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Lausanne, Switzerland, alfio.quarteroni@epfl.ch

Keywords: Computational electrocardiology, Purkinje fibers, monodomain equa-
tion, pull and push effect

Abstract

We present a model for the electrophysiology in the heart to handle the
electrical propagation through the Purkinje system and in the myocardium,
with two-way coupling at the Purkinje-muscle junctions. In both the sub-
problems the monodomain model is considered, whereas at the junctions a
resistor element is included that induces an orthodromic propagation delay
from the Purkinje network towards the heart muscle. We prove a suffi-
cient condition for convergence of a fixed-point iterative algorithm to the
numerical solution of the coupled problem. Numerical comparison of ac-
tivation patterns are made with two different combinations of models for
the coupled Purkinje network/myocardium system, the eikonal/eikonal and
the monodomain/monodomain models. Test cases are investigated for both
physiological and pathological activation of a model left ventricle. Finally,
we prove the reliability of the monodomain/monodimain coupling on a real
scenario. Our results underlie the importance of using physiologically real-
istic Purkinje-trees with propagation solved using the monodomain model
for simulating cardiac activation.
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1 Introduction

The Purkinje fibers are a dense network of specialized cells located under the
inner surface of the heart (the endocardium) and are responsible for the fast
conduction of the activation signal from the atrioventricular node to the heart
muscle (myocardium). The inclusion of the Purkinje fibers in computational
models of electrocardiology has been in recent years recognized as fundamental
to accurately describing the electrical activation in the left ventricle [6, 1, 13,
30, 35, 25]. These fibers form a network, which represents the peripheral part of
the conduction system.

The electrical propagation in the Purkinje fibers has been treated with dif-
ferent mathematical models derived from those commonly used for the electrical
propagation in the myocardium. We cite for example the eikonal model [30, 35,
25, 26], the monodomain model [37, 28], and the bidomain model [4, 38]. In
normal electrical propagation, the electrical signal, originating from the atrio-

ventricular (AV) node, travels along this network and enters the ventricular
muscle through the Purkinje-muscle junctions (PMJ). In pathological situations,
such as the Wolff-Parkinson-White (WPW) syndrome, the signal may enter the
myocardium from different regions so that two fronts propagate at the same
time, one from the network towards the myocardium and another one in the op-
posite direction. Capturing the coupled nature of propagation arising from the
interaction between the Purkinje network and the myocardium is a fundamental
modelling issue. In this regard, different coupled models have been considered
in the literature. We cite the coupled eikonal/eikonal model [33, 35, 25, 26] (the
first model refers to the one used for the network, whereas the second to the
one used for the myocardium), the eikonal/monodomain model [30], the mon-
odomain/bidomain model [37, 28], and the bidomain/bidomain model [4, 38].

In this work, we start from the monodomain model proposed for the Purk-
inje network in [37] and consider the coupling with the monodomain model in
the myocardium, obtaining a monodomain/monodomain coupled problem (Sect.
2). We introduce a semi-implicit time discretization and an iterative algorithm
for the solution of the coupled problem arising at each time step, then study
its convergence (Sect. 3). We present several numerical results with the aim of
assessing the effectiveness of the proposed algorithm and comparing the solu-
tions with the ones obtained with the eikonal/eikonal model. In particular, we
discuss the choice of the conduction velocities in the eikonal and monodomain
models required to obtain comparable results (Sect. 4.1). We also perform
a comparison for a benchmark test between the eikonal/eikonal and the mon-
odomain/monodomain strategies, highlighting the “pull and push” effect (Sect.
4.2), and then consider both normal and pathological (WPW syndrome) prop-
agations in an ideal ellipsoidal model of the ventricle (Sect. 4.3). Finally we
apply the monodomain/monodomain methodology to a real case (Sect. 4.4).
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2 Mathematical models for the electrical activation

In this section we provide the mathematical models considered in this work for
the description of the electrical activation in the myocardium and in the Purkinje
network, and the corresponding coupled problem. We will use the subscripts
m and p to characterize the quantities related to the myocardium and to the
Purkinje network, respectively.

2.1 Activation in the myocardium

2.1.1 Monodomain model in the myocardium

The bidomain model, which accounts for the propagation of the extra- and intra-
cellular potentials (see, e.g., [15, 36, 9]), is the most commonly used model to
describe the electrical activation in the myocardium. To reduce the high compu-
tational costs associated to using the bidomain model, the simpler monodomain
model, which describes the evolution of the transmembrane potential Vm in the
myocardium domain Ωm, is often used. It reads as follows:

Given Vm,0 and wm,0, find Vm : Ωm × (0, T ] → R and wm : Ωm × (0, T ] → R
dm ,

such that




χm

(
Cm

∂Vm

∂t
+ Im

ion(Vm, wm)

)
−∇ · (Σ∇Vm) = I in Ωm × (0, T ),

dwm

dt
= fm(Vm, wm) in Ωm × (0, T ),

(Σ∇Vm)n = 0 on ∂Ωm × (0, T ),

Vm(x, 0) = Vm,0(x), wm(x, 0) = wm,0(x) in Ωm,

(1)

where Σ is the conductivity tensor given by

Σ(x) = σtI + (σf − σt)af (x)af (x)T ,

σt and σf are the conductivities in the orthogonal and longitudinal directions
with respect to the fibers, and af is the unit vector aligned with the fibers.
χm is the surface-to-volume ratio of the cell membrane, Cm is the membrane
capacitance, Iion

m represents the ionic currents (more precisely, current densities
per surface unit), wm is the unknown vector that includes the gating and ion
concentration variables of the ODE system representing a suitable cell model,
and the vectorial function fm is a non-linear term which determines the evolution
of wm. We have considered the no-flux boundary condition (1)3 on the ventricle
[6]. The forcing term I, representing an external current (more precisely, a
current density per volume unit), will be specified once we couple this system
with the 1D monodomain one, see Section 2.3.1.

For the sake of exposition, in what follows we will compactly write problem
(1) as follows

Pm(Vm, wm, I) = 0.
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The monodomain model is based on the assumption of equal anisotropy ratio
between the intra- and extra-cellular domains. If there is no injection of current
into the extracellular domain, this model is indeed a good approximation of the
more complex bidomain one [10, 27]. Notice that (1) is a coupled problem, since
the transmembrane potential and the gating/ion concentration variables appear
in both the differential problems through the coupling terms Iion

m and fm.

2.1.2 Eikonal model in the myocardium

If one is interested only in the ventricular activation times, defined as the time at
which the potential reaches the intermediate value between the maximum and
the resting potential [14, 7], then a further simplified model could be consid-
ered, namely the eikonal model, that provides at each point the activation time.
This model discards all the cellular kinetics and describes only the macroscopic
spreading of the excitation wavefronts. As such, it does not require a fine spa-
tial resolution, making it possible to simulate the activation of large volumes of
cardiac tissue at low computational costs. It is indeed a good approximation of
the bidomain model [8] for the computation of activation times, whereas it is
unsuitable to describe re-entrant phenomena such as arrhythmias.

