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Abstract

This work aims at investigating the influence of non-Newtonian blood
rheology on the hemodynamics of 3D patient-specific stenotic vessels, by
means of a comparison of some numerical results with the Newtonian case.
In particular, we consider two carotid arteries with severe stenosis and a
stenotic coronary artery treated with a bypass graft, in which we virtually
vary the degree of stenosis. We perform unsteady numerical simulations
based on the Finite Element method using the Carreau-Yasuda model to
describe the non-Newtonian blood rheology. Our results show that veloc-
ity, vorticity and wall shear stress distributions are moderately influenced
by the non-Newtonian model in case of stenotic carotid arteries. On the
other hand, we observed that a non-Newtonian model seems to be im-
portant in case of stenotic coronary arteries, in particular to compute the
relative residence time which is greatly affected by the rheological model.

Keywords: stenotic vessels; non-Newtonian rheology; computational
fluid-dynamics

1 Introduction

Blood is a two-phase mixture comprising various types of formed elements (red
blood cells, white blood cells, platelets) suspended in an aqueous solution of
organic molecules, proteins, and salts called plasma. Because of this multi-
component nature, blood exhibits complex rheological properties [1, 3]. In
particular, several experimental investigations showed that blood features a so-
called shear-thinning behaviour, that is, its viscosity decreases with increasing
shear rates, reaching a nearly constant value of approximately 0.035 poise only
for shear rates grater than 200s−1 [7].

In computational fluid-dynamics, the assumption of Newtonian flow (i.e.
constant viscosity) is generally accepted for blood flow in large-sized arteries,
such as the aorta, where the shear rates are high, while the non-Newtonian
behavior of blood has to be taken into account in small vessels like the capillar-
ies [3]. For medium-sized vessels, such as the carotid arteries or the coronary
arteries, the validity of the Newtonian hypothesis is still not completely clear,
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Table 1: Review of the literature regarding computational studies in carotid
and coronary arteries using non-Newtonian models

Arterial vessel Geometry Non-Newtonian
model

Box et al [4] non-sten carotids Ideal, 3D Carreau-Yasuda
Boyd et al [5] non-sten carotids Real, 2D Carreau-Yasuda
Gijsen et al [10] non-sten carotids Ideal, 3D Carreau-Yasuda
Perktold et al [23] non-sten carotids Ideal, 3D Casson
Razavi et [24] stenotic carotids Ideal, 2D 6 different modelsa

Shirmer et al [27] stenotic carotids Real, 3D Carreau
Stroud et al [30] stenotic carotids Real, 2D Power Law
Valencia et al [31] non-sten carotids Real, 3D Herschel-Bukley

Chen et al [6] stenotic coronaries Ideal, 3D Carreau-Yasuda
Jeong et al [13] non-sten coronaries Ideal, 2D Carreau
Johnston et al [14] non-sten coronaries Real, 3D Generalised Power

Law
Kabinejadian et al
[15]

non-sten coronaries Ideal, 3D Carreau-Yasuda

Liu et al [20] non-sten coronaries Real, 3D Power Law
Soulis et al [29] non-sten coronaries Real, 3D 7 different modelsb

Vimmr et al [33] stenotic coronaries Real, 3D Carreau-Yasuda

a
Power Law, Carreau, Carreau-Yasuda, Modified-Casson, Generalized Power Law, Walburn-

Schneck
b Carreau, Carreau-Yasuda, Power Law, Non-Newtonian Power Law, Generalized Power Law, Cas-
son, Walburn-Schneck

especially in the stenotic case. In addition to this, presently there is no uni-
versal agreement upon the correct model to represent the viscous properties of
blood [26]. For these reasons, modelling of blood’s non-Newtonian behavior is
increasingly being performed and different non-Newtonian models have been
used in order to study their effects on blood flow characteristics (e.g. flow field,
secondary flow patterns, wall shear stresses).

