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Abstract

We propose an innovative method for the accurate estimation of
surfaces and spatial fields when a prior knowledge on the phenomenon
under study is available. The prior knowledge included in the model
derives from physics, physiology or mechanics of the problem at hand,
and is formalized in terms of a partial differential equation governing
the phenomenon behavior, as well as conditions that the phenomenon
has to satisfy at the boundary of the problem domain. The proposed
models exploit advanced scientific computing techniques and specifi-
cally make use of the Finite Element method. The estimators have
a typical penalized regression form and the usual inferential tools are
derived. Both the pointwise and the areal data frameworks are con-
sidered. The driving application concerns the estimation of the blood-
flow velocity field in a section of a carotid artery, using data provided
by echo-color doppler; this applied problem arises within a research
project that aims at studying atherosclerosis pathogenesis.

Keywords: functional data analysis, spatial data analysis, object-oriented data
analysis, penalized regression, Finite Elements.

1 Introduction

In this work we propose a novel non-parametric regression technique for surface
and spatial field estimation, able to include a prior knowledge on the shape of the
surface or spatial field and to comply with complex conditions at the boundary of
the problem domain. The motivating applied problem concerns the estimation of
the blood-flow velocity field on a cross-section of an artery, using data provided
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by echo-color doppler acquisitions. This study is carried out within the project
MAthematichs for CARotid ENdarterectomy @ MOX 1, that gathers researchers in
statistics, numerical analysis and computer sciences and medical doctors in cardiac
surgery, with the aim of investigating the pathogenesis of atherosclerosis in human
carotids. The project intends specifically to study the role of blood fluid-dynamics
and vessel morphology on the formation process and histological properties of
atherosclerotic plaques. Interactions between the hemodynamics and atheroscle-
rotic plaques have been highlighted for instance in [10] via numerical simulations
of the blood flow on real patient-specific vessel morphologies.

The data collected within the project include: Echo-Color Doppler (ECD) mea-
surements of blood flow at a cross-section of the common carotid artery, 2 cm before
the carotid bifurcation, for patients affected by high grade stenosis (>70%) in the
internal carotid artery; the reconstruction of the shape of this cross-section obtained
via segmentation of Magnetic Resonance Imaging (MRI) data. The first phase of
the project requires the estimation, starting from these data, of the blood-flow
velocity fields in the considered carotid section. These estimates are first of all of
interest to the medical doctors, as they highlight relevant features of the blood flow,
such as the eccentricity and the asymmetry of the flow or the reversion of the fluxes,
which could have an impact on the pathology. Moreover, they will enable a popula-
tion study that explores quantitatively the relationship between the blood-flow and
the atherosclerosis. Finally, the estimated blood velocity fields will also be used as
patient-specific and physiological inflow conditions for hemodynamics simulations,
that in turns aim at further enhancing the knowledge on this relationship.

Carotid Echo-Color Doppler (ECD) is a medical imaging procedure that uses
reflected ultrasound waves to create images of an artery and to measure the velocity
of blood cells in some locations within the artery. This technique does not require
the use of contrast media or ionizing radiation and has relative low costs. Thanks
to this complete non-invasivity and also to the short acquisition time required,
ECD scans are largely used in clinics, even though they provide a less rich and
noisier information than other diagnostic devices, such as Phase Contrast Magnetic
Resonance Imaging. The left panel of Figure 1 shows one of the ECD images used
in the study. The ultrasounds image in the upper part of the figure represents the
longitudinal section of the vessel. It also shows by a small gray box the position
of the beam where blood particle velocities, in the longitudinal direction of the
vessel, are measured; the dimension of the box relates to the dimension of the
beam. In the case considered in this picture, the acquisition beam is located in
the center of the considered cross-section of the artery. The lower part of the ECD
image is a graphical display of the acquired velocity signal during the time lapse
of about four heart beats. This signal represents the histogram of the measured
velocities, evolving in time. More precisely, the x-axis represents time and the y-axis
represents velocity classes; for any fixed time, the gray-scaled intensity of pixels is
proportional to the number of blood-cells in the beam moving at a certain velocity.
For the purpose of this work, we shall consider a fixed time instant corresponding

1The MACAREN@MOX project involves clinicians from Ca’ Granda Ospedale Mag-
giore Policlinico in Milano, statisticians, numerical analysis and image processing scien-
tists from MOX Laboratory for Modeling and Scientific Computing, Politecnico di Milano,
and numerical analysis scientists from Università degli studi di Bergamo and École Poly-
technique Fédérale de Lausanne. Principal Investigator of the project is Dr. Christian
Vergara.
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Figure 1: Left panel: ECD image corresponding to the central point of the carotid
section located 2 cm before the carotid bifurcation. Right panel: MRI reconstruction of
the cross-section of the carotid artery located 2 cm before the bifurcation; cross-shaped
pattern of observations with each beam colored according to the mean blood-velocity
measured on the beam at systolic peak time.

to the systolic peak, which is of crucial clinical interest.
The right panel of Figure 1 shows the reconstruction from MRI data of the

considered cross-section of the carotid artery; it also displays the spatial location
of the beams inspected in the ECD scan. In particular, during the ECD scan 7
beams are considered, located in a cross-shaped pattern; this unusual pattern is a
compromise decided together with clinicians in order to obtain as many observations
as possible in the short time dedicated to the acquisition. In the figure each beam
is colored according to the value of the mean velocity registered within the beam
at the fixed time instant considered, the systolic peak.

In this applied problem there are important conditions at the boundary of the
problem domain, i.e., specifically, at the wall of the carotid cross-section represented
in Figure 1, Right. The physics of the problem implies in fact that blood-flow veloc-
ity is zero at the arterial wall, due to the friction between blood cells and arterial
wall; these are the so-called no-slip boundary conditions. Classical methods for
surface estimation as thin-plate splines, tensor product splines, kernel smoothing,
wavelet-based smoothing and kriging, do not naturally include information on the
shape of the domain and on the value of the surface at the boundary, although it is
possible to enforce such boundary conditions for example with binning. Recently,
some methods have been proposed where the shape of the domain and the boundary
conditions are instead directly specified in the model. For instance, Finite Element
L-splines described in [15] account explicitly for the shape of the domain, efficiently
dealing with irregular shaped domains; soap-film smoothing (SOAP), described in
[19], considers both the shape of the domain and some common types of bound-
ary conditions; Spatial Spline Regression (SSR), presented in [16], extends [15] and
includes general boundary conditions. The methods in [15], [19] and [16] are penal-
ized regression methods with a roughness term involving the Laplacian of the field,
the Laplacian being a simple form of partial differential operator that provides a
measure of the local curvature of the field. Although being able to account for
the shape of the domain and to comply with the required boundary conditions,
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these methods do not provide physiological estimates of the velocity field. Figure
2 shows for example the velocity field estimated using SSR. The penalization of a
measure of the local curvature of the field oversmooths and flattens the field toward
a plane in those regions of the domain where no observations are available; the re-
sulting estimated velocity field has thus rhomboidal isolines, which are certainly
non-physiological.
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Figure 2: Estimate of the blood-flow velocity field on the carotid section using standard
SSR.