In this work we consider the anisotropic eikonal equation, which reads:

Given um,0, find the activation times um : Ωm → R such that

{
Cf

√
(∇um)T D∇um = 1 x ∈ Ωm,

um(x) = um,0(x) x ∈ Γm,
(2)

where Γm is the set of boundary points generating the front, D(x) models the
anisotropic tensor that accounts for the presence of the muscular fibers, and
Cf (x) represents the velocity of the depolarization wave along the fiber direction.
We use the following expression [7]

D(x) = k2I + (1 − k2)af (x)af (x)T , (3)

where k is the ratio between the conduction velocities in the orthogonal and
longitudinal directions with respect to the fibers.

Note that since we did not consider any diffusive term in the eikonal problem,
our model does not take into account the effects of wavefront curvature or the
interaction between a wavefront with either the domain boundaries or with other
fronts. This is justified by observing that in our case the myocardial activation is
regulated by the Purkinje fibers, and because of their high density, the diffusion
term gives a small contribution with respect to the advection one.

Problem (2) can be solved very efficiently by the fast marching method [31]
and has been successfully used for clinical applications, see [33, 35, 25].
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2.2 Activation in the Purkinje network

2.2.1 Monodomain model in the network

Both the cardiomyocytes in the myocardium and the ones in the Purkinje net-
work are electrically connected by gap-junctions, intercellular channels providing
a low resistance pathway for the spreading of the action potential [16]. Unlike
what is usually done in the myocardium where the effect of the gap-junctions,
as a consequence of the homogenization process, is hidden in the conductiv-
ity tensor D, in [37] the authors proposed to explicitly model a gap-junctions
in the Purkinje network as a resistor placed between two Purkinje cells. As a
consequence, the gap-junction resistance needs to be compatible with the ho-
mogenised conduction tensor. Therefore, let σ∗

p denote the conductivity in the
cells, and Rg the resistance over the gap-junction. Both together determine the
equivalent conductivity σp = (σ∗

pl)/(l+σ∗
pRgπρ2) of a single cell-gap unit, where

l is the length of the cell and ρ its radius. It is important to note that, in con-
trast to [37], this choice of the equivalent conductivity depends on the physical
properties of the cell and not on the numerical parameters (space discretization
step).

We therefore have a sequence of elementary units composed by two Purkinje
cells connected by a gap junction, which are characterized by the same spatial
coordinates (see Figure 1). Each of these units is characterized by the extra-
cellular and intra-cellular potentials and by the currents related to the cells at
the left and at the right (identified with the index − and +, respectively) and
to the gap junction (identified with the index g). We assume here that the
extra-cellular potential φe is constant for each unit, so that we can consider the
transmembrane potential as the effective potential unknown. Thus, for each unit
the unknowns of the problem are the transmembrane potentials Vg, V +

p , V −
p and

the currents Ig, I+
p , I−p .

V −

p
V +
p

Purkinje Cell Purkinje Cell

Vg, Ig

Gap junction

Rg/2 Rg/2

Figure 1: Schematic representation of a gap-junction linking two Purkinje cells.

We assume that the bifurcation and intersection points of the network are
located in correspondence of some of the gap-junctions. Kirchhoff laws at these
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points yield
p∑

j=1

Ig,j = 0, Vg,1 = . . . = Vg,p, (4)

where p is the number of branches issuing from the bifurcation and we adopt
the usual convention that entering currents are positive and exiting currents are
negative.

From Ohm’s law at the gap-junctions, we also have

Ig = ±
Vg − V ±

p

Rg/2
. (5)

The intracellular current I±p that flows in the Purkinje cell can be written as

I±p = −πρ2σp

∂V ±
p

∂l
,

where ρ is the radius of the Purkinje cell, and σp is the equivalent intracellular
conductivity [37]. Thanks to the conservation of currents at the gap-junction
Ig = I+ = I−, we have

Ig = −πρ2σp

∂V +
p

∂l
= πρ2σp

∂V −
p

∂l
. (6)

To summarize, the monodomain model with gap-junctions in the Purkinje
network is given by the monodomain equation written in each segment of the
network, together with the relations at the gap-junctions (5)-(6) and with the
continuity relations at the bifurcation points (4):

Given Vp,0, wp,0 and hAV , find V ±
p,i : Si × (0, T ] → R, Vg,i : Si × (0, T ] → R
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and wp,i : Si × (0, T ] → R
dp , i = 1, . . . , P , such that





χp

(
Cp

∂V ±
p,i

∂t
+ Iion

p (V ±
p,i, w

±
p )

)
− ∂

∂l

(
σp

∂V ±
p,i

∂l

)
= 0 in Si × (0, T ], i = 1, . . . , P,

∂w±
p,i

∂t
+ fp(V

±
p,i, w

±
p,i) = 0 in Si × (0, T ], i = 1, . . . , P,

Vg,i = V +
p,i +

Ig,iRg

2 = V −
p,i −

Ig,iRg

2 in Si × (0, T ], i = 1, . . . , P,

Ig,i = −πρ2σp
∂V +

p,i

∂l = πρ2σp
∂V −

p,i

∂l in Si × (0, T ], i = 1, . . . , P,

∑ikpk

i=ik1
Ig,i = 0 at bk, k = 1, . . . , P, t ∈ (0, T ],

Vg,ik1
= . . . = Vg,ikpk

at bk, k = 1, . . . , P, t ∈ (0, T ],

−πσpρ
2
∂V ±

p

∂l
(s0) = hAV t ∈ (0, T ],

−πσpρ
2
∂V ±

p

∂l
(sj) = Nj j = 1, . . . , N, t ∈ (0, T ],

V ±
p = Vp,0(x) in Ωp,

w±
p = wp,0(x) in Ωp,

(7)
where Si are the segments of the network such that

⋃P
i=1 Si = Ωp, Ωp being

the Purkinje network domain, χp the surface-to-volume ratio of the cell mem-
brane, Iion

p the ionic currents (or current densities per surface unit), Cp(x) is
the membrane capacitance, l is the curvilinear coordinate along the network, s0

the coordinate of the atrio-ventricular node, sj , j = 1, . . . , N the coordinates
of the PMJ, bk the coordinates of the bifurcation and intersection points, and
ik1, . . . , i

k
pk

are the pk indices related to the potentials and currents involved at the
bifurcation/intersection point bk. Equations (7)8 represent Neumann boundary
conditions at the PMJ, which are either inlets or outlets for the system. We
leave for the moment the data Nj unspecified: they will be provided by the
coupling with the myocardial activation, see Sect. 2.3.1.

For the sake of exposition, in what follows we will compactly write problem
(7) as follows

Pp(V
+
p , V −

p , Vg, Ig, w
+
p , w−

p , N) = 0,

where the unknowns are defined globally in all the network starting from their
value on each segment Si.

2.2.2 Eikonal model in the network

In the case of a network of one-dimensional line segments representing the Purk-
inje fibers, we can consider again the eikonal model without diffusion:
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Given up,0, find the activation times up : Ωp → R such that





Cp

∣∣∣∣
∂up

∂l

∣∣∣∣ = 1 x ∈ Ωp,

up(x) = up,0(x) x ∈ Γp,
(8)

where Γp is the set of points generating the front in the network (for example, in
a normal propagation, the AV node) and Cp the conduction velocity (5-10 times
greater than the muscular one [17]). Again, we neglect the diffusion term since
the high advection term Vp dominates any diffusion process.