We report in Table 1 the main computational studies regarding the use
of non-Newtonian models in (possibly stenotic) carotid and coronary arteries,
either in ideal or real (i.e. patient-specific) geometries. Most of the literature
deals with healthy (i.e. non-stenotic) geometries, see [4, 5, 10, 23, 31] for carotid
arteries and [13, 14, 20, 29] for coronary arteries, whereas studies on stenotic ge-
ometries are still sparse. Among the studies in ideal stenotic districts, we cite e.g.
Razavi et al [24], who studied different non-Newtonian models in a 2D idealized
stenotic carotid, and Chen et al [6], who studied an ideal model of stenotic coro-
nary artery treated with an end-to-side bypass graft. As for coronary bypasses,
we mention Kabinejadian et al [15], who studied a compliant model of an ideal-
ized sequential coronary artery bypass graft, but without including the stenosis
in the 3D geometry. Even more rare are the studies on patient-specific stenotic
vessels: Stroud et al [30] compared Newtonian and non-Newtonian models in
a severely stenotic patient-specific carotid, but only a two-dimensional model
was examined; Shirmer et al [27] studied a 3D patient-specific stenotic carotid
artery, but no comparison was made with the Newtonian model; Vimmr et al
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[33] performed a numerical comparison of Newtonian and non-Newtonian mod-
els in patient-specific aorto-coronary bypasses. At the best of our knowledge, no
comparisons between Newtonian and non-Newtonian models have been made
so far in patient-specific 3D stenotic carotid arteries. Furthermore, no attention
has been given to the influence of the degree of stenosis on the non-Newtonian
behavior of blood in 3D patient-specific aorto-coronary bypass configurations.

In this context, the aim of this work is to investigate the effects of non-
Newtonian blood rheology on the hemodynamics of 3D patient-specific stenotic
vessels. In particular, we studied two sets of geometries:

1. two carotid arteries with severe stenosis (i.e. greater than 70%);

2. a stenotic coronary artery treated with a bypass graft. In this case, we
virtually vary the degree of stenosis in order to obtain three different
degrees of coronary stenosis (50%, 70%, 90%), with the aim of analysing
the effects of the non-Newtonian rheology for different degrees of stenosis.

On these geometries, reconstructed from MRI or CT images, we performed
unsteady numerical simulations based on the Finite Element method. In order
to describe the non-Newtonian blood rheology, we choose the Carreau-Yasuda
model, since this model is able to correctly describe the physiological shear-
thinning behavior of blood [26].

2 Materials and Methods

2.1 Computational domains and mesh generation

For this study, we consider two carotids with a degree of stenosis greater than
70% who underwent elective carotid endarterectomy, i.e. the surgical removal of
atherosclerotic plaque (cases CA1, CA2), and one patient with isolated severe
left anterior descending (LAD) coronary artery disease (i.e. stenosis greater
than 70%) who underwent aorto-coronary bypass graft surgery by means of the
left internal mammary artery (case CO1). Radiological images were acquired
by means of Magnetic Resonance technology for CA1 and CA2 and Contrast
Enhanced Computed Tomography for CO1.

Using the software VMTK (www.vmtk.org), we reconstructed from the ra-
diological images a surface model of the interface between the blood and the
arterial wall (see Figure 1 for two examples of reconstructed surfaces). The
corresponding computational domains were turned into volumetric meshes of
tetrahedra, obtained after a refinement study (constant wall shear stresses up
to a tolerance of 2%). A local mesh refinement was also performed in all the
cases at the level of the stenosis. As examples, we report in Figure 2 a detail of
the meshes for CA1 and CO1 cases.

2.2 Mathematical and numerical methods

We consider blood as a homogeneous and incompressible fluid described by
the Navier-Stokes equations [9] and we assume either a Newtonian or a non-
Newtonian rheology model. In particular, for the latter case we choose the
Carreau-Yasuda model, with viscosity given by [7, 33]

µ(x, t) = µ∞ + (µ0 − µ∞) (1 + (λγ̇(x, t)a)
n−1
a , (1)
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Figure 1: Computational domains for the numerical simulations. Left: case
CA2. Right: case CO1 with a 70% LAD stenosis

Figure 2: Mesh details. Left: stenotic carotid bifurcation of case CA1. Right:
different degrees of LAD stenosis of case CO1
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Figure 3: Flow rates imposed as boundary conditions on the inlet and outlet of
the computational domain for cases CA1 (left) and CA2 (right)

where γ̇ is the shear rate defined by γ̇ = 2
√
DII , DII = 1

2

∑3
i,j=1DijDij being

the second invariant of the rate of deformation tensor D(u) = 1
2

(
∇u + (∇u)T

)
,

with u = u(x, t) the fluid velocity. For the Newtonian case, we set µ = µ∞.
Since the viscosity given by (1) is a function of the velocity, we will write in
general µ = µ(u). The values of the parameters that define the Carreau-Yasuda
model are λ = 1.902s, n = 0.22, a = 1.25, µ0 = 0.56P , µ∞ = 0.035P .

