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Abstract

We present an accurate and efficient discretization approach for
the adaptive discretization of typical model equations employed in
numerical weather prediction. A semi-Lagrangian approach is com-
bined with the TR-BDF2 semi-implicit time discretization method
and with a spatial discretization based on adaptive discontinuous fi-
nite elements. The resulting method has full second order accuracy
in time and can employ polynomial bases of arbitrarily high degree in
space, is unconditionally stable and can effectively adapt the number
of degrees of freedom employed in each element, in order to balance ac-
curacy and computational cost. The p−adaptivity approach employed
does not require remeshing, therefore it is especially suitable for appli-
cations, such as numerical weather prediction, in which a large number
of physical quantities are associated with a given mesh. Furthermore,
although the proposed method can be implemented on arbitrary un-
structured and nonconforming meshes, even its application on simple
Cartesian meshes in spherical coordinates can cure effectively the pole
problem by reducing the polynomial degree used in the polar elements.
Numerical simulations of classical benchmarks for the shallow water
and for the fully compressible Euler equations validate the method
and demonstrate its capability to achieve accurate results also at large
Courant numbers, with time steps up to 100 times larger than those
of typical explicit discretizations of the same problems, while reducing
the computational cost thanks to the adaptivity algorithm.
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1 Introduction

The Discontinuous Galerkin (DG) spatial discretization approach
is currently being employed by an increasing number of environmental
fluid dynamics models see e.g. [12], [17], [28],[39],[19],[25] and a more
complete overview in [5]. This is motivated by the many attractive
features of DG discretizations, such as high order accuracy, local mass
conservation and ease of massively parallel implementation.

On the other hand, DG methods imply severe stability restric-
tions when coupled with explicit time discretizations. One traditional
approach to overcome stability restrictions in low Mach number prob-
lems is the combination of semi - implicit (SI) and semi - Lagran-
gian (SL) techniques. In a series of papers [41], [42], [19], [14], [52]
it has been shown that most of the computational gains tradition-
ally achieved in finite difference models by the application of SI, SL
and SISL discretization methods are also attainable in the framework
of DG approaches. In particular, in [52] we have introduced a dy-
namically p−adaptive SISL-DG discretization approach for low Mach
number problems, that is quite effective in achieving high order spatial
accuracy, while reducing substantially the computational cost.

In this paper, we apply the technique of [52] to the shallow wa-
ter equations in spherical geometry and to the the fully compressible
Euler equations, in order to show its effectiveness for model prob-
lems typical of global and regional weather forecasting. The advective
form of the equations of motion is employed and the semi-implicit
time discretization is based on the TR-BDF2 method, see e.g. [21],
[32]. This combination of two robust ODE solvers yields a second
order accurate, A-stable and L-stable method (see e.g. [27]), that is
effective in damping selectively high frequency modes. At the same
time, it achieves full second order accuracy, while the off-centering in
the trapezoidal rule, typically necessary for realistic applications to
nonlinear problems (see e.g. [7], [11], [52]), limits the accuracy in time
to first order. Numerical results presented in this paper show that the
total computational cost of one TR-BDF2 step is analogous to that of
one step of the off-centered trapezoidal rule, as well as the structure
of the linear problems to be solved at each time step, thus allowing to
extend naturally to this more accurate method any implementation
based on the off-centered trapezoidal rule. Numerical simulations of
the shallow water benchmarks proposed in [55], [29], [22] and of the
non-hydrostatic benchmarks proposed in [47], [23] have been employed
to validate the method and to demonstrate its capabilities. In par-
ticular, it will be shown that the present approach enables the use of
time steps even 100 times larger than those allowed for DG models by
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standard explicit schemes, see e.g. the results in [38].
The method presented in this paper, just as its previous version in

[52], can be applied in principle on arbitrarily unstructured and even
nonconforming meshes. For example, a model based on this method
could run on a non conforming mesh of rectangular elements built
around the nodes of a reduced Gaussian grid [20]. For simplicity,
however, no such implementation has been developed so far. Here,
only a simple Cartesian mesh has been used. If no degree adaptivity
is employed, this results in very high Courant numbers in the po-
lar regions. These do not result in any special stability problems for
the present SISL discretization approach, as it will be shown by the
numerical results reported below. On the other hand, even with an
implementation based on a simple Cartesian mesh in spherical coor-
dinates, the flexibility of the DG space discretization allows to reduce
the degree of the basis and test functions employed close to the poles,
thus making the effective model resolution more uniform and solving
the efficiency issues related to the pole problem by static p−adaptivity.
This is especially advantageous because the conditioning of the linear
system to be solved at each time step is greatly improved and, as a
consequence, the number of iterations necessary for the linear solver
is reduced by approximately 80%, while at the same time no spurious
reflections nor artificial error increases are observed.