2.3 Coupled problems

The Purkinje fibers form a subendocardial network characterized by a high con-
duction velocity and are isolated from the muscle, except at their endpoints,
the PMJ, which are located on the endocardium. Through the PMJ, the signal
could either enter the ventricle from the network, as in a normal propagation
(orthodromic propagation), or enter the network from the myocardium, as hap-
pens for some pathological conditions (antidromic propagation), see, e.g. [25].
In both cases a delay at the PMJ is observed, in particular an orthodromic delay
do of about 5–15 ms and an antidromic delay da of about 2–3 ms [3, 12]. Thus,
we have a coupled problem between the electrical propagation in the 1D network
and in the 3D myocardium where the coupling points are the PMJ.

In what follows, we describe two possible coupled strategies, namely the
monodomain/monodomain (MM) and the eikonal/eikonal (EE) ones.

2.3.1 Monodomain/monodomain coupling

The MM strategy has been introduced in [37], and is based on using (1) for the
myocardium and (7) for the network.

To write the coupled system, we need to introduce a model describing the
propagation of the electrical signal through the PMJ. From histological inspec-
tion, PMJs appear to be composed of transitional cells connecting together the
distal part of the Purkinje fibers and the surrounding myocardial cells [34]. A
detailed model of the PMJ is presented in [2], with the aim of studying the con-
duction delay at the PMJ. However, in this work we consider a simpler model,
based on the introduction of a PMJ resistance [4, 37], which provides a good
approximation of the real behavior of the PMJ as shown in [23]. The influence
of the PMJ on the two subdomains has been modeled in terms of exchange of
currents. On one hand, the PMJs act as sources for the myocardium through
regions of influence modelled as spheres of radius r centered in the PMJ for a
suitable r (see Figure 2). On the other hand, the PMJs provide the current
to the network through the prescription of Neumann boundary conditions for
problem (7) (remember relation (7)4).
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r

r

s0

s1

s2

Ωp

Ωm

Figure 2: Schematic representation of a generic myocardial domain Ωm and of
a generic network Ωp. The node s0 represents the AV node, whereas the node
s1 and s2 are the PMJ, which act as source terms for the myocardium through
the spheres of radius r centered in the PMJ.

As discussed, the PMJ has been modeled as a resistance element, so that the
current γj at the j − th PMJ can be written thanks to the Ohm’s law as follows

γj =

V +
p (sj)+V −

p (sj)
2 − 1

Ar

∫

Br(sj)
Vm dx

RPMJ
j = 1, . . . , N, t ∈ (0, T ], (9)

where Br(sj) is the ball of radius r centered at the point sj , Ar the volume of
this ball and RPMJ the resistance of the PMJ (supposed to be the same for all
the PMJ). Notice that the value of the potentials of the network in the PMJ
have been chosen as the average of the two potential V +

p and V −
p .

Summarizing, by using the notation introduced in the previous subsections,
the coupled MM problem reads as follows:

Find for each t, V +
p , V −

p , Vg, Vm, Ig, w+
p , w−

p , w+
m w−

m and γj , j = 1, . . . , N ,
such that 




Pm

(
Vm, wm,

∑N
j=1

1
Ar

IBr(sj)γj + Iext
)

= 0,

Pp

(
V +

p , V −
p , Vg, Ig, w

+
p , w−

p , γ
)

= 0,

PPMJ

(
V +

p , V −
p , Vm, γ

)
= 0,

(10)

where PPMJ = 0 represents relations (9), IY is the characteristic function related
to the region Y ⊂ Ωm, and Iext an external current.

2.3.2 Eikonal/eikonal coupling

A different strategy consists in coupling the eikonal problems (2) and (8) (EE
strategy). Again the coupling is provided at the PMJ, so that the set Γm in (2)
and Γp in (8) could contain also some of the PMJ.

Unlike the MM strategy, in this case it was necessary to identify the or-
thodromic PMJs, that is the ones that bring the signal from the network to
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the myocardium, and the antidromic PMJs that bring the signal from the my-
ocardium to the network. Indeed, the solutions of the eikonal problems represent
fronts propagating from their source points. Then, in our case we had in gen-
eral two fronts, one coming from the AV node and another one generated in the
myocardium due to pathological conditions (such as the WPW syndrome or the
left bundle branch block). We refer the reader to [25, 26] for further details.

3 Numerical solution of the monodomain/monodomain

coupled problem

In this section we propose an algorithm for the numerical solution of the MM
coupled problem (10). In particular, in Section 3.1 we first introduce the time
discretization followed by a fixed point algorithm, whose convergence analysis is
carried out in Section 3.2. Finally, in Section 3.3 we address the solution of the
monodomain subproblems arising at each iteration of the fixed point algorithm.

For the numerical solution of the EE coupled problem we adopt here the same
strategy proposed in [26] for a normal propagation, then extended to treat also
pathological conditions in [25]. We refer the reader to these works for further
details.

3.1 Numerical algorithm

For the 3D problem (1)1 we propose a semi-implicit time discretization, with the
diffusive term treated implicitly through the backward Euler method, and the
coupling term Im

ion treated explicitly. The equation (1)2 is discretized with the
forward Euler method:




χmCm

∆t
Vm −∇ · (Σ∇Vm) =

χmCm

∆t
V n

m − χmIm
ion(V n

m, wn
m) + I in Ωm,

wm = wn
m − ∆tfm(V n

m, wn
m) in Ωm,

(11)

where we have dropped the current index n+1 in the unknowns on the left hand
side for the sake of simplicity.

The same approach was considered for the time discretization of the 1D
problems (7)1 and (7)2:




χpCp

∆t
V ±

p,i −
∂

∂l

(
σp

∂V ±
p,i

∂l

)
=

χpCp

∆t

(
V ±

p,i

)n
− χpI

ion
p

((
V ±

p,i

)n
,
(
w±

p

)n)
in Si, i = 1, . . . , P,

w±
p,i =

(
w±

p,i

)n
− ∆tfp

((
V ±

p,i

)n
,
(
w±

p,i

)n)
in Si, i = 1, . . . , P.

(12)
With this in mind, we can introduce suitable operators P̃m and P̃p and com-

pactly write the discretized-in-time problems (11) and (12) as P̃m (Vm, I) = 0
and P̃p

(
V +

p , V −
p , Vg, N

)
= 0, respectively (N is again the Neumann data pre-

scribed at the PMJ). Notice that we did not explicitly indicate the dependence
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of the previous operators on wm, w+
p , w−

p since they are not involved directly

in the coupling, and that the dependence of P̃p and P̃m on the quantities at
previous time step is understood. This allows us to write the discretized-in-time
version of the MM problem (10) as follows:

Find for each n, V +
p , V −

p , Vg, Vm, Ig and γj , j = 1, . . . , N , such that





P̃m

(
Vm,

∑N
j=1

1
Ar

IBr(sj)γj + Iext
)

= 0,

P̃p

(
V +

p , V −
p , Vg, γ

)
= 0,

PPMJ

(
V +

p , V −
p , Vm, γ

)
= 0.

