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Abstract

We address the spatial discretization of an evolution problem arising
from the coupling of viscoelastic and acoustic wave propagation phe-
nomena by employing a discontinuous Galerkin scheme on polygonal
and polyhedral meshes. The coupled nature of the problem is ascribed
to suitable transmission conditions imposed at the interface between
the solid (elastic) domain and the fluid (acoustic) domain. We state
and prove a well-posedness result for the strong formulation of the
problem, present a stability analysis for the semi-discrete formulation,
and finally prove an a priori hp-version error estimate for the resulting
formulation in a suitable (mesh-dependent) energy norm. The conver-
gence results are validated by numerical experiments carried out in a
two-dimensional setting.
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Introduction

This work is devoted to the development and analysis of a discontinuous
Galerkin (dG) method [11–44] for an evolution problem modeling the coupling
of viscoelastic and acoustic wave propagation phenomena. Such kind of prob-
lems arise, for example, in a geophysics framework, namely in the modeling
and simulation of seismic events near coastal environments. Other contexts
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in which this problem plays a major role are the modeling of sensing or
actuation devices immersed in an acoustic fluid [55], as well as medical ultra-
sonics [66]. In practical applications, the underlying geometry one has to deal
with is remarkably complicated and irregular; considering a conforming tri-
angulation would therefore be computationally very expensive. We are thus
led to consider a space discretization capable to reproduce the geometrical
constraints under consideration to a reasonable extent of accuracy, without
being at the same time too much demanding. Such discretization is then per-
formed using general polygonal or polyhedral (briefly, polytopic) elements,
with no restriction on the number of faces each element can possess, and pos-
sibly allowing for face degeneration in mesh refinement. The dG method has
been recently proven to successfully support polytopic meshes: we refer the
reader, e.g., to [77–1313], as well as to the comprehensive research monograph
by Cangiani et al. [1414]. In addition to the dG method, several other methods
capable to support polytopic meshes, such as the Polygonal Finite Element
method [1515–1818], the Mimetic Finite Difference method [1919–2222], the Virtual
Element method [2323–2626], and the Hybrid High-Order method [2727–3131].

An elasto-acoustic coupling typically occurs in the following framework: a
domain made up by two subdomains, one occupied by a solid (elastic) body,
the other by a fluid (acoustic) one, with suitable transmission conditions
imposed at the interface between the two. The aim of such conditions is to
account for the following physical properties: (i) the normal component of
the velocity field is continuous at the interface; (ii) a pressure load is exerted
by the fluid body on the solid one through the interface. In this paper,
the unknowns of the problem are the displacement field in the solid domain
and the acoustic potential in the fluid domain; the latter, say ϕ, is defined
in terms of the acoustic velocity field va in such a way that va “ ´∇ϕ.
However, other formulations are possible; for instance, one can consider a
pressure-based formulation in the acoustic subdomain [66], or a displacement-
based formulation in both subdomains [3232].

In a geophysics context, when a seismic event occurs, both pressure (P) and
shear (S) waves are generated. However, only P-waves (i.e., whose direction
of propagation is aligned with the displacement of the medium) are able
to travel through both solid and fluid bodies, unlike S-waves (i.e., whose
direction of propagation is orthogonal to the displacement of the medium),
which can travel only through solids. This explains the reason for considering
the first interface condition. On the other hand, the second one accounts for
the fact that an acoustic wave propagating in a fluid domain of density ρa
gives rise to an acoustic pressure field of magnitude ρa|

.
ϕ|, .

ϕ denoting the
first time derivative of the acoustic potential.

Mathematical and numerical aspects of the elasto-acoustic coupling, or fluid-
structure interaction in a more general sense, have been the subject of an
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extremely broad literature. We give hereinafter a brief overview of some of
the research works carried out so far in this field.

Barucq et al. [3333] have characterized the Fréchet differentiability of the
elasto-acoustic field with respect to Lipschitz-continuous deformation of the
shape of an elastic scatterer. The same authors [3434] have also proposed
a dG method for computing the scattered field from an elastic bounded
object immersed in an infinite homogeneous fluid medium, employing high-
order polynomial-shape functions to address the high-frequency propagation
regime, and curved boundary edges to provide an accurate representation
of the fluid-structure interface. Bermúdez et al. [3232] have solved an in-
terior elasto-acoustic problem in a three-dimensional setting, employing a
displacement-based formulation on both the fluid and the solid domains,
and a discretization consisting of linear tetrahedral finite elements for the
solid and Raviart–Thomas elements of lowest order for the fluid; a further
unknown is introduced on the interface between solid and fluid to impose
the trasmission conditions. Brunner et al. [3535] have treated the case of thin
structures and dense fluids; the structural part is modeled with the finite
element method, and the exterior acoustic problem is efficiently modeled
with the Galerkin boundary element method. De Basabe and Sen [3636] have
compared Finite Difference and Spectral Element methods for elastic wave
propagation in media with a fluid-solid interface. Fischer and Gaul [3737] have
proposed a coupling algorithm based on Lagrange multipliers for the simula-
tion of structure-acoustic interaction; finite plate elements are coupled with
a Galerkin boundary element formulation of the acoustic domain, and the
interface pressure is interpolated as a Lagrange multiplier, thereby allowing
for coupling of non-matching grids. Flemisch et al. [55] have considered a
numerical scheme based on two independently generated grids on the elastic
and acoustic domains, thereby allowing as much flexibility as possible, given
that the computational grid in one subdomain can in general be consider-
ably coarser than in the other subdomain. As a result, non-conforming grids
appear at the interface of the two subdomains. Mandel [3838] has proposed
a parallel iterative method for the solution of the linear equations result-
ing from the finite element discretization of the coupled fluid-solid systems
in fluid pressure and solid displacement formulation, in harmonic regime.
Mönköla [3939] has examined the accuracy and efficiency of the numerical so-
lution based on high-order discretizations, in the case of transient regime.
Spatial discretization is performed by the Spectral Element method, and
three different schemes are compared for time discretization. Péron [4040] has
presented equivalent conditions and asymptotic models for the diffraction
problem of elastic and acoustic waves in a solid medium surrounded by a
thin layer of fluid medium in harmonic regime. Other noteworthy references
in this field are [4141–4848].

At the best of our knowledge, in all of the aforementioned works a well-
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posedness result for the mathematical formulation of the coupled problem
cannot be found; and in general, a contribution in this direction has not
yet been addressed in literature. In this work, the proof of existence and
uniqueness for a strong solution is accomplished in a semigroup framework,
by resorting to the Hille–Yosida theorem.

The rest of the paper is organized as follows. In Section 11 we give the
formulation of the problem and prove the existence and uniqueness of the
solution under suitable hypotheses on source terms and initial values. In
Section 22 we introduce the discrete setting, with particular reference to the
assumptions on the polytopic mesh. In Section 33 we present the formulation
of the semi-discrete problem. In Section 44 we prove the stability of the
semi-discrete formulation in a suitable energy norm. In Section 55, we prove
hp-convergence results (with h and p denoting, as usual, the meshsize and the
polynomial degree, respectively) for the error in the energy norm. Finally,
in Section 66, we present some numerical experiments carried out in a two-
dimensional setting to validate the theoretical results. The proofs of two
technical lemmas are postponed to Appendix AA.

General notation

In what follows, scalar fields are represented by lightface letters, vector fields
by boldface roman letters, and second-order tensor fields by boldface greek
letters. We let Ω Ă Rd, d P t2, 3u, denote an open bounded convex domain
with Lipschitz boundary, given by the union of two open disjoint bounded
convex subdomains Ωe and Ωa representing an elastic and an acoustic do-
main, respectively. We denote by ΓI “ BΩe X BΩa the interface between the
two domains, also of Lipschitz regularity and with strictly positive surface
measure. We assume that the following partitions hold: BΩe “ ΓeD Y ΓI

and BΩa “ ΓaD Y ΓI, where ΓeD and ΓaD also have strictly positive sur-
face measure, and ΓeD X ΓI “ H “ ΓaD X ΓI. We further denote by ne
and na the outer unit normal vectors to BΩe and BΩa, respectively; thereby,
ne “ ´na on ΓI (cf. Fig. ??). For X Ď Ω, we write L2pXq in place of
L2pXqd, with scalar product denoted by p¨, ¨qX and associated norm }¨}X .
Analogously, we write H lpXq in place of H lpXqd for Hilbertian Sobolev
spaces of vector-valued functions with index l ě 0, equipped with norm
}¨}l,X (so that }¨}0,X ” }¨}X on H0pXq ” L2pXq). Given an integer p ě 1,
PppXq denotes the space spanned by polynomials of total degree at most p
on X. Given a subdivision Th of Ω into disjoint open elements κ such that
Ω “

Ť

κPTh
κ, we denote by

PppThq “ tv P L
2pΩq : v|κ P Ppκpκq @κ P Thu
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the space of piecewise polynomial functions on Th, with p “ ppκqκPTh . Fi-
nally, for T ą 0, we let p0, T s denote a time interval. For the sake of read-
ibility we omit, at times, the dependence on time t P p0, T s. The first and
second time derivatives of a scalar- or vector-valued function Ψ “ Ψptq are
denoted by

.
Ψ and

..
Ψ, respectively.

1 The elasto-acoustic problem

The elasto-acoustic problem is formulated as follows: for sufficiently smooth
loads per unit volume fe and fa, and initial conditions pu0,u1, ϕ0, ϕ1q, find
pu, ϕq such that:
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ρe
..
u` 2ρeζ

.
u` ρeζ

2u´ divσpuq “ fe in Ωe ˆ p0, T s,

u “ 0 on ΓeD ˆ p0, T s,

σpuqne “ ´ρa
.
ϕne on ΓI ˆ p0, T s,

up0q “ u0, in Ωe,
.
up0q “ u1 in Ωe;

c´2 ..
ϕ´4ϕ “ fa in Ωa ˆ p0, T s,

ϕ “ 0 on ΓaD ˆ p0, T s,

Bϕ{Bna “ ´
.
u¨na on ΓI ˆ p0, T s;

ϕp0q “ ϕ0, in Ωa,
.
ϕp0q “ ϕ1 in Ωa.