On the other hand, we have prior knowledge on the phenomenon under study
that could be exploited to derive accurate physiological estimates. There is in fact
a vast literature devoted to the study of fluid dynamics and hemodynamics, see
for example [5] and references therein. For what serves our purpose, it suffices to
know that the theoretical solution of a stationary velocity field in a straight pipe
with circular section has a parabolic profile. In our application, during the systolic
phase, we hence expect to obtain a velocity field similar in shape to a parabolic
profile, with isolines resembling circles. Notice that the real blood velocity field
is not perfectly parabolic due to the curvature of the artery, the non-stationarity
of the blood flow and the imperfect circularity of the artery section. For this
reason, imposing a parametric model that forces a parabolic estimate would not
be appropriate; such model would for instance completely miss asymmetries and
eccentricities of the flow. Nevertheless, this prior information concerning the shape
of the field, which can be conveniently translated into a Partial Differential Equation
(PDE), could be incorporated in a non-parametric model, along with the desired
boundary conditions.

In this work, extending [15] and [16], we propose a non-parametric model that
includes prior information on the phenomenon under study, coming for instance
from the physics, physiology, mechanics or chemistry of the problem, and formalized
in terms of a governing PDE. Specifically, Spatial Regression with PDE penalization
(SR-PDE) features a roughness term that involves, instead of the simple Laplacian,
a more general PDE modeling the phenomenon. The applicability of the proposed
method is by no way restricted to the problem here considered; PDEs are in fact
commonly used to describe phenomena behavior in many fields of engineering and
sciences, including bio-sciences, geo-sciences and physical sciences. It should be
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noticed that many methods for surface and spatial field estimation, besides the
already cited SSR and SOAP, use roughness penalties involving some simple form of
PDEs. A classical example is given by thin-plate-splines, while a recent proposal is
offered for instance by [6]. Our work has also strong connections with the framework
introduced by [8] that is based on a stochastic PDE. The novelty of the proposed
SR-PDE models with respect to these methods is that the PDE is used to model the
space variation of the phenomenon, using problem-specific information. Moreover
SR-PDE allows for important modeling flexibility, accounting for space anisotropy
and non-stationarity in a straightforward way, as well as unidirectional smoothing
effects.

Likewise in [15] and [16], SR-PDE exploits advanced numerical analysis tech-
niques and, specifically, it makes use of the Finite Element Method, which provides
a basis for piecewise polynomial surfaces. The resulting estimators have a typical
penalized regression form, they are linear in the observed data values and classical
inferential tools can be derived. The proposed method is currently implemented in
R [13] and in FreeFem++ [11].

The paper is organized as follows. Section 2 introduces SR-PDE for pointwise
observations. Section 3 extends the models to the case of areal data, which is of
interest in many applications, including the analysis of ECD measurements here
considered. Section 4 describes the Finite Element solution to the estimation prob-
lem and derives the inferential properties of the estimators. Section 5 deals with
general boundary conditions. In Section 6, SR-PDE is compared to standard SSR
and to SOAP in different simulation settings, with data distributed uniformly on
the domain or only on some subregions, showing that the inclusion of the prior
knowledge on the phenomenon behavior improves significantly the estimates. In
Section 7 the application within the MACAREN@MOX project is presented: de-
tails on the ECD acquisitions are given and the results obtained with SR-PDE are
shown. Section 8 outlines future research directions.

2 Model for pointwise data

Consider a bounded and regular domain Ω ⊂ R
2, whose boundary ∂Ω is a curve

of class C2, and n observations zi, for i = 1, . . . , n, located at points pi = (xi, yi) ∈
Ω. Assume the model

zi = f0(pi) + ǫi (1)

where ǫi, i = 1, . . . , n, are independent errors with zero mean and constant variance
σ2, and f0 : Ω → R is the surface or spatial field to be estimated. In our application,
Ω will be the carotid cross-section of interest, the observations zi will represent the
blood particles velocities measured by ECD in the longitudinal direction of the
artery (i.e., in the orthogonal direction to Ω) and the surface f0 will represent the
longitudinal velocity field on the carotid cross-section.

Assume that problem specific prior information is available, that can be de-
scribed in terms of a PDE, Lf0 = u, modeling to some extent the phenomenon
under study; moreover, prior knowledge could also concern possible conditions that
f0 has to satisfy at the boundary ∂Ω of the problem domain. Generalizing the
models in [15] and [16], we propose to estimate f0 by minimizing the penalized
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sum-of-square-error functional

J(f) =

n
∑

i=1

(f(pi)− zi)
2
+ λ

∫

Ω

(

Lf(p)− u(p)
)2
dp (2)

with respect to f ∈ V , where V is the space of functions in L2 (Ω) with first and
second derivatives in L2 (Ω), that satisfy the required boundary conditions (b.c.).
The penalized error functional hence trades off a data fitting criterion, the sum-of-
square-error, and a model fitting criterion, that penalizes departures from a PDE
problem-specific description of the phenomenon. In particular, we consider here
phenomena that are well described in terms of linear second order elliptic operators
L (with smooth and bounded parameters) and forcing term u ∈ L2(Ω) that can be
either u = 0, homogeneous case, or u 6= 0, non-homogeneous case. The operator
L can include second order differential operators as the divergence of the gradient
(div∇f), first order differential operators as the gradient (∇f) and also the identity
(f); the general form that we consider is

Lf = −div(K∇f) + b · ∇f + cf (3)

where the symmetric and positive definite matrix K ∈ R
2×2 is the diffusion tensor,

b ∈ R
2 is the transport vector and c ≥ 0 is the reaction term. Setting K = I,

b = 0, c = 0 and u = 0 we obtain the special case described in [15] and [16], where
the Laplacian ∆f is penalized, thus controlling the local curvature of f .

The three terms that compose the general second order operator (3) provide
different smoothing effects. The diffusion term −div(K∇f) induces a smoothing
in all the directions; if the diffusion matrix K is a multiple of the identity the
diffusion term has an isotropic smoothing effect, otherwise it implies an anisotropic
smoothing with a preferential direction that corresponds to the first eigenvector of
the diffusion tensor K. The degree of anisotropy induced by the diffusion tensor
K is controlled by the ratio between its first and second eigenvalue. It’s possible
to visualize the diffusion term as the quadratic form in R

2 induced by the tensor
K−1. On the contrary the transport term b · ∇f induces a smoothing only in
the direction specified by the transport vector b. Finally, the reaction term cf
has instead a shrinkage effect, since penalization of the L2 norm of f induces a
shrinkage of the surface to zero.