Beyond these computational advantages, we believe that the present
approach based on p−adaptivity is especially suitable for applica-
tions to numerical weather prediction, in contrast to h−adaptivity
approaches (that is, local mesh coarsening or refinement in which the
size of some elements changes in time). Indeed, in numerical weather
prediction, information that is necessary to carry out realistic sim-
ulations (such as orography profiles, data on land use and soil type,
land-sea masks) needs to be reconstructed on the computational mesh
and has to be re-interpolated each time that the mesh is changed. Fur-
thermore, many physical parameterizations are highly sensitive to the
mesh size. Although devising better parameterizations that require
less mesh-dependent tuning is an important research goal, more con-
ventional parameterizations will still be in use for quite some time.
As a consequence, it is useful to improve the accuracy locally by
adding supplementary degrees of freedom where necessary, as done
in a p−adaptive framework, without having to change the underlying
computational mesh. In conclusion, the resulting modeling framework
seems to be able to combine the efficiency and high order accuracy of
traditional SISL pseudo-spectral methods with the locality and flexi-
bility of more standard DG approaches.

In section 2, two examples of governing equations are introduced.
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In section 3, the TR-BDF2 method is reviewed. In section 4 the
approach employed for the advection of vector fields in spherical ge-
ometry is described in detail. In section 5, we introduce the SISL-DG
discretization approach for the shallow water equations in spherical ge-
ometry. In section 6, we outline its extension to the fully compressible
Euler equations in a vertical plane. Numerical results are presented
in section 7, while in section 8 we try to draw some conclusions and
outline the path towards application of the concepts introduced here
in the context of a non hydrostatic dynamical core.

2 Governing equations

We consider as a basic model problem the two-dimensional shallow
water equations on a rotating sphere (see e.g. [15]). These equations
are a standard test bed for numerical methods to be applied to the
full equations of motion of atmospheric or oceanic circulation models,
see e.g. [55]. Among their possible solutions, they admit Rossby
and inertial gravity waves, as well as the response of such waves to
orographic forcing. We will use the advective, vector form of the
shallow water equations:

Dh

Dt
= −h∇ · u, (1)

Du

Dt
= −g∇h− f k̂× u− g∇b. (2)

Here h represents the fluid depth, b the bathymetry elevation, f the
Coriolis parameter, k̂ the unit vector locally normal to the Earth’s sur-
face and g the gravity force per unit mass on the Earth’s surface. As-
suming that x, y are orthogonal curvilinear coordinates on the sphere
(or on a portion of it), we denote by mx and my the components
of the (diagonal) metric tensor. Furthermore, we set u = (u, v)T ,
where u and v are the contravariant components of the velocity vec-
tor in the coordinate direction x and y respectively, multiplied by the
corresponding metric tensor components. We also denote by D

Dt the
Lagrangian derivative

D

Dt
=

∂

∂t
+

u

mx

∂

∂x
+

v

my

∂

∂y
,

so that u = mx
Dx
Dt , v = my

Dy
Dt . In particular, in this paper standard

spherical coordinates will be employed.
As an example of a more complete model, we will also consider the

fully compressible, non hydrostatic equations of motion. Following
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e.g. [10], [4], [11], they can be written as

DΠ

Dt
= −

(

cp
cv
− 1

)

Π∇ · u,

Du

Dt
= −cpΘ∇Π− gk̂,

DΘ

Dt
= 0.

where, being p0 a reference pressure value, Θ = T
( p
p0

)

−R/cp is the po-

tential temperature, Π =
( p
p0

)R/cp is the Exner pressure, while cp, cv, R
are the constant pressure and constant volume specific heats and the
gas constant of dry air respectively. Here the Coriolis force is omitted
for simplicity. Notice also that, by a slight abuse of notation, in the
three-dimensional case u = (u, v, w)T denotes the three dimensional
velocity field and the D