(1)

Here, u : Ωeˆr0, T s Ñ R3 and ϕ : Ωaˆr0, T s Ñ R represent the displacement
vector and the acoustic potential, respectively. Moreover, ζ ě 0, ζ P L8pΩq,
is a damping factor, ρe is the density of the elastic body Ωe, with 0 ă ρ´e ď
ρe ď ρ`e ă `8 a.e. in Ωe, σpuq “ Cεpuq is the Cauchy stress tensor,
with C the fourth-order, symmetric and uniformly elliptic elasticity tensor,
and εpuq “ 1

2

`

∇u`∇uT
˘

is the strain tensor. Also, we denote by ρa the
density of the acoustic region Ωa, with 0 ă ρ´a ď ρa ď ρ`a ă `8 a.e. in Ωa,
and by c ą 0 the speed of the acoustic wave. Notice that the coupled nature
of the problem is to be ascribed to the trasmission conditions imposed on
ΓI ˆ p0, T s. The first one takes account of the acoustic pressure exterted by
the fluid onto the elastic body through the interface, whereas the second one
expresses the continuity of the normal component of the velocity field at the
interface.
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Let us now introduce the Hilbertian Sobolev spaces

H1
DpΩeq “ tv PH

1pΩeq : v “ 0 on ΓeDu,

H1
DpΩaq “ tv P H

1pΩaq : v “ 0 on ΓaDu,

H4
C pΩeq “ tv P L

2pΩeq : divCεpvq P L2pΩequ,

H4pΩaq “ tv P L
2pΩaq : 4v P L2pΩaqu.

(2)

The existence and uniqueness of a strong solution to (11) can be inferred in the
framework of the Hille–Yosida theory. In particular, the following theorem
holds.

Theorem 1.1 (Existence and uniqueness). Assume that the initial data have
the following regularity:

u0 PH
4
C pΩeq XH

1
DpΩeq,

ϕ0 P H
4pΩaq XH

1
DpΩaq,

u1 PH
1
DpΩeq,

ϕ1 P H
1
DpΩaq,

and that the source terms are such that

fe P C
1pr0, T s;L2pΩeqq, fa P C

1pr0, T s;L2pΩaqq.

Then, problem (11) admits a unique strong solution pu, ϕq such that

u P C2pr0, T s;L2pΩeqq X C
1pr0, T s;H1

DpΩeqq

X C0pr0, T s;H4
C pΩeq XH

1
DpΩeqq,

ϕ P C2pr0, T s;L2pΩaqq X C
1pr0, T s;H1

DpΩaqq

X C0pr0, T s;H4pΩaq XH
1
DpΩaqq.

(3)

Remark 1.2 (Boundary conditions). We consider formulation (11) for ease
of presentation, but more general boundary conditions, such as Dirichlet
and Neumann nonhomogeneous conditions, can be taken into account. In
this case, suitable trace liftings of boundary data have to be introduced, by
resorting to a one-parameter family of static problems (where the parameter
is time). Then, a result analogous to (33) holds provided boundary data have
C3-regularity in time [4949, Theorem 1.1].
Remark 1.3 (Convexity). The above result also holds without any convexity
assumption on either Ω or the subdomains Ωe and Ωa. On the other hand,
this hypothesis is necessary to ensure that the exact solution pu, ϕq is (at
least) H2-regular, so that the traces of ∇u and ∇ϕ on pd´ 1q-dimensional
simplices are both well defined, in view of the forthcoming analysis of the
semi-discrete problem (cf. Section 33).
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Proof of Theorem 1.11.1. Let w “
.
u, φ “ .

ϕ, and U “ pu,w, ϕ, φq. We intro-
duce the Hilbert space

H “H1
DpΩeq ˆL

2pΩeq ˆH
1
DpΩaq ˆ L

2pΩaq,

equipped with the following scalar product:

pU1,U2qH “ pρeζ
2u1,u2qΩe ` pCεpu1q, εpu2qqΩe

` pρew1,w2qΩe ` pρa∇ϕ1,∇ϕ2qΩa ` pc
´2ρaφ1, φ2qΩa .

(4)

Then, we define the operator A : DpAq Ă HÑ H by

AU “
`

´w, 2ζw ` ζ2u´ ρ´1
e divCεpuq, ´φ, ´c24ϕ

˘

@U P DpAq,

where the domain DpAq of the operator is the linear subspace of H defined
as follows (cf. definition (22)):

DpAq “
!

U P H : u PH4
C pΩeq, w PH

1
DpΩeq, ϕ P H

4pΩaq, φ P H
1
DpΩaq;

pCεpuq ` ρaφIqne “ 0 on ΓI, p∇ϕ`wq¨na “ 0 on ΓI

)

.

(5)
Finally, let

F “ p0, ρ´1
e fe, 0, c

2faq.

Problem (11) can then be reformulated as follows: given F P C1pr0, T s;Hq
and U0 P DpAq, find U P C1pr0, T s;Hq X C0pr0, T s;DpAqq such that

dU
dt
ptq `AUptq “ Fptq, t P p0, T s,

Up0q “ U0.

Owing to the Hille–Yosida Theorem (see e.g. [5050, Chap. 7]), this problem is
well-posed provided A is maximal monotone, i.e., pAU ,UqH ě 0 @U P DpAq
and I`A is surjective from DpAq onto H. By the definition (44) of the scalar
product in H, we have

pAU ,UqH “ p´ρeζ2w,uqΩe ` p´Cεpwq, εpuqqΩe
`
`

2ρeζw ` ρeζ
2u´ divCεpuq,w

˘

Ωe

` p´ρa∇φ,∇ϕqΩa ` p´ρa4ϕ, φqΩa .

Taking into account the definition (55) of the domain DpAq and integrating
by parts, we obtain

pAU ,UqH “ p2ρeζw,wqΩe ě 0,
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i.e., A is monotone. It then remains to verify that, for any F ” pF1,F2, F3, F4q

P H, there is (a unique) U P DpAq such that U `AU “ F , that is,

u´w “ F1,

p1` 2ζqw ` ζ2u´ ρ´1
e divCεpuq “ F2,

ϕ´ φ “ F3,

φ´ c24ϕ “ F4.

(6)

The first and third equations allow to express w and φ in terms of u and
ϕ, respectively; substituting these two relations in the other two equations
gives

pζ ` 1q2u´ ρ´1
e divCεpuq “ p1` 2ζqF1 ` F2,

ϕ´ c24ϕ “ F3 ` F4.
(7)

Since ne “ ´na on ΓI, and owing to the first and third equations of (66) and
to the transmission conditions on ΓI embedded in the definition of DpAq, the
variational formulation of the above problem reads: find pu, ϕq PH1

DpΩeq ˆ

H1
DpΩaq such that, for any pv, ψq PH1

DpΩeq ˆH
1
DpΩaq,

A ppu, ϕq, pv, ψqq “ L pv, ψq,

where

A ppu, ϕq, pv, ψqq “ pρepζ ` 1q2u,vqΩe ` pCεpuq, εpvqqΩe ` pρaϕne,vqΓI

` pρac
´2ϕ,ψqΩa ` pρa∇ϕ,∇ψqΩa ´ pρau¨ne, ψqΓI

and

L pv, ψq“ pρep1` 2ζqF1 ` ρeF2,vqΩe ` pρaF3ne,vqΓI

` pρac
´2pF3 ` F4q, ψqΩa ´ pρaF1¨ne, ψqΓI

.

This problem is well-posed owing to the Lax–Milgram Lemma (notice, in
particular, that the bilinear form A is coercive since the interface contribu-
tions vanish when v “ u and ψ “ ϕ). In addition, thanks to equations (77)
we infer that u P H4

C pΩeq XH
1
DpΩeq and ϕ P H4pΩaq XH1

DpΩaq. This in
turn gives pw, φq PH1

DpΩeqˆH
1
DpΩaq thanks to the first and third equations

of (66). Thus, U P DpAq and the proof is complete.

With a view towards introducing the semi-discrete counterpart of (11) and to
carry out its analysis, we observe that the solution given by (33) satisfies the
following weak form of (11): for any t P p0, T s, and all pv, ψq P H1

DpΩeq ˆ

H1
DpΩaq,

pρe
..
uptq,vqΩe ` pc

´2ρa
..
ϕptq, ψqΩa ` p2ρeζ

.
uptq,vqΩe ` pρeζ

2uptq,vqΩe

`Aepuptq,vq `Aapϕptq, ψq ` Iep
.
ϕptq,vq ` Iap

.
uptq, ψq

“ pfeptq,vqΩe ` pfaptq, ψqΩa .

(8)
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Here, the bilinear forms Ae : H1
DpΩeq ˆ H

1
DpΩeq Ñ R, Ie : H1

DpΩaq ˆ

H1
DpΩeq Ñ R, Aa : H1

DpΩaqˆH
1
DpΩaq Ñ R, and Ia : H1

DpΩeqˆH
1
DpΩaq Ñ R

are defined as follows:

Aepu,vq “ pCεpuq, εpvqqΩe ,
Aapϕ,ψq “ pρa∇ϕ,∇ψqΩa ,

Iepψ,vq “ pρaψne,vqΓI
,

Iapv, ψq “ pρav¨na, ψqΓI
.

Notice that we have multiplied the second evolution equation by ρa to ensure
(skew) symmetry of the two interface terms (since na “ ´ne).

2 Discrete setting

Assuming that Ωe and Ωa are polygonal or polyhedral, we now introduce
a polytopic mesh Th of meshsize h over Ω. We denote by hκ the diameter
of an element κ P Th. We assume that Th is compliant with the underlying
geometry, i.e., the decomposition Th “ T eh Y T ah holds, where T eh “ tκ P
Th : κ Ď Ωeu and T ah “ tκ P Th : κ Ď Ωau. We assume that C and ρa are
element-wise constant, and set

Cκ “ p|C
1{2|22q|κ @κ P T eh , (9a)

ρa,κ “ ρa|κ @κ P T ah ;

here we have denoted by |¨|2 the operator norm induced by the `2-norm on
Rn, with n the dimension of the space of symmetric second-order tensors
(n “ 3 if d “ 2, n “ 6 if d “ 3). With each element of T eh (T ah ), we associate
a polynomial degree pe,κ ě 1 (pa,κ ě 1). We then introduce the following
finite-dimensional subspaces:

V e
h “ rPpepT eh qsd “

!

vh P L
2pΩeq : vh|κ P rPpe,κpκqs

d @κ P T eh
)

,

V a
h “ PpapT ah q “

 

ψh P L
2pΩaq : ψh|κ P Ppa,κpκq @κ P T ah

(

.