The parameters of the PDE can be space-varying on Ω; i.e., K = K(x, y),
b = b(x, y) and c = c(x, y). This feature is fundamental to translate the a priori
information on the phenomenon. For instance, in the blood flow velocity appli-
cation, the problem specific prior information can be described via a differential
operator that includes: a space varying anisotropic diffusion tensor that smooths
the observations in the tangential direction of concentric circles (see Figure 3 Left);
a transport field that smooths the observations in the radial direction, from the
center of the section to the boundary (see Figure 3 Right). The reaction term is
instead not required in this application. Notice that the space-varying parameters
need to satisfy some regularity conditions to ensure that the estimation problem is
well-posed, see [4] for details. The functional J(f) is in fact well defined if f ∈ V
since V ⊂ H2(Ω) ⊂ C(Ω̄) if Ω ⊂ R

2 and the misfit of the PDE is square integrable.
We can impose different types of boundary conditions, homogeneous or not, that

involve the evaluation of the function and/or its first derivative at the boundary,
allowing for a complex modeling of the behavior of the surface at the boundary ∂Ω
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Figure 3: Left: diffusion tensor field K, used in the velocity field application, that
smooths the observations in the tangential direction of concentric circles. Right: transport
field b, used in the velocity field application, that smooths the observations in the radial
direction, from the center of the section to the boundary.

of the domain. For ease of notation we consider in the following the simple case of
homogeneous Dirichlet b.c., which involve the value of the function at the boundary,
clamping it to zero, i.e., f |∂Ω = 0. These boundary conditions correspond to the
physiological no-slip conditions needed in the ECD application; the blood cells have
in fact zero longitudinal velocity near the arterial wall due to friction between the
particles and the arterial wall. In Section A.2 we extend all the results presented in
this section to the case of more general non-homogeneous boundary conditions that
can also involve first derivatives. In this work the boundary conditions are directly
included in the space V ; in the case of Dirichlet homogeneous b.c., V is the space
of functions in L2 (Ω) with first and second derivatives in L2 (Ω) and zero value at
the boundary ∂Ω.

To lighten the notation, surface integrals will be written without the integration
variable p; unless differently specified, the integrals are computed with respect
of the Lebesgue measure, i.e.,

∫

D
q =

∫

D
q(p)dp, for any D ⊆ R and integrable

function q.
All the results presented can also be extended to include space-varying covariate

information, following the semi-parametric approach described in [16].

2.1 Solution to the estimation problem

The estimation problem can be formulated as follows.

Problem 1. Find f̂ ∈ V such that

f̂ = argmin
f∈V

J(f).

Existence and uniqueness of the surface estimator f̂ are established in the fol-
lowing proposition.
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Proposition 1. Under suitable regularity conditions for L, the solution of Problem
1 exists and is unique. The surface estimator f̂ is obtained by solving:

{

Lf̂ = u+ ĝ in Ω

f̂ = 0 on ∂Ω

{

L∗ĝ = − 1

λ

∑n
i=1

(f̂ − zi)δpi
in Ω

ĝ = 0 on ∂Ω
(4)

where ĝ ∈ L2 (Ω) represents the misfit of the penalized PDE, i.e., ĝ = Lf̂ − u, L∗

is the adjoint operator of L, i.e., is such that
∫

Ω
Lϕψ =

∫

Ω
ϕL∗ψ ∀ϕ, ψ ∈ V , and

is defined as
L∗ĝ = −div(K∇ĝ)− b · ∇ĝ + (c− div(b))ĝ. (5)

The proof of Proposition 1 is based on PDE optimal control theory (see, e.g.,
[9]) and is detailed in [1], where the regularity conditions required on the parameters
of the PDE are also specified; the proof takes into account also the more general
boundary conditions described in Section A.2.

3 Model for areal data

We here extend the surface smoothing method presented in the previous Section
to the case of areal data, a setting common in many applications, including the one
driving our study.

Let Di ⊂ Ω, for i = 1, . . . , N , be some subdomains where we have observations
and zij , for j = 1, . . . , ni, be the observations located at point pij ∈ Di. For the
observations zij , we consider the pointwise model (1), i.e.,

zij = f0(pij) + ǫij (6)

where ǫij , for i = 1, . . . , N and j = 1, . . . , ni, are independent errors with zero mean
and constant variance σ2.

In the blood flow velocity application, the location points pij are unknown,
the only available information being that pij ∈ Di, where Di is the i-th ECD
acquisition beam. We may assume that the location points pij are distributed over
the subdomains according to a global uniform distribution over Ω and that the
subdomains are not overlapping. For each beam Di, the ECD signal (Figure 1 Left)
provides, at a fixed time, a histogram of the measured blood particle velocities. We
summarize the information carried by the histogram by its mean value. Specifically,
let z̄i be the mean value of the observations on the subdomain Di, for i = 1, . . . , N .
From (6), we can derive the following model for this variable:

z̄i =
1

ni

ni
∑

j=1

f0(pij) +
1

ni

ni
∑

j=1

ǫij

where ζi =
∑ni

j=1
ǫij/ni, i = 1, . . . , N , are errors with zero mean and variance

σ2/ni.
The quantity

∑ni

j=1
f0(pij)/ni is the Monte Carlo approximation of E [f0(P )|

P ∈ Di] and the latter is in turn equal to the spatial average of the surface on the
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subdomain Di, under the assumption of uniformly distributed observation points,
i.e.,

1

ni

ni
∑

j=1

f0(pij) ≈ E [f0(P )|P ∈ Di] =
1

|Di|

∫

Di

f0.

We may thus consider the following model:

z̄i =
1

|Di|

∫

Di

f0 + ηi (7)

where the error terms ηi have zero mean and variances σ̄2
i inversely proportional to

the dimension of the beams Di; this assumption on the variances is coherent with
the assumption on location points being distributed on the subdomains according
to a uniform distribution (so that in fact the average number of observations on each
subdomain is proportional to the dimension of the subdomain). If the subdomains
have the same dimension, as it is in fact the case in our application, this simplifies
to variances all equal to σ̄2.

In order to estimate the surface we hence propose to minimize the penalized
sum-of-square-error functional

J̄(f) =

N
∑

i=1

1

|Di|

(
∫

Di

(f − z̄i)

)2

+ λ

∫

Ω

(Lf − u)2 (8)

with respect to f ∈ V . The first term is now a weighted least-square-error functional
for areal data on the subdomains Di, where the weights are in fact equal to the
inverse of the variances σ̄2

i , being σ̄2
i ∝ 1/ |Di|. Notice that the functional (8) mixes

two different kinds of information: the data provide information only on the areal
means of the surface f over the subdomains, while the roughness penalty translates
the prior knowledge directly on the shape of f .

3.1 Solution to the estimation problem

The estimation problem can be formulated as follows.

Problem 2. Find f̂ ∈ V such that

f̂ = argmin
f∈V

J̄(f).

Existence and uniqueness of the surface estimator f̂ are provided by the follow-
ing proposition.

Proposition 2. Under suitable regularity conditions for L, the solution of Problem
2 exists and is unique. The surface estimator f̂ is obtained by solving the following
system:

{

Lf̂ = u+ ĝ in Ω

f̂ = 0 on ∂Ω

{

L∗ĝ = − 1

λ

∑N
i=1

1

|Di|
IDi

∫

Di
(f̂ − z̄i) in Ω

ĝ = 0 on ∂Ω
(9)

where ĝ ∈ L2 (Ω) represents the misfit of the PDE penalized, i.e., ĝ = Lf̂ − u, and
L∗ is the adjoint operator of L.
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The proof is similar to the one of Proposition 1 and is detailed in [1].