Dt ,∇ operators are also three-dimensional, while
we will assume u = (u,w)T in the description of (x, z) two dimensio-
nal, vertical slice models. It is customary to rewrite such equations
in terms of perturbations with respect to a steady hydrostatic ref-
erence profile, so that assuming Π(x, y, z, t) = π∗(z) + π(x, y, z, t),
Θ(x, y, z, t) = θ∗(z)+ θ(x, y, z, t) with cpθ

∗ dπ∗

dz = −g, one obtains for
a vertical plane

DΠ

Dt
= −

(

cp
cv
− 1

)

Π∇ · u, (3)

Du

Dt
= −cpΘ

∂π

∂x
, (4)

Dw

Dt
= −cpΘ

∂π

∂z
+ g

θ

θ∗
, (5)

Dθ

Dt
= −dθ∗

dz
w. (6)

It can be observed that equations (3)-(6) are isomorphic to equations
(1)-(2), which will allow to extend almost automatically the discretiza-
tion approach proposed for the former to the more general model.

3 Review of the TR-BDF2 method

We review here some properties of the so called TR-BDF2 method,
which was first introduced in [2]. Given a Cauchy problem

y′ = f(y, t)

y(0) = y0 (7)
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and considering a time discretization employing a constant time step
∆t, the TR-BDF2 method is defined by the two following implicit
stages:

un+2γ − γ∆tf(un+2γ , tn + 2γ∆t) = un + γ∆tf(un, tn),

un+1 − γ2∆tf(un+1, tn+1) = (1 − γ3)u
n + γ3u

n+2γ . (8)

Here γ ∈ [0, 1/2] is an implicitness parameter and

γ2 =
1− 2γ

2(1 − γ)
, γ3 =

1− γ2
2γ

.

It is immediate that the first stage of (8) is simply the application
of the trapezoidal rule (or Crank-Nicolson method) over the interval
[tn, tn + 2γ∆t]. It could also be substituted by an off centered Crank-
Nicolson step without reducing the overall accuracy of the method.
The outcome of this stage is then used to turn the two step BDF2
method into a single step, two stages method. This combination of two
robust stiff solvers yields a method with several interesting accuracy
and stability properties, that were analyzed in detail in [21]. As shown
in this paper, this analysis is most easily carried out by rewriting the
method as

k1 = f (un, tn)

k2 = f (un + γ∆tk1 + γ∆tk2, tn + γ∆t)

k3 = f

(

un +
1− γ

2
∆tk1 +

1− γ

2
∆tk2 + γ∆tk3, tn+1

)

un+1 = un +∆t

(

1− γ

2
k1 +

1− γ

2
k2 + γk3

)

. (9)

In this formulation, the TR-BDF2 method is clearly a Singly Diagonal
Implicit Runge Kutta (SDIRK) method, so that one can rely on the
theory for this class of methods to derive stability and accuracy results
(see e.g. [27]). Notice that the same method has been rediscovered in
[6] and has been analyzed and applied also in [18], to treat the implicit
terms in the framework of an Additive Runge Kutta approach (see
e.g. [26]). As shown in [21], the TR-BDF2 method is second order
accurate and A-stable for any value of γ. Written as in (9), the method
can also be proven to constitute a (2,3) embedded Runge-Kutta pair,
with companion coefficients given by

(1−
√
2

4
)/3, (1 + 3

√
2

4
)/3,

2−
√
2

6
,
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provided that no off centering is employed in the first stage of (8).
This equips the method with an extremely efficient estimator of the
time discretization error. Furthermore, for γ = 1−