For an integer l ě 1, we also introduce the broken Sobolev spaces

H lpT eh q “
!

v P L2pΩeq : v|κ PH
lpκq @κ P T eh

)

,

H lpT ah q “
!

ψ P L2pΩaq : ψ|κ P H
lpκq @κ P T ah

)

.

Henceforth, we often write x À y and x Á y in place of x ď Cy and x ě
Cy respectively, for C ą 0 independent of the discretization parameters
(polynomial degree and meshsize), as well as of the number of faces of a
mesh element, but possibly depending on material properties, such as C, ρe,
c, and ρa.
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2.1 Grid assumptions

We term interface of Th the intersection of the boundaries of any two neigh-
boring elements of Th. This definition allows for the treatment of situations
where hanging nodes or edges are present. Therefore, for d “ 2, an interface
will always consist of a piecewise linear segment. On the other hand, for
d “ 3, an interface will be given by the union of general polygonal surfaces;
we thereby assume that each planar section of a given interface may be sub-
divided into a set of co-planar triangles. We refer to such pd´1q-dimensional
simplices (line segments for d “ 2, triangles for d “ 3), whose union deter-
mines an interface of Th, as faces. We denote by Fh the set of all faces of Th.
Also, let

Th,I “ tκ P Th : BκX ΓI ‰ Hu

denote the set of elements sharing a part of their boundary with ΓI, and
T eh,I “ Th,I X T eh , T ah,I “ Th,I X T ah . We then define the set of faces laying on
ΓI as follows:

Fh,I “ tF P Fh : F Ă Bκe X Bκa, κe P T eh,I, κa P T ah,Iu.

Hence, we assume the following decomposition: Fh “ FehYFh,IYFah , where
Feh and Fah collect, respectively, all faces of T eh and of T ah that do not lay
on ΓI. Further, Feh and Fah are decomposed as follows: Feh “ F

e,i
h Y Fe,bh ,

Fah “ F
a,i
h Y Fa,bh , where Fe,ih and Fa,ih collect the internal faces of T eh and

T ah , respectively, and F
e,b
h , Fa,bh collect the boundary faces of T eh and T ah ,

respectively.

We can now proceed to state the main assumptions on Th, referring to [1111,
1414] for further details.

Assumption 1a. Given an element κ P Th, there exists a set of nonoverlap-
ping (not necessarily shape-regular) d-dimensional simplices tκF

5
uFĂBκ Ă κ,

such that, for any face F Ă Bκ,

piq hκ À
d|κF

5
|

|F |
, piiq

ď

FĂBκ

κF5 Ď κ,

where the hidden constant is independent of the discretization parameters,
the number of faces of κ, the measure of F , and the material properties.
Remark 2.1 (Number of faces and degenerating faces). Notice that no re-
striction is imposed by Assumption 1a1a on either the number of faces of an
element, or the measure of the face of an element with respect to the diam-
eter of the element itself. Therefore, the case of faces degenerating under
mesh refinement can be considered as well.
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We recall that, under Assumption 1a1a, the following trace-inverse inequality
holds for polytopic elements:

@κ P Th, @v P Pppκq, }v}L2pBκq À ph´
1{2

κ }v}L2pκq, (10)

where the hidden constant is independent of the discretization parameters,
the number of faces per element, and the material properties [1111, 1414].

Assumption 1b. Let T 7h “ tKu denote a covering of Ω “ ΩeYΩa consisting
of shape-regular d-dimensional simplices K. We assume that, for any κ P Th,
there exists K P T 7h such that κ Ă K and

max
κPTh

card
!

κ1 P Th : κ1 XK ‰ H, K P T 7h such that κ Ă K
)

is uniformly bounded; and that, for each pair κ P Th, K P T 7h with κ Ă K,

diampKq À hκ,

where the hidden constant is independent of the discretization parameters
and of the material properties [88, 1414].

Assumption 1c. Let κ`, κ´ be any two neighboring elements of Th. We as-
sume the following hp-local bounded variation property for both the meshsize
and the polynomial degree:

hκ` À hκ´ À hκ` , pκ` À pκ´ À pκ` ,

where the hidden constant is independent of the discretization parameters,
the number of faces per element, and the material properties [5151].

3 Semi-discrete problem

Before stating the dG formulation of the semi-discrete problem we introduce
the following average and jump operators [11, 5252]. For sufficiently smooth
scalar-, vector- and tensor-valued fields ψ, v, and τ , we define averages and
jumps on an internal face F P Fe,ih Y Fa,ih , F Ă Bκ` X Bκ´ with κ` and κ´

any two neighboring elements in T eh or T ah , as follows:

rrψss “ ψ`n` ` ψ´n´, ttψuu “
ψ` ` ψ´

2
,

rrvss “ v` b n` ` v´ b n´, ttvuu “
v` ` v´

2
,

rrτ ss “ τ`n` ` τ´n´, ttτ uu “
τ` ` τ´

2
,

11



where a b b denotes the tensor product of a, b P R3, and ψ˘, v˘ and τ˘

denote the traces of ψ, v and τ on F taken from the interior of κ˘, and
n˘ the outer unit normal vector to Bκ˘. When considering a boundary face
F P Fe,bh Y Fa,bh , we set rrψss “ ψn, rrvss “ v b n, rrτ ss “ τn, and ttψuu “ ψ,
ttvuu “ v, ttτ uu “ τ . We also use the shorthand notation

xΦ,ΨyF “
ÿ

FPF
pΦ,ΨqF , }Φ}F “ xΦ,Φy

1{2

F

for scalar, vector or tensor fields Φ and Ψ and for a generic collection of faces
F Ă Fh.

The semi-discrete approximation of problem (88) reads: find
puh, ϕhqPC

2pr0, T s;V e
h qˆC

2pr0, T s;V a
h q such that, for all pvh, ψhq P V e

h ˆV
a
h ,

pρe
..
uhptq,vhqΩe ` pc

´2ρa
..
ϕhptq, ψhqΩa ` p2ρζ

.
uhptq,vhqΩe ` pρζ

2uhptq,vhqΩe

`Aehpuhptq,vhq `Aahpϕhptq, ψhq ` Iehp
.
ϕhptq,vhq ` Iahp

.
uhptq, ψhq

“ pfeptq,vhqΩe ` pfaptq, ψhqΩa ,
(11)

with initial conditions puhp0q,
.
uhp0q, ϕhp0q,

.
ϕhp0qq “ pu0,h,u1,h, ϕ0,h, ϕ1,hq P

V e
h ˆV

e
h ˆV

a
h ˆV

a
h , where the bilinear forms Ah : V e

h ˆV
e
h Ñ R, Aah : V a

h ˆ

V a
h Ñ R, Ieh : V a

h ˆ V
e
h Ñ R and Iah : V e

h ˆ V
a
h Ñ R are given by

Aehpu,vq “ pσhpuq, εhpvqqΩe ´ xttσhpuquu, rrvssyFeh
´ xrruss, ttσhpvquuyFeh

` xηrruss, rrvssyFeh
@u,v P V e

h ,

Aahpϕ,ψq “ pρa∇hϕ,∇hψqΩa ´ xttρa∇hϕuu, rrψssyFah
´ xrrϕss, ttρa∇hψuuyFah

` xχrrϕss, rrψssyFah
@ϕ,ψ P V a

h ,

Iehpψ,vq “ pρaψne,vqΓI
“ xρaψne,vyFh,I @pψ,vq P V a

h ˆ V
e
h ,

Iahpv, ψq “ pρav¨na, ψqΓI
“ ´Iehpψ,vq @pv, ψq P V e

h ˆ V
a
h ,
(12)

with ∇h the usual broken gradient operator on Th. We point out that the
last identity in (1212) holds due to the fact that na “ ´ne. Here we have set,
for any integer l ě 1 and any v PH lpT eh q Ą V e

h ,

εhpvq “
1

2

`

∇hv `∇hv
T
˘

,

σhpvq “ Cεhpvq.

The stabilization functions η P L8pFehq and χ P L8pFahq are defined as fol-

12



lows:

η|F “

$

’

’

’

’

&

’

’

’

’

%

α max
κPtκ`,κ´u

˜

Cκp2
e,κ

hκ

¸

@F P Fe,ih , F Ď Bκ` X Bκ´,

Cκp2
e,κ

hκ
@F P Fe,bh , F Ď Bκ;

(13a)

χ|F “

$

’

’

’

’

&

’

’

’

’

%

β max
κPtκ`,κ´u

˜

ρa,κp
2
a,κ

hκ

¸

@F P Fa,ih , F Ď Bκ` X Bκ´,

ρa,κp
2
a,κ

hκ
@F P Fa,bh , F Ď Bκ.

(13b)

where α, β ą 0 are positive constants to be properly chosen. We now intro-
duce the following norms:

}v}2dG,e “ }C
1{2εhpvq}

2
Ωe ` }η

1{2rrvss}2Feh
@v PH1pT eh q Ą V e

h ,

~v~2
dG,e “ }v}

2
dG,e ` }η

´1{2ttCεhpvquu}2Feh @v PH2pT eh q,

}ψ}2dG,a “ }ρ
1{2
a ∇hψ}

2
Ωa ` }χ

1{2rrψss}2Fah
@ψ P H1pT ah q Ą V a

h ,

~ψ~2
dG,a “ }ψ}

2
dG,a ` }χ

´1{2ttρa∇hψuu}
2
Fah

@ψ P H2pT ah q.

The following result follows based on employing standard arguments.

Lemma 3.1 (Coercivity and boundedness of Aeh and Aah). Provided that
Th satisfies Assumption 1a1a, and that constants α and β in (13a13a)–(13b13b) are
chosen sufficiently large, the following continuity and coercivity bounds hold:

Aehpu,vq À }u}dG,e}v}dG,e @u,v P V e
h ,

Aehpv,vq Á }v}2dG,e @v P V e
h ,

(14a)

Aahpϕ,ψq À }ϕ}dG,a}ψ}dG,a @ϕ,ψ P V a
h ,

Aahpψ,ψq Á }ψ}2dG,a @ψ P V a
h .

