial neural networks. By relying upon a multi-fidelity (MF) framework,
a composition of deep neural networks (DNNs) is devised to map damage and operational
parameters onto time-dependent sensor recordings. Such an effective strategy is able to exploit
datasets characterized by different fidelity levels without any prior assumption, allowing to
blend a small high-fidelity (HF) dataset with a large low-fidelity (LF) dataset, ultimately
alleviating the computational burden of supervised training while ensuring the accuracy of the
approximated quantities of interest. The resulting surrogate model is made of an LF-DNN,
which mimics sensor recordings in the undamaged condition, and of a long short-term memory
HF-DNN, which adaptively refines the approximation with the effect of damage. An HF finite
element model and an LF reduced order model are adopted offline to generate labeled training
data of different fidelity, respectively in the presence or absence of a structural damage.
Results relevant to an L-shaped cantilever beam and a portal frame railway bridge prove that
the procedure efficiently provides remarkably accurate approximations, outperforming their
single-fidelity counterparts. The capability of the MF-DNN to be exploited for SHM purposes
is finally shown within an automated Bayesian procedure, aimed at updating the probability
distribution of the structural state conditioned on sensor recordings, in the presence of
operational variability and measurement noise.
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1. Introduction

The interest in predicting the behavior of physical systems has motivated the rise of
accurate methods for numerically solving differential problems in engineering and applied
sciences [1–3]. Numerical simulations are thus crucial to tackle several tasks including discov-
ery, optimization and decision support. However, in many-query and outer-loop applications,
such as parametric studies, statistical inference, and optimization, the computational cost of
a high-fidelity (HF) model often becomes prohibitive. In these cases, a cheaper low-fidelity
(LF) model can be introduced to allow for a high number of evaluations featuring a (possibly)
slightly reduced accuracy [4]. Apart from a simplified physics or a coarser discretization
(either in time or space), remarkable instances of LF models have also been obtained with
model order reduction (MOR) strategies [5–8] and surrogate modeling techniques [9–13].

One of the most relevant challenges of modern engineering concerns the optimal man-
agement of deteriorating structural systems. In particular, the failure or non-optimized
maintenance planning of civil structures can yield high safety, economic, and social costs. In
this context, the evolution from classical time-based maintenance practices with scheduled
inspections toward condition-based ones has been recently put forth, to reduce the lifecycle
costs and to increase the system safety and availability [14–16]. This paradigm shift is em-
powered by the synergistic use of permanent real-time data collecting devices and systematic
diagnostic activities, to enable a digital twin perspective for structural systems that are
critical for either safety or operative reasons. To this aim, vibration-based structural health
monitoring (SHM) techniques exploit vibration response data acquired with pervasive sensing
systems to assess the damage and track its evolution [17, 18].

SHM approaches can be classified as either data-driven [19–22] or model-based [23–26]: the
former rely on data to unveil the relationship between selected features and the sought damage
patterns [27, 28]; the latter directly exploit the physics-based knowledge about the system
response and assess damage through a model updating strategy. However, the associated
inverse problem is not only ill-posed, but it also features a full range of uncertainties due to
measurement noise, modeling assumptions and environmental or operational variabilities.
Therefore, a probabilistic framework enabled by Bayesian model updating appears to be one
of the most natural ways to address the foreseen parameter estimation problem.

Since in practical cases the posterior probability density function (pdf) of the sought
parameters cannot be evaluated analytically [29, 30], it is usually approximated through
sampling-based Markov chain Monte Carlo (MCMC) methods, see e.g. [31–33]. However,
MCMC can incur in high computational costs due to slow convergence and repeated evalua-
tions of an intensive forward model. To this aim, advanced samplers have been proposed
to improve the convergence rate, such as the Metropolis-Hastings, transitional MCMC,
Hybrid Monte Carlo algorithms and their recently proposed extensions, see e.g. [34–36]. The
computational efficiency of MCMC has been improved by also means of cheap-to-evaluate
data-driven surrogate models; popular strategies include polynomial response surface models,
polynomial chaos, support vector machines, Kriging models and artificial neural networks,
see for instance [37–41].

An intriguing opportunity to further reduce the computational cost of fitting an accurate
surrogate model may arise in situations where multiple models are available to simulate the
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relevant structural response with varying accuracy and computational cost. This is the case
of multi-fidelity (MF) methods, which blend LF with HF models to improve the accuracy
of the output of interest while reducing the associated computational burden. Indeed, LF
samples often supply useful information on the major trends of the problem, allowing the MF
setting to outperform single-fidelity methods in terms of prediction accuracy. Motivated by
the recent advances in MF methods [4], this work proposes a MF deep neural network (DNN)
surrogate model tailored for SHM purposes. The premise for such MF-DNN setup is that the
correlation across structural models featuring different fidelity levels can be leveraged without
any prior assumption, thanks to the flexibility of neural networks, ultimately alleviating the
computational burden of the offline supervised training stage while ensuring the accuracy of
the approximated quantities of interest, see e.g. [42–47].

The proposed MF-DNN features a multi-level architecture defined by sequentially trained
DNNs, respectively an LF and an HF part. The LF-DNN is a fully-connected model, used to
mimic sensor recordings in the undamaged (baseline) condition, while the HF-DNN is a long
short-term memory (LSTM) model, exploited to adaptively enrich the LF approximation
with the effect of damage. Both DNNs are trained on vibration response data, numerically
generated exploiting physics-based models, so that the effect of damage on the structural
response can be systematically reproduced [48]. Specifically, an LF reduced-order model,
obtained by relying on a proper orthogonal decomposition (POD)-Galerkin reduced basis
method [7, 8, 49], and an HF finite element model, are adopted to simulate the structural
response under varying operational conditions, respectively in the absence or presence of a
structural damage.

The novelty of the proposed methodology stems from the specific adaptation of the
MF-DNN surrogate modeling framework for SHM purposes. The proposed MF-DNN is
devised to map damage and operational parameters onto sensor recordings. This task would
be difficult to address with other popular MF techniques, such as the Gaussian processes-
based Cokriging [50–52], mainly because the computational complexity of its training scales
cubically with the total number of high- and low-fidelity training points. Moreover, Cokriging
models require prior knowledge about the correlation between various fidelity levels, but
can usually only capture linear correlations between them [44, 45]. On the other hand, the
proposed MF-DNN: is suitable for high-dimensional problems and benefits from large LF
training datasets; can make predictions for new input parameters in real-time; can learn
linear and nonlinear correlations adaptively, without prior information; can handle the
approximation of strongly discontinuous functions. Besides that, the proposed MF-DNN
inherits the main features of MF methods, such as a reduced computational burden associated
to the offline data generation phase and an improved accuracy of the approximated quantities
of interest. Moreover, the setup here proposed enjoys additional features: the effect of damage
in the structural response is simulated with the HF model only, which is considered to be
the most accurate description enabling to account for unexperienced damage scenarios; a
large amount of training data relevant to the undamaged condition can be instead simulated,
once and for all, exploiting MOR to speed up the offline training phase; it is never necessary
to update the LF part. The proposed framework can be useful, e.g., for model-updating
purposes, or to cheaply generate large labeled datasets.

When adopted for SHM purposes, the offered strategy can be implemented by first
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assembling the MF datasets in an offline manner and by next processing in real time the data
collected during the monitoring stage, to provide an estimation of the structural damage,
if any. To get insights into all the stages of the procedure, the reminder of this paper is
structured as follows, see also the roadmap shown in Fig. 1. In Sec. 2, we describe in detail
the proposed surrogate modeling framework. In Sec. 3, the procedure is assessed on two
test cases resembling potential monitoring scenarios, respectively related to an L-shaped
cantilever beam and a railway bridge; the relevant results in terms of prediction accuracy,
are discussed in comparison with a standard single-fidelity approximation. A possible way to
exploit the proposed surrogate model within an MCMC-based model updating scenario is
then framed in Sec. 4. Conclusions are finally drawn in Sec. 5

2.1. Datasets
description

2.2. Numerical models
for datasets population

2.3. MF-DNN
surrogate modeling

2. Proposed surrogate modeling framework

3.1. Implementation
details

3.2. Case study 1 3.3. Case study 2

3. Validation and verification

4.1. Preliminary
identification

4.2. Setup of MCMC 4.3. Parameter
estimation

4. Application to system identification

Figure 1: Roadmap of the paper.

2. MF-DNN surrogate model

In this section, we describe the MF-DNN surrogate model to map input parameters onto
time series data. The MF framework is exploited to speed up the data generation phase
required to fit an accurate surrogate model, while ensuring the accuracy of the approximated
signals in terms of damage-sensitivity. DNNs are instead leveraged to learn the (possibly
nonlinear) correlation across high-dimensional data of different fidelities without any prior
knowledge. The handled LF and HF data are specified in Sec. 2.1, while the numerical
models exploited for their generation are described in Sec. 2.2, together with the POD-based
strategy adopted for model order reduction. The way the MF modeling is handled, the
architecture of the MF-DNN, and the technical aspects related to its training and evaluation,
are then discussed in Sec. 2.3.

2.1. Low/high-fidelity datasets

The LF and HF datasets, denoted as DLF and DHF, collect simulated structural response
data, respectively in the absence or presence of damage. In particular, LF data are always
related to the baseline condition; HF data have to account for potential degradation processes
at variance with the formerly identified damaged condition. Without loss of generality, in the
following we will refer to the initial monitoring phase of an undamaged reference condition.