(13)

For the solution of the discretized-in-time MM coupled problem (13) we
propose a fixed point strategy, where at each iteration the currents γj computed
at the previous iteration were used to solve the 3D and the 1D problems, and
then the values of the potentials are used to update the PMJ currents. This idea
is summarized in Algorithm 1 reported below.

3.2 Analysis

In this section we provide a convergence analysis of Algorithm 1 in the particular
case of Ωp composed by a single branch, thus with no bifurcations/intersections.
Thanks to the time discretization used, at each time step we obtain a linear
problem, hence we can restrict ourselves to analyze the convergence towards
the null solution in the case of vanishing forcing terms. We can therefore set
Iext = 0, hAV = 0, and null initial conditions, and thus to set to zero the
quantities at the previous time step. Moreover, we notice that since we do not
have any bifurcation/intersection points, there are no Vg and Ig in this case and
we have only Vp to describe the cell potential, instead of V +

p and V −
p . Finally, we

can translate the solution Vp and Vm into Vp = 0 and Vm = 0 corresponding to
the resting potential conditions. Moreover, we assume that the ionic currents are
zero when the transmembrane potential equals the resting potential. In view of
the analysis, we introduce the weak formulations of the monodomain problems.
Thus, our fixed point strategy can be rewritten as reported in Algorithm 2.

The coupled problem in Algorithm 2 can be rewritten as follows





V
(k+1)
m = Fm(γ(k)) in Ωm,

V
(k+1)
p = Fp(γ

(k)) in Ωp,

γ(k+1) = F PMJ(V
(k+1)
p , V

(k+1)
m ),

where Fm : R
N → H1(Ωm), Fp : R

N → H1(Ωp), and F PMJ : H1(Ωm) ×
H1(Ωp) → R

N provide the explicit expressions of the unknowns obtained from
(15), (16) and (14). Algorithm 2 can be written in compact form as the following
fixed point iteration

γ(k+1) = F(γ(k)),

11



Algorithm 1 Solution of the discretized-in-time MM coupled problem

Let k be the iteration index within each time step. Set k = 0 and

γ
(0)
j = γ0,j :=

(V +
p )

n
(sj)+(V −

p )
n
(sj)

2 − 1

Ar

∫

Br(sj)
V n

m dx

RPMJ
, j = 1, . . . , N ,

with
(
V +

p

)n
,
(
V −

p

)n
, V n

m the converged solution at the previous time step, and
choose a tolerance ε > 0;

while
(
‖γ(k) − γ(k−1)‖ > ε

)

1. Solve the discretized-in-time monodomain problem (1) in the myocardium
with applied currents given by γ(k), that is

P̃m


V (k+1)

m ,
N∑

j=1

1

Ar
IBr(sj)γ

(k)
j + Iext


 = 0;

2. Solve the discretized-in-time monodomain problem (7) in the Purkinje net-
work with Neumann boundary conditions at the PMJ given by γ(k), that
is

P̃p

(
(V +

p )(k+1), (V −
p )(k+1), V (k+1)

g , γ(k)
)

= 0;

3. Compute

γ
(k+1)
j =

(V +
p )

(k+1)
(sj)+(V −

p )
(k+1)

(sj)

2 − 1

Ar

∫

Br(sj)
V (k+1)

m dx

RPMJ
, j = 1, . . . , N ;

(14)

4. Set k = k + 1.

end

where
F : R

N → R
N s.t. F(γ) = F PMJ(Fp(γ), Fm(γ)).

To prove the convergence of the previous iterations, we need to show that there
exists a constant C ∈ [0, 1) such that

‖F(γ(k))‖ ≤ C‖γ(k)‖ ∀k, (17)

for each γ(0), where ‖ · ‖ is the usual Euclidean norm. This is what is proved in
the following result.

Proposition 1 Under the following assumptions:

12



Algorithm 2 Solution of the reduced MM discretized-in-time coupled problem

Let k be the iteration index within each time step. Set k = 0 and γ(0) = γ0,
and choose a tolerance ε > 0;

while
(
‖γ(k) − γ(k−1)‖ > ε

)

1. Solve the following discretized-in-time monodomain problem in the
myocardium with applied currents given by γ(k):

Find Vm ∈ H1(Ωm) such that

∫

Ωm

χmCm
V

(k+1)
m

∆t
Wm dx +

∫

Ωm

D∇V (k+1)
m · ∇Wm dx =

N∑

j=1

1

Ar

∫

Br(sj)
γ

(k)
j Wm dx,

(15)
for all Wm ∈ H1(Ωm);

2. Solve the following discretized-in-time monodomain problem in the Purk-
inje network with Neumann boundary conditions at the PMJ given by γ(k):

Find Vp ∈ H1(Ωp) such that

∫

Ωp

χpCp
V

(k+1)
p

∆t
Wp dl +

∫

Ωp

σp
∂V

(k+1)
p

∂l

∂Wp

∂l
dl = − 1

πρ2

N∑

j=1

γ
(k)
j Wp(sj),

(16)
for all Wp ∈ H1(Ωp);

3. Compute the value of γ
(k+1)
j with (14);

4. Set k = k + 1.

end

– There exist two constants 0 < b < B such that

b‖ξ‖ ≤ ξtD(x)ξ ≤ B‖ξ‖2, ∀ξ ∈ R
2, (18)

for a.e. x ∈ Ωm;

– The parameters σp and b satisfy

σp ≥ 4N3/2C2
T

πρ2R2
PMJ

, b ≥ 4N3/2

A
3/2
r R2

PMJ

, (19)

where CT is the trace constant for the Sobolev space H1(Ωp);
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– The time step ∆t > 0 is chosen such that

∆t ≤ min

{
χpCp

σp
;
χmCm

b

}
; (20)

then, there exists a constant C ∈ [0, 1) such that (17) is satisfied.

Proof. From the definition of F we can write

‖F(γ(k))‖2 = ‖F PMJ(V
(k+1)
m , V

(k+1)
p )‖2 =

N∑

j=1

∣∣∣∣∣∣

V
(k+1)
p (sj) − 1

Ar

∫
Br(sj)

V
(k+1)
m dx

RPMJ

∣∣∣∣∣∣

2

≤

≤ 2

R2
PMJ

N∑

j=1



(
V (k+1)

p (sj)
)2

+

(
1

Ar

∫

Br(sj)
V (k+1)

m dx

)2

 ,

(21)
where we used the inequality

(a + b)2 ≤ 2a2 + 2b2 a, b ∈ R.

Regarding the first term at the right hand side of (21), we can apply the trace
theorem (see [29]). We notice that in our case the boundary of the problem in
the network is given by the PMJ sj and by the AV node s0, so we have

N∑

j=1

(
V (k+1)

p (sj)
)2

≤
N∑

j=1

(
V (k+1)

p (sj)
)2

+
(
V (k+1)

p (s0)
)2

≤ CT ‖V (k+1)
p ‖2

H1(Ωp).