(14b)

Moreover,

Aehpw,vq À ~w~dG,e}v}dG,e @pw,vq PH2pT eh q ˆ V e
h ,

Aahpϕ,ψq À ~ϕ~dG,a}ψ}dG,a @pϕ,ψq P H2pT ah q ˆ V a
h .

(15)

As a consequence of (14a14a)–(14b14b), whose proof hinges on Lemma A.1A.1, problem
(1111) is well-posed.

4 Stability of the semi-discrete formulation

In this section we prove a stability result for the semi-discrete problem
(1111) (see [5151, 5353, 5454] for the purely elastic case). Let W “ pv, ψq P

13



C1pr0, T s;V e
h q ˆ C

1pr0, T s;V a
h q; we introduce the following mesh-dependent

energy norm
}W ptq}2E “ }vptq}

2
Ee ` }ψptq}

2
Ea , (16)

where
}vptq}2Ee “ }ρ

1{2
e

.
vptq}2Ωe ` }ρ

1{2
e ζvptq}

2
Ωe ` }vptq}

2
dG,e,

}ψptq}2Ea “ }c
´1ρ

1{2
a

.
ψptq}2Ωa ` }ψptq}

2
dG,a.

Remark 4.1 (Energy norm). The definition of the energy norm does not take
into account the interface terms. The reason is related to the fact that, as
observed previously, the bilinear forms Ieh and Iah are skew-symmetric, i.e.,
Iahpv, ψq “ ´Iehpψ,vq for all pv, ψq P V e

h ˆ V
a
h .

Theorem 4.2 (Stability of the semi-discrete formulation). Let Uh “ puh, ϕhq
be the solution of (1111). For sufficiently large penalty parameters α and β in
(13a13a) and (13b13b), respectively, the following bound holds:

}Uhptq}E À }Uhp0q}E `

ż t

0
p}fepτq}Ωe ` }fapτq}Ωaq dτ, t P p0, T s.

Proof. Taking vh “
.
uh and ψh “

.
ϕh in (1111), we obtain

pρe
..
uh,

.
uhqΩe ` p2ρeζ

.
uh,

.
uhqΩe ` pρeζ

2uh,
.
uhqΩe `

`

σhpuhq, εhp
.
uhq

˘

Ωe

´ xttσhpuhquu, rr
.
uhssyFeh

´ xrruhss, ttσhp
.
uhquuyFeh

` xηrruhss, rr
.
uhssyFeh

` pc´2ρa
..
ϕh,

.
ϕhqΩa ` pρa∇hϕh,∇h

.
ϕhqΩa ´ xttρa∇hϕhuu, rr

.
ϕhssyFah

´ xρarrϕhss, tt∇h
.
ϕhuuyFah

` xχrrϕhss, rr
.
ϕhssyFah

“ pfe,
.
uhqΩe ` pfa,

.
ϕhqΩa ,

that is,

1

2

d

dt

´

}Uh}
2
E ´ 2

´

xttσhpuhquu, rruhssyFeh
` xttρa∇hϕhuu, rrϕhssyFah

¯¯

` 2}ρ
1{2
e ζ

1{2 .
uh}

2
Ωe “ pfe,

.
uhqΩe ` pfa,

.
ϕhqΩa .

Integrating the above identity over the interval p0, tq we have

}Uhptq}
2
E ´ 2

´

xttσhpuhptqquu, rruhptqssyFeh
` xttρa∇hϕhptquu, rrϕhptqssyFah

¯

` 4

ż t

0
}ρ

1{2
e ζ

1{2 .
uhpτq}

2
Ωedτ “ }Uhp0q}

2
E ´ 2

´

xttσhpuhp0qquu, rruhp0qssyFeh

` xttρa∇hϕhp0quu, rrϕhp0qssyFah

¯

` 2

ż t

0

`

fepτq,
.
uhpτq

˘

Ωe
dτ

` 2

ż t

0

`

fapτq,
.
ϕhpτq

˘

Ωa
dτ,

14



and, since the last term on the left-hand side is positive, we get

}Uhptq}
2
E ´ 2

´

xttσhpuhptqquu, rruhptqssyFeh
` xttρa∇hϕhptquu, rrϕhptqssyFah

¯

ď }Uhp0q}
2
E ´ 2

´

xttσhpuhp0qquu, rruhp0qssyFeh
` xttρa∇hϕhp0quu, rrϕhp0qssyFah

¯

` 2

ż t

0

`

fepτq,
.
uhpτq

˘

Ωe
dτ ` 2

ż t

0

`

fapτq,
.
ϕhpτq

˘

Ωa
dτ.

From Lemma A.2A.2 in the Appendix, we get

}Uhptq}
2
E ´ 2

´

xttσhpuhptqquu, rruhptqssyFeh
` xttρa∇hϕhptquu, rrϕhptqssyFah

¯

Á }Uhptq}
2
E ,

}Uhp0q}
2
E ´ 2

´

xttσhpuhp0qquu, rruhp0qssyFeh
` xttρa∇hϕhp0quu, rrϕhp0qssyFah

¯

À }Uhp0q}
2
E ,

where the first bound holds if the stability parameters α and β are chosen
large enough. Consequently

}Uhptq}
2
E À }Uhp0q}

2
E ` 2

ż t

0

`

fepτq,
.
uhpτq

˘

Ωe
dτ ` 2

ż t

0

`

fapτq,
.
ϕhpτq

˘

Ωa
dτ

À }Uhp0q}
2
E `

ż t

0
}fepτq}Ωe}ρ

1{2
e

.
uhpτq}Ωe

`

ż t

0
}fapτq}Ωa}c

´1ρ
1{2
a

.
ϕhpτq}Ωa

À }Uhp0q}
2
E `

ż t

0
p}fepτq}Ωe ` }fapτq}Ωaq }Uhpτq}E dτ,

where we have used the Cauchy–Schwarz inequality and the definition (1616)
of the energy norm in the last two bounds. The assertion follows then by
employing Gronwall’s Lemma (see e.g. [5555, p. 28]).

5 Semi-discrete error estimate

The main subject of this section is the derivation of an a priori error estimate
for the semi-discrete coupled problem (1111).

For an open bounded polytopic domain D Ă Rd, and a generic polytopic
mesh Th over D, we introduce, for any κ P Th and m P N0, the extension op-
erator E : Hmpκq Ñ HmpRdq such that E v|κ “ v, }E v}HmpRdq ď C}v}Hmpκq,
with C ą 0 depending only on m and κ. The corresponding vector-valued
version, mapping Hmpκq onto HmpRdq, acts component-wise and will be
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denoted in the same way. The result below is a consequence of the hp-
approximation properties stated in [1414, Lemmas 23 and 33] and of Assump-
tion 1c1c on local bounded variation.

Lemma 5.1 (Interpolation estimates). For any pair of functions pv, ψq P
HmpT eh q ˆ HnpT ah q, m ě 2, n ě 2, there exists a pair of interpolants
pvI , ψIq P V

e
h ˆ V

a
h such that

~v ´ vI~
2
dG,e À

ÿ

κPT eh

h
2 minpm,pe,κ`1q´2
κ

p2m´3
e,κ

}E v}2m,K,

~ψ ´ ψI~
2
dG,a À

ÿ

κPT ah

h
2 minpn,pa,κ`1q´2
κ

p2n´3
a,κ

}Eψ}2n,K.

Additionally, if pv, ψq P C1pr0, T s;HmpT eh qq ˆ C1pr0, T s;HnpT ah qq, m ě 2,
n ě 2, then

}v ´ vI}
2
Ee À

ÿ

κPT eh

h
2 minpm,pe,κ`1q´2
κ

p2m´3
e,κ

`

}E
.
v}2m,K ` }E v}

2
m,K

˘

,

}ψ ´ ψI}
2
Ea À

ÿ

κPT ah

h
2 minpn,pa,κ`1q´2
κ

p2n´3
a,κ

´

}E
.
ψ}2n,K ` }Eψ}

2
n,K

¯

.

We are now ready to state the main result of this section.

Theorem 5.2 (A priori error estimate in the energy norm). Let Assump-
tions 1a1a–1c1c hold. Assume that the exact solution of problem (11) is such that
pu, ϕq P C2pr0, T s;HmpΩeqq ˆ C2pr0, T s;HnpΩaqq, with m ě 2, n ě 2. Let
puh, ϕhq P C

2pr0, T s;V e
h q ˆ C2pr0, T s;V a

h q be the corresponding solution of
the semi-discrete problem (1111), with sufficiently large penalty parameters α
and β in (13a13a)–(13b13b). Then, the following bound holds for the discretization
error Eptq “ peeptq, eaptqq “ puptq ´ uhptq, ϕptq ´ ϕhptqq:

sup
tPr0,T s

}Eptq}2E À sup
tPr0,T s

¨

˝

ÿ

κPT eh

h
2 minpm,pe,κ`1q´2
κ

p2m´3
e,κ

`

}E
.
u}2m,K ` }Eu}

2
m,K

˘

(17)

`
ÿ

κPT ah

h
2 minpn,pa,κ`1q´2
κ

p2n´3
a,κ

`

}E
.
ϕ}2n,K ` }Eϕ}

2
n,K

˘

˛

‚`

`

ż T

0

¨

˝

ÿ

κPT eh

h
2 minpm,pe,κ`1q´2
κ

p2m´3
e,κ

`

}E
..
u}2m,K ` }E

.
u}2m,K ` }Eu}

2
m,K

˘

16



`
ÿ

κPT ah

h
2 minpn,pa,κ`1q´2
κ

p2n´3
a,κ

`

}E
..
ϕ}2n,K ` }E

.
ϕ}2n,K ` }Eϕ}

2
n,K

˘

˛

‚dτ.