√
2/2 it is also L-

stable. Therefore, with this coefficient value it can be safely applied to
problems with eigenvalues whose imaginary part is large, such as typ-
ically arise from the discretization of hyperbolic problems. This is not
the case for the standard trapezoidal rule (or Crank-Nicolson) implicit
method, whose linear stability region is exactly bounded by the imag-
inary axis. As a consequence, it is common to apply the trapezoidal
rule with off centering, see e.g. [7], [11] as well as [52], which results
in a first order time discretization. TR-BDF2 appears therefore to be
an interesting one step alternative to maintain full second order accu-
racy, especially considering that, if formulated as (8), it is equivalent
to performing two Crank-Nicolson steps with slightly modified coeffi-
cients. In order to highlight the advantages of the proposed method in
terms of accuracy with respect to other common robust stiff solvers,
we plot in figure 1 the contour levels of the absolute value of the lin-
ear stability function of the TR-BDF2 method without off centering in
the first stage, compared to the analogous contours of the off centered
Crank-Nicolson method with averaging parameter θ = 0.6, θ = 0.7 in
figures 2, 3, respectively, and to those of the BDF2 method in figure 4.
It is immediate to see that TR-BDF2 introduces less damping around
the imaginary axis for moderate values of the time step. On the other
hand, TR-BDF2 is more selective in damping very large eigenvalues,
as clearly displayed in figure 5, where the absolute values of the linear
stability functions of the same methods (with the exception of BDF2,
for which an explicit representation of the stability function is not
available) are plotted along the imaginary axis.
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Figure 1: Contour levels of the absolute value of the stability function of the
TR-BDF2 method without off centering in the first stage. Contour spacing
is 0.1 from 0.5 to 1.
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Figure 2: Contour levels of the absolute value of the stability function of
the off centered Crank-Nicolson method with averaging parameter θ = 0.6
(equivalent to an off centering parameter valued 0.05). Contour spacing is
0.1 from 0.5 to 1.
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Figure 3: Contour levels of the absolute value of the stability function of
the off centered Crank-Nicolson method with averaging parameter θ = 0.7
(equivalent to an off centering parameter valued 0.1). Contour spacing is 0.1
from 0.5 to 1.
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Figure 4: Contour levels of the absolute value of the stability function of the
BDF2 method. Contour spacing is 0.1 from 0.5 to 1.
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Figure 5: Graph of the absolute value of the stability functions of several
L-stable methods along the imaginary axis.
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4 Review of Semi-Lagrangian evolu-

tion operators for vector fields on the

sphere

The semi-Lagrangian method can be described introducing the con-
cept of evolution operator, along the lines of [37, 35]. Indeed, let
G = G(x, t) denote a generic function of space and time that is the
solution of

DG

Dt
=

∂G

∂t
+

u

mx

∂G

∂x
+

v

my

∂G

∂y
= 0.

To approximate this solution on the time interval [tn, tn+1], a nu-
merical evolution operator E is introduced, that approximates the
exact evolution operator associated to the frozen velocity field u∗ =
(u∗, v∗)T , that may coincide with the velocity field at time level tn or
with an extrapolation derived from more previous time levels. More
precisely, if X(t; tn+1,x) denotes the solution of

dX(t; tn+1,x)

dt
= u∗(X(t; tn+1,x)) (10)

with initial datum X(tn+1; tn+1,x) = x at time t = tn+1, then the ex-
pression [E(tn,∆t)G](x) denotes a numerical approximation ofGn(xD)
where xD = X(tn; tn+1,x) and the notation Gn(x) = G(x, tn) is used.
Since xD is nothing but the position at time tn of the fluid parcel
reaching location x at time tn+1, according to standard terminology,
it is called the departure point associated with the arrival point x.
Different methods can be employed to approximate xD; in this pa-
per, for simplicity, the method proposed in [34] has been employed in
spherical geometry. Furthermore, to guarantee an accuracy compati-
ble with that of the semi-implicit time-discretization, an extrapolation
un+ 1

2 of the velocity field at the intermediate time level tn+∆t/2 was
used as u∗ in (10). On the other hand, in the application to Carte-
sian geometry (for the vertical slice discretization), a simple first order
Euler method with sub-stepping was employed, see e.g. [16], [45].