(22)
Regarding the second term at the right hand side of (21), we use the following
inequality holding for every bounded domain Ω and 0 ≤ p ≤ q ≤ ∞:

‖z‖Lp(Ω) ≤ |Ω|
1
p
− 1

q ‖z‖Lq(Ω),

provided that z ∈ Lq(Ω) and where |Ω| is the size of the domain. In our case we
set Ω = Br(sj), p = 1, q = 2, so we obtain

‖V (k+1)
m ‖L1(Br(sj)) =

∫

Br(sj)
|V (k+1)

m |dx ≤
√

Ar‖V (k+1)
m ‖L2(Br(sj)). (23)

Therefore, we have the following estimate for the second term at the right hand
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side of (21)

N∑

j=1

(
1

Ar

∫

Br(sj)
V (k+1)

m dx

)2

=
1

A2
r

N∑

j=1

‖V (k+1)
m ‖2

L1(Br(sj))

≤ Ar

A2
r

N∑

j=1

‖V (k+1)
m ‖2

L2(Br(sj))

≤ 1

Ar

N∑

j=1

‖V (k+1)
m ‖2

L2(Ωm)

=
N

Ar
‖V (k+1)

m ‖2
L2(Ωm)

≤ C1‖V (k+1)
m ‖2

H1(Ωm),

(24)

with C1 = N
Ar

. Then, owing to (22) and (24), (21) reads

‖F(γ(k))‖2 ≤ 2

R2
PMJ

(
CT ‖V (k+1)

p ‖2
H1(Ωp) + C1‖V (k+1)

m ‖2
H1(Ωm)

)
. (25)

Now, we have to find suitable estimates for the right hand side of (25) in

terms of ‖γ(k)‖. To this aim, we take Wp = V
(k+1)
p as a test function in (16)

obtaining

χpCp

∆t

∥∥∥V (k+1)
p

∥∥∥
2

L2(Ωp)
+ σp

∥∥∥∥∥
∂V

(k+1)
p

∂l

∥∥∥∥∥

2

L2(Ωp)

= − 1

πρ2

N∑

j=1

γ
(k)
j V (k+1)

p (sj). (26)

Thus, we have

C2

∥∥∥V (k+1)
p

∥∥∥
2

H1(Ωp)
≤ NCT

πρ2

∥∥∥V (k+1)
p

∥∥∥
H1(Ωp)

N∑

j=1

|γ(k)
j |,

with C2 = min{χpCp

∆t ; σp}, and then

∥∥∥V (k+1)
p

∥∥∥
H1(Ωp)

≤ C3‖γ(k)‖, (27)

with C3 = N3/2CT
C2πρ2 .

We proceed now by considering the equation in the myocardium (15), and

we take Wm = V
(k+1)
m as a test function, obtaining from (18) the estimate

χmCm

∆t
‖V (k+1)

m ‖2
L2(Ωm) + b‖∇V (k+1)

m ‖2
L2(Ωm) ≤

N∑

j=1

1

Ar
γ

(k)
j

∫

Br(sj)
V (k+1)

m dx.

(28)
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Then, owing to (23), we have

N∑

j=1

1

Ar
γ

(k)
j

∫

Br(sj)
V (k+1)

m dx =
1

Ar

N∑

j=1

|γ(k)
j | ‖V (k+1)

m ‖L1(Br(sj))

≤
√

Ar

Ar

N∑

j=1

|γ(k)
j | ‖V (k+1)

m ‖L2(Br(sj))

≤
√

1

Ar

N∑

j=1

|γ(k)
j | ‖V (k+1)

m ‖L2(Ωm)

=

√
N

Ar
‖γ(k)‖ ‖V (k+1)

m ‖H1(Ωm).

The previous inequality together with (28) gives

∥∥∥V (k+1)
m

∥∥∥
H1(Ωm)

≤ C4‖γ(k)‖, (29)

with C4 =
√

N
Ar

1

min{χmCm
∆t

;b}
.

Thus, putting together (25), (27) and (29), we obtain (17) with

C =
2

R2
PMJ

(CT C3 + C1C4) =
2

R2
PMJ

(
N3/2C2

T

min{χpCp

∆t ; σp}πρ2
+

(
N

Ar

)3/2 1

min{χmCm

∆t ; b}

)
.

Due to (20), we obtain

C =
2

R2
PMJ

(
N3/2C2

T

σpπρ2
+

1

b

(
N

Ar

)3/2
)

,

which is less than one because of (19). �

Remark 1 We notice that the assumptions on the parameters σp and b given
by (19) depend on the value of the trace constant CT , which is not computable
for general domains. Therefore we cannot determine explicitly the value of σp

and b that guarantee that F is a contraction. Nevertheless, in all the numerical
experiments reported in what follows, we experienced that the proposed algorithm
not only converges, but it does so (within machine accuracy) in a finite number
of iterations.

Remark 2 The restriction on ∆t given by (19) should be matched with the one
required for stability of the forward Euler methods for the ODE systems (1)2 and
(7)2. Thus, the effective ∆t is the smaller of these two.
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3.3 Solution of the stand-alone subproblems

In this section we detail the numerical strategies used to solve the 3D and the
1D monodomain subproblems arising at each iteration of Algorithm 1. For the
solution of the 3D subproblem, we consider Lagrangian finite elements and an
implicit/explicit method, see [6]. For the solution of the 1D subproblem we follow
the methodology presented in [37]. In particular, we assume to have a system
of gap-junction/Purkinje cells for each node of the mesh. For each segment of
the network Si, we know the values of V n

g,i and In
g,i at the previous time step tn.

Then, the numerical scheme to compute Vg,i and Ig,i for each segment Si at time
tn+1 can be divided into four steps:

1. Recovering the transmembrane potential
(
V ±

p,i

)n
. By considering (7)3, we

can recover the value of the transmembrane potential as follows:

(
V ±

p,i

)n
= V n

g,i ∓
In
g,iRg

2
;

2. Operator splitting - first part. We compute the intermediate potentials(
V ±

p,i

)n+1/2
as follows:

Cp

(
V ±

p,i

)n+1/2
−
(
V ±

p,i

)n

∆t
= −Iion

p

((
V ±

p,i

)n
,
(
w±

p,i

)n)
; (30)

3. Update of Vg and Ig. We compute the intermediate values V
n+1/2
g,i and

I
n+1/2
g,i with the following expressions obtained by manipulating the two

equations in (7)3:

I
n+1/2
g,i =

(V +
p,i)

n+1/2
−(V −

p,i)
n+1/2

Rg
,

V
n+1/2
g,i =

(V +
p,i)

n+1/2
+(V −

p,i)
n+1/2

2 ;

(31)

4. Operator splitting -second part. The second part of the operator splitting
should be given by

χpCp

V ±
p,i −

(
V ±

p,i

)n+1/2

∆t
− ∂

∂l

(
σp

∂V ±
p,i

∂l

)
= 0.