Corollary 5.3 (A priori error estimate in the energy norm). Under the
hypotheses of Theorem 5.25.2, assume that h “ maxκPTh hκ » hκ for any κ P Th,
pe,κ “ p for any κ P T eh , and pa,κ “ p for any κ P T ah . Then, if pu, ϕq P
C2pr0, T s;HmpΩeqq ˆC

2pr0, T s;HnpΩaqq with m ě p` 1 and n ě p` 1, the
error estimate (1717) reads

sup
tPr0,T s

}Eptq}2E À
h2p

p2m´3

˜

sup
tPr0,T s

`

}
.
u}2m,Ωe ` }u}

2
m,Ωe

˘

`

ż T

0

`

}
..
u}2m,Ωe ` }

.
u}2m,Ωe ` }u}

2
m,Ωe

˘

dt

¸

`
h2p

p2n´3

˜

sup
tPr0,T s

`

}
.
ϕ}2n,Ωa ` }ϕ}

2
n,Ωa

˘

`

ż T

0

`

}
..
ϕ}2n,Ωa ` }

.
ϕ}2n,Ωa ` }ϕ}

2
n,Ωa

˘

dt

¸

.

(18)

Proof of Theorem 5.25.2. It is easy to see that the semi-discrete formulation
(1111) is strongly consistent, i.e., the exact solution pu, ϕq satisfies (1111) for any
t P p0, T s:

pρe
..
u,vqΩe ` pc

´2ρa
..
ϕ,ψqΩa ` p2ρeζ

.
u,vqΩe ` pρeζ

2u,vqΩe

`Aehpu,vq `Aahpϕ,ψq ` Iehp
.
ϕ,vq ` Iahp

.
u, ψq

“ pfe,vqΩe ` pfa, ψqΩa , @pv, ψq P V e
h ˆ V

a
h .

Subtracting (1111) from the above identity, we obtain the error equation:

pρe
..
ee,vqΩe ` pc

´2ρa
..
ea, ψqΩa ` p2ρeζ

.
ee,vqΩe ` pρeζ

2ee,vqΩe

`Aehpee,vq `Aahpea, ψq ` Iehp
.
ea,vq ` Iahp

.
ee, ψq “ 0, @pv, ψq P V e

h ˆ V
a
h .

We next decompose the error E “ pee, eaq as follows: E “ EI ´ Eh, with
EI “ peI , eIq “ pu ´ uI , ϕ ´ ϕIq, and Eh “ peh, ehq “ puh ´ uI , ϕh ´ ϕIq,
puI , ϕIq P V

e
h ˆ V a

h being the interpolants defined as in Lemma 5.15.1. By
taking as test functions pv, ψq “ p .eh,

.
ehq, the above identity reads then

pρe
..
eh,

.
ehqΩe ` pc

´2ρa
..
eh,

.
ehqΩa ` p2ρeζ

.
eh,

.
ehqΩe ` pρeζ

2eh,
.
ehqΩe

`Aehpeh,
.
ehq `Aahpeh,

.
ehq ` Iehp

.
eh,

.
ehq ` Iahp

.
eh,

.
ehq

“ pρe
..
eI ,

.
ehqΩe ` pc

´2ρa
..
eI ,

.
ehqΩa ` p2ρeζ

.
eI ,

.
ehqΩe ` pρeζ

2eI ,
.
ehqΩe

`AehpeI ,
.
ehq `AahpeI ,

.
ehq ` Iehp

.
eI ,

.
ehq ` Iahp

.
eI ,

.
ehq.
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Using the Cauchy–Schwarz inequality to bound the terms on the right-hand
side, the above estimate can be rewritten as

1

2

d

dt

´

}Eh}
2
E ´ 2 xttσhpehquu, rrehssyFeh

´ 2 xttρa∇hehuu, rrehssyFah

¯

`2}ρ
1{2
e ζ

1{2 .
eh}

2
Ωe ď }

.
eI}Ee}eh}Ee`}

.
eI}Ea}eh}Ea`2}ρ

1{2
e ζ

1{2 .
eI}Ωe}ρ

1{2
e ζ

1{2 .
eh}Ωe

`AehpeI ,
.
ehq `AahpeI ,

.
ehq ` Iehp

.
eI ,

.
ehq ` Iahp

.
eI ,

.
ehq ` pρζ

2eI ,
.
ehqΩe .

This inequality can be further manipulated by observing that

2}ρ
1{2
e ζ

1{2 .
eI}Ωe}ρ

1{2
e ζ

1{2 .
eh}Ωe ď }ρ

1{2
e ζ

1{2 .
eI}

2
Ωe ` }ρ

1{2
e ζ

1{2 .
eh}

2
Ωe ;

thereby we obtain

1

2

d

dt

´

}Eh}
2
E ´ 2 xttσhpehquu, rrehssyFeh

´ 2 xttρa∇hehuu, rrehssyFah

¯

` }ρ
1{2
e ζ

1{2 .
eh}

2
Ωe ď }

.
eI}Ee}eh}Ee ` }

.
eI}Ea}eh}Ea ` }ρ

1{2
e ζ

1{2 .
eI}

2
Ωe

`AehpeI ,
.
ehq `AahpeI ,

.
ehq ` Iehp

.
eI ,

.
ehq ` Iahp

.
eI ,

.
ehq ` pρζ

2eI ,
.
ehqΩe .

Since }ρ
1{2
e ζ

1{2 .
eh}

2
Ωe
ě 0, integrating in time between 0 and t, using Lemma

A.2A.2, and choosing the projections of the initial data such that ehp0q “ u0,h´

pu0qI “ 0 and ehp0q “ ϕ0,h ´ pϕ0qI “ 0, we get

}Eh}
2
E À

ż t

0
p}

.
eI}Ee}eh}Ee ` }

.
eI}Ea}eh}Eaq dτ `

ż t

0
}ρ

1{2
e ζ

1{2 .
eI}

2
Ωedτ

`

ż t

0
pρeζ

2eI ,
.
ehqΩedτ `

ż t

0

`

AehpeI ,
.
ehq `AahpeI ,

.
ehq

˘

dτ

`

ż t

0

`

Iehp
.
eI ,

.
ehq ` Iahp

.
eI ,

.
ehq

˘

dτ. (19)

Performing integration by parts in time between 0 and t on the third term
on the right-hand side, and using the fact that ehp0q “ 0, ehp0q “ 0 and the
definition (1616) of the energy norm yields

ż t

0
pρeζ

2eI ,
.
ehqΩedτ “ pρeζ

2eIptq, ehptqqΩe ´

ż t

0
pρeζ

2 .
eI , ehqΩedτ

À }eI}Ee}eh}Ee `

ż t

0
}
.
eI}Ee}eh}Eedτ.

Analogously, using the continuity of bilinear forms Aeh and Aah expressed by
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(1515), and the definition (1616) of the energy norm, we obtain
ż t

0

`

AehpeI ,
.
ehq `AahpeI ,

.
ehq

˘

dτ “ AehpeIptq, ehptqq `AahpeIptq, ehptqq

´

ż t

0

`

Aehp
.
eI , ehq `Aahp

.
eI , ehq

˘

dτ

À ~eI~dG,e}eh}Ee ` ~eI~dG,a}eh}Ea

`

ż t

0

`

~
.
eI~dG,e}eh}Ee ` ~

.
eI~dG,a}eh}Ea

˘

dτ.

We now seek a bound on the fifth term on the right-hand side of (1919).
Focusing on the bilinear form Ieh (cf. definition (1212)), we have

Iehp
.
eI ,

.
ehq “

ÿ

FPFh,I

pρa
.
eIne,

.
ehqF ď

ÿ

FPFh,I

}ρa
.
eI}F }

.
eh}F

À
ÿ

κePT eh,I, κaPT
a
h,I

}
.
eI}Bκa}

.
eh}Bκe

À
ÿ

κePT eh,I, κaPT
a
h,I

pe,κeh
´1{2

κe }
.
eI}Bκa}

.
eh}κe

À

ˆ

ÿ

κPT ah,I

pa,κh
´1{2
κ }

.
eI}Bκ

˙

}eh}Ee ,

where we have used the Cauchy–Schwarz inequality, the trace-inverse in-
equality (1010), the definition (1616) of the energy norm, and, in the last bound,
Assumption 1c1c on hp-local bounded variation. Hence, we have
ż t

0
Iehp

.
eI ,

.
ehq dτ À

ż t

0

ˆ

ÿ

κPT ah,I

pa,κh
´1{2
κ }

.
eI}Bκ

˙

}eh}Eedτ ”

ż t

0
J ah p

.
eIq}eh}Eedτ.

(20)
Recalling that Iahp

.
eI ,

.
ehq “ ´Iehp

.
eh,

.
eIq, with completely analogous argu-

ments we obtain
ż t

0
Iahp

.
eI ,

.
ehq dτ À

ż t

0

ˆ

ÿ

κPT eh,I

pe,κh
´1{2
κ }

.
eI}Bκ

˙

}eh}Eadτ ”

ż t

0
J eh p

.
eIq}eh}Eadτ.

(21)
Substituting the above bounds into (1919), we get

}Eh}
2
E À

´

}eI}Ee ` ~eI~dG,e

¯

}eh}Ee ` ~eI~dG,a}eh}Ea `

ż t

0
}ρ

1{2
e ζ

1{2 .
eI}

2
Ωedτ

`

ż t

0

`

}
.
eI}Ee ` ~

.
eI~dG,e ` J

e
h p

.
eIq

˘

}eh}Eedτ
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`

ż t

0

`

}
.
eI}Ea ` ~

.
eI~dG,a ` J

a
h p

.
eIq

˘

}eh}Eadτ.

Observe now that }eh}Ee ď }Eh}E and }eh}Ea ď }Eh}E . Thanks to Young’s
inequality we have

´

}eI}Ee ` ~eI~dG,e

¯

}eh}Ee ď
ε

2
}eh}

2
Ee `

1

2ε

´

}eI}Ee ` ~eI~dG,e

¯2

ď
ε

2
}Eh}

2
E `

1

ε

´

}eI}
2
Ee ` ~eI~

2
dG,e

¯

,

~eI~dG,a}eh}Ea ď
δ

2
}Eh}

2
E `

1

2δ
~eI~

2
dG,a.

Choosing ε such that 1 ´ 1
2Cε ą 0 and δ such that 1 ´ 1

2Cpδ ` εq ą 0, C
being the hidden constant in (1919), we infer that

}Eh}
2
E À }eI}

2
Ee ` ~eI~

2
dG,e ` ~eI~

2
dG,a `

ż t

0
}ρ

1{2
e ζ

1{2 .
eI}

2
Ωedτ

`

ż t

0

´

}
.
eI}Ee ` ~

.
eI~dG,e ` J

a
h p

.
eIq

`}
.
eI}Ea ` ~

.
eI~dG,a ` J

e
h p

.
eIq

¯

}Eh}E dτ.