DLF and DHF are built from the assembly of ILF and IHF data instances, with ILF > IHF, as
follows:

DLF = {(xLF
i ,U

LF
i )}ILFi=1 , DHF = {(xHF

j ,U
HF
j )}IHFj=1 , (1)
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where xLF
i ∈ RNLFpar denotes the operational conditions, i.e., the NLFpar parameters ruling the

loading conditions of the corresponding LF vibration recording ULF
i (xLF

i ) = [uLF
1 , . . . ,u

LF
Nu

]i ∈
RL×Nu . ULF

i thus consists of Nu time series made of L sensor measurements, for instance in
terms accelerations or displacements. Each recording refers to a time interval (0, T ), so that
L = 𝒻T + 1, where 𝒻 is the adopted sampling rate. Each HF data instance instead accounts
for the effect of damage on the HF recording UHF

j (xHF
j ) = [uHF

1 , . . . ,u
HF
Nu

]j ∈ RL×Nu , as the
relevant NHFpar input parameters xHF

j ∈ RNHFpar , with NHFpar > NLFpar, control both the operational
and the damage conditions. Referring to real-time SHM applications, the interval (0, T ) is
assumed short enough to consider fixed operational, environmental, and damage conditions,
yet long enough to not compromise the identification of the structural behavior. In the
reminder of the paper, indexes i and j will be dropped for ease of notation, unless necessary.

The numerical models exploited to generate DLF and DHF differ in their approximation
qualities and computational costs, as the HF model must be able to accurately reproduce a
structural damage, but the proposed MF-DNN modeling strategy can also adapt to different
modeling choices. Moreover, the sampling frequency 𝒻, as well as the Nu monitored degrees
of freedom (dofs), are supposed to be the same for both fidelity levels, although there are no
restrictions in this respect.

2.2. Parametric numerical models for dataset generation

We first focus on the HF model, which describes the dynamic response of the structure
under the applied loadings under the assumption of a linearized kinematics. By modeling
the structure as a linear-elastic continuum and introducing a space discretization through a
finite element method, the HF model is given by:

MHFd̈
HF(t) +CHF(x

HF)ḋHF(t) +KHF(x
HF)dHF(t) = fHF(t,x

HF) , t ∈ (0, T )

dHF(0) = dHF
0

ḋHF(0) = ḋHF
0 ,

(2)

which is referred to as the HF full-order model (FOM) according to the number of the
involved dofs. Here: t ∈ (0, T ) denotes time; dHF(t), ḋHF(t), d̈HF(t) ∈ Rℳ are the vectors of
nodal displacements, velocities and accelerations, respectively; ℳ is the number of dofs;
MHF ∈ Rℳ×ℳ is the mass matrix; CHF(x

HF) ∈ Rℳ×ℳ is the damping matrix, assembled
according to the Rayleigh’s model; KHF(x

HF) ∈ Rℳ×ℳ is the stiffness matrix; fHF(t,xHF) ∈ Rℳ

is the vector of nodal forces induced by the external loadings; dHF
0 and ḋHF

0 are the initial
conditions (at t = 0), respectively in terms of nodal displacements and velocities. By adopting
a uniform partition of the time interval (0, T ), the solution of problem (2) is advanced in time
using the implicit Newmark integration method, to provide dHF

l , ḋHF
l and d̈HF

l , for l = 1, . . . , L.
As often assumed in the SHM literature [14, 53, 54], the structural damage is modeled

as a localized reduction of the material stiffness, and this is here obtained by means of a
suitable parametrization of the stiffness matrix. In concrete terms, each damage condition
is parametrized through a set of variables 𝔂 ∈ R3 and δ ∈ R, collected in the vector xHF,
denoting the position and the magnitude of the stiffness reduction, respectively.

The LF model is a projection-based reduced-order model (ROM), built by relying on the
POD-Galerkin reduced basis method [8], see e.g. [55–57]. This method is often exploited in
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the context of structural dynamics [7, 49, 58] because of its appealing offline-online decoupling,
and availability of efficient criteria for the selection of the POD-basis functions.

The LF approximation to the solution of problem (2) in terms of displacements, is
obtained by linearly combining ℳLF ≪ ℳ POD-basis functions wk ∈ Rℳ, k = 1, . . . ,ℳLF, as
dLF(t,xLF) ≈ Wr(t,xLF), where W = [w1, . . . ,wℳLF

] ∈ Rℳ×ℳLF is the projection matrix and
r(t,xLF) ∈ RℳLF is the vector of unknown POD-coefficients. By enforcing the orthogonality
between the residual and the subspace spanned by the first ℳLF POD-modes through a
Galerkin projection, the following ℳLF-dimensional dynamical system is obtained:

Mrr̈(t) +Crṙ(t) +Krr(t) = fr(t,x
LF) , t ∈ (0, T )

r(0) = W⊤dLF
0

ṙ(0) = W⊤ḋLF
0 ,

(3)

whose solution is advanced in time using the same strategy employed for the HF model, and
then back-projected onto the original LF-FOM space as dLF(t,xLF) ≈ Wr(t,xLF). Here, the
reduced arrays play the same role of their HF counterparts, yet with dimension ruled by ℳLF

instead of ℳ, according to the following relationships:

Mr ≡ W⊤MHFW , Cr ≡ W⊤CHFW ,

Kr ≡ W⊤KLFW , fr(t,x
LF) ≡ W⊤fHF(t,x

LF).
(4)

In addition to avoid accounting for the presence of the damage, the damping term is also
disregarded in the LF model in problem (3). We note that it would not be necessary to
disregard the damping term, and this is done for the sole purpose of better validating the
MF-DNN performance on significantly different LF and HF structural responses.

The projection matrix W is obtained by means of POD, exploiting the so-called method
of snapshots. To this aim, a LF-FOM, resembling that defined by problem (2) but not
accounting for the presence of damage (through KLF) and damping, is adopted to assemble
a matrix S = [dLF

1 , . . . ,d
LF
𝒮 ] ∈ Rℳ×𝒮 from 𝒮 solution snapshots, computed by integrating

in time the LF-FOM for different values of parameters xLF. An optimal reduced basis of
arbitrary order ℳLF, that minimizes the projection error

∑𝒮
𝓈=1∥dLF

𝓈 −WW⊤dLF
𝓈 ∥22, is then

computed by factorizing S through a singular value decomposition (SVD) as:

S = PΣZ⊤ , (5)

where: P = [p1, . . . ,pℳ] ∈ Rℳ×ℳ and Z = [z1, . . . , z𝒮 ] ∈ R𝒮×𝒮 are two orthogonal matrices,
whose columns are the left and right singular vectors of S, respectively; Σ ∈ Rℳ×𝒮 is
a pseudo-diagonal matrix collecting the singular values σ1 ≥ σ2 ≥ . . . ≥ σℛ ≥ 0 of S,
ℛ = min (ℳ,𝒮 ) being the rank of S. Considering the first ℳLF ≪ ℳ columns of P, the
projection matrix W is obtained as W = [p1, . . . ,pℳLF

].
As each singular value quantifies the information content of S described by the corre-

sponding left singular vector, the order ℳLF can be set by prescribing a tolerance ϵ on the
fraction of energy content to be disregarded in the approximation, according to:∑ℳLF

m=1(σm)2∑ℛ
m=1(σm)2

≥ 1− ϵ2 . (6)

To populate DLF and DHF according to Eq. (1), the parametric input spaces described by
xLF and xHF are assumed to be uniformly distributed and sampled via the latin hypercube
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rule. With reference to displacement recordings, LF and HF data instances ULF and
UHF are assembled by first collecting LF and HF nodal displacements in (0, T ) as VLF =

[dLF
1 , . . . ,d

LF
L ] ∈ Rℳ×L and VHF = [dHF

1 , . . . ,d
HF
L ] ∈ Rℳ×L, from which the vibration recordings

ULF and UHF are then extracted as:

ULF = (TVLF)
⊤ , UHF = (TVHF)

⊤ , (7)

where T ∈ BNu×ℳ is a Boolean matrix whose (n,m)-th entry is equal to 1 only if the n-th
sensor output coincides with the m-th dof.

2.3. MF-DNN surrogate: model specification and training

The MF-DNN surrogate NN MF is a composition of an LF part and an HF part, respectively
termed NN LF and NN HF, and is denoted as:

NNMF(x
HF,xLF) = NNHF(x

HF) ◦ NNLF(x
LF) , (8)

where ◦ stands for function composition (see Fig. 2).

xLF NN LF ÛLFÛLF

xHF

NN HF ÛHF

Figure 2: Scheme of the proposed MF-DNN surrogate model: red nodes denote the input/output quantities,
while blue nodes refer to the learnable components of the surrogate model.