Remark 1. All the results presented in this section can be extended to the case of
location points distributed on the subdomains according to a general known global
distribution µ over Ω, P ∼ µ. The quantity

∑ni

j=1
f0(pij)/ni is in fact, also in this

case, the Monte Carlo approximation of E [f0(P )|P ∈ Di]:

1

ni

ni
∑

j=1

f0(pij) ≈ E [f0(P )|P ∈ Di] =
1

µ(Di)

∫

Di

f0(p)µ(dp).

Therefore the model for the areal mean on the subdomains becomes:

z̄i =
1

µ(Di)

∫

Di

f0(p)µ(dp) + ηi.

Under the assumption of non overlapping subdomains, the errors ηi have zero mean
and variances inversely proportional to µ(Di), which is the probability of sampling

a point in the subdomain Di. The surface estimator f̂ can be obtained minimizing
the weighted least square functional

J̄µ(f) =

N
∑

i=1

1

µ(Di)

(
∫

Di

(f(p)− z̄i)µ(dp)

)2

+ λ

∫

Ω

(Lf − u)2

with respect to f ∈ V . The weights in the least square term are proportional to the
inverse of Var(z̄i), being Var(z̄i) ∝ 1/µ(Di).

4 Finite Element solution to the estimation pro-

blems

The surface estimation problems in the pointwise and areal data frameworks
presented respectively in Sections 2 and 3 are infinite dimensional problems and
cannot be solved analytically. PDEs are usually solved in a so-called weak sense
and, under the regularity conditions required in Propositions 1 and 2, the weak
solution is indeed a classical one. This weak problem (or variational problem) is
naturally formulated in the space H1

0 (Ω), which is the space of functions in L2(Ω)
with first derivatives in L2(Ω) and with f |∂Ω = 0. The weak problem is than usually
discretized by means of the Finite Element method, a standard technique used in
engineering applications to approximate PDEs (see, e.g., [12]), that provides a basis
for piecewise continuous polynomial surfaces over a triangulation of the domain of
interest. The discretization of a surface by means of Finite Elements is similar to
the discretization of a curve by means of univariate splines, the latter providing a
basis for piecewise polynomial curves.

Let Th be a triangulation of the domain, where h denotes the characteristic
mesh size. Figure 4 Left shows the triangulation considered in the velocity field
application. We consider the space V r

h of piecewise continuous polynomial functions
of order r ≥ 1 over the triangulation:

V r
h =

{

v ∈ C0(Ω̄) : v|τ ∈ P
r(τ ) ∀τ ∈ Th

}

. (10)

Let Nh = dim(V r
h ) and denote by ψ1, . . . , ψNh

the Finite Element basis functions
and by ξ1, . . . , ξNh

the nodes associated to the Nh basis functions. Notice that the
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Figure 4: Left: Triangulation of the carotid cross-section of interest in the velocity field
application. Right: a linear Finite Element basis function on a triangulation.

mesh can be defined independently of the location points p1, · · · ,pn. The nodes
ξ1, . . . , ξNh

correspond to the vertices of the triangulation Th, if the basis is piece-
wise linear, and are a superset of the vertices when the degree of the polynomial
basis is higher than one. Figure 4 Right shows for example a linear Finite Element
basis function on a regular triangulation. The basis functions ψ1, . . . , ψNh

are La-
grangian, meaning that ψk(ξl) = δξl ∀k = 1, . . . , Nh. Hence a surface f ∈ V r

h is
uniquely determined by its values at the nodes:

f(x, y) =

Nh
∑

k=1

f(ξk)ψk(x, y) = ψ(x, y)
T f

where
f = (f(ξ1), . . . , f(ξNh

))
T

and
ψ = (ψ1, . . . , ψNh

)
T
.

In the following we consider only homogeneous Dirichlet b.c., for which the
value of the function at the boundary is fixed to 0. In this case we consider the
Finite Element space V r

h,0 =
{

v ∈ C0(Ω̄) : v|∂Ω = 0 and v|τ ∈ P
r(τ ) ∀τ ∈ Th}, of

dimension Nh,0, which only necessitates of the internal nodes of the triangulation
and the associated basis functions, whilst all boundary nodes can be discarded.
In Section A.2 we extend the results presented in this section to the case of more
general boundary conditions.

4.1 Pointwise estimator

In order to define the weak problem associated to (4) we introduce the bilinear
form a(·, ·) associated to the operator L, defined as

a(f̂ , ψ) =

∫

Ω

(

K∇f̂ · ∇ψ + b · ∇f̂ψ + cf̂ψ
)

. (11)

11



The discrete version of the weak (or variational) problem is thus given by
{

a(f̂h, ψh)−
∫

Ω
ĝhψh =

∫

Ω
uψh

λa(ϕh, ĝh) +
∑n

i=1
f̂h(pi)ϕh(pi) =

∑n
i=1

ziϕh(pi)
(12)

for all ψh, ϕh ∈ V r
h,0, where f̂h, ĝh ∈ V r

h,0. This approach allows us to write the

estimation problem as a linear system. Define ψx =
(

∂ψ1/∂x, . . . , ∂ψNh,0
/∂x

)T

and ψy = (∂ψ1/∂y, . . . , ∂ψNh,0
/∂y)T and the matrices

R(c) =
∫

Ω
cψψT , Rx(b) =

∫

Ω
b1ψψ

T
x , Ry(b) =

∫

Ω
b2ψψ

T
y , (13)

Rxx(K) =
∫

Ω
K11ψxψ

T
x , Ryy(K) =

∫

Ω
K22ψyψ

T
y , (14)

Rxy(K) =
∫

Ω
K12(ψxψ

T
y +ψyψ

T
x ), (15)

where Kij and bj are the elements of the diffusion tensor matrix K and of the
transport vector b. Using this notation, the Finite Element matrix associated to
the bilinear form a(·, ·) in (11) is given by

A(K,b, c) = Rxx(K) +Rxy(K) +Ryy(K) +Rx(b) +Ry(b) +R(c). (16)

Moreover, define the vectors z = (z1, . . . , zn)
T , u =

∫

Ω
uψ and the matrices

R = R(1) =

∫

Ω

ψψT

and

Ψ =







ψT (p1)
...

ψT (pn)






(17)

where Ψ is the matrix of basis evaluations at the n data locations p1, · · · ,pn. The
discrete surface estimator is thus provided by the following Proposition.

Proposition 3. The Finite Element solution f̂h of the discrete counterpart (12)

of the estimation Problem 1 exists, is unique and is given by f̂h = ψT f̂ where f̂ is
the solution of the linear system

[

ΨTΨ λAT

A −R

] [

f̂

ĝ

]

=

[

ΨT z

u

]

. (18)

The proof of well-posedness of the discrete problem is given in [1].