Upon setting

G “ sup
tPr0,T s

´

}eI}
2
Ee ` ~eI~

2
dG,e ` ~eI~

2
dG,a

¯

`

ż T

0
}ρ

1{2
e ζ

1{2 .
eI}

2
Ωedτ,

and applying Gronwall’s Lemma [5555, p. 28] along with Jensen’s inequality,
we get

}Eh}
2
E À G`

ż T

0

´

}
.
eI}

2
Ee ` ~

.
eI~

2
dG,e ` J

e
h p

.
eIq

2

`}
.
eI}

2
Ea ` ~

.
eI~

2
dG,a ` J

a
h p

.
eIq

2
¯

dτ. (22)

Owing to hp-approximation boundary estimates [1414, Lemma 33], we infer
that

J ah p
.
eIq À

ÿ

κPT ah,I

h
minppa,κ`1,nq´1
κ

p
n´3{2
a,κ

}E
.
ϕ}n,K,

J eh p
.
eIq À

ÿ

κPT eh,I

h
minppe,κ`1,mq´1
κ

p
m´3{2
e,κ

}E
.
u}m,K

(cf. (2020) and (2121)). Applying the bounds of Lemma 5.15.1 to estimate the
energy- and dG-norms in the right-hand side of (2222), observing that }Eptq}2E ď
2p}Ehptq}

2
E `}EIptq}

2
Eq @t P r0, T s, applying again the bounds of Lemma 5.15.1

to estimate the second addend, and taking the supremum over r0, T s of the
resulting estimate, the thesis follows.
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6 Numerical examples

In this section we solve problem (11) for ζ “ 0 in the rectangle Ω “ p´1, 1qˆ
p0, 1q on polygonal meshes11 such as the one represented in Figure 11. Numer-
ical experiments have been carried out both to test hp-convergence (besides
validating numerically estimate (1818) by computing the dG-norm of the error,
we also check convergence of the method in the L2-norm) and to simulate a
problem of physical interest, where the system is excited by a point source
load in the acoustic domain. In all cases, we assume that Ωe “ p´1, 0qˆp0, 1q
is occupied by an isotropic material, i.e., C is such that

σpuq “ 2µ εpuq ` λpdivuqI,

with µ and λ Lamé coefficients, both constant over Ωe, and Ωa “ p0, 1qˆp0, 1q
is occupied by a fluid with constant density ρa. The interface is thus given
by ΓI “ t0u ˆ r0, 1s. The time discretization employed is always a leap-frog
centered scheme, as in [5151]. The timestep will be precised depending on
the case under consideration. In all of the numerical experiments, all the
physical quantities involved are supposed to be dimensionless.

In Sections 6.16.1 and 6.26.2 we choose, as in [66], µ “ 26.29, λ “ 51.20, ρe “ 2.7,
ρa “ 1, and c “ 1.

6.1 Test case 1

In this test case, the right-hand sides fe and fa are chosen so that the exact
solution is given by

upx, y; tq “ x2 cosp
?

2πtq cos
´π

2
x
¯

sinpπyq pu,

ϕpx, y; tq “ x2 sinp
?

2πtq sinpπxq sinpπyq,
(23)

where pu “ p1, 1q. The timestep is here set to ∆t “ 10´4, and the final
observation time is set to T “ 1. Notice that, in this case, both the left-
and right-hand sides of the transmission conditions on ΓI (cf. (11)) vanish,
as well as the unknowns u and ϕ themselves. Figure 22 shows convergence
results in the dG- and L2-norms respectively, for four nested, sequentially
refined polygonal meshes (the coarsest mesh containing 80 elements, the
finest 5120), when polynomials of uniform degree p “ 2 are used on any
element. The numerical results concerning the dG-error show asymptotic
convergence rates that match those predicted by estimate (1818). Also, as it
is typical for dG methods, the L2-error turns out to converge in hp`1 (see,
e.g., [5454, Theorem 2] for the case of the elastodynamics equation).

1Meshes have been generated using PolyMesher [5656].

21



Figure 1: Computational domain and mesh made up by 120 polygons.

Figure 33 shows convergence results in a semilogarithmic scale, in the dG- and
L2-norms respectively, for a fixed mesh given by 300 elements and a uniform
polynomial degree ranging from 1 to 5. Since the exact solution is analytical,
the error undergoes an exponential decay, as predicted, for instance, by the
theory of Spectral Element methods (see e.g. [5555, Chapter 10]).

6.2 Test case 2

We now choose the right-hand sides fe and fa so that the exact solution is
given by

upx, y; tq “

ˆ

cos
´4πx

cp

¯

, cos
´4πx

cs

¯

˙

cosp4πtq,

ϕpx, y; tq “ sinp4πxq sinp4πtq,

(24)

where

cp “

d

λ` 2µ

ρe
and cs “

c

µ

ρe

are the velocities of pressure and shear waves in the elastic domain, re-
spectively. The same test has been carried out in [66] using a Spectral El-
ement discretization; the choice of material parameters is also the same as
in the previous test case. In this case, on ΓI, both the traction σpuqne
and the acoustic pressure ´ρa

.
ϕne vanish; on the other hand, we have

Bϕ{Bna “ ´
.
u ¨ na “ 4π sinp4πtq. The timestep is, again, set to ∆t “ 10´4;

on the other hand, the final observation time is in this case set to T “ 0.8,
to ensure that none of the two unknowns u and ϕ be identically zero when
dG- and L2-errors are computed.

Figure 44 shows convergence results in the dG- and L2-norms respectively,
for four nested, sequentially refined polygonal meshes (the coarsest mesh
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(b) }u´ uh}Ωe and }ϕ´ ϕh}Ωa vs. h at T “ 1

Figure 2: dG-error and L2-error vs. h for four sequentially refined polygonal
meshes and second-order polynomials, with u and ϕ as in (2323).
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Figure 3: dG-error and L2-error vs. p for p ranging from 1 to 5 and a mesh
given by 300 polygons, with u and ϕ as in (2323).
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containing 80 elements, the finest 5120), when polynomials of uniform degree
p “ 2 are used on any element. The numerical results concerning the dG-
error again show asymptotic convergence rates matching those predicted by
estimate (1818). Also, the L2-error convergence rates turn out to be slightly
higher than hp`1 both for u and for ϕ; in the latter case, this difference is
more remarkable.

Figures 55 shows convergence results in a semilogarithmic scale, in the dG-
and L2-norms respectively, for a fixed mesh given by 300 elements and a
uniform polynomial degree ranging from 1 to 5. Again, the error undergoes
an exponential decay. Notice that, concerning the L2-error on u (Figure 55b),
the convergence rate decreases when passing from polynomial degree 4 to 5:
in both cases the L2-error is on the order of 10´7. This behavior is related
to the choice of the timestep ∆t, set to 10´4; indeed, when a leap-frog time
discretization is employed, the error is expected to converge in ∆t2. In our
case, ∆t2 “ 10´8, which is only one order of magnitude lower than the L2-
error for p “ 4 and p “ 5. Decreasing the timestep to ∆t “ 10´5 allows to
recover the expected convergence.

6.3 Physical example

As a further numerical experiment, we simulate a seismic source. In partic-
ular, we reckon that the system is excited only by a Ricker wavelet, i.e., by
the following point source load placed in the acoustic domain:

fapx, tq “ ´2πa
`

1´ 2πapt´ t0q
2
˘

e´πapt´t0q
2
δpx´x0q, x0 P Ωa, t0 P p0, T s,

(25)
where x ” px, yq, x0 ” px0, y0q is a given point in Ωa, and δ is the Dirac
distribution (cf. Figure 66 for a representation of the time factor in (2525)). All
initial conditions, as well as the body force fe, are set to zero. The Dirac
distribution in x0 is approximated numerically by a Gaussian distribution
centered at x0. We consider the following values of the material parameters:
ρe “ 2.5, ρa “ 1, µ “ 10, λ “ 20, c “ 1.5; also, in (2525), we choose
x0 “ p0.2, 0.5q, t0 “ 0.1, and a “ 576. We employ here a polygonal mesh of
5000 elements, corresponding to a meshsize h » 0.04, a uniform polynomial
degree p “ 3, and a timestep ∆t “ 10´5. The final observation time is set
to T “ 1.

Figure 77 shows the numerical solution (horizontal and vertical elastic dis-
placements, and acoustic potential) at time t “ 0.5. The vertical displace-
ment, displayed in Figure 77b, turns out to be very close to zero in a large elas-
tic subregion, except near the boundary, where small reflected wavefronts can
be detected, because of homogeneous Dirichlet boundary conditions. This
behavior is due to the fact that the seismic source is placed close enough to
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Figure 4: dG-error and L2-error vs. h for four sequentially refined polygonal
meshes and second-order polynomials, with u and ϕ as in (2424).
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Figure 5: dG-error and L2-error vs. p for p ranging from 1 to 5 and a mesh
given by 300 polygons, with u and ϕ as in (2424).
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Figure 6: t ÞÑ ´2πa
`

1´ 2πapt´ t0q
2
˘

e´πapt´t0q
2 for a “ 576 and t0 “ 0.1.

the interface ΓI, so that the effects of reflected waves in the elastic region are
not observed for a certain time, and hence only the coupling effects are visible
(only longitudinal stresses are propagated through the elasto-acoustic inter-
face, since fluids cannot sustain shear stresses). Nevertheless, after a certain
time, elastic waves are reflected, which gives rise to a nonzero vertical dis-
placement. Concerning the acoustic region, spherical wavefronts generated
by the point source load can be clearly observed in Figure 77c; again, waves
are reflected on the boundary for the same reason as before.

A Appendix

Lemma A.1. The following inequalities hold:

}η´
1{2ttσhpvquu}Feh À

1
?
α
}C1{2εhpvq}Ωe @v P V e

h , (26a)

}χ´
1{2ttρa∇hψuu}Fah À

1
?
β
}ρ

1{2
a ∇hψ}Ωa @ψ P V a

h , (26b)

where α and β are the stability parameters appearing in the definition of
stabilization functions (13a13a)–(13b13b).