Now, by adding these two equations and by dividing by 2, we obtain thanks
to (31)

χpCp

Vg,i − V
n+1/2
g,i

∆t
− ∂

∂l

(
σp

∂Vg,i

∂l

)
= 0. (32)
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As finite element basis to solve the previous problem we use the one-dimensional
cubic Hermite basis, so that we can directly recover also the derivative of the
potential, which is related to the current (recalling (7)4). Hermite finite elements
are suitable for such a purpose as they are based upon solving the potential and
its derivative at each node.

Finally, once we have detailed how to compute the values of Vg,i and Ig,i

for each single segment of the network, we need to enforce the Kirchhoff laws
(7)5−6 to compute the global Vg and Ig. To this aim, we modify the global finite
element matrix associated to the collection of (32) by substituting in the rows
related to bifurcation or intersection points 1’s or 0’s accordingly to (7)5−6.

4 Numerical experiments

In this section we present several numerical results with the aim of assessing the
reliability of Algorithm 1 to solve the MM coupled problem and comparing the
results with those obtained with the EE coupled problem. First of all, in Section
4.1 we discuss how to estimate a constant conduction velocity from the coupled
monodomain problems to be used in the eikonal ones in view of the forthcoming
comparison. After this preliminary step, in Section 4.2 we consider an academic
test case with simplified geometries to compare the results obtained with the two
different strategies, whereas, in Section 4.3 we apply these strategies to simulate
both a normal and a pathological propagation in an ellipsoidal idealized left
ventricle. Finally, in Section 4.4, we apply Algorithm 1 to a real case scenario.

All the numerical results related to the MM problem have been obtained
with the parallel Finite Element library LifeV, developed at MOX - Politecnico
di Milano, REO/ESTIME - INRIA, CMCS - EPFL, and E(CM)2 - Emory Uni-
versity. For the 3D monodomain problem we considered P1 Lagrangian finite
elements, whereas for the 1D problem cubic Hermite finite elements. For both
the monodomain problems, we chose a time step ∆t = 0.01 ms. The ionic models
used in our numerical experiments were the Di Francesco-Noble model [11] for
the Purkinje cells, and the Luo-Rudy-I model [21] for the myocardial cells. The
numerical schemes for solving the coupled EE problem have been implemented
in a standalone and serial code based on the VTK 5.8.0 library [25, 26]. For the
solution of the stand-alone eikonal problems, we considered the fast marching
method (FMM) proposed in [31] for the 1D problem and the modified version
of the FMM proposed in [18] for the 3D problem.

If not otherwise specified, in all the numerical experiments we used the data
collected in Table 1, where we reported also suitable references and, for some,
the ranges of the values reported therein.

Notice that we did not need to prescribe explicitly the delay at the PMJ in
the MM model, since in this case the PMJ resistance model itself was able to
introduce suitable delays.
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E-E M-M Ref Range

χm (cm−1) - 1400 [24] -
χp (cm−1) - 1467 [32] -
Rg (kOhm) - 500 [37] -

r (cm) - 0.06 [4, 22] [0.01 − 0.1]
ρ (cm) - 0.0017 [32] -

RPMJ (kOhm) - 11000 [37, 5] [1000-25000]
ε - 10-5 - -

do (ms) 5.0 - [3, 12] [5 − 15]
da (ms) 2.0 - [3, 12] [2 − 3]

σp (kOhm-1cm-1) - 35.0 [17] -
σf (kOhm-1cm-1) - 1.334 [24] -
σt (kOhm-1cm-1) - 0.176 [24] -

Table 1: Parameters used in the numerical experiments, suitable references, and
physiological ranges.

4.1 Assessing the conductivities in view of the comparisons

In the set-up of the forthcoming numerical tests, we faced two critical points:
(i) the choice of proper quantities to be compared in view of a discussion of the
results, and (ii) the use of comparable conduction velocities in both the MM and
EE coupled problems.

The first issue is crucial because the output of the monodomain problem
is the transmembrane potential, whereas the one of the eikonal problem is the
local activation time. Then, in view of the comparisons, we computed from the
transmembrane potentials the activation times provided by the monodomain
problems, defined again as the time at which the potential reaches the mean
value between the resting potential and the plateau potential. This allowed us
to compare these values with the ones provided by the EE problem. To this aim,
we denoted with uM

p (x) and uM
m (x) the activation times in the network and in

the myocardium, respectively, obtained by solving the MM problem, and with
uE

p (x) and uE
m(x) the activation times in the network and in the myocardium,

respectively, provided by the EE strategy.
For what concerns point (ii) above, we needed to use comparable parame-

ters in order to obtain meaningful results. In particular, we remark that the
propagation velocities have a different nature in the monodomain model than in
the eikonal one. Indeed, in the first case the conduction velocity of the electri-
cal signal is not constant in time and space and depends on the solution. For
example, the propagation velocity changes when two wavefronts collide or when
the wavefront interacts with the boundary of the domain. On the contrary, in
the eikonal problems, the conduction velocity is a prescribed parameter of the
model, and therefore it does not depend on the solution of the problem. How-
ever, we observe that in the case of a single wavefront, in the monodomain cases
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Figure 3: Myocardial domain. Test for the estimation of the conduction velocity.

the conduction velocity is almost constant far from the boundaries. This sug-
gests a strategy to estimate a reference constant conduction velocity from the
monodomain model, to be then used in the eikonal model. This was done for
both the Purkinje network and for the myocardium.

To this aim, we considered two reference scenarios, one for the myocardium
given by the cuboid with dimensions 0.3×0.7×2.0 cm, see Figure 3, and one for
the network given by a single Purkinje fiber. For the myocardium, we estimated
two conduction velocities, one in the direction of the fibers (Cf ) which is parallel
to AD, and the other one in the direction transverse to the fiber (Ct). To do
this, we solved the monodomain problem in the cuboid with a source current
applied in the internal corner of size 0.15 cm with one of the corners coinciding
with A and sides parallel to the ones of the cuboid, see Figure 3. This allowed
to obtain the activation time uM

m (x) and to define the following velocities

C̃f (x) :=
1∣∣∣∂uM
m

∂z

∣∣∣
,

C̃i
t(x) :=

1∣∣∣∂uM
m

∂i

∣∣∣
i = x, y.

Then, we evaluated these quantities along the three segments AB, AC and
AD, see Figure 4. Thus, we took as an estimation of the conduction velocities
Cf,m and Ct,m provided by the monodomain problem the mean value of these
quantities,

Cf,m =
1

Nr

∑

xi∈AD

C̃f (xi),

and

Ct,m =
1

2


 1

Nx

∑

xi∈AC

C̃x
t (xi) +

1

Ny

∑

xi∈AB

C̃y
t (xi)


 ,

where Nr, Nx and Ny are the numbers of points in AD, AC and AB, respectively.
The conduction velocities found with these estimates were then used in the
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Figure 4: Conduction velocities in the myocardium as a function of the local
coordinate l estimated from the solution of a monodomain problem: C̃x

t on AB
(left), C̃y

t on AC (center), and C̃f on AD (right). Test for the estimation of the
conduction velocity.

eikonal equation (2)-(3). In particular, we used Cf = Cf,m and k = Ct,m/Cf,m.
Referring to the data reported in Table 1, we found Cf = 0.067 cm/ms and
k = 0.43.