NN LF is a fully-connected DNN (see Fig. 3a) exploited to approximate the LF vibration
recordings for any given LF input xLF, according to:

ÛLF(xLF) = vec−1
L×Nu

[Y(
1

ω
⊙NN LF(x

LF))] , NN LF(x
LF) = ω ⊙ ĥ(xLF) , (9)

where: vec : Rm×n → Rmn denotes the vectorization operation that converts a matrix into
a column vector by stacking columns on top of one another, and vec−1

m×n : Rmn → Rm×n

is its inverse; Y = [y1, . . . ,yLLF
] ∈ RLvec×LLF , with Lvec = LNu, is a matrix gathering the

first LLF ≪ Lvec POD-basis functions of the vectorized LF instances in DLF, i.e. Dvec
LF =

{vec[ULF(xLF)]}ILFi=1, that is used to reduce the dimensionality of the vectorized ULF from
Lvec to LLF, and therefore the number of trainable parameters of NNLF; RLLF ∋ h(xLF) =

[h1(x
LF), . . . , hLLF

(xLF)] = Y⊤vec[ULF] are the POD-coefficients ruling ULF; hat variables
denote quantities obtained from neural network approximations; ⊙ is the (element-wise)
Hadamard product; ω ∈ RLLF is a vector of linearly decaying entries, that is used to weight
the relative importance of the POD-basis functions as specified later in Sec. 3. Multiplying
by ω acts as a good inductive bias, see e.g. [59], encoding the notion of decreasing amount of
information content described by each POD-basis function.

During training, the weights ΩLF parametrizing NN LF are tuned by minimizing the
following loss function:

LLF(ΩLF,DLF) =
1

ILF

ILF∑
i=1

1

LLF

∥ω ⊙ (Y⊤vec[ULF
i ])−NN LF(x

LF
i )∥22 + λLF∥ΩLF∥22 , (10)
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...

xLF1

xLFNLFpar

...
...

ω1ĥ1

ωLLF
ĥLLF

...

NN LF

(a)

xLF NN LF ω ⊙ ĥ LLF ULF

Update parameters

(b)

Figure 3: NN LF component: (a) scheme of the fully-connected model; (b) training flowchart.

where λLF is the L2 regularization rate over the model parameters ΩLF. The relevant training
process is sketched in Fig. 3b.

The NN HF is instead a DNN built upon the LSTM model (see Fig. 4a) that, being more
appropriate than fully-connected ones for time series and time-dependent problems [47, 60, 61],
is used to exploit the time correlation between the two fidelity levels. Recurrent neural
networks (RNNs), such as the LSTM here adopted, can handle input sequences of variable
length thanks to a hidden state variable that exploits the temporal ordering in the information
flow. The LSTM cell model [62] is a sophisticated RNN that has been introduced to better
capture long-term dependencies, by means of an internal gating mechanism that enables a
memory-like behavior [63].

NN HF enriches the LF signals ÛLF provided by NN LF with the effects of damage and
structural damping, according to the given input parameters xHF (see Fig. 2), as:

ÛHF(xHF,xLF, t) = NN HF(x
HF, ÛLF(xLF), t) . (11)

At each time step, NN HF takes the HF input parameters xHF, the current time instant t, the
corresponding LF approximation ÛLF

t provided by the trained NN LF, and returns its HF
approximation ÛHF(t), see Fig. 4a. The choice of adopting an LSTM model for NN HF stems
from the possibility offered by the considered MF setup to exploit the temporal structure of
the ÛLF provided as input; on the other hand, NN LF does not have access to any input time
series related to the target structural response, and exploiting a fully-connected model that
maps onto POD-coefficients has proved to be a more effective strategy.

As the hidden units in RNNs depend on previous time steps, a back propagation through
time algorithm is necessary to compute the gradients for training. However, in order to avoid
an excessive computational burden when backpropagating the error, the actual length of
vibration recordings is chunked into overlapping smaller sequences treated as independent
training samples. Each chunk includes LC time steps for a duration of TC = (LC − 1)/𝒻, so
that a total of NC = L− LC + 1 chunks is obtained from each recording. The chunks length
LC is a hyperparameter to be chosen for optimal computational performance; LC = 20 is
adopted in the present work, as it provides satisfactory results.
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−→

ÛHF(t0)

xHF, ÛLF
t0 , t0 xHF, ÛLF

T , T

ÛHF(T )ÛHF(t1)

xHF, ÛLF
t1 , t1 xHF, ÛLF

T , T

ÛHF(T )ÛHF(t2)

xHF, ÛLF
t2 , t2 xHF, ÛLF

T , T

ÛHF(T )ÛHF(tT )

xHF, ÛLF
tT , tTxHF, ÛLF
T , T

ÛHF(T )ÛHF(t)

xHF, ÛLF
t , t . . .

. . .

NN HF

Unroll

(a)

xLF NN LF ÛLFÛLF

xHF

NN HF ÛHF LHF UHF

Fixed

Update parameters

(b)

Figure 4: NN HF component: (a) scheme of the recurrent model; (b) training flowchart.

The weights ΩHF parametrizing NN HF are tuned by minimizing the following loss function:

LHF(ΩHF,DHF) =
1

IHF

1

NC

IHF∑
j=1

NC∑
τ=1

1

Nu

1

LC

∥vec[UHF
j,τ :τ+LC

−

NN HF(x
HF
j , Û

LF
τ :τ+LC

(xLF
j ), tτ :τ+LC

)]∥1 + λHF∥ΩHF∥22 ,

(12)

and the relevant training process is carried out as sketched in Fig. 4b, with the weights ΩLF

of NN LF kept fixed. In Eq. (12), it is to note the adoption of a mean absolute error-like term
for adjusting the prediction accuracy of NN HF, which has proved to be superior than a mean
squared error-like one, as that exploited to train NN LF. We argue that this behavior stems
from the lower weighting of atypical training data instances, such as vibration recordings
obtained by exciting the structure close to resonance frequencies, which counteracts the effect
of data noise by exploiting a mechanism different from that of the regularization term.

The steps of the proposed MF-DNN surrogate modeling strategy for SHM purposes are
outlined in Fig. 5: definition of a parametric LF-FOM; construction of a LF-ROM that takes
into account the parametric and time dependence of the system by means of POD; population
of the LF training dataset with synthetic vibration recordings at sensor location via LF-ROM
simulations; training and validation of the LF component NN LF, adopted to approximate
the LF vibration recordings for any given LF input parameters; testing the generalization
capabilities of NN LF on LF-FOM data; definition of a parametric HF structural model that
takes into account the effects of damage (and structural damping); population of the HF
training dataset; training and validation of the HF component NN HF, adopted to enrich the
LF approximation provided by NN LF with the effects of damage (and structural damping),
for any given HF input parameters; testing the generalization capabilities of NN MF.

The proposed multi-level architecture of NN MF is chosen in place of an all-in-one scheme,
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Parametrize
operational and

damage conditions

Build
LF-FOM

Derive
LF-ROM

LF testing data

Generate LF
dataset DLF

Train NN LF

Validate NN LF

Test NN LF

Build
HF-FOM

Generate HF
dataset DHF

HF testing data

Train NN HF

Validate NN HF

Test NN HF

1st

2nd

Figure 5: MF-DNN surrogate modeling: methodology flowchart.

relying on a single DNN to approximate both LF and HF vibration data. The main reason
behind this choice is that training the latter involves a nontrivial multi-objective optimization
problem. For instance, in [44] an all-in-one approach has been exploited and the contributions
from two fidelity levels, in terms of loss function, have been combined through a weighted
sum. However, it has to be highlighted the risk of potential numerical instabilities induced
by large discrepancies between the two components, as well as the need of tuning the relative
mixing ratio. Moreover, in [47], an all-in-one architecture (termed “intermediate model”)
trained by jointly exploiting LF and HF data was also shown to underperform alternative MF
models, tuned through a sequential learning of the LF approximation and the HF refinement.

3. Results: validation and verification of surrogate modeling

In what follows, two different systems are considered as they feature a much different
structural complexity. While the former one is going to be further considered in Sec. 4 to
discuss the capability granted by the proposed MF scheme to identify a damage pattern, the
latter is adopted to discuss the computational benefits of the strategy and next highlight pos-
sible issues regarding its generalization capabilities for systems characterized by a remarkable
structural/geometrical complexity. For the considered case studies, the HF and LF numerical
models are implemented in the Matlab environment, using the redbKIT library [64]. All
computations are carried out on a PC featuring an AMD RyzenTM 9 5950X CPU @ 3.4 GHz
and 128 GB RAM. The NN architectures are implemented through the Tensorflow-based
Keras API [65], and trained on a single Nvidia GeForce RTXTM 3080 GPU card.

3.1. MF-DNN surrogate: implementation details

We start by discussing the implementation details common to both the structural systems
addressed in the present study. NN LF is set as a 9-layers fully-connected DNN with residual
connections, whose architecture is described in Tab. 1a. All layers feature 30 neurons, except
the last two that are equipped with 2LLF and LLF neurons, respectively. Moreover, two double-
layer identity residual connections [66] are exploited to perform a progressive refinement of
the outcome. Residual connections help the DNN training to converge more easily, avoiding
the potential vanishing/exploding gradients issue, and mitigate the accuracy saturation
problem while increasing the network depth [67, 68]. They have proved effective in enhancing
the NN LF performance without adding extra parameters, when further improvements were
no longer achievable through deeper architectures. No activation is applied to the last layer,
while the powerful PReLU [69] is employed as activation function in all other layers.
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Adopting the He’s weight initialization [69], the loss function LLF is minimized using
Adam [70] for a maximum of 10, 000 allowed epochs. The learning rate ηLF is initially set to
0.005, and decreased for 4/5 of the allowed training steps using a cosine decay schedule with
weight decay equal to 0.02. The optimization is carried out by considering an 80 : 20 splitting
ratio for training and validation purposes; thus, 20% of the data in DLF is randomly taken
and set aside to validate the learning process by means of an early stopping strategy. The
latter is adopted to prevent overfitting by interrupting learning whenever the loss function
value attained on the validation set does not decrease for a prescribed number of epochs in a
row. The relevant hyperparameters and training options are reported in Tab. 1b.