Proof. We only prove (26a26a), the arguments for showing (26b26b) being com-
pletely analogous.
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(a) Horizontal elastic displacement at t “ 0.5

(b) Vertical elastic displacement at t “ 0.5

(c) Acoustic potential at t “ 0.5

Figure 7: Numerical solution at t “ 0.5.
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Recall that the following trace-inverse inequality holds for simplices [1414,
p. 25]: given a simplex T Ă Rd and a polynomial degree p ě 1, for all
v P PppT q there is a real number C ą 0 independent of the discretization
parameters such that

}v}2F ď Cp2 |F |

|T |
}v}2T . (27)

Owing to (2727), the definition (9a9a) of Cκ, the definition (13a13a) of η, and As-
sumption 1a1a, for any v P V e

h we obtain

}η´
1{2ttσhpvquu}

2
Feh
ď

ÿ

κPT eh

ÿ

FĂBκ

Cκ}η´
1{2C1{2εpvq}2F

À
ÿ

κPT eh

ÿ

FĂBκ

η´1Cκp2
e,κ

|F |

|κF
5
|
}C1{2εpvq}2

κF
5

À
1

α
}C1{2εhpvq}

2
Ωe .

Lemma A.2. For any W “ pv, ψq P C1pr0, T s;V e
h q ˆ C1pr0, T s;V a

h q, it
holds

}W }2E ´ 2
´

xttσhpvquu, rrvssyFeh
` xttρa∇hψuu, rrψssyFah

¯

À }W }2E ,

}W }2E ´ 2
´

xttσhpvquu, rrvssyFeh
` xttρa∇hψuu, rrψssyFah

¯

Á }W }2E ,

Proof. The first bound follows from the Cauchy–Schwarz inequality, the def-
inition (1616) of the energy norm, and Lemma A.1A.1:

}W }2E ´ 2
´

xttσhpvquu, rrvssyFeh
` xttρa∇hψuu, rrψssyFah

¯

À }W }2E ` }η
´1{2ttσhpvquu}Feh}η

1{2rrvss}Feh ` }χ
´1{2ttρa∇hψuu}Fah }χ

1{2rrψss}Fah

À }W }2E `
1
?
α
}C1{2εhpvq}Ωe}v}dG,e `

1
?
β
}ρ

1{2
a ∇hψ}Ωa}ψ}dG,a

À }W }2E ` }W }2dG À }W }2E ,

where we have set }W }2dG “ }v}
2
dG,e ` }ψ}

2
dG,a. To prove the second bound,

it suffices to show that

}W }2dG ´ 2
´

xttσhpvquu, rrvssyFeh
` xttρa∇hψuu, rrψssyFah

¯

Á }W }2dG. (28)

Indeed, by the definition (1616) of the energy norm and (2828),

}W }2E ´ 2
´

xttσhpvquu, rrvssyFeh
` xttρa∇hψuu, rrψssyFah

¯

“ }ρ
1{2
e

.
v}2Ωe ` }ρ

1{2
e ζv}

2
Ωe ` }c

´1ρ
1{2
a

.
ψ}2Ωa ` }W }2dG
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´ 2
´

xttσhpvquu, rrvssyFeh
` xttρa∇hψuu, rrψssyFah

¯

Á }ρ
1{2
e

.
v}2Ωe ` }ρ

1{2
e ζv}

2
Ωe ` }c

´1ρ
1{2
a

.
ψ}2Ωa ` }W }2dG “ }W }2E .

Thus, we next show that (2828) holds provided the stability parameters α and
β are chosen large enough. To this purpose, using Young’s inequality we
infer that, for any δ, ε ą 0,

xttσhpvquu, rrvssyFeh
ď

ÿ

FPFeh

}η´
1{2ttσhpvquu}F }η

1{2rrvss}F

ď
1

2δ
}η´

1{2ttσhpvquu}
2
Feh
`
δ

2
}η

1{2rrvss}2Feh
,

xttρa∇hψuu, rrψssyFah
ď

ÿ

FPFah

}χ´
1{2ttρa∇hψuu}F }χ

1{2rrψss}F

ď
1

2ε
}χ´

1{2ttρa∇hψuu}
2
Fah
`
ε

2
}χ

1{2rrψss}2Fah
,

Hence, from the definition of the }¨}dG,e- and }¨}dG,a-norms on V e
h and V a

h ,
it follows that

}W }2dG ´ 2
´

xttσhpvquu, rrvssyFeh
` xttρa∇hψuu, rrψssyFah

¯

ě }C1{2εpvq}2Ωe ` }ρ
1{2
a ∇hψ}

2
Ωa ` p1´ δq }η

1{2rrvss}2Feh
´

1

δ
}η´

1{2ttσhpvquu}
2
Feh

` p1´ εq }χ
1{2rrψss}2Fah

´
1

ε
}χ´

1{2ttρa∇hψuu}
2
Fah

ě

ˆ

1´
C1

αδ

˙

}C1{2εhpvq}
2
Ωe `

ˆ

1´
C2

βε

˙

}ρ
1{2
a ∇hψ}

2
Ωa

` p1´ δq }η
1{2rrvss}2Feh

` p1´ εq }χ
1{2rrψss}2Fah

,

where in the last bound we have applied Lemma A.1A.1 with hidden constants
C1 and C2. Then (2828) follows by choosing, for instance, δ “ ε “ 1{2 and
α ě 4C1, β ě 4C2.

References

[1] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. “Unified
analysis of discontinuous Galerkin methods for elliptic problems”. In:
SIAM J. Numer. Anal. 39 (2002), pp. 1749–1779.

[2] B. Rivière. Discontinuous Galerkin methods for solving elliptic and
parabolic equations. Frontiers in Applied Mathematics. SIAM, 2008.

31



[3] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin
Methods. Vol. 54. Texts in Applied Mathematics. Springer-Verlag New
York, 2008.

[4] D. A. Di Pietro and A. Ern. Mathematical aspects of Discontinuous
Galerkin methods. Mathématiques & Applications. Springer-Verlag,
2012.

[5] B. Flemisch, M. Kaltenbacher, and B. I. Wohlmuth. “Elasto–acoustic
and acoustic–acoustic coupling on non-matching grids”. In: Int. J. Nu-
mer. Meth. Engng 67 (2006), pp. 1791–1810.

[6] S. Mönköla. “Numerical simulation of fluid-structure interaction be-
tween acoustic and elastic waves”. PhD thesis. University of Jyväskylä,
2011.

[7] P. F. Antonietti, F. Brezzi, and L. D. Marini. “Bubble stabi-
lization of discontinuous Galerkin methods”. In: Comput. Methods
Appl. Mech. Engrg. 198 (2009), pp. 1651–1659.

[8] A. Cangiani, E. H. Georgoulis, and P. Houston. “hp-Version discon-
tinuous Galerkin methods on polygonal and polyhedral meshes”. In:
Math. Models Methods Appl. Sci. 24 (2014), pp. 2009–2041.

[9] P. F. Antonietti, A. Cangiani, J. Collis, Z. Dong, E. H. Georgoulis,
S. Giani, and P. Houston. “Review of discontinuous Galerkin finite
element methods for partial differential equations on complicated do-
mains”. In: Building bridges: connections and challenges in modern ap-
proaches to numerical partial differential equations. Ed. by G. Bar-
renechea, F. Brezzi, A. Cangiani, and E.H. Georgoulis. Vol. 114. Lec-
ture Notes in Computational Science and Engineering. Springer, Cham,
2016.

[10] A. Cangiani, Z. Dong, E. H. Georgoulis, and P. Houston. “hp-Version
discontinuous Galerkin methods for advection–diffusion–reaction prob-
lems on polytopic meshes”. In: ESAIM Math. Model. Numer. Anal. 50
(2016), pp. 699–725.

[11] P. F. Antonietti, P. Houston, X. Hu, M. Sarti, and M. Verani. “Multi-
grid algorithms for hp-version interior penalty discontinuous Galerkin
methods on polygonal and polyhedral meshes”. In: Calcolo 54 (2017),
pp. 1169–1198.

[12] A. Cangiani, Z. Dong, and E. H. Georgoulis. “hp-Version space-time
discontinuous Galerkin methods for parabolic problems on prismatic
meshes”. In: SIAM J. Sci. Comput. 39 (2017), A1251–A1279.

[13] P. F. Antonietti and I. Mazzieri. High-order Discontinuous Galerkin
methods for the elastodynamics equation on polygonal and polyhedral
meshes. MOX-Report No. 06/2018, submitted. 2018.

32



[14] A. Cangiani, Z. Dong, E. H. Georgoulis, and P. Houston. hp-Version
discontinuous Galerkin methods on polygonal and polyhedral meshes.
SpringerBriefs in Mathematics. Springer International Publishing,
2017.

[15] N. Sukumar and A. Tabarrei. “Conforming polygonal finite elements”.
In: Int. J. Numer. Meth. Engng 61 (2004), pp. 2045–2066.

[16] A. Tabarrei and N. Sukumar. “Application of polygonal finite elements
in linear elasticity”. In: Int. J. Comput. Methods 3 (2006), pp. 503–520.

[17] A. Tabarrei and N. Sukumar. “Extended finite-element method on
polygonal and quadtree meshes”. In: Comput. Methods Appl. Mech. En-
grg. 197 (2008), pp. 425–438.

[18] G. Manzini, A. Russo, and N. Sukumar. “New perspectives on polygo-
nal and polyhedral finite element methods”. In: Math. Models Methods
Appl. Sci. 24 (2014), pp. 1665–1699.

[19] F. Brezzi, A. Buffa, and K. Lipnikov. “Mimetic finite differences for
elliptic problems”. In: ESAIM Math. Model. Numer. Anal. 43 (2009),
pp. 277–295.

[20] L. Beirão da Veiga, K. Lipnikov, and G. Manzini. “Arbitrary-
order nodal mimetic discretizations of elliptic problems on polygonal
meshes”. In: SIAM J. Numer. Anal. 49 (2011), pp. 1737–1760.

[21] P. F. Antonietti, N. Bigoni, and M. Verani. “Mimetic discretizations
of elliptic control problems”. In: J. Sci. Comput. 56 (2013), pp. 14–27.