For the Purkinje network we proceeded in a similar way. In particular, we
considered the propagation of a wavefront in a single Purkinje fiber of length
5 cm by solving the one-dimensional monodomain problem. We applied at the
left boundary a current strong enough to trigger the excitation of a Purkinje
cell, whereas on the right boundary a homogeneous Neumann condition. This
allowed to obtain the activation time uM

p (x). Since in this case we had only
one direction of propagation, we estimated the conduction velocity in the single
Purkinje fiber as follows

Cp,m =
1

Np

Np∑

i=1

C̃p(xi),

where Np is the number of nodes of the mesh discretizing the Purkinje fiber and

C̃p is given by

C̃p(x) =
1∣∣∣∂uM
p

∂s

∣∣∣
. (33)

In Figure 5 (right) we depict the evolution of C̃p in the Purkinje fiber. In partic-
ular, we used a value σp (see Table 1) which allowed us to obtain a physiological
value of the conduction velocity [17]. We observe that, far from the boundaries,
the conduction velocity was almost constant and equal to 0.3 cm/ms, whereas,
near to the boundaries, the wavefront interactions resulted in a non-constant
conduction velocity. We thus used the estimated value Cp,m as conduction ve-
locity Cp in the 1D eikonal problem (8).

For the computations we have used as discretization steps hm = 0.001 cm for
the cuboid, leading to 200,000 nodes and 1.1 million tetrahedral elements, and
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Figure 5: Conduction velocity C̃p in the Purkinje fibers as a function of the local
coordinate l estimated from the solution of the monodomain problem. Test for
the estimation of the conduction velocity.

hp = 0.0165 cm for the Purkinje fiber. The value of hp was chosen equal to the
characteristic length of a Purkinje cell [32].

4.2 Numerical test in a cuboid

In this section we report the results of a test in a cuboid for a comparison of the
EE and MM coupling strategies in the case of orthodromic propagation. The
myocardial geometry was the same considered in the previous section (see Figure
3), whereas for the Purkinje fibers we considered a simple network characterized
by three segments and one bifurcation point. This network was lying on one
side of the cuboid domain, similar to physiological situation where the Purkinje
fibers are located just beneath the endocardium, see Figure 6. The signal enters
from the AV node, represented by s0 in Figure 6, left, and then reaches the PMJ
s1 and s2. Through these two PMJs, the signal enters the myocardium.

For the comparison, we first computed the activation maps, which are repre-
sented in Figure 6, right. We notice that the MM and EE strategies describe a
similar activation pattern in both the Purkinje network and in the myocardium.
To examine further in detail the activation pattern, we also computed the cu-
mulative percentage of activated tissue, which is depicted in Figure 7. Note
that the slope of this quantity gives us useful information about the propagation
velocity of the wavefront in both domains. We begin by analyzing the Purk-
inje network. In Figure 7 (left) the percentage of activated tissue in S1 and
then S2 is represented. In particular, in the Purkinje network the EE model
results in a constant conduction velocity through the junction, whereas the MM
model features a distinct discontinuity. To better investigate this phenomenon,
we compute the following quantity

1∣∣∣∂uM
p

∂l (x)
∣∣∣
, (34)
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Figure 6: Representation of the myocardium and Purkinje network domains
(left), and activation maps in the case of MM (top, right) and EE (bottom,
right) strategies. Test in the cuboid.
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Figure 7: Comparison of the percentage of activated tissue in the Purkinje net-
work (left) and in the myocardium (right) for the two different coupling strate-
gies. Test in the cuboid.

23



0.00 0.20 0.40 0.60 0.80 1.00
0.00

0.20

0.40

0.60

l (cm)

C
o
n
d
u
ct
io
n
ve
lo
ci
ty

(c
m
/
m
s)

Segment S1

Segment S2

0.00 0.50 1.00 1.50 2.00
0.00

0.20

0.40

0.60

l (cm)

C
o
n
d
u
ct
io
n
ve
lo
ci
ty

(c
m
/
m
s)

Figure 8: Estimation of the conduction velocity in the Purkinje network as a
function of the local coordinate l, test in the cuboid, left. Only Purkinje network
with 2 levels of bifurcations, right.

which is an estimate of the conduction velocity in the Purkinje network provided
by the monodomain problem. Notice that this quantity is different in general
from the value (33), since the latter has been computed in the case of a single
wavefront propagating in a single fiber.

We represent in Figure 8 (left) the evolution of the quantity (34) in segments
S1 and S2. In particular, we observe an initial acceleration of the signal at
s0, reaching the value of 0.3 cm/ms, followed by a deceleration when the signal
approaches the bifurcation point. After the bifurcation the signal accelerates
again and the conduction velocity assumes larger values. This behavior of the
conduction velocity is known as “pull and push” effect [19, 20], which is due to the
fact that the current just before the bifurcation point needs to increase its value
in order to be able to stimulate the increased number of cells after the bifurcation.
Due to energy arguments, this produces a decrement of the conduction velocity
just before the bifurcation point (“pull” effect). On the contrary, the excited
branches allow the increase of the value of the conduction velocity after the
bifurcation point (“push” effect). Furthermore, we notice a further increment
for l > 0.95 of the conduction velocity when the signal approached the PMJ,
since the resistance to the propagation decreases when the wavefront approaches
the boundary. To better describe the “pull and push” -effect, we also ran a
simulation of a network formed only by two levels of bifurcations. In Figure 8
(right) we report the conduction velocity as a function of the local coordinate.
We observe that the signal after the “push” effect, returns to the reference value
before the next “pull” effect. We notice that the “pull and push” effect can only
be captured by the MM model, since in the EE model the conduction velocity
is prescribed as a model parameter.

Coming back to Figure 7 (right) we observe that the percentage of activated
tissue in the myocardium is very similar between the EE and MM strategies. In
particular, no discontinuities occur in the MM case. We notice a slow propaga-
tion velocity close to the PMJ due to the fact that at the beginning a reduced
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Figure 9: Transmembrane potential at different temporal instants in the case of
MM coupling. Test in the cuboid.

portion of 3D tissue is involved in the excitation of the neighboring non-excited
tissue.

In the case of MM model, we were also able to compute the transmembrane
potential in the myocardium and in the network. In particular, in Figure 9 we
report the transmembrane potential at different time instances. Notice that the
MM model was able to model in a proper way the collision of two fronts. We also
expect that the MM strategy is able to describe the delay of the propagation of
the electrical signal at the PMJ due to the resistance model chosen for the latter
(see (9)). Thus, in this case we did not need to impose this delay a priori as done
for the EE case. To show this, we represent in Figure 10 the transmembrane
potentials computed at the PMJ s1 of Figure 6 as a function of time, both for the
network and the myocardium. The evolution of the simulated transmembrane
potentials suggests that the delay in the orthodromic propagation corresponds
in fact to the time necessary to excite the myocardial cells in the sphere Br(s1).
Additionally, we observe a good agreement with the transmembrane potentials
measured at the PMJ in a canine ventricle [23], where a delay in the range 5-15
ms was measured.