In case of the advection of a vector field

DG

Dt
=

∂G

∂t
+

u

mx

∂G

∂x
+

v

my

∂G

∂y
= 0,

as in the momentum equation (2), the extension of this approach has
to take into account the curvature of the spherical manifold. More
specifically, unit basis vectors at the departure point are not in general
aligned with those at the arrival point, i.e., if î, ĵ, k̂ represent a unit
vector triad, in general î(x) 6= î(xD), ĵ(x) 6= ĵ(xD), k̂(x) 6= k̂(xD).
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To deal with this issue two approaches are available. The first,
intrinsically Eulerian, consists in the introduction of the Christof-
fel symbols in the covariant derivatives definition, giving rise to the
well known metric terms, before the SISL discretization, and then
in the approximation along the trajectories of those metric terms.
This approach has been shown to be source of instabilities in a semi-
Lagrangian frame, see e.g. [44, 8, 9, 13] and therefore is not adopted
in this work. The second approach, more suitable for semi-Lagrangian
discretizations, takes into account the curvature of the manifold only
at discrete level, i.e. after the SISL discretization has been per-
formed. Many variations of this idea have been proposed, see e.g.
[44, 8, 9, 3, 49]. In [48], they have all been derived in a unified way
by the introduction of a proper rotation matrix that transforms vec-
tor components in the departure-point unit vector triad îD = î(xD),
ĵD = ĵ(xD), k̂D = k̂(xD) into vector components in the arrival-point
unit vector triad î = î(x), ĵ = ĵ(x), k̂ = k̂(x). To see how this ro-
tation matrix comes into play, it is sufficient to consider the action of
the evolution operator E on a given vector valued function of space
and time G, defined as an approximation of

[E(tn,∆t)G] (x) = Gn(xD), (11)

and to write this equation componentwise. Gn(xD) is known through
its components in the departure point unit vector triad:

Gn(xD) = Gnx (xD)îD + Gny (xD)ĵD + Gnz (xD)k̂D. (12)

Therefore, via (11), the components of [E(tn,∆t)G] (x) in the unit
vector triad at the same point are given by projection of (12) along î,
ĵ, k̂:

î ·Gn(xD) = Gnx (xD) î · îD + Gny (xD) î · ĵD + Gnz (xD) î · k̂D,

ĵ ·Gn(xD) = Gnx (xD) ĵ · îD + Gny (xD) ĵ · ĵD + Gnz (xD) ĵ · k̂D,

k̂ ·Gn(xD) = Gnx (xD)k̂ · îD + Gny (xD)k̂ · ĵD + Gnz (xD)k̂ · k̂D,

i.e., in matrix notation:





î · [E(tn,∆t)G] (x)

ĵ · [E(tn,∆t)G] (x)

k̂ · [E(tn,∆t)G] (x)



 = R





Gnx
Gny
Gnz



 where

R =





î · îD î · ĵD î · k̂D

ĵ · îD ĵ · ĵD ĵ · k̂D

k̂ · îD k̂ · ĵD k̂ · k̂D



 .
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Under the shallow atmosphere approximation [51], R can be reduced
to the 2× 2 rotation matrix

Λ = Λ(x,xD) =

[

Λ11 Λ12

Λ21 Λ22

]

, (13)

where, as shown in [48], Λ11 = Λ22 = (R11 + R22)/(1 + R33), Λ12 =
−Λ21 = (R12−R21)/(1+R33). Therefore, in the following the evolution
operator for vector fields will be defined componentwise as

(

î · [E(tn,∆t)G] (x)

ĵ · [E(tn,∆t)G] (x)

)

= Λ

(

Gnx (xD)
Gny (xD)

)

. (14)

5 A novel SISL time integration ap-

proach for the shallow water equations

on the sphere

The SISL discretization of equations.(1)-(2) based on (8) is then ob-
tained by performing the two stages in (8) after reinterpretation of the
intermediate values in a semi-Lagrangian fashion. Furthermore, in or-
der to avoid the solution of a nonlinear system, the dependency on h in
h∇·u is linearized in time, as common in semi-implicit discretizations
based on the trapezoidal rule, see e.g. [7],[52]. Numerical experiments
reported in the following show that this does not prevent to achieve
second order accuracy in the regimes of interest for numerical weather
prediction. The TR stage of the SISL time semi-discretization of the
equations in vector form (1)-(2) is given by

hn+2γ + γ∆t hn ∇ · un+2γ

= E (tn, 2γ∆t) [h− γ∆t h ∇ · u] , (15)

un+2γ + γ∆t
[

g∇hn+2γ + f k̂× un+2γ
]

= −γ∆t g∇b

+E
(

tn, 2γ∆t
)

{

u− γ∆t
[

g(∇h+∇b) + f k̂× u
]}

. (16)

The TR stage is then followed by the BDF2 stage:

hn+1 + γ2∆t hn+2γ ∇ · un+1

=
(

1− γ3
)

E
(

tn,∆t
)

h

+ γ3E
(

tn + 2γ∆t, (1− 2γ)∆t
)

h, (17)
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un+1 + γ2∆t
[

g∇hn+1 + f k̂× un+1
]