Table 1: NN LF - (a) adopted architecture, and (b) selected hyperparameters and training options.

(a)

Layer Type Output shape Activ. Input layer

0 Input (BLF, N
LF
par) None None

1 Dense (BLF, 30) PReLU 0
2 Dense (BLF, 30) PReLU 1
3 Dense (BLF, 30) PReLU 2
4 Dense (BLF, 30) PReLU 3
5 Add (BLF, 30) None 2,4
6 Dense (BLF, 30) PReLU 5
7 Dense (BLF, 30) PReLU 6
8 Dense (BLF, 30) PReLU 7
9 Add (BLF, 30) None 6,8
10 Dense (BLF, 2LLF) PReLU 9
11 Dense (BLF, LLF) None 10

(b)

Weight initializer: He
Optimizer: Adam
Batch size: BLF = 64

Initial learning rate: ηLF = 0.005

Allowed epochs: 10.000

Learning schedule: 4
5 cosine decay

Weight decay: 0.02

Early stop patience: 500 epochs
Train-val split: 80 : 20

NN HF consists of four LSTM layers, respectively featuring a cell state of size 16, 16, 32, Nu,
and of a time distributed fully-connected output layer equipped with Nu neurons. No
activation is applied to the dense layer, while the LSTM layers feature standard cells
with sigmoidal gating functions and hyperbolic tangent (tanh) activated cell states. The
architecture of NN HF is schematically reported in Tab. 2a.

In this case, the optimization is carried out using Adam together with the Xavier’s weight
initialization [71]. Similarly to what specified for NN LF, the learning rate ηHF is decreased as
the training advances using a cosine decay schedule, and an early stop strategy is adopted
to prevent overfitting by considering an 80 : 20 splitting ratio for training and validation
purposes. The relevant hyperparameters and the training options are summarized in Tab. 2b.

These architectures, as well as the relevant hyperparameters and training options, have
been selected through a preliminary sensitivity study, aimed at minimizing LLF and LHF while
retaining the generalization capabilities of NN LF and NN HF for the case studies considered
in the next sections, paying specific attention to avoid overfitting of the training data.

3.2. L-shaped cantilever beam

The first test case considered to assess the performance of the proposed MF-DNN surrogate
model is the L-shaped cantilever beam depicted in Fig. 6. The structure is assumed to be
made of concrete, with mechanical properties: Young’s modulus E = 30 GPa, Poisson’s ratio
ν = 0.2, density ρ = 2500 kg/m3. The structure is excited by a distributed vertical load q(t),
acting on an area of (0.3× 0.3) m2 close to its tip, see Fig. 6, and varying in time according
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Table 2: NN HF - (a) adopted architecture, and (b) selected hyperparameters and training options.

(a)

Layer Type Output shape Activ. Input layer

0 Input (BHF, LC, N
HF
par +Nu + 1) None None

1 LSTM (BHF, LC, 16) Usual 0

2 LSTM (BHF, LC, 16) Usual 1

3 LSTM (BHF, LC, 32) Usual 2

4 LSTM (BHF, LC, Nu) Usual 3

5 Dense (BHF, Nu) - distributed None 4

(b)

Weight initializer: Xavier
Optimizer: Adam
Batch size: BHF = 128

Initial learning rate: ηHF = 0.001

Allowed epochs: {2000, 5000}
Learning schedule: 4

5 cosine decay
Weight decay: 0.05

Early stop patience: 100 epochs
Chunks length: LC = 20

Train-val split: 80 : 20

to q(t) = Q sin (2πft), with Q ∈ [1, 5] kPa and f ∈ [10, 60] Hz being the load amplitude and
frequency, respectively. The previous notation used to specify the ranges in which Q and
f can take values, implicitly assumes that a uniform probability distribution is adopted to
describe them. This first test case aims at illustrating the use of the proposed MF surrogate
modeling framework against a simple potential monitoring scenario. A further purpose is to
analyze the impact of different choices of the ω weighting vector on the performance of the
NN LF, and to identify the option providing the best results.

Figure 6: L-shaped cantilever beam: physics-based digital twin, with details of synthetic recordings related
to displacements u1(t), . . . , u8(t), loading condition, and damaged region Ω𝓎.

Structural displacement time histories ULF(xLF) and UHF(xHF) are supposed to be recorded
by means of Nu = 8 dofs along the bottom surface of the structure, to mimic a monitoring
system arranged as depicted in Fig. 6. Both LF and HF recordings are provided for a time
interval (0, T = 1 s) with an acquisition frequency of 𝒻 = 200 Hz.

The HF numerical model is obtained from a finite element discretization using linear
tetrahedral elements and resulting in ℳ = 4659 dofs. The damping matrix is assembled
according to the Rayleigh’s model, to account for a 5% damping ratio on the first four
structural modes. Damage is simulated by reducing the material stiffness within a subdomain
Ω𝓎 of (0.3× 0.3× 0.4) m3 in size, whose position is parametrized by the coordinates of its
center of mass 𝔂 = (xΩ, yΩ), with either xΩ or yΩ varying in the range [0.15, 3.85] m. The
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damage level is set to δ = 25% and held constant within the time interval (0, T = 1 s).
Accordingly, the vector of HF input parameters is xHF = {Q, f, xΩ, yΩ}⊤.

The projection basis W ruling the LF-ROM is instead computed from a snapshot matrix
S collecting 𝒮 = 40, 200 snapshots, obtained through 200 evaluations of a LF-FOM not
accounting for damage and damping. Simulations are carried out for different values of LF
input parameters xLF = {Q, f}⊤ sampled via the latin hypercube rule. By prescribing a
tolerance ϵ = 10−3 in Eq. (6), the order of the LF model is set to ℳLF = 14, in place of the
original ℳ = 4659 dofs. Thanks to this reduction, the computing time required to assemble
each LF instance decreases from 4.90 s to 0.19 s, of which only 0.024 s is needed to advance
the solution in time, entailing a speed-up of about 25.8 times.

For the case at hand, ILF = 10, 000 LF data instances are collected to train NN LF, while
only IHF = 1000 additional HF data instances are exploited to train NN HF, respectively
for 10, 000 and 5000 epochs. Concerning the dimensionality reduction applied to the LF
recordings in order to train NN LF, a projection matrix Y comprising LLF = 104 POD-basis
functions is obtained in place of the original Lvec = 1608 data points, by performing an
SVD on the vectorized LF dataset Dvec

LF , i.e. Dvec
LF = {vec[ULF

i (xLF
i )]}ILFi=1, and by choosing a

tolerance ϵ = 10−3.
Regarding the vector ω, we argue that an appropriate weighting of the POD-coefficients

ruling ULF, such to prioritize the regression error over the POD-coefficients encoding a higher
information content, would be better than a constant ω choice. In order to provide some
insights on such a selection of ω, the performance of NN LF is systematically assessed. Results
are reported in Tab. 3 considering three alternative ω weighting vectors: a flat one, with
all unit entries, so that ω = 1; a linearly decaying one, with entries ωl = 1− 0.8

LLF−1 (l − 1),
l = 1, . . . , LLF; one ruled by the singular values of Dvec

LF , according to ω = (σl(D
vec
LF ))LLF

l=1.
Results are reported in terms of average and minimum Pearson correlation coefficient PCCavg
and PCCmin between predicted and ground truth LF signals, and in terms of mean absolute
error MAE between the same LF signals. The testing data consist of ITLF = 40 LF data
instances, and the sensor recordings u1(t), u4(t) and u8(t) are considered to assess the NN LF

performance. The vector with linearly decaying entries provides the best results, while the
worst results are obtained by weighting the POD-coefficients by the corresponding singular
values. Although encoding the notion of decreasing importance of the POD-modes yields an
improvement in all the considered metrics, the NN LF performance is more than satisfactory
even when the flat ω is used, with attained values of PCCmin above 0.95 and those of PCCavg
even close to one, which suggests a strong, positive association between predicted and target
LF signals. It is interesting to note that the values of PCCmin also increase when the first
POD-modes are prioritized, which might look surprising and is likely a symptom of the
fact that ϵ can be increased (or, equivalently, LLF can be reduced), without significantly
spoiling the approximated LF signals. Adopting instead the singular values of Dvec

LF yields a
degradation in all the considered metrics, with attained values of PCCmin even below of 0.65,
and values of MAE more than four times higher than those obtained with the linearly decaying
ω; therefore, it can be argued that the beneficial effect of such weighting is compromised if
high POD-modes are excessively penalized. According to this analysis, the linearly decaying
ω weighting vector with extreme values 1 and 0.2 is adopted in the reminder of this work.

To demonstrate the reconstruction capabilities achieved by the surrogate model, some
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Table 3: L-shaped cantilever beam - PCCavg, PCCmin and MAE performance indicators, respectively measuring
the average and minimum Pearson correlation coefficients, and the mean absolute error between the predicted
and ground truth LF testing signals, for the u1(t), u4(t) and u8(t) monitored dofs and for three considered
choices of the ω weighting vector: flat; linearly decaying; ruled by the singular values of Dvec

LF .