As for time discretization, we consider the backward Euler method with
a semi-implicit treatment of the convective term. The non-linearity arising
from the non-Newtonian model (1) is treated semi-implicitly. This means that,
indicating with zn the approximation of a generic function z(t) evaluated at
tn = n∆t, n = 1, . . ., at each time-step tn we have the following discretized-in-
time problem to be solved in the computational domain Ω:ρ

un − un−1

∆t
− µ(un−1)∇ ·

(
∇un + (∇un)

T
)

+ ρun−1 · ∇un +∇pn = 0 in Ω,

∇ · un = 0 in Ω,

equipped with a suitable initial condition for the velocity, and where ρ =
1.06g/cm3 is the fluid density and p = p(x, t) the fluid pressure.

As for the boundary conditions, we consider at each discrete time tn a flow
rate condition ∫

Γ

un · n dγ = Q(tn),

for Γ = Γcarot
in , Γcarot

out,1 , Γcoron
in,1 , Γcoron

in,2 , Γcoron
out,1 (see Figure 1) and where Q are

the corresponding flow rates depicted in Figure 3 for cases CA1 and CA2 and
Figure 4 for case CO1 (for each degree of stenosis). For the carotid cases,
the patient-specific measures of flow rate were obtained by means of Doppler
echocardiography technique (see [11] for more details). For the coronary cases,
the prescribed flow rate at the coronary inlet Γcoron

in,1 and at the graft inlet Γcoron
in,2

were taken from literature [16, 25]. For the latter section, the amplitude of the
signal was set in accordance to the degree of stenosis, in order to guarantee
that the flow rate perfusing the myocardium at the outlet Γcoron

out,1 (calibrated by
means of an healthy simulation) remained constant, as observed in the clinical
practice [21, 22] (see [12] for more details). In the remaining artificial sections
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Figure 4: Flow rates imposed as boundary conditions on the inlets and outlet
of the computational domain for case CO1 for different degrees of stenosis: 50%
(left), 70% (middle) and 90% (right)

Γcarot
out,2 and Γcoron

out,2 , the following homogeneous Neumann condition is prescribed,
in accordance with the fluid incompressibility:

−pnn + µ
(
un−1

)
D (un) = 0.

We performed unsteady numerical simulations using the Finite Element li-
brary LifeV developed at MOX - Politecnico di Milano, INRIA - Paris, CMCS -
EPF of Lausanne, and Emory University - Atlanta (www.lifev.org). The vessel
walls were assumed to be rigid. In order to highlight the differences between
Newtonian and non-Newtonian rheologies, we did not consider any turbulence
model, although for stenotic carotids transition to turbulence may occur [18, 19].
We used P1bubble − P1 finite elements for the space discretization and we set
the time discretization parameter ∆t = 0.01s. The flow rate conditions were
prescribed by means of a Lagrange multipliers method, see [8, 32].

3 Results

3.1 Carotid arteries

In order to investigate the differences between the Newtonian (N) and non-
Newtonian (N-N) models, we report in Figure 5 the velocity magnitude v(x, t) =√
u2
x + u2

y + u2
z at the systolic instant t1 and at the post-systolic instant t2 =

0.41 s on selected sections in cases CA1 and CA2, respectively. Furthermore,

Figure 6 shows the vorticity magnitude w(x, t) =
√
ω2
x + ω2

y + ω2
z

1 on the

same sections for CA1 and CA2. These sections were selected so as to com-
prise the common carotid artery (CCA), the stenosis and the internal carotid
artery (ICA). In the same images we also report, for t1 and t2 and on the same
sections, the viscosity computed for the non-Newtonian model and the differ-
ences dV (x, t) = |vN − vNN | and dw(x, t) = |wN − wNN |, where the subscripts
N and NN refer to the Newtonian and non-Newtonian computations, respec-
tively. From these results, small differences can be observed between the two
models both for velocity and vorticity at systole (t1). Instead, some differences
are noticeable at t2: for the velocity, at the distal ICA and, only for case CA2,
at the CCA, whereas for the vorticity, mainly at the ICA for both the cases. As