4.1.1 Properties of the estimator

The estimator f̂h is a linear function of the observed data values. The fitted
values ẑ = Ψf̂ can be represented as

ẑ = Sz+ r (19)

where the smoothing matrix S ∈ R
n×n and the vector r ∈ R

n are obtained as

S = Ψ
(

ΨTΨ+ λP
)−1

ΨT , (20)

r = Ψ
(

ΨTΨ+ λP
)−1

λPA−1u. (21)
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with P denoting the penalty matrix

P = P(K,b, c) = AT (R)
−1

A. (22)

The smoothing matrix S has the typical form obtained in a penalized regression
problem. In particular, the positive definite penalty matrix P represents the dis-
cretization of the penalty term in (2). Notice that, thanks to the weak formulation
of the estimation problem, this penalty matrix does not involve the computation of
second order derivatives. Appendix A.1 shows that, on the Finite Element space
used to discretize the problem, P is in fact analogue to the penalty matrix P̃ that
would be obtained as direct discretization of the penalty term in (2), involving the
computation of second order derivatives. Finally, the vector r is equal to zero when
the penalized PDE is homogeneous (u = 0); notice that when no specific informa-
tion on the forcing term is available, it is indeed preferable to consider homogeneous
PDEs.

Thanks to the linearity of the estimator ẑ in the observations we can easily
derive its properties and obtain classical inferential tools as pointwise confidence
bands and prediction intervals (see also [16]). Let z0 = (f0(p1), . . . , f0(pn))

T be
the column vector of evaluations of the true function f0 at the n data locations.
Recalling that E[z] = z0 and Cov(z) = σ2I in our model definition, we can
compute the expected value and the variance of the estimator ẑ:

E[ẑ] = Sf0 + b and Cov(ẑ) = σ2SST .

Since we are dealing with linear estimators, we can use tr(S) as a measure of the
equivalent degrees of freedom for linear estimators (see, e.g., [2] and [7]). Hence we
can estimate σ2 as

σ̂2 =
1

n− tr(S)
(ẑ− z)

T
(ẑ− z) .

The smoothing parameter λ may be selected via Generalized Cross-Validation min-
imizing the index

GCV (λ) =
1

n (1− tr(S)/n)
2
(ẑ− z)

T
(ẑ− z) .

4.2 Areal estimator

Analogously to the case of pointwise observations, also with areal observations
we can introduce an equivalent variational formulation of the estimation problem.
Specifically, the variational problem associated to (9) can be discretized as

{

a(f̂h, ψh)−
∫

Ω
ĝhψh =

∫

Ω
uψh

λa(ϕh, ĝh) +
∑N

i=1

1

|Di|

∫

Di
f̂h

∫

Di
ϕh =

∑N
i=1

z̄i
∫

Di
ϕh

(23)

for all ψh, ϕh ∈ V r
h,0, where f̂h, ĝh ∈ V r

h,0 and a(·, ·) is the bilinear form defined in
(11).

Let z̄ = (z̄1, . . . , z̄N )
T be the vector of mean values on subdomains Di, . . . , DN ,

and

Ψ̄ =







1

|D1|

∫

D1

ψT

...
1

|DN |

∫

DN
ψT






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be the matrix of spatial means of the basis functions on the subdomains; moreover,
introduce the weight matrix W = diag(|D1| , . . . , |DN |) (recall that σ̄2

i ∝ 1/ |Di|).
The existence and the uniqueness of the discrete surface estimator is stated by the
following Proposition.

Proposition 4. The Finite Element solution f̂h of the discrete counterpart of the
estimation Problem 2 exists, is unique and is given by f̂h = ψT f̂ where f̂ is the
solution of the linear system

[

Ψ̄TWΨ̄ λAT

A −R

] [

f̂

ĝ

]

=

[

Ψ̄TWz̄

u

]

. (24)

The proof of well-posedness of the discrete problem is given in [1].
Notice that even if the method provides a pointwise surface estimator f̂h, in

the areal data framework we are instead interested in the estimator of the spatial
mean of the surface on a subdomain D:

ˆ̄f (D) =
1

|D|

∫

D

f̂

The Finite Element counterpart of this estimator is defined as

ˆ̄fh (D) =
1

|D|

∫

D

f̂h = ψ̄T
D f̂

where ψ̄D = (1/ |D|
∫

D
ψ1, . . . , 1/ |D|

∫

D
ψNh,0

)T .

4.2.1 Properties of the estimator

The discrete surface estimator f̂h and the estimator of the spatial average on
the subdomains ˆ̄fh are linear in the observed data values z̄. The fitted values
of the spatial average on the subdmains D1, . . . , DN are defined as ˆ̄z = Ψ̄f̂ =

( ˆ̄fh (D1) , . . . ,
ˆ̄fh (DN ))T . They can be represented as

ˆ̄z = S̄z̄+ r̄ (25)

where S̄ ∈ R
N×N and r̄ ∈ R

N are defined as

S̄ = Ψ̄
(

Ψ̄TWΨ̄+ λP
)−1

Ψ̄TW, (26)

b = Ψ̄
(

Ψ̄TWΨ̄+ λP
)−1

λPA−1u. (27)

From the definition of model (7) and the linearity of the estimator we can derive
the mean of the estimator

E
[

ˆ̄z
]

= S̄z̄0 + b̄, (28)

where [z̄0]i = 1/ |Di|
∫

Di
f0, and its covariance

Cov(ˆ̄z) = S̄ diag(σ̄2

1 , . . . , σ̄
2

N ) S̄T . (29)

It should be noticed that in the areal data framework the expected value (28) and
the variance (29) refer to the estimator of the spatial mean on a subdomain. In fact,
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even though we can obtain a pointwise estimator for the surface f̂h as described
in Proposition 4, we cannot provide an accurate uncertainty quantification for this
estimate, because model (7) provides information only on the areal errors ηi. In
particular, in the considered areal framework, the variance

Cov(f̂) = ΨΨ̄−1S̄ diag(σ̄2

1 , . . . , σ̄
2

N ) S̄T Ψ̄−TΨT

would underestimate the real variance of f̂ .

5 General boundary conditions

All the results presented in Sections 2, 3 and 4 can be extended to the case
of general homogeneous and non-homogeneous boundary conditions involving the
value of the surface or of its first derivatives at the boundary ∂Ω, allowing for a
complex modeling of the phenomenon behavior at the boundary of the domain. The
three classic boundary conditions for second order PDEs are Dirichlet, Neumann
and Robin conditions. The Dirichlet condition controls the value of the function at
the boundary, i.e., f |∂Ω = hD, the Neumann condition concerns the value of the
normal derivative of the function at the boundary, i.e., K∇f · ν|∂Ω = hN , where
ν is the outward unit normal vector to ∂Ω, while the Robin condition involves the
value of a linear combination of first derivative and the value of the function at
the boundary, i.e., K∇f · ν + γf |∂Ω = hR. We can also impose different boundary
conditions on different portions of the boundary that form a partition of ∂Ω. All
the admissible boundary conditions can be summarized as







f = hD on ΓD

K∇f · ν = hN on ΓN

K∇f · ν + γf = hR on ΓR

(30)

where hD, hN and hR have to satisfy some regularity conditions in order to obtain
a well defined functional J(f) (see, e.g., [4]).
Under (30), the solution of the estimation problem and of its discrete counterpart
also involve boundary terms. Appendix A.2 gives all the details for this general
case.