ω PCCavg(u1(t), u4(t), u8(t)) PCCmin(u1(t), u4(t), u8(t)) MAE(u1(t), u4(t), u8(t))

1 {0.994, 0.995, 0.999} {0.954, 0.965, 0.992} {0.319, 2.179, 2.737} · 10−6

(1 − 0.8
LLF−1 (l− 1))

LLF
l=1 {0.998, 0.998, 0.999} {0.992, 0.986, 0.994} {0.196, 1.481, 2.185} · 10−6

(σl(D
vec
LF ))

LLF
l=1 {0.884, 0.971, 0.980} {0.628, 0.911, 0.901} {1.193, 5.012, 8.821} · 10−6

examples of signals provided by NN MF for the monitored dofs u1(t), u4(t) and u8(t) are
reported in Fig. 7. These graphs report the ground truth HF displacement time series together
with the LF and HF approximations, attained for varying operational and damage conditions.
From a qualitative point of view, the HF approximation always matches the target signal
both in the low and high frequency components. As a comparison, the same results are also
reported in Fig. 8 as obtained with the single-fidelity counterpart of NN MF, termed NN only

HF

in the following; this latter is identical to NN HF except that the input channels providing
ÛLF are removed, so that it cannot take advantage of NN LF. The obtained results testify
that preventing NN only

HF from exploiting the correlation between HF and LF recordings has a
highly negative impact on it approximation capabilities. Despite the significant discrepancy
between LF approximations and target HF signals, it is interesting to note how NN LF

seems to play a crucial role in keeping correct trajectories without cumulating errors in the
long-time range, especially in the case of signals rich in high frequency components. To
quantify the performance gain provided by the LF component, the PCCavg, PCCmin and MAE

indicators between predicted and ground truth HF signals are computed for the same sample
channels, and are reported in Tab. 4 as obtained against a testing set made of ITHF = 40 HF
data instances by considering both NN HF and NN only

HF . When NN only
HF is adopted in place

of NN HF, large impoverishments are shown in all the considered performance measures; for
instance, the attained values of PCCmin, which are all above 0.95 in the MF setting, drop to
0.215, 0.467 and 0.685, respectively for dofs u1(t), u4(t) and u8(t), while the corresponding
MAE values increase of one order of magnitude. Intuitively, this loss of accuracy is due to the
fact that, NN only

HF needs to learn not only how to enrich the LF signals with the effects of
damage and structural damping, but to entirely reproduce the HF input-output behavior.

Table 4: L-shaped cantilever beam - PCCavg, PCCmin and MAE performance indicators, respectively measuring
the average and minimum Pearson correlation coefficients, and the mean absolute error between predicted
and ground truth HF testing signals, for the u1(t), u4(t) and u8(t) monitored dofs.

Surrogate model PCCavg(u1(t), u4(t), u8(t)) PCCmin(u1(t), u4(t), u8(t)) MAE(u1(t), u4(t), u8(t))

NN MF {0.997, 0.999, 0.999} {0.987, 0.993, 0.994} {0.804, 6.130, 9.055} · 10−7

NN only
HF {0.677, 0.823, 0.908} {0.215, 0.467, 0.685} {0.773, 5.894, 10.815} · 10−6

Finally, we compare the overall computational times required by NN MF and the HF
numerical model to approximate the ITHF = 40 HF testing instances. The CPU time required
by the FEM solver amounts to 196 s, while, the testing GPU time required by the NN MF

reduce to 0.054 s. Therefore, NN MF run considerably faster than real-time, with a speed-up
of about 3630 times with respect to the HF numerical model.
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Figure 7: L-shaped cantilever beam - exemplary comparisons of u1(t), u4(t) and u8(t) displace-
ment time histories provided by NN LF and NN HF with the target HF signals. Results in
the five rows are obtained for values of the input parameters taken from the following vec-
tors: Q = {2.37, 2.61, 4.56, 4.71, 4.90} kPa; f = {10.32, 35.10, 46.93, 26.23, 53.26} Hz; xΩ =

{1.70, 3.18, 3.85, 3.85, 3.85} m; yΩ = {0.15, 0.15, 0.76, 1.28, 1.93} m.

3.3. Railway bridge

The second case study aims to assess the performance of the proposed surrogate modeling
strategy in the more involved situation of the railway bridge depicted in Fig. 9. It is an
integral concrete portal frame bridge located along the Bothnia line in the Swedish suburbs
of Hörnefors, that has been already considered by the authors in [19, 56]. It features a span
of 15.7 m, a free height of 4.7 m and a width of 5.9 m (edge beams excluded). The thickness
of the structural elements is 0.5 m for the deck, 0.7 m for the frame walls, and 0.8 m for the
wing walls. The bridge is founded on two plates connected by stay beams and supported by
pile groups. The concrete is of class C35/45, whose mechanical properties are: E = 34 GPa,

15



0.00 0.25 0.50 0.75 1.00
t [s]

2

0

2

u
1
(t

)
[m

]
1e 5

0.00 0.25 0.50 0.75 1.00
t [s]

2

0

2

u
4
(t

)
[m

]

1e 4

0.00 0.25 0.50 0.75 1.00
t [s]

2

0

2

4

u
8
(t

)
[m

]

1e 4

0.00 0.25 0.50 0.75 1.00
t [s]

2.5

0.0

2.5

u
1
(t

)
[m

]

1e 6

0.00 0.25 0.50 0.75 1.00
t [s]

2

0

2u
4
(t

)
[m

]

1e 5

0.00 0.25 0.50 0.75 1.00
t [s]

5

0

5

u
8
(t

)
[m

]

1e 5

0.00 0.25 0.50 0.75 1.00
t [s]

5

0

5

u
1
(t

)
[m

]

1e 6

0.00 0.25 0.50 0.75 1.00
t [s]

2.5

0.0

2.5

u
4
(t

)
[m

]

1e 5

0.00 0.25 0.50 0.75 1.00
t [s]

5

0

5u
8
(t

)
[m

]

1e 5

0.00 0.25 0.50 0.75 1.00
t [s]

0

1

u
1
(t

)
[m

]

1e 5

0.00 0.25 0.50 0.75 1.00
t [s]

1

0

1

u
4
(t

)
[m

]

1e 4

0.00 0.25 0.50 0.75 1.00
t [s]

2

0

2

u
8
(t

)
[m

]

1e 4

0.00 0.25 0.50 0.75 1.00
t [s]

5

0

5

u
1
(t

)
[m

]

1e 5

0.00 0.25 0.50 0.75 1.00
t [s]

2.5

0.0

2.5u
4
(t

)
[m

]

1e 5

0.00 0.25 0.50 0.75 1.00
t [s]

2

0

2

u
8
(t

)
[m

]

1e 4

Figure 8: L-shaped cantilever beam - exemplary comparisons of u1(t), u4(t) and u8(t) dis-
placement time histories provided by NN only

HF with the target HF signals. Results in the
five rows are obtained for values of the input parameters taken from the following vec-
tors: Q = {2.57, 2.61, 4.56, 4.71, 4.90} kPa; f = {10.32, 35.10, 46.93, 26.23, 53.26} Hz; xΩ =

{1.70, 3.18, 3.85, 3.85, 3.85} m; yΩ = {0.15, 0.15, 0.76, 1.28, 1.93} m.

ν = 0.2, ρ = 2500 kg/m3. The superstructure consists of a single track with sleepers spaced
0.65 m apart, resting on a ballast layer 0.6 m deep, 4.3 m wide and featuring a density
ρB = 1800 kg/m3. The geometrical and mechanical modeling data have been adapted from
former research activities on the relevant soil-structure interaction, see [72, 73].

The bridge is subjected to the transit of trains of the type Gröna Tåget, at a speed
υ ∈ [160, 215] km/h. Only trains composed of two wagons are considered, thus characterized
by 8 axles, each one carrying a mass ϕ ∈ [16, 22] ton. The corresponding load model is
described in [56], and consists of 25 equivalent distributed forces transmitted by the sleepers
to the deck through the ballast layer with a slope 4 : 1, according to Eurocode 1 [74].
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Figure 9: Hörnefors railway bridge.

The monitoring system features Nu = 10 sensors and is deployed as depicted in Fig. 10,
to provide LF and HF structural displacement recordings ULF(xLF) and UHF(xHF), for a time
interval (0, T = 1.5 s) with an acquisition frequency of 𝒻 = 400 Hz.

Figure 10: Railway bridge - physics-based digital twin, perspective cross-section with details of synthetic
recordings related to displacements u1(t), . . . , u10(t), and damaged region Ω𝓎.

The HF numerical model is obtained with a finite element mesh featuring a reduced
element size of 0.15 m for the deck, to ensure a smooth transmission of the moving load,
and of 0.80 m elsewhere, thus resulting in ℳ = 17, 292 dofs. The effect of the ballast layer
on the dynamic response of the bridge is modeled by increasing the density of the deck
and of the edge beams. The embankments are modeled through distributed springs over
the surfaces facing the ground, that is through a Robin mixed boundary condition (with
elastic coefficient kRobin = 108 N/m3). The Rayleigh’s damping matrix accounts for a 5%

damping ratio on the first four structural modes. The presence of damage in the structure
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is modeled by means of a localized stiffness reduction that can take place anywhere over
the two lateral frame walls and the deck, within subdomains Ω𝓎 featuring a different layout
in the two cases (see Fig. 10). In this case, the stiffness reduction can occur with varying
amplitude according to δ ∈ [20%, 50%], yet assumed fixed while a train travels across the
bridge, and its position is parametrized through 𝔂 = (xΩ, zΩ), with either xΩ or zΩ varying
in the ranges [−0.115, 16.515] m and [0.4, 6.25] m, respectively. To summarize, the vector of
HF input parameters is xHF = {υ, ϕ, xΩ, zΩ, δ}⊤.