[22] V. Gyrya, K. Lipnikov, and G. Manzini. “The arbitrary order mixed
mimetic finite difference method for the diffusion equation”. In: ESAIM
Math. Model. Numer. Anal. 50 (2016), pp. 851–877.

[23] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. “Basic prin-
ciples of virtual element methods”. In:Math. Models Methods Appl. Sci.
23 (2013), pp. 199–214.

[24] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. “Mixed
virtual element methods for general second order elliptic problems on
polygonal meshes”. In: ESAIM Math. Model. Numer. Anal. 50 (2016),
pp. 727–747.

[25] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. “Virtual
element method for general second-order elliptic problems on polygonal
meshes”. In: Math. Models Methods Appl. Sci. 26 (2016), pp. 729–750.

[26] P. F. Antonietti, G. Manzini, and M. Verani. “The fully nonconforming
virtual element method for biharmonic problems”. In: Math. Models
Methods Appl. Sci. 28 (2018), pp. 387–407.

33



[27] D. A. Di Pietro, A. Ern, and S. Lemaire. “An arbitrary-order and
compact-stencil discretization of diffusion on general meshes based on
local reconstruction operators”. In: Comput. Method Appl. Math. 14
(2014), pp. 461–472.

[28] D. A. Di Pietro and A. Ern. “A Hybrid High-Order locking-free
method for linear elasticity on general meshes”. In: Comput. Methods
Appl. Mech. Engrg. 283 (2015), pp. 1–21.

[29] D. A. Di Pietro and J. Droniou. “A Hybrid High-Order method for
Leray–Lions elliptic equations on general meshes”. In: Math. Comp. 86
(2017), pp. 2159–2191.

[30] D. A. Di Pietro and R. Tittarelli. “An introduction to Hybrid High-
Order methods”. In: Lectures from the Fall 2016 thematic quarter at
Institut Henri Poincaré. Ed. by D. A. Di Pietro, A. Ern, and L. For-
maggia. Accepted for publication. Springer, 2017.

[31] F. Bonaldi, D. A. Di Pietro, G. Geymonat, and F. Krasucki. “A Hybrid
High-Order method for Kirchhoff–Love plate bending problems”. In:
ESAIM Math. Model. Numer. Anal. (2018). Accepted for publication.
Preprint arXiv:1706.06781arXiv:1706.06781.

[32] A. Bermúdez, L. Hervella–Nieto, and R. Rodríguez. “Finite element
computation of three-dimensional elastoacoustic vibrations”. In: Jour-
nal of Sound and Vibration 219 (1999), pp. 279–306.

[33] H. Barucq, R. Djellouli, and E. Estecahandy. “Characterization of the
Fréchet derivative of the elasto-acoustic field with respect to Lipschitz
domains”. In: J. Inverse Ill-Posed Probl. 22 (2014), pp. 1–8.

[34] H. Barucq, R. Djellouli, and E. Estecahandy. “Efficient DG-like for-
mulation equipped with curved boundary edges for solving elasto-
acoustic scattering problems”. In: Int. J. Numer. Meth. Engng 98
(2014), pp. 747–780.

[35] D. Brunner, M. Junge, and L. Gaul. “A comparison of FE–BE coupling
schemes for large-scale problems with fluid-structure interaction”. In:
Int. J. Numer. Meth. Engng 77 (2009), pp. 664–688.

[36] J. D. De Basabe and M. K. Sen. “A comparison of finite-difference and
spectral-element methods for elastic wave propagation in media with a
fluid-solid interface”. In: Geophysical Journal International 200 (2015),
pp. 278–298.

[37] M. Fischer and L. Gaul. “Fast BEM–FEMmortar coupling for acoustic-
structure interaction”. In: Int. J. Numer. Meth. Engng 62 (2005),
pp. 1677–1690.

[38] J. Mandel. “An iterative substructuring method for coupled fluid–solid
acoustic problems”. In: J. Comput. Phys. 177 (2002), pp. 95–116.

34

https://arxiv.org/abs/1706.06781


[39] S. Mönköla. “On the accuracy and efficiency of transient spectral ele-
ment models for seismic wave problems”. In: Adv. Math. Phys. (2016).

[40] V. Péron. “Equivalent boundary conditions for an elasto-acoustic prob-
lem set in a domain with a thin layer”. In: ESAIM Math. Model. Nu-
mer. Anal. 48 (2014), pp. 1431–1449.

[41] R. A. Jeans and I. C. Mathews. “Solution of fluid-structure interaction
problems using a coupled finite element and variational boundary ele-
ment technique”. In: The Journal of the Acoustical Society of America
88 (1990).

[42] G. W. Benthien and H. A. Schenck. “Structural-acoustic coupling”. In:
Boundary element methods in acoustics. Ed. by R.D. Ciskowski and
C.A. Brebbia. Computational mechanics publications. Elsevier Applied
Science, Southampton, 1991.

[43] D. Komatitsch, C. Barnes, and J. Tromp. “Wave propagation near a
fluid-solid interface: a spectral-element approach”. In: Geophysics 65
(2000), pp. 623–631.

[44] M. Popa. “Finite element solution of scattering in coupled fluid-solid
systems”. PhD thesis. University of Colorado, 2002.

[45] G. C. Hsiao and N. Nigam. “A transmission problem for fluid-structure
interaction in the exterior of a thin domain”. In: Adv. Differential Equa-
tions 8 (2003), pp. 1281–1318.

[46] H. Y. Lee, S. C. Lim, D. J. Min, B. D. Kwon, and M. Park. “2D time-
domain acoustic-elastic coupled modeling: a cell-based finite-difference
method”. In: Geosciences Journal 13 (2009), pp. 407–414.

[47] B. Flemisch, M. Kaltenbacher, S. Triebenbacher, and B. I. Wohlmuth.
“The equivalence of standard and mixed finite element methods in
applications to elasto-acoustic interaction”. In: SIAM J. Sci. Comput.
32 (2010), pp. 1980–2006.

[48] G. C. Hsiao, F. J. Sayas, and R. J. Weinacht. “Time-dependent fluid-
structure interaction”. In:Math. Methods Appl. Sci. 40 (2017), pp. 486–
500.

[49] F. Bonaldi, G. Geymonat, and F. Krasucki. “Modeling of smart ma-
terials with thermal effects: dynamic and quasi-static evolution”. In:
Math. Models Methods Appl. Sci. 25 (2015), pp. 2633–2667.

[50] H. Brezis. Functional analysis, Sobolev spaces and partial differential
equations. Universitext. Springer-Verlag New York, 2011.

[51] P. F. Antonietti, A. Ferroni, I. Mazzieri, R. Paolucci, A. Quarteroni,
C. Smerzini, and M. Stupazzini. Numerical modeling of seismic waves
by discontinuous spectral element methods. MOX-Report No. 09/2017,
submitted. 2017.

35



[52] D. N. Arnold, F. Brezzi, R. S. Falk, and L. D. Marini. “Locking-
free Reissner–Mindlin elements without reduced integration”. In: Com-
put. Methods Appl. Mech. Engrg. 196 (2007), pp. 3660–3671.

[53] P. F. Antonietti, B. Ayuso de Dios, I. Mazzieri, and A. Quarteroni.
“Stability analysis of discontinuous Galerkin approximations to the
elastodynamics problem”. In: J. Sci. Comput. 68 (2016), pp. 143–170.

[54] P. F. Antonietti, A. Ferroni, I. Mazzieri, and A. Quarteroni. “hp-
Version discontinuous Galerkin approximations of the elastodynamics
equation”. In: Spectral and High Order Methods for Partial Differential
Equations ICOSAHOM 2016. Ed. by M.L. Bittencourt, N.A. Dumont,
and J.S. Hesthaven. Vol. 119. Lecture Notes in Computational Science
and Engineering. Springer, Cham, 2017.

[55] A. Quarteroni. Numerical Models for Differential Problems. 2nd. Vol. 8.
MS&A. Springer-Verlag Mailand, 2014.

[56] C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes. “Poly-
Mesher: a general-purpose mesh generator for polygonal elements writ-
ten in Matlab”. In: Struct. Multidisc. Optim. 45 (2012), pp. 309–328.

36



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

14/2018 Cuffaro, M.; Miglio, E.; Penati, M.;Viganò, M.
Mantle upwelling driven by asymmetric sea-floor spreading at northern
Mid–Atlantic ridge

15/2018 Simona, A.; Bonaventura, L.;  Pugnat, T.; Dalena, B.
High order time integrators for the simulation of charged particle motion in
magnetic quadrupoles

16/2018 Calissano, A.; Vantini, S.; Arnaboldi, M.
An elephant in the room: Twitter samplingmethodology.

17/2018 Agosti, A.; Giverso, C.; Faggiano, E.;Stamm,A.; Ciarletta, P.
A personalized mathematical tool for neuro-oncology: a clinical case study

13/2018 Gandelli, E.; Penati, M.;Quaglini, V.;Lomiento, G.; Miglio, E.; Benzoni, G.M. 
A novel OpenSees element for single curved surface sliding isolators

11/2018 Delpopolo Carciopolo L.; Bonaventura L.; Scotti A.; Formaggia L.
A conservative implicit multirate method for hyperbolic problems

12/2018 Dal Santo, N.; Deparis, S.; Manzoni, A.; Quarteroni, A.
Multi space reduced basis preconditioners for large-scale parametrized PDEs

09/2018 Menafoglio, A.; Grasso, M.; Secchi, P.; Colosimo, B.M.
Profile Monitoring  of  Probability  Density  Functions  via  Simplicial 
Functional  PCA with application to Image Data

10/2018 Menafoglio, A.; Gaetani, G.; Secchi, P.
Random Domain Decompositions for object-oriented Kriging over complex
domains

08/2018 Bonaventura, L.;   Casella, F.; Delpopolo, L.;  Ranade, A.;
A self adjusting multirate algorithm based on the TR-BDF2  method


	qmox18-copertina
	mox-2018226185116
	The elasto-acoustic problem
	Discrete setting
	Grid assumptions

	Semi-discrete problem
	Stability of the semi-discrete formulation
	Semi-discrete error estimate
	Numerical examples
	Test case 1
	Test case 2
	Physical example

	Appendix

	qmox18-terza_di_copertina