6 Simulation studies

In this Section we study the performances of the SR-PDE, comparing it to
standard SSR and to SOAP in simple simulation studies that mimic our application
setting. The domain Ω is quasi circular; the true surface f0, represented in Figure
5, is obtained as a deformation of a parabolic profile using landmark registration
and is equal to zero at the boundary of the domain. Likewise for our application,
we assume to have a priori information about the shape of the field, that is known
to have a quasi parabolic profile, with almost circular isolines, and to be zero at
the boundary.

Since SOAP is not currently devised to deal with areal data, we consider here
pointwise observations, with location points sampled on the whole or only on sub-
regions of the domain. Specifically, we consider three cases:

A. n=100 observation points p1, . . . ,pn uniformly sampled on the entire domain;
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B. n=100 observation points uniformly sampled only on the first and third quad-
rants;

C. n=100 observation points sampled in a cross-shape pattern.

The experiment is replicated 50 times. For each study case, A, B, and C, and
each replicate: we sample the location points, p1, . . . ,pn; we sample independent
errors, ǫ1, . . . , ǫn, from a Gaussian distribution with mean 0 and standard deviation
σ = 0.1; we thus obtain observations z1, . . . , zn from model (1) with the true
function f0 displayed in Figure 5.

The surface f̂ is estimated using three methods:

1. SR-PDE smoothing (anisotropic smoothing);

2. standard SSR (isotropic smoothing);

3. SOAP (isotropic smoothing).

For all the three methods, we impose homogeneous Dirichlet b.c., f |∂Ω = 0; for
each simulation study, each replicate and each method, the value of the smoothing
parameter λ is chosen via GCV.

The triangulation used for the SR-PDE and standard SSR estimation is a uni-
form mesh on the domain, represented in Figure 5 Right, with approximately 100
vertices. Both for SR-PDE and SSR we use a linear Finite Element space for the
discretization of the surface estimator.

Using SR-PDE it is possible to incorporate the prior knowledge on the shape
of the surface, that should have almost circular isolines. We can achieve this by
penalizing a PDE that smooths the surface along concentric circles; specifically we
consider the anisotropic diffusion tensor

K(x, y) =

[

y2 + κ1x
2 (κ1 − 1)xy

(κ1 − 1)xy x2 + κ1y
2

]

+ κ2
(

R2 − x2 − y2
)

I2, (31)

where R denotes the largest radius in this almost circular domain (in these simu-
lations, R = 1) and we set κ1 = 0.01, κ2 = 0.1; this diffusion tensor is shown in
the right panel of Figure 5. The first hyperparameter represents the ratio between
the diffusion in the radial and in the circular direction. The anisotropic part of the
diffusion field, which corresponds to the first term of the right-hand side of (31),
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Figure 5: Left: true surface f0, with almost circular isolines and zero value at the
boundary of the domain, used for the simulation studies; the image displays the isolines
(0, 0.1, . . . , 0.9, 1). Center: diffusion tensor field K used in SR-PDE. Right: triangulation
of the domain Ω used in SSR and SR-PDE.
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Figure 6: Top left: location points sampled in the first replicate for case A. Top right,
bottom left, bottom right: surface estimates obtained using respectively SR-PDE, SSR and
SOAP; the images display the isolines (0, 0.1, . . . , 0.9, 1) of the surface estimates obtained
in the 50 simulation replicates; the isolines are colored using the same color scale used for
the isolines of the true function f0 in Figure 5.
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Figure 7: Same as Figure 6, for case B.
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is stronger near the boundary and completely vanishes in the center of the carotid;
instead the isotropic part, which corresponds to the second term of the right-hand
side of (31), vanishes near the boundary. The relative strength of the anisotropic
and isotropic part is controlled via κ2. The transport field, the reaction term and
the forcing term are set equal to zero, i.e., b = 0, c = 0 and u = 0.

Standard SSR instead is not able to take advantage of the specific prior knowl-
edge of the shape of the surface, and enforces an isotropic smoothing, corresponding
to SR-PDE with K = I, b = 0, c = 0 and u = 0. Also SOAP produces an isotropic
smoothing; this technique is implemented using the function gam, in the R package
mgcv 1.7-22, see [18], using 49 interior knots on a lattice.

Figures 6-8 show the results obtained using the different methods in the three
considered scenarios, cases A, B and C. The upper left panel of the figures shows
location points sampled in the first replicate in each of the three different scenarios.
The top right, bottom left, bottom right panels of these Figures display the surface
estimates obtained using respectively SR-PDE, SSR and SOAP. In particular, the
images display the isolines (0, 0.1, . . . , 0.9, 1) of the surface estimates obtained in
the 50 simulation replicates; the isolines are colored using the same color scale used
for the isolines of the true function f0 in Figure 5.

Comparing the results obtained with the three methods we can notice that the
inclusion of the prior knowledge improves the estimate, especially when data are
distributed only on subregions of the domain. We can in fact see that in the three
case studies the surfaces estimated with SR-PDE smoothing have circular isolines
similar to those of the true surface f0. Instead, when the prior knowledge is not
included in the model, i.e., for standard SSR and SOAP, the surface estimates tend
to depend on the design of the experiments. We notice in fact that the isolines of
SSR and SOAP estimates are similar to ellipses in case B and to rhomboids in case
C, instead of circles. This is due to the fact that both methods tend to fit planes in
those areas where no observations are available. This phenomenon is more apparent
with SSR than with SOAP because SOAP estimates have an higher variability.
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Figure 9: Boxplot of RMSE (evaluated on a fine lattice of step 0.01 over the domain
Ω) for SR-PDE, SSR and SOAP estimators, in case studies A, B and C (left, central and
right panel, respectively).

Figure 9 shows the comparison of the three methods in terms of root mean
square error (RMSE) of the corresponding estimators, with the RMSE evaluated
on a fine lattice of step 0.01 over the domain Ω. The boxplots highlight that
incorporation of the prior knowledge on the shape of the surface leads to a large
improvement in the estimation. SR-PDE smoothing provides in fact significantly
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better estimates of f0 than the other two methods. The boxplots also show that
SR-PDE estimates display lower variability than SSR and SOAP estimates. This
phenomenon is also visible from the isolines of the estimated surfaces with SR-PDE,
SSR and SOAP represented Figures 6-8.

7 Application to the blood-flow velocity field esti-

mation

Carotid ECD is usually the first imaging procedure used to diagnose carotid
artery diseases, such as ischemic stroke, caused by the presence of an atherosclerotic
plaque. ECD data in our study have been collected using a Diagnostic Ultrasound
System Philips iU22 (Philips Ultrasound, Bothell, U.S.A.) with a L12-5 probe. The
septum that divides the carotid bifurcation is localized and marked as a reference
point. With the help of an electronic rule, we localize the other points of acquisition
of the blood velocity; specifically, in our protocol the blood flow velocity is measured
in standard locations points, according to the cross-shaped design represented in
the right panel of Figure 1, on the carotid cross-section located 2 cm before the
reference point indicated above.