= −γ2∆t g∇b
+
(

1− γ3
)

E
(

tn,∆t
)

u+ γ3E
(

tn + 2γ∆t, (1− 2γ)∆t
)

u. (18)

For each of the two stages, the spatial discretization can be performed
along the lines described in [52], allowing for variable polynomial or-
der to locally represent the solution in each element. The spatial
discretization approach considered is independent of the nature of the
mesh and could also be implemented for fully unstructured and even
non conforming meshes. For simplicity, however, in this paper only
an implementation on a structured mesh in longitude-latitude coor-
dinates has been developed. In principle, either Lagrangian or hi-
erarchical Legendre bases could be employed. We will work almost
exclusively with hierarchical bases, because they provide a natural en-
vironment for the implementation of a p−adaptation algorithm, see
for example [56]. A central issue in finite element formulations for
fluid problems is the choice of appropriate approximation spaces for
the velocity and pressure variables (in the context of SWE, the role of
the pressure is played by the free surface elevation). An inconsistent
choice of the two approximation spaces indeed may result in a solution
that is polluted by spurious modes, for the specific case of SWE see
for example [31, 53, 54] as well as the more recent and comprehensive
analysis in [30]. Here, we have not investigated this issue in depth, but
the model implementation allows for approximations of higher polyno-
mial degree pu for the velocity fields than ph for the height field. Even
though no systematic study was performed, no significant differences
were noticed between results obtained with equal or unequal degrees.
In the following, only results with unequal degrees pu = ph + 1 are
reported, with the exception of an empirical convergence test for a
steady geostrophic flow.

All the integrals appearing in the elemental equations are evaluated
by means of Gaussian numerical quadrature formulae, with a number
of quadrature nodes consistent with the local polynomial degree being
used. In particular, notice that integrals of terms in the image of
the evolution operator E, i.e. of functions evaluated at the departure
points of the trajectories arriving at the quadrature nodes, cannot
be computed exactly (see e.g. [36, 40]), since such functions are not
polynomials. Therefore a sufficiently accurate approximation of these
integrals is needed, which may entail the need to employ numerical
quadrature formulae with more nodes than the minimal requirement
implied by the local polynomial degree. This overhead is actually
compensated by the fact that, for each Gauss node, the computation
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of the departure point is only to be executed once for all the quantities
to be interpolated.

After spatial discretization has been performed, the discrete de-
grees of freedom representing velocity unknowns can be replaced in
the respective discrete height equations, yielding in each case a lin-
ear system whose structure is entirely analogous to that obtained in
[52]. The non-symmetric linear systems obtained from the TR-BDF2
stages are solved in our implementation by the GMRES method [46].
A classical stopping criterion based on a relative error tolerance of
10−10 was employed (see e.g. [24]). For the GMRES solver, so far,
only a block diagonal preconditioning was employed. As it will be
shown in section 7, the condition number of the systems to be solved
can be greatly reduced if lower degree elements are employed close
to the poles. In any case, the total computational cost of one TR-
BDF2 step is entirely analogous to that of one step of the standard
off centered trapezoidal rule employed in [52], since the structure of
the systems is the same but for each stage only a fraction of the time
step is being computed. Once hn+1 has been computed by solving this
linear system, then un+1 can be recovered by back substituting into
the momentum equation.

6 Extension of the time integration ap-

proach to the Euler equations

In this section, we show that the previously proposed method can
be extended seamlessly to the fully compressible Euler equations as
formulated in equations (3) - (6). For simplicity, only the application
to the (x, z) two dimensional vertical slice case is presented, but the
extension to three dimensions is straightforward. Again, in order to
avoid the solution of a nonlinear system, the dependency on Π in
Π∇ · u and the dependency on Θ in Θ∇π are linearized in time, as
common in semi-implicit discretizations based on the trapezoidal rule,
see e.g. [10], [4].