The LF numerical model is instead obtained from a snapshot matrix S collecting 𝒮 =

120, 200 snapshots, obtained through 200 evaluations of a LF-FOM not accounting for the
presence of damage and damping, for different values of LF input parameters xLF = {υ, ϕ}⊤.
By setting the error tolerance to ϵ = 10−3, ℳLF = 312 POD-modes are to be considered in
place of the original ℳ = 17, 292 dofs. The computing time required to assemble each LF
instance decreases from 87.00 s to 11.80 s, entailing a speed-up of about 7.40 times.

The dataset DLF is built with ILF = 5000 LF data instances, generated with the LF-ROM.
In order to set NN LF, the projection matrix Y is obtained from LLF = 68 POD-basis
functions, selected by performing an SVD on the vectorized LF dataset Dvec

LF and by choosing
ϵ = 10−3 as error tolerance. On the other hand, only IHF = 500 HF data instances are
computed with the HF numerical model to assemble DHF. NN LF and NN HF are trained on
these data for a maximum of 10, 000 and 2000 allowed epochs, respectively. We remark that
the DNNs are identical to those considered in Sec. 3.2, except for the size of the input/output
layers, which is problem-specific.

Some results obtained with NN MF are reported in Fig. 11, for sensors u2(t), u4(t), u5(t),
u7(t) and u10(t). Each column of the figure provides the ground truth HF displacement
time series together with the LF and HF approximations, under different operational and
damage conditions. From a qualitative point of view, NN MF perfectly handles the involved
nonlinear correlations between LF and HF data. In particular, it should be highlighted the
remarkable approximation capability of NN MF even in the presence of strongly discontinuous
trajectories, as those associated to the u5(t) and u10(t) time histories. The same results
are also reported in Fig. 12, as obtained with NN only

HF . According to what reported for the
previous case study, a severe performance degradation is observed when NN LF is removed;
indeed, the approximated time histories are highly unreliable for most of the time. Even if in
this case the considered time histories do not show a significant high frequency content, the
approximations are only piecewise accurate with sharp variations simultaneously affecting all
channels. Besides the limited amount of HF data instances exploited to train NN only

HF , this
behavior seems to be triggered by the occurrence of sharp discontinuities in the u5(t) and
u10(t) time histories. The performance indicators associated to NN HF, NN only

HF and NN LF

are reported in Tab. 5, as obtained for the same sample channels by considering LF and
HF testing sets made of ITLF = ITHF = 40 data instances. The obtained results are again in
agreement to what observed in the previous case study, with strong drops in the attained
values of PCCavg and PCCmin, and an increase of almost two orders of magnitude in the MAE

values when NN LF is removed. Moreover, by adopting the MF setting, the obtained values of
PCCavg and PCCmin are both extremely close to one, indicating that the nonlinear correlations
between LF and HF data are perfectly assimilated by NN MF.

Regarding the computational times required to approximate the ITHF = 40 HF data
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Figure 11: Railway bridge - exemplary comparisons of u2(t), u4(t), u5(t), u7(t) and u10(t) displacement time
histories provided by NN LF and NN HF with the target HF signals. Results in the three columns are obtained
for values of the input parameters taken from the following vectors: υ = {192.1, 203.48, 166.59} km/h;
ϕ = {20.66, 16.85, 17.95} ton; xΩ = {5.97, 4.95, 16.515} m; zΩ = {6.25, 6.25.2.46} m; δ = {0.23, 0.42, 0.30}%.

Table 5: Railway bridge - PCCavg, PCCmin and MAE performance indicators, respectively measuring the average
and minimum Pearson correlation coefficients, and the mean absolute error between predicted and ground
truth HF and LF testing signals, for the u4(t), u5(t) and u7(t) monitored dofs.

Surrogate model PCCavg(u4(t), u5(t), u7(t)) PCCmin(u4(t), u5(t), u7(t)) MAE(u4(t), u5(t), u7(t))

NN MF {0.999, 0.999, 0.999} {0.999, 0.996, 0.999} {0.553, 0.559, 7.434} · 10−7

NN only
HF {0.483, 0.544, 0.641} {0.163, 0.497, 0.526} {0.173, 0.448, 4.374} · 10−5

NN LF (wrt LF) {0.999, 0.999, 0.999} {0.999, 0.999, 0.999} {0.400, 0.446, 3.224} · 10−7

instances, the FEM solver takes 3480 s, while NN MF only 0.125 s, entailing a speed-up of
about 27, 840 times with respect to the HF numerical model.
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Figure 12: Railway bridge - exemplary comparisons of u2(t), u4(t), u5(t), u7(t) and u10(t) displacement
time histories provided by NN only

HF with the target HF signals. Results in the three columns are obtained
for values of the input parameters taken from the following vectors: υ = {192.1, 203.48, 166.59} km/h;
ϕ = {20.66, 16.85, 17.95} ton; xΩ = {5.97, 4.95, 16.515} m; zΩ = {6.25, 6.25.2.46} m; δ = {0.23, 0.42, 0.30}%.

Final comments can be added in relation to the robustness of the proposed approach
to variations in the training datasets or to different damage scenarios. The learning stage
is obviously case-specific but, as discussed here above, the proposed MF-DNN framework
can effectively improve the computational performance of a SHM procedure. By increasing
the structural/geometrical complexity of the monitored system, it is supposed that more
(localized) damage patterns can show up. To catch them all and also track their evolution,
not only in amplitude but also in shape and location, more detailed HF models are required;
this would lead to more time-demanding computational models and, accordingly, to longer
training stages. It should also be remarked that damage needs to be sensed via the handled
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recordings, independently of the physical model accuracy; hence, more and more an optimal
deployment of the sensor network becomes a critical step in the design of the entire SHM
strategy. However, the proposed MF setup is expected to be capable of handling even more
involved parametrizations of the structural response, thus allowing for a suitable surrogate
modeling of real-world applications.

4. Application to system identification

We now present a pilot application of the proposed surrogate modeling strategy within an
MCMC-based model updating framework, useful to validate its approximation capabilities
in a potential SHM scenario involving the L-shaped cantilever beam presented in Sec. 3.2.
The vector of sought parameters is thus θ = {θf , θQ, θΩ}⊤, where the target position of Ω𝓎

given by the coordinates of its center of mass is encoded as an abscissa θΩ ∈ [0.15, 7.55] m
running along the axis of the structure.

The posterior pdf of θ, conditioned on a batch of gathered sensor recordings, is approxi-
mated by iteratively generating a chain of samples from a proposal distribution and taking
decision as to whether accept or reject each sample, on the basis of the likelihood of the
current sample to represent the sensor observations by means of NN MF.

In addition to the damage parameter θΩ, the parameters θf and θQ ruling the acting load
are also identified. To this aim, an informative prior knowledge on θf and θQ is preliminarily
obtained by exploiting a DNN built upon a Siamese architecture [75], following a strategy
similar to that proposed in [19, 76]. Besides keeping the Bayesian inference of θ within
a plausible range, this informative pdf serves also to initialize the Markov chains in high
probability regions. Fig. 13 reports a high level flowchart of the online phase of the adopted
SHM strategy, wherein such a preliminary identification is carried out in the lower-left node,
as clarified in Sec. 4.1; the setup of the MCMC analysis is explained in Sec. 4.2 and the
obtained results are finally reported and discussed in Sec. 4.3.

θ (posterior)MCMC

θf , θQ (prior) NNMFNNOC, KNN

UEXP
1,...,Nobs(obs)

θΩ (prior)

Figure 13: Flowchart of the online phase of the adopted SHM strategy. Red nodes refer to the input/output
quantities, while blue nodes denote the relevant computational blocks: NNOC and KNN refer to the preliminary
(deterministic) identification of the parameters ruling the operational conditions; MCMC refers to the Bayesian
inference procedure; NNMF is the multi-fidelity surrogate model, exploited to systematically speed up the
evaluation of the likelihood function while sampling the posterior pdf.

4.1. Preliminary identification of the operational conditions

In this section we detail the preliminary identification of θf and θQ, which serves to
provide them with an informative prior and to initialize the Markov chains in high probability
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regions during the subsequent MCMC analysis. Such a preliminary assessment is based on
the idea of tracing the load identification problem back to the construction (learning) of an
ordered and smooth mapping of the vibration recordings onto a low-dimensional feature space.
Then, for new sensor recordings, the parameters collected in xLF can be easily predicted in
the low-dimensional space, by means of simple regression algorithms.

The low-dimensional mapping is driven by a fully connected neural network NN OC, with
the subscript OC standing for “operational conditions”, designed to map the HF vibration
recordings UHF(xHF) onto its feature representation 𝓱(xLF) ∈ RD𝒽 in a low-dimensional space
of size D𝒽, according to

𝓱(xLF) = NN OC(Y
⊤
OCvec[U

HF(xHF)]) . (13)

Here, YOC ∈ RLvec×LOC is a matrix gathering the first LOC ≪ Lvec POD-basis functions of
the vectorized HF data instances in DHF, i.e. Dvec

HF = {vec[UHF
j (xHF

j )]}IHFj=1, which is useful to
perform a prior dimensionality reduction of the HF recordings; note that this is a different
projection matrix from that one exploited to train NN LF. In the present case, a projection
matrix YOC comprising LOC = 106 POD-basis functions is obtained in place of the original
Lvec = 1608 data points, by performing an SVD on the Dvec

HF and by choosing ϵ = 10−2 as
the tolerance in Eq. (6).