In order to estimate the systolic velocity field on this cross-section of the carotid
we minimize the functional J̄(f) defined in (8). As mentioned in Section 1 we know
that a physiological velocity profile has smooth and almost circular isolines. For
this reason we choose to penalize a PDE that includes the space varying anisotropic
diffusion tensor shown in the left panel of Figure 3 and described in equation (31)
(where the largest section radius is R = 2.8 and we set κ1 = 0.1, κ2 = 0.2), that
smooths the observations in the tangential direction of concentric circles. Moreover,
we also know that, due to viscosity of the blood, a physiological velocity field is
rather flat on the central part of the artery lumen. For this reason, we also include in
the PDE model the space varying transport field shown in the right panel of Figure
3, which smooths the observations in the radial direction, from the center of the
cross-section to the boundary: b(x, y) = (βx, βy)

T , where the hyperparameter β
represents the intensity of the transport field (here we set β = 0.5). This transport
term in fact penalizes high first derivatives in the radial direction, providing velocity
profiles that tend to flatten in the central part of the artery lumen. The reaction
parameter and the forcing term are not needed in this application, hence we set
c = 0 and u = 0. Finally, we know that blood flow velocity is zero at the arterial
wall, due to friction between the blood particles and the vessel wall (the above
mentioned no-slip conditions) and hence we impose homogeneous Dirichlet b.c.:
f |∂Ω = 0. The problem is then discretized by means of linear Finite Elements
defined on the mesh represented in the left panel of Figure 4.

Figure 10 displays the velocity field estimated using SR-PDE smoothing. A
visual comparison with the estimate obtained for the same data by standard SSR,
shown in Figure 2, immediately highlights the advantages of the proposed technique.
Whilst the standard SSR estimate is strongly influenced by the cross-shaped pattern
of the observations and displays strongly rhomboidal isolines, forcing the surface
estimate towards a plane in regions where no observations are available, the SR-PDE
efficiently uses the a priori information on the phenomenon under study and returns
a realistic estimate of the blood flow, which is not affected by the cross-shaped
pattern of the observations and displays physiological almost circular isolines.
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Figure 10: Estimate of the blood-flow velocity field in the carotid section with SR-PDE.

Notice that the SR-PDE estimate captures an asymmetry in the data, resulting
in an eccentric estimate of the blood flow: the velocity peak is in fact not in the
center of the cross-section but in the lower part where higher velocities are mea-
sured. This feature of the blood flow is indeed justified by the curvature of the
carotid artery and by the non-stationarity of the blood flow. SR-PDE estimates in
fact accurately highlight important features of the blood flow, such as eccentricity,
asymmetry and reversion of the fluxes, that are of interest to the medical doc-
tors, in order to understand how the local hemodynamics influences atherosclerosis
pathogenesis. As mentioned in the Introduction, MACAREN@MOX project aims
in fact at exploring this relationship, investigating how different hemodynamical
patterns affect the plaque formation process. For this reason, obtaining accurate
physiological estimates of blood flow velocity fields is a first crucial goal of the
project. Indeed, the SR-PDE estimates will then be used in populations studies
that compare the blood flow velocity field in patients vs healthy subjects, and that
compare the velocity field in patients before and after the removal of the carotid
plaque via thromboendarterectomy. Notice that such population studies involve the
comparisons of estimates referred to different domains, since the cross-sections of
the carotids have of course patient-specific shapes; to face this issue we are currently
developing an appropriate registration method (see Section 8) and these analysis
will be the object of a following dedicated work. The estimated velocity fields
will also be used as inflow conditions for the hemodynamic simulations performed
using the patient-specific carotid morphology. The prescription of suitable inflow
conditions in computational fluid-dynamics is in fact a major issue; see, e.g., [17].
Moreover, the computation of the variance of the surface estimator will also be
used to investigate the sensitivity of these simulations to the specified inflow con-
ditions and will provide some understanding on how their misspecification affects
the results. These numerical simulations will in turn offer enhanced data that give
a richer information on hemodynamical regimes in the carotid bifurcation, further
allowing the study of its impact on atherosclerosis. Computational fluid-dynamic
simulations are also of great interest because they allow to synthetically verify the
impact of different surgical interventions, evaluating which one is more prone to
the reformation of the plaque or to other complications. In the future, this could
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become an important tool for comparing beforehand the effects of different inter-
ventions for a given patient, with respect to the geometry of the patient carotid
and to the properties of the atherosclerotic plaque, giving important suggestions to
clinicians on the surgical operation to choose in different situations.

8 Conclusion and future work

In this work we have introduced an innovative method for surface and spatial
field estimation, when prior knowledge is available, concerning the physics of the
problem. In particular, this prior knowledge, conveniently described via a PDE,
is used to model the space variation of the phenomenon. Although demonstrated
on the specific application that motivated its development, the method has indeed
a very broad applicability, since PDEs are commonly used to model phenomena
behavior in many fields of sciences and engineering.

One of the most interesting developments within this line of research consists
now in the data driven estimation of the hyperparameters in the penalized PDE.
In the current study, these hyperparameters have in fact been considered fixed.
Notice that, while a currently crucial topic in statistics concerns the development
of methods for parameter estimations in Ordinary Differential Equation, this would
instead consist in approaching the remarkably more complex problem of data driven
estimation of the parameters in PDEs, a research field still largely unexplored by
statisticians. To face such problem a possible road is offered by the parameter
cascading methodology proposed in [14].

As derived in Section 4, the proposed estimators are linear in the observed
data values and have a typical penalized regression form, so that important dis-
tributional properties can be readily derived. We are currently also studying the
(infill) asymptotic properties of these estimators, when the number of observations
n goes to infinity and the characteristic mesh size h goes to zero. Convergence of
the estimator when h goes to zero is detailed in [1].

The proposed method can also be extended to include the time dimension, in
order to model surfaces evolving in time. Such extension would allow to study how
the blood-flow velocity field varies during the time of the heart beat. Notice that it
is necessary in this case to allow for changes of the shape of the domain over time,
to account for the deformation of the artery wall during the heart beat. This poses
a problem of registration of different domains similar to the one faced in population
studies (see Section 7).