Regarding the value of r (the radius of the regions of influence centred around
the PMJ), we found from the numerical experiments that a value too great is
unable to activate the front in the myocardium. Conversely, if the value of r is
too small, we obtain an instantaneous activation of the myocardium, so that no
orthodromic delay is present.
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Figure 10: Computed transmembrane potentials at the PMJ. Test in the cuboid.

Figure 11: Representation of the Purkinje fibers (left) and muscular fibers
(right). Test in the idealized left ventricle.

Finally, we remark that the CPU time needed to solve the MM coupled
problem was of course greater than the one related to the EE problem. This
was due both to the fact that the latter is a steady problem, whereas the MM
problem is unsteady, as well as due to the need of introducing subiterations
(about 2-3 per time step) at each time step for the MM problem. In particular,
we observe a total CPU time 20 times greater.

4.3 Comparison in an idealized ventricle

In this test we consider an idealized ventricular geometry given by the el-
lipsoidal model described in [8], where the lengths of the semi-principal axes
of the inner and outer ellipsoid were ax = ay = 1.5 cm , az = 4.4 cm and
bx = by = 2.7 cm , bz = 5 cm, respectively (see Figure 11, right). To define
the anisotropic tensor D by (3), we set k = 0.46 [17], and we use the analytical
expression for the unit vectors tangential to the fibers proposed in [8]. The re-
sulting mesh was composed of about 4.4 million tetrahedra and 760,000 vertices,
with hm = 0.003 cm.
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Figure 12: Activation maps for the case of EE (bottom) and MM (top) coupling
strategies. Test in the idealized left ventricle, normal propagation.

In Figure 11 (left) we represent the Purkinje network used in the test, con-
sisting in 959 segments and 379 PMJ. This network has been generated by using
a fractal law as proposed in [13, 30] and described in [26]. The one-dimensional
mesh was composed of 15,000 vertices and 1,400 line segments, with hp = 0.0165
cm.

The parameters used in the monodomain and eikonal problems were the same
defined in the previous section and reported in Table 1, apart from the values
of r and RPMJ, which were set equal to 0.07 cm and 6000 kOhm, respectively.

4.3.1 Normal propagation

In the first test of this section, we consider the case of a normal propagation
where the unique source for the Purkinje network is the AV node and the unique
sources for the myocardium were the PMJ.

For the comparison, we consider again the activation maps, represented in
Figure 12. In particular, we observe that the activation maps obtained by the two
strategies in the myocardium are similar: the activation starts in the myocardium
after 8 ms in both cases, and the last myocardial point is activated after 66 ms
for the EE strategy and 72 ms for the MM strategy.

However, we notice some important differences related to the activation in
the network. This is confirmed by the evolution of cumulative percentage of
activated tissue, depicted in Figure 13. In particular, Figure 13 (left) shows that
the time necessary to activate the whole network is about 16 ms in the case of EE
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Figure 13: Comparison of the percentage of activated tissue in the Purkinje
network (left) and in the myocardium (right). Test in the idealized left ventricle,
normal propagation.

model, and about 31 ms in the case of the MM model. This difference may be
ascribed to the “pull and push” -effect that introduces a delay at each branching
point for the MM case. On the contrary, no substantial differences have been
noted in the evolution of the percentage of activated tissue for the myocardium
(Figure 13, right), in analogy with the results of the test in the cuboid. We
finally observe that in this case the increased number of PMJ required about 4-5
iterations per time step to solve the MM coupled problem.

4.3.2 Wolff-Parkinson-White

In the second test of this section, we compare the EE and MM models for a
pathological case, namely the Wolff-Parkinson-White syndrome, which is char-
acterized by a muscular intramyocardial source in addition to the AV node. In
this case, we have two fronts and thus both orthodromic and antidromic prop-
agations. In particular, the muscular source has been located in a point within
the myocardium in the opposite region with respect to the AV node (see activa-
tion in red in Figure 14, right). In this Figure we also show the activation maps
with other two perspectives, to highlight the two fronts.

From these results, we observe of course a completely different activation
with respect to the normal case. However, less pronounced differences between
the EE and MM strategies can be noticed in this case. This could be ascribed
to the fact that the “pull and push” -effect is less pronounced in this case, since
we have two fronts and thus a reduced number of consecutive bifurcation points
in the network. In this case, we needed about 5-6 iterations per time step to
solve the MM coupled problem.
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Figure 14: Activation maps for the case of EE (bottom) and MM (top) coupling
strategies. Left: front propagating from the AV node. Middle and right: front
propagating from the muscular source. Test in the idealized left ventricle, Wolff-
Parkinson-White syndrome.

4.4 Application to a real case

In this section, we show the results obtained by applying the MM model to a
real scenario, obtained by the reconstruction of the left ventricle starting from
Magnetic Resonance Images (MRI). The 3D geometry has been manually seg-
mented from the MRI data and it has been discretized in a tetrahedral mesh
composed of about 4.7million tetrahedra and 810, 000 vertices (hm ≃ 0.005 cm).
The Purkinje network has been generated with the same fractal law used for the
idealized ventricle (see Section 4.3). The corresponding one-dimensional mesh
was composed of 32, 000 vertices and 30, 000 intervals, with hp = 0.0165 cm.
The values of the parameters are the same reported in Table 1, except r = 0.13
cm and RPMJ = 1000 kOhm.

In Figure 15 we reported the activation map obtained by considering a normal
propagation of the electrical signal. These results show that the MM strategy
could be applied successfully also to real scenarios. This represents a crucial step
in view of solving a complete electro-mechanical simulation of a real ventricle in
presence of the Purkinje network.

5 Conclusions

We have presented two strategies for simulating the rhythmic activation of the
heart with a detailed Purkinje conduction system. In a simple model (the EE
model) the eikonal equation was used in the myocardium and the Purkinje sys-
tem, which was then compared to solutions of the monodomain equation in
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Figure 15: Activation map obtained with MM strategy. Test in a real scenario

both domains (the MM model). The coupling conditions to be enforced be-
tween the Purkinje network and the myocardium depend on which the models
were adopted. For the EE model, the endpoints of the Purkinje system were
connected to the myocardium with an implicit delay for the orthodromic and
antidromic conduction. For the MM model, a more complex PMJ model was
used, which connected the Purkinje network to the myocardium through a dis-
tributed resistance element and allowed to recover explicitly the orthodromic
delay. An iterative algorithm based on fixed-point iterations was introduced to
solve the MM coupled problem. Furthermore, we proved sufficient conditions
for the convergence of the fixed-point iterations.

The EE and MM models have been applied first in a cuboid and then in an
idealised left ventricle with healthy sinus rhythm and simulated Wolff-Parkinson-
White syndrome. As indicated in previous literature, the eikonal model delivers
a good approximation of the local activation time in the myocardium. However,
in the Purkinje system the activation obtained by the eikonal model differs from
the one obtained with the monodomain model. This is a consequence of the
“pull and push” effect occurring in the Purkinje system around the branching
points. We therefore found a somewhat surprising result that seems to indicate
that the use of the monodomain model is mandatory in the Purkinje network,
whereas for the myocardium the eikonal approximation seems to be enough to
recover accurate activation times.
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