1We recall that the vorticity, ω, is defined as ω = ∇× u
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Table 2: Mean relative difference computed with (2) between the Newtonian (N)
and non-Newtonian (N-N) cases for velocity, vorticity and WSS magnitudes for
CA1 and CA2 at t1 and t2

velocity
magnitude

vorticity
magnitude

WSS
magnitude

t1 t2 t1 t2 t1 t2

CA1 4.8% 9.1% 5.8% 11.8% 3.6% 6.5%
CA2 9.5% 24.0% 10.9% 30.4% 7.2% 18.4%

for the viscosity in the non-Newtonian cases, we notice higher values in regions
where the vessel diameter is large (e.g. in the CCA and in the region down-
stream the stenosis). This is due to lower velocities and shear rates at larger
diameters, which result in higher viscosities due to the shear-thinning behavior
of blood.

Figure 7 shows the Wall Shear Stress (WSS) magnitude tw(x, t) =
√
τ2
w,x + τ2

w,y + τ2
w,z

at systole for CA1 and CA2, together with the viscosity computed for the
non-Newtonian model. The Wall Shear Stress vector, τw, is defined as τw =
t− (t ·n)n, where t = 2µDn is the traction vector acting on a surface with nor-
mal n. Systolic WSS is an important index of risk of plaque rupture (see [28]),
so that it is interesting to evaluate the possible effects of the non-Newtonian
model on the quantification of this index. From the figures, no significant dif-
ferences are observed between the Newtonian and non-Newtonian solutions. We
notice that the regions where the viscosities are higher correspond to region of
low WSS, which however are not regions of interest for stenotic carotids.

We finally report in Table 2 the mean relative differences between the New-
tonian (N) and non-Newtonian (N-N) results at instants t1 and 2 for velocity,
vorticity and WSS magnitudes, defined as∫

Ω
|qN − qNN |dx∫

Ω
|qN |dx

q = v, w, tw. (2)

Differences up to nearly 24% and 30% are visible for velocity and vorticity
magnitudes, respectively, thus confirming what we observed in Figures 5 and 6.
For WSS magnitude, the differences are not so negligible as we inferred from
Figure 7. In any case, the differences are more pronounced at the deceleration
phase (instant t2).

3.2 Coronary arteries

Figure 8 shows the diastolic (i.e. the maximum, see Fig. 4) velocity magnitude
for the three degrees of stenosis on a selected section at the region of the anas-
tomosis. Furthermore, for the same section, we report the viscosity computed
for the non-Newtonian model and the difference dv between Newtonian and
non-Newtonian results. We notice appreciable differences in the viscosity and,
accordingly, in the velocity field. In particular, the latter are more localized
in the native/stenotic artery (on the right in the figures) for smaller degrees of
stenosis and at the anastomosis region for higher degrees of stenosis, and they
are more pronounced for higher degree of stenosis. In Table 3, we report the
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Figure 5: Left columns: Velocity magnitude v in the Newtonian (N) and non-
Newtonian (N-N) models. Middle column: Absolute value of the difference
between the Newtonian and non-Newtonian velocity magnitudes. Right column:
Viscosity computed for the non-Newtonian model. Top: CA1 case; bottom:
CA2 case. For each case, the quantities are reported on a selected section and
at the systolic (t1) and post-systolic (t2) instants
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Figure 6: Left columns: Vorticity magnitude w in the Newtonian (N) and non-
Newtonian (N-N) models. Middle column: Absolute value of the difference be-
tween the Newtonian and non-Newtonian vorticity magnitudes. Right column:
Viscosity computed for the non-Newtonian model. Top: CA1 case; bottom:
CA2 case. For each case, the quantities are reported on a selected section and
at the systolic (t1) and post-systolic (t2) instants
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Figure 7: WSS magnitude at the systolic instant t1 in the Newtonian (N) and
non-Newtonian (N-N) models. Top: case CA1; bottom: case CA2. The viscosity
computed for the non-Newtonian model is also reported
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Figure 8: Left columns: velocity magnitude v in the Newtonian (N) and non-
Newtonian (N-N) models. Middle column: absolute value of the difference
between the Newtonian and non-Newtonian velocity magnitudes. Right column:
viscosity computed for the non-Newtonian model. Top: 50% degree of stenosis;
middle: 70% degree of stenosis; bottom: 90% degree of stenosis. For each case,
the quantities are reported on a selected section and at the diastolic instant
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Table 3: Mean relative difference computed with (2) between the Newtonian
(N) and non-Newtonian (N-N) cases for the diastolic velocity magnitude and
RRT for different degrees of stenosis