Finally, the method could also be extended to Riemannian manifold domains,
by appropriately setting the problem in the framework presented in [3].
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A Appendix

A.1 The penalization matrix

Assume for the moment that ψj are smooth functions and neglect the forcing
term u. The penalty matrix P in (22) can be written as

P =

∫

Ω

∫

Ω

Lψ(s)ψT (s)

[
∫

Ω

ψψT

]−1

ψ(t)LψT (t)dsdt

where Lψ =
(

Lψ1, . . . , LψNh,0

)T
, since Aij = a(ψj , ψi) =

∫

Ω
ψiLψj . The matrix

P̃ =
∫

Ω
LψLψT , which may instead be obtained as direct discretization of the

penalty term in (2), can be represented as

P̃ =

∫

Ω

∫

Ω

Lψ(s)δ(s, t)LψT (t)dsdt

using the kernel operator associated with the L2 space, δ(s, t), defined as
∫

Ω

δ(s, t)q(t)dt = q(s) ∀q ∈ L2(Ω) ∩ C(Ω). (32)

From the above equations we see that P is an approximation in a weak sense of P̃.
In fact, the operator δ(s, t) is approximated, in the mixed Finite Element approach
here considered, with the projection operator

ψT (s)

[
∫

Ω

ψψT

]−1

ψ(t)

that projects functions on span{ψ1, . . . , ψNh,0
}. This operator satisfies the property

(32) in span{ψ1, . . . , ψNh
}; in fact, if q(t) =

∑K
k=1

qkψk(t), then

∫

Ω

ψT (s)

[
∫

Ω

ψψT

]−1

ψ(t)q(t)dt =

K
∑

k=1

qkψk(s) = q(s)

while if q /∈ span{ψ1, . . . , ψNh,0
} this operator projects the function q on span{ψ1, . . . ,

ψNh,0
}.

A.2 General boundary conditions

In the case of general boundary conditions, the space V is the space of functions
in L2(Ω) with first and second derivatives in L2(Ω) that satisfy (30).

Starting with the pointwise data framework, the estimation problem with gen-
eral b.c. (30) is analogous to Problem 1. The unique solution of the problem,
f̂ ∈ V , is obtained by solving

{

Lf̂ = u+ ĝ in Ω
+ b.c. on ∂Ω

{

L∗ĝ = − 1

λ

∑n
i=1

(f̂ − zi)δpi
in Ω

+ b.c.∗ on ∂Ω
(33)

where ĝ ∈ L2 (Ω) represents the misfit of the penalized PDE, L∗ is the adjoint oper-
ator of L and b.c.∗ are the boundary conditions associated to the adjoint problem,
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i.e.,






g = 0 on ΓD

K∇g · ν + b · νg = 0 on ΓN

K∇g · ν + (b · ν + γ)g = 0 on ΓR.
(34)

Notice that these conditions are always homogeneous.
We define now the space V r

h,ΓD
of piecewise continuous polynomial functions

of degree r ≥ 1 on the domain triangulation, that vanish on ΓD, the part of the
boundary ∂Ω with Dirichlet b.c. (if ΓD is not empty):

V r
h,ΓD

=
{

v ∈ C0(Ω̄) : v|ΓD
= 0 and v|τ ∈ P

r(τ ) ∀τ ∈ Th
}

.

We denote by ψ1, . . . , ψNh,ΓD
, where Nh,ΓD

= dim(V r
h,ΓD

), the Finite Element basis
functions of this space, and by ξ1, . . . , ξNh,ΓD

the associated nodes; note that the
nodes now include the internal nodes and the nodes on ΓN and ΓR. Correspond-
ingly the basis vector ψ = (ψ1, . . . , ψNh,ΓD

)T will now also include basis functions
associated to nodes on ΓN and ΓR.

System (33) is solved in a different way if the Dirichlet b.c. are homogeneous
(hD = 0) or not (hD 6= 0).

If the Dirichlet b.c. are homogeneous or there are no Dirichlet b.c. (i.e., ΓD is
empty), the discretization of the variational formulation associated to (33) is

{

a(f̂h, ψh)−
∫

Ω
ĝhψh =

∫

Ω
uψh +

∫

ΓN
hNψh +

∫

ΓR
hRψh

λa(ϕh, ĝh) +
∑n

i=1
f̂h(pi)ϕh(pi) =

∑n
i=1

ziϕh(pi)
(35)

for all ψh, ϕh ∈ V r
h,ΓD

, where the bilinear form a(·, ·) is now defined as

a(f̂ , ψ) =

∫

Ω

(

K∇f̂ · ∇ψ + b · ∇f̂ψ + cf̂ψ
)

+

∫

ΓR

γf̂ψ. (36)

Consider the matrices (13)-(15) and the matrix Ψ of basis evaluations (17), with
now ψ = (ψ1, . . . , ψNh,ΓD

)T , and define the matrix

BR(γ) =

∫

ΓR

γψψT (37)

that represents the Robin b.c.. Using this notation, the Finite Element matrix
associated to the bilinear form a(·, ·) in (36) is given by

A(K,b, c) = Rxx(K)+Rxy(K)+Ryy(K)+Rx(b)+Ry(b)+R(c)+BR(γ). (38)

We moreover define the vectors

(hN )j =

∫

ΓN

hNψj , (hR)j =

∫

ΓR

hRψj . (39)

Proposition 5. The Finite Element solution f̂h, when the Dirichlet b.c. are ho-
mogeneous or when there are no Dirichlet b.c., exists, is unique and is given by
f̂h = ψT f̂ where f̂ is the solution of the linear system

[

ΨTΨ λAT

A −R

] [

f̂

ĝ

]

=

[

ΨT z

u+ hN + hR

]

(40)
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The proof of well-posedness of the discrete problem is given in [1].
It should be noticed that the bilinear form in (36) differs from the one in (11)

only for the term corresponding to Robin b.c., and the same of course holds for
the Finite Element matrix (38) vs (16). All the non-homogeneous b.c. are instead
included in the forcing term of the linear system. For this reason the smoothing
matrix S depends only on the Robin b.c., while the vector r depends on all the
non-homogeneous conditions.

If there are instead non-homogeneous Dirichlet conditions (ΓD is non-empty
and hD 6= 0) we need to define a so-called lifting of the boundary conditions.
We consider in this case the space V r

h in (10) and denote by ψD
1 , . . . , ψ

D
ND

h

the basis

functions associated to the nodes ξD1 , . . . ξ
D
ND

h

on ΓD. The problem is treated in this

case by splitting the discrete surface estimator in two parts fD,h and ŝh, with f̂h =
fD,h+ ŝh. The first part fD,h ∈ span{ψD

1 , . . . , ψ
D
ND

h

} satisfies the non-homogeneous

Dirichlet conditions on ΓD, i.e., fD,h(ξ
D
i ) = hD(ξDi ) for i = 1, . . . , ND

h . The second
part ŝh ∈ V r

h,ΓD
is instead the solution, with homogeneous Dirichlet b.c., of the

variational problem:
{

a(ŝh, ψh)−
∫

Ω
r̂hψh =

∫

Ω
uψh +

∫

ΓN
hNψh +

∫

ΓR
hRψh − a(fD,h, ψh)

λa(ϕh, r̂h) +
∑n

i=1
ŝh(pi)ϕh(pi) =

∑n
i=1

(zi − fD,h(pi))ϕh(pi)

for all ψh, ϕh ∈ V r
h,ΓD

, where r̂h is the adjoint variable associated to ŝh. This system
has an extra forcing term, with respect to system (35), that implicitly involves the
Dirichlet b.c. hD through the quantity fD,h.

Finally, we can analogously proceed in the areal data framework. See [1] for
details.
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