In order to code the operational conditions xLF through the low-dimensional representation
𝓱(xLF), we require that a suitable distance function E𝒽 = E𝒽(𝓱1(x

LF
1 ),𝓱2(x

LF
2 )), of any

pair of mappings 𝓱1(x
LF
1 ) and 𝓱2(x

LF
2 ), semantically approximates the Euclidean distance

ELF(xLF
1 ,x

LF
2 ) = ∥xLF

1 − xLF
2 ∥2 between the associated operational conditions xLF

1 and xLF
2 . This

is achieved through the Siamese architecture [75] sketched in Fig. 14, which is made of
two twins NNOC and is trained with pairwise contrastive learning [77]. The two networks
are linked by the loss function LOC, which means that data points are processed in pairs,
yielding two outputs 𝓱1(x

LF
1 ) and 𝓱2(x

LF
2 ). To this aim, the dataset DHF is augmented to

DP
HF by assembling ζ+ positive pairs, characterized by similar operational conditions, and ζ−

negative pairs, characterized by dissimilar operational conditions for each instance, according
to DP

HF = {(UHF
1 (xHF

1 ),xLF
1 ,U

HF
2 (xHF

2 ),xLF
2 )j}

IPHF
j=1, I

P
HF = IHF(ζ+ + ζ−) being the total number of

pairs. Moreover, to allow for sensor noise, the training data are corrupted by adding an
independent, identically distributed Gaussian noise, yielding a signal-to-noise ratio of 80.

NN OC is a 2-layers fully-connected neural network featuring only 3 neurons per layer. No
activation is applied to the output layer, while the hidden layer features a softsign activation
function; further insights on how to choose the size D𝒽 of the low-dimensional space can be
found, e.g., in [19].

During training, the weights ΩOC parametrizing NN OC are optimized by minimizing the
following square-square loss function [78]:

LOC(ΩOC,D
P
HF) =

1

IPHF

IPHF∑
j=1

{
(1− γ)

1

2
(E𝒽)2 + γ

1

2
[max (0, ψ − E𝒽)]2

}
j

+ λOC∥ΩOC∥22 . (14)

Herein: γ = {0, 1}, respectively if xLF
1 and xLF

2 identify a positive or a negative pair; ψ > 0 is
a margin beyond which negative pairs do not contribute to LOC. The minimization of LOC

yields a distance function E𝒽, such that dissimilar pairs are kept away by at least the margin
ψ, while similar pairs are pushed to be as close as possible. The metric adopted for the
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Figure 14: Scheme of the Siamese architecture: red nodes denote the input/output quantities, while blue
nodes refer to the tunable parameters.

low-dimensional space is the cosine similarity Sc = 𝓱1·𝓱2

∥𝓱1∥2∥𝓱2∥2
, which measures the cosine of

the angle between 𝓱1 and 𝓱2; the corresponding distance function exploited in LOC is given
by E𝒽 = 1− Sc. This specific metric induces an auto-regularization effect that stabilizes the
training, and improves the representation capability of the network; for further details, see
e.g. [19].

By adopting the Xavier’s weight initialization [71], the loss function LOC is minimized
using the Adam optimization algorithm [70] for a maximum of 400 allowed epochs. The
learning rate ηOC is initially set to 0.0001, and decreased for 4/5 of the allowed training steps
using a cosine decay schedule with weight decay equal to 0.01. An early-stopping strategy is
also used to prevent overfitting. The architecture of NN OC and its relevant hyperparameters
are summarized in Tab. 6a and in Tab. 6b, respectively.

Table 6: NN OC - (a) adopted architecture, and (b) selected hyperparameters and training options.

(a)

Layer Type Output shape Activ. Input layer

0 Input (BOC, LOC = 106) None None
1 Dense (BOC, 3) Softsign 0

2 Dense (BOC, D𝒽 = 3) None 1

(b)

Weight initializer: Xavier
Optimizer: Adam
Batch size: BOC = 32

Initial learning rate: ηOC = 0.0001

Allowed epochs: 400

Learning schedule: 4
5 cosine decay

Weight decay: 0.01

Early stop patience: 50 epochs
Positive pairings: ζ+ = 10

Negative pairings: ζ− = 10

Similarity margin: ψ = 0.4

Train-val split: 80 : 20

The preliminary identification of θf and θQ is performed in the low-dimensional space
provided by NNOC through a k-nearest neighbors (KNN) regressor, similarly to [19]. To this
aim, the KNN algorithm is calibrated by exploiting the low-dimensional representations of

23



the training data, collected as D𝒽 = {(𝓱j ,x
LF
j )}IHFj=1. The number of neighbors accounted for

in the regression and the associated weighting rule are not set a-priori, but their optimal value
is determined through an N-fold cross-validation strategy [79]. For the L-shaped cantilever
beam case study, the maximum folds-averaged regression score, as obtained from a 10-fold
cross validation, is achieved with 7 neighbors with inverse distance weights.

The load identification capabilities of NN OC are assessed by considering a testing set made
of ITHF = 40 noisy HF data instances. The obtained results are qualitatively reported in Fig. 15,
showing on the left the embeddings of DHF, as provided by NNOC for a three-dimensional
metric space built upon the cosine similarity. Here, {(𝒽1,𝒽2,𝒽3)j}IHFj=1 are plotted on the
unit hypersphere with a color channel referring to the target values of the load frequency
and of the load amplitude. Note how embeddings associated with different operational
conditions differ by featuring a relative rotation in the low-dimensional space, thus ensuring
that NN OC correctly encodes the varying operational conditions. In the same figure, the
plots on the right report the KNN regression results obtained on the testing set; these latter
yield a coefficient of determination R2 = {0.987, 0.981} and a MAE = {1.28 Hz, 0.13 kPa},
respectively for the load frequency and amplitude, which stands as a quite remarkable result
in light of the limited amount of HF data instances exploited to train NN OC.

4.2. Setup of the MCMC analysis

The proposed surrogate model NN MF and the feature extractor NNOC are synergically
exploited within an MCMC procedure, to approximate the posterior pdf p(θ|UEXP

1,...,Nobs ,NN MF)

of the sought parameters θ = {θf , θQ, θΩ}⊤. The posterior is conditioned on the observed
signals, or measurements UEXP

1,...,Nobs , Nobs being the batch size of the processed observations,
which is assumed small enough to assume steady operational, environmental, and damage
conditions. Adopting, e.g., the Metropolis-Hastings algorithm, MCMC updates the prior pdf
p(θ,NN MF) to provide a posterior, by iteratively generating a chain of samples {θ1, . . . ,θLchain}
of length Lchain. An acceptance rule is then used to take decision as to whether accept or
reject each sample, on the basis of the likelihood of the current sample to represent UEXP

1,...,Nobs

by means of NN MF. By assuming an additive Gaussian noise uncorrelated in time to represent
the internal deviation due to modeling inaccuracies and measurement noise, the likelihood
function is assumed to be Gaussian too, and reads:

p(UEXP
1,...,Nobs |θ,NN MF) =

Nobs∏
𝓀=1

c−1exp
(
−

∑L
l=1(U

EXP
𝓀 − ÛHF)⊤l Σ

−1
c (UEXP

𝓀 − ÛHF)l
2

)
. (15)

In Eq. (15): the denominator c = (
√
2π)Nu

√
|Σc| is a normalization constant; Σc ∈ RNu×Nu

is a covariance matrix, resulting from a prediction error model accounting for independent
measurement errors and spatially correlated modeling inaccuracies, see e.g., [80]. For the
𝓀-th observation, with 𝓀 = 1, . . . , Nobs, the (𝒾,𝒿)-th element of Σc is computed as:

Σc(𝒾,𝒿) = ρ𝒾𝒿
[
RMS(uEXP

𝒾,𝓀 − ûHF
𝒾 )− (1− δ𝒾𝒿)

RMS(uEXP
𝒾,𝓀)√

SNR

][
RMS(uEXP

𝒿,𝓀 − ûHF
𝒿 )− (1− δ𝒾𝒿)

RMS(uEXP
𝒿,𝓀)√

SNR

]
. (16)

Herein: the root mean square RMS of the prediction error serves as its standard deviation,
under the zero-mean assumption [29]; ρ𝒾𝒿 is the correlation coefficient of the prediction errors
at the 𝒾-th and 𝒿-th channels, as previously obtained by evaluating NN MF on the ITHF testing
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(a)

(b)

Figure 15: L-shaped cantilever beam - preliminary identification of the (a) load frequency and (b) load
amplitude: (left) normalized embeddings of DHF on the unit hypersphere against the target values of the
operational conditions; (right) parity plots, relevant to the outcome of the KNN regression over the ITHF = 40

noise-contaminated testing instances.

instances; the Kronecker delta δ𝒾𝒿 serves to remove the effect of measurement noise, featuring
a signal to noise ratio SNR, from the off-diagonal elements. Due to their dependance on θ,
both Σc and Σ−1

c must be computed at each MCMC iteration. However, this does not affect
the computational performance of the methodology due to the limited number of channels
involved; if necessary, the computation of Σ−1

c can be speeded up, e.g., by means of an SVD.
Even though an informative prior can provide useful insights about likely damage states,

a uniform prior is chosen for the damage parameter θΩ to avoid possible biases in the results.
NNOC is instead used to provide θf and θQ with an informative Gaussian prior, featuring
a mean provided by the average KNN regression outcome on the Nobs observations, and a
covariance matrix previously obtained by evaluating the KNN regressor against the ITHF testing
instances. By adopting this prior to initialize the Markov chains, a shorter transient phase is
obtained with fewer samples, along with a reduced risk of getting trapped into local maxima
of p(UEXP

1,...,Nobs |θ,NN MF)p(θ,NN MF), when taking decisions about the acceptance/rejection of
θ candidate samples.