The semi-Lagrangian counterpart of the TR substep of (8) is first
applied to to (3) - (6), so as to obtain:

πn+2γ + γ∆t (cp/cv − 1)Πn∇ · un+2γ = −π∗

+E (tn, 2γ∆t) [Π− γ∆t (cp/cv − 1)Π ∇ · u] , (19)
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un+2γ + γ∆t cpΘ
n∂π

∂x

n+2γ

=

E(tn, 2γ∆t)

[

u− γ∆t cpΘ
∂π

∂x

]

, (20)

wn+2γ + γ∆t

(

cpΘ
n∂π

∂z

n+2γ

− g
θn+2γ

θ∗

)

=

E(tn, 2γ∆t)

[

w − γ∆t

(

cpΘ
∂π

∂z
− g

θ

θ∗

)]

, (21)

θn+2γ + γ∆t
dθ∗

dz
wn+2γ = E(tn, 2γ∆t)

[

θ − γ∆t
dθ∗

dz
w

]

. (22)

Following [10] the time semi-discrete energy equation (22) can be
inserted into the time semi-discrete vertical momentum equation (21),
in order to decouple the momentum and the energy equations as fol-
lows

(

1 + (γ∆t)2
g

θ∗
dθ∗

dz

)

wn+2γ + γ∆tcpΘ
n∂π

∂z

n+2γ

=

E(tn, 2γ∆t)

[

w − γ∆t

(

cpΘ
∂π

∂z
− g

θ

θ∗

)]

+γ∆t
g

θ∗
E(tn, 2γ∆t)

[

θ − γ∆t
dθ∗

dz
w

]

. (23)

Equations (19), (20) and (23) are a set of three equations in three un-
knowns only, namely π, u, and w that can be compared with equations
(15), (16) with f = 0 and mx = my = 1 (Cartesian geometry). From
the comparison it is clear that the two formulations are isomorphic
under correspondence π ←→ h, u←→ u,w ←→ v.

We can then consider the semi-Lagrangian counterpart of the BDF2
substep of (8) applied to (3) - (6) to obtain:

πn+1 + γ2∆t (cp/cv − 1)Πn+2γ∇ · un+1

= −π∗ + (1− γ3)[E (tn,∆t) Π]

+ γ3[E (tn + 2γ∆t, (1 − 2γ)∆t) Π], (24)
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un+1 + γ2∆t cpΘ
n+2γ ∂π

∂x

n+1

= (1− γ3)[E (tn,∆t)u]

+ γ3[E (tn + 2γ∆t, (1− 2γ)∆t) u], (25)

wn+1 + γ2∆t

(

cpΘ
n+2γ ∂π

∂z

n+1

− g
θn+1

θ∗

)

= (1− γ3)[E (tn,∆t)w]

+ γ3[E (tn + 2γ∆t, (1− 2γ)∆t)w], (26)

θn+1 + γ2∆t
dθ∗

dz
wn+1

= (1− γ3)[E (tn,∆t) θ]

+ γ3[E (tn + 2γ∆t, (1− 2γ)∆t) θ]. (27)

Again, following [10], the time semi-discrete energy equation (27) can
be inserted into the time semi-discrete vertical momentum equation
(26), in order to decouple the momentum and the energy equations:

(

1 + (γ2∆t)2
g

θ∗
dθ∗

dz

)

wn+1 + γ2∆t cpΘ
n+2γ ∂π

∂z

n+1

=

(1− γ3)[E (tn,∆t)w] + γ3[E (tn + 2γ∆t, (1− 2γ)∆t)w] + (28)

γ2∆t
g

θ∗
{(1− γ3)[E (tn,∆t) θ] + γ3[E (tn + 2γ∆t, (1− 2γ)∆t) θ]} .

Now equations (24), (25) and (28) are a set of three equations
in three unknowns only, namely π, u, and w, that can be compared
with equations (17), (18) with f = 0 and mx = my = 1 (Cartesian
geometry). Again, it is easy to see that also in this case exactly the
same structure results as in equations (17)-(18) with the correspon-
dence π ←→ h, u ←→ u,w ←→ v, so that the approach (and code)
proposed for the shallow water equations can be extended to the fully
compressible Euler equation in a straightforward way.
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7 Numerical experiments

The numerical method introduced in section 5 has been implemented
and tested on a number of relevant test cases using different initial
conditions and bathymetry profiles, in order to assess its accuracy and
stability properties and to analyze the impact of the p−adaptivity
strategy. Whenever a reference solution was available, the relative
errors were computed in the L1, L2 and L∞ norms at the final time tf
of the simulation according to [55] as:

l1(h) =
I [ |h(·, tf )− href (·, tf )| ]

I [ |href (·, tf )| ]
, (29)

l2(h) =

{

I
[

(

h(·, tf )− href (·, tf )
)2

]}1/2

{

I
[

href (·, tf )2
]}1/2

, (30)

l∞(h) =
max |h(·, tf )− href (·, tf )|

max |href (·, tf )|
, (31)

where href denotes the reference solution for a model variable h and
I is a discrete approximation of the global integral

I(h) =

∫

Ω hmxmy dx
∫

Ω mxmy dx
, (32)

computed by an appropriate numerical quadrature rule, consistent
with the numerical approximation being tested, and the maximum is
computed over all nodal values.