% stenosis velocity
magnitude

RRT

50% 2.7% 34.3%
70% 2.8% 51.5%
90% 6.9% 91.5%

mean relative differences of diastolic velocity magnitude given by (2), q = v.
These results confirm that the relative difference increases for increasing values
of the stenosis degree.

In Figure 9, we report the Relative Residence Time (RRT) distribution in
a region comprising the coronary-bypass anastomosis and the stenosis for New-
tonian and non-Newtonian models and for each degree of stenosis. RRT is a
function of space defined on the lumen boundary given by

RRT (x) =
1

(1− 2OSI(x))TAWSS(x)
,

where OSI is the Oscillatory Shear Index

OSI(x) =
1

2

1−

∥∥∥∫ T

0
τw(t,x)dt

∥∥∥∫ T

0
‖τw(t,x)‖ dt

 ,

and TAWSS is the Time-Averaged Wall Shear Stress

TAWSS(x) =
1

T

∫ T

0

‖τw(t,x)‖ dt.

The choice of this index for the comparison between the models was driven
by the fact that RRT is known to be related to the risk of plaque formation
in coronary arteries [17] and, since restenosis is a known clinical problem in
coronary artery bypasses (see [2]), it is interesting to investigate the effects of
the non-Newtonian model on this index. We can see from the figure that RRT is
greatly influenced by the choice of the rheological model for all stenosis degrees
(notice that the scales are different for each stenosis degree, in order to better
emphasize the differences). In particular, the Newtonian model overestimates
RRT, especially at the anastomosis and in the native/stenotic branch. The
reason for these differences may be attributed to the low flow rates in the stenotic
vessel (in addition to the generally low flow rates in the coronary arteries),
thus featuring very low shear rates. These results are also confirmed by the
mean relative differences of RRT computed owing to (2), q = RRT , which are
reported in Table 3 for each degree of stenosis and which feature very high
values, especially for increasing values of the stenosis degree.
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Figure 9: RRT distribution in a region comprising the coronary-bypass anasto-
mosis and the stenosis in the Newtonian (N) and non-Newtonian (N-N) cases
for each degree of stenosis, case CO1
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4 Conclusions

The purpose of this study was to investigate the influence of non-Newtonian
blood rheology in stenotic vessels. In particular, we considered two carotid
arteries with severe stenosis (i.e. greater than 70%) and one coronary vessel in
which we virtually varied the stenosis degree (50%, 70%, 90%). Our comparisons
between Newtonian and non-Newtonian models showed that:

1. for stenotic carotid arteries, velocity and vorticity fields are influenced
by blood rheology (mean differences of magnitudes up to 24% and 30%,
respectively). Smaller differences were found in the quantification of WSS
(mean difference of magnitude up to 18%);

2. also for stenotic coronary arteries, the velocity field is influenced by blood
rheology. Moreover, great differences were found in the quantification of
RRT (for all stenosis degrees). Thus, we believe that the non-Newtonian
behavior of blood should not be neglected to accurately compute RRT,
regardless of the degree of the stenosis.

Limitations of this work are the absence of turbulence models in the stenotic
carotids and of a fluid-structure interaction model. We are working on both
these topics to understand their importance in quantifying the differences be-
tween Newtonian and non-Newtonian models.
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