Fig. 16 shows a sketch of relevant MCMC procedure. Adopting the adaptive Metropolis
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algorithm [81], the proposal pdf is taken as Gaussian, centered at the previously accepted
state and featuring a covariance matrix initialized as diagonal, with entries small enough
so that the sampler gets moving, and then adapted as the sampling evolves; for the case at
hand, such a covariance matrix is initialized by taking standard deviations for {θf , θQ, θΩ}
equal to 1% of the width of the ranges wherein they can take values.

Prior θÛHF(xHF,xLF)NNMFTrial θSampler

UEXP
1,...,Nobs

Likelihood
function

Acceptance
rule

Figure 16: Scheme of the MCMC procedure to update the probability distribution of the structural state.
Red nodes refer to the input/output quantities, while blue nodes denote the relevant computational blocks.

The estimated potential scale reduction (EPSR) metric [82], is exploited on-the-fly to
monitor if a chain has converged to a steady distribution. By generating samples from multiple
randomly initialized chains, the EPSR metric ℰ̂ tests the convergence of a multivariate chain
by measuring the ratio between the estimate of the between-chain variance of samples and
the average within-chain variance of samples. According to [82], convergence can deemed to
be met when ℰ̂ < tol, with tol = 1.1 being a safe tolerance value.

4.3. Parameter identification outcome

The MCMC algorithm is fed with batches of Nobs = 8 noisy observations relative to the
same θΩ, with θf and θQ featuring a stochastic scattering kept fixed within (0, T = 1 s).
Namely, for each data instance in the observations batch, each entry of xLF is sampled from a
Gaussian pdf centered at the actual value of the parameter, and characterized by a standard
deviation equal to 0.25% of the width of the range wherein it can take values.

Each MCMC simulation is carried out by generating five parallel Markov chains, that
are randomly initialized from the prior and simultaneously evolved to meet the EPSR
convergence criterium set to ℰ̂ ≤ 1.01. The first half of each chain is then removed to get rid
of the initialization effect, and 3 out of 4 samples are discarded to reduce the within chain
autocorrelation of samples.

Six MCMC analyses are carried out under different operational conditions while moving
the damage position from the clamp to the free-end. Due to a high sensitivity of sensor
recordings to the acting load, the parameters θf and θQ are always correctly identified with
low uncertainty, i.e., the width of the corresponding 95% confidence intervals is only about
0.05 Hz and 0.15 kPa, respectively; therefore, only the results relevant to the identification
of the damage position are reported and commented in the following. These latter are
reported in Tab. 7 in terms of: target value; posterior mean; posterior mode; standard
deviation; samples to converge. In the first three cases, which are characterized by a damage
within the harm close to the clamped side, the damage position is correctly identified with a
relatively low uncertainty. The quality of the estimates is highlighted by the low discrepancy
between the target and the posterior mean values, which is only about 0.2 m, as well as
by the relatively low values of attained standard deviation, which however increases as the
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damage position gets far from the clamped side. On the other hand, the last three cases
featuring a damage position far from the clamped side, yield estimations still acceptable but,
due to a smaller sensitivity of sensor recordings to damage, characterized by an increased
discrepancy between the target and the posterior mean values, as well as a larger uncertainty.
For instance, for case 5 the discrepancy between the target and the posterior mean values
reaches 0.55 m, while the corresponding standard deviation, and therefore the credibility
intervals, increases by 35% with respect to that of case 3. Moreover, it is to note that case 6

is characterized by a skewed distribution, testified by the increased discrepancy between the
values of posterior mean and mode, yet without a larger standard deviation; and for this case,
the posterior mode turns out to be a more appropriate estimate than the posterior mean. An
exemplary MCMC outcome is reported in Fig. 17 for case 2, showing the generated Markov
chain alongside the estimated posterior mean and credibility intervals for {θf , θQ, θΩ}. Here,
the chains of θf and θQ are plotted over a relatively small range of values for the sake of
visualization, and the posterior mean of θf shows a discrepancy from the target value of
0.02 Hz only, which is within the 95% confidence interval. The computing time required for
the parameter estimation is about 130 s.

Overall, the obtained results confirm the capability of NNMF to be effectively integrated
within hybrid data/model-based SHM strategies. As long as the training dataset is sufficiently
representative, there are no restrictions on applying the proposed surrogate modeling strategy
also to large-scale structural systems. If needed, the damage identification performance can
be improved by exploiting features to describe the structural response or by means of a more
advanced sampler, such as the transitional MCMC or No-U-Turn algorithms [35, 36].

Table 7: Damage localization results for different operational and damage conditions, in terms of: target
value; posterior mean; posterior mode; standard deviation; samples to converge.

Case Target mean(θΩ) mode(θΩ) stdv(θΩ) Lchain

1 0.564 m 0.631 m 0.587 m 0.170 m 2000

2 2.200 m 2.474 m 2.414 m 0.511 m 2000

3 2.888 m 3.088 m 2.844 m 0.710 m 3400

4 4.435 m 4.834 m 4.198 m 0.969 m 2000

5 5.204 m 5.759 m 5.397 m 0.962 m 3000

6 7.380 m 6.080 m 7.136 m 0.866 m 4000

5. Conclusions

This work has proposed a novel strategy to build surrogate models for structural health
monitoring purposes in a non-intrusive way, exploiting model order reduction and artificial
neural networks. The offered strategy relies upon a multi-fidelity setup that enables the
correlation across structural models of different fidelities to be leveraged without any prior
knowledge, ultimately alleviating the computational burden associated to the offline data
generation phase, while ensuring the accuracy of the approximated quantities of interest. The
resulting deep learning-based surrogate allows to map damage and operational parameters
onto sensor recordings, as a function of time and parameters. The methodology can potentially
be extended to the full-field approximation, and also adapted to frequency-domain or feature-
based data.
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(a) (b)

(c) (d)

Figure 17: Exemplary MCMC result (case 2): Markov chain, target value, posterior mean, posterior mode and
credibility intervals relevant to (a) θΩ, (b) θQ and (c) θf ; (d) histogram of the approximated, unnormalized
posterior pdf p(θΩ|UEXP

1,...,Nobs
,NN MF) over the admissible support, with details of the target, posterior mean

and posterior mode values of θΩ, respectively reported as green, purple and red boxes.

The surrogate model that has been devised in the present work features a multi-level
architecture characterized by two sequentially trained deep neural networks: a fully-connected
model, that has been used to mimic sensor recordings in the reference state; and a long
short-term memory model, which has been exploited to adaptively enrich the damage-free
approximation with the effect of damage. The supervised learning stage has been enabled by
an offline phase of data generation, involving numerical models of different fidelity, allowing
to systematically reproduce the effect of damage on vibration response data. Moreover, the
adopted framework enjoys additional features providing specific advantages for structural
health monitoring purposes: the effect of damage is reproduced with a high-fidelity numerical
model only, with no need of model order reduction techniques prone to lose damage-sensitivity;
a large amount of low-fidelity data can be generated, once and for all, exploiting reduced-order
modeling to reduce the associated computational burden; it is never necessary to update
the low-fidelity component of the surrogate model. This last aspect is particularly favorable
in view of a future development toward a digital twin framework, with the goal of devising
a surrogate model capable of adapting to the evolving structural health state. Whenever
a deterioration of the structural health is detected, the digital model can be updated by
adjusting only its high-fidelity part, with few new data generated using an updated numerical
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model.
The proposed strategy has been assessed against an L-shaped cantilever beam and a

portal frame railway bridge, and the obtained results have shown that the proposed technique
provides remarkably accurate approximations of the structural response, even under the effect
of varying operational and damage conditions. Moreover, it has been shown to outperform
its single-fidelity counterpart by orders of magnitude. The computational time required to
evaluate the proposed surrogate model has been reported to be orders of magnitude smaller
than that required by the corresponding high-fidelity finite element solver. It has been
remarked that, depending on the structural complexity and adopted modeling choices, the
training time can be affected by the need of populating informative enough training datasets.
This last aspect is not only related to the number of instances collected in the training
datasets, at varying operational and (potentially) environmental conditions and allowed
damage scenarios, but also to the number of sensor recordings to be processed; indeed, the
observational data should ensure that the damage state can be observable, an issue strictly
linked to the design of efficient sensors network deployments.

The capability of the proposed strategy to be effectively integrated within structural
health monitoring strategies has been assessed by means of a stochastic approach to damage
localization, under the effect of measurement noise and varying operational conditions.

The next studies will be devoted to the use of the proposed surrogate modeling strategy,
in order to generate large labeled datasets. Such datasets will be eventually exploited to
train deep learning-based feature extractors and feature-oriented surrogate models, to be
synergically leveraged within a new Markov chain Monte Carlo algorithm. Preliminary
results have shown that using learnable features in place of raw vibration recordings, enables
to largely improve the parameter identification outcomes, also providing considerable gains
in terms of efficiency due to the low-dimensionality of the involved features.
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