The test cases considered for the shallow water equations in spher-
ical geometry are

• a steady-state geostrophic flow: in particular, we have analyzed
results in test case 2 of [55] in the configuration least favorable
for methods employing longitude-latitude meshes;

• the unsteady flow with exact analytical solution described in [29];

• the polar rotating low-high, introduced in [33], aimed at showing
that no problems arise even in the case of strong cross polar flows;

• zonal flow over an isolated mountain and Rossby-Haurwitz wave
of wavenumber 4, corresponding respectively to test cases 5 and
6 in [55].

For the first two tests, analytic solutions are available and empirical
convergence tests can be performed. The test cases considered for the
discretization of equations (3)-(6) are

19



• inertia gravity waves involving the evolution of a potential tem-
perature perturbation in a channel with periodic boundary con-
ditions and uniformly stratified environment with constant Brunt-
Wäisälä frequency, as described in [47];

• a rising thermal bubble given by the evolution of a warm bubble
in a constant potential temperature environment, as described
in [23].

In all the numerical experiments performed for this paper, neither
spectral filtering nor explicit diffusion of any kind were employed,
the only numerical diffusion being implicit in the time discretization
approach. We have not yet investigated to which extent the quality
of the solutions is affected by this choice, but this should be taken
into account when comparing quantitatively the results of the present
method to those of reference models, such as the one described in
[22], in which explicit numerical diffusion is added. Sensitivity of
the comparison results to the amount of numerical diffusion has been
highlighted in several model validation exercises, see e.g. [43].

Since semi-implicit, semi-Lagrangian methods are most efficient for
low Froude number flows, where the typical velocity is much smaller
than that of the fastest propagating waves, all the tests considered
fall in this hydrodynamical regime. Therefore, in order to assess the
method efficiency, a distinction has been made between the maximum
Courant number based on the velocity, on one hand, and, on the
other hand, the maximum Courant number based on the celerity, or
the maximum Courant number based on the sound speed, defined
respectively as

Cvel = max
‖u‖∞∆t

∆x/p

Ccel = max

√
gh∆t

∆x/p
, Csnd = max

√

(cp/cv)RΘΠ∆t

∆x/p
,

where ∆x is to be interpreted as generic value of the meshsize in
either coordinate direction. For the tests in which p−adaptivity was
employed, if pnI denotes the local polynomial degree used at timestep
tn to represent a model variable inside the I− th element of the mesh,
while pmax is the maximum local polynomial degree considered, the
efficiency of the method in reducing the computational effort has been
measured by monitoring the evolution of the quantities

∆n
dof =

∑N
I=1(p

n
I + 1)2

N(pmax + 1)2
, ∆n

iter =
ITNn

adapt

ITNn
max

,

where N is the total number of elements, ITNn
adapt denotes the total

number of GMRES iterations at time step n for the adapted local
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degrees configuration and ITNn
max the total number of GMRES it-

erations at time step n for the configuration with maximum degree
in all elements, respectively. Average values of these indicators over
the simulations performed are reported in the following, denoted by
∆average

dof and ∆average
iter respectively. The error between the adaptive

solution and the corresponding one obtained with uniform maximum
polynomial degree everywhere has been measured in terms of (29).
Finally, in some cases conservation of global invariants has been mon-
itored by evaluating at each time step the following global integral
quantities:

J(qn) =
I(q(·, tn))− I(q(·, t0))

I(q(·, t0)) , (33)

where I(q) has been defined in (32) and qn = q(·, tn) is the density
associated to each global invariant. According to the choice of q,
following invariants are considered: mass, i.e. q = qmass = h, total
energy, i.e. q = qenerg =

1
2 (hu·u+g(h2−b2)), and potential enstrophy,

i.e. q = qenstr =
1
2h(k̂ · ∇ × u+ f)2.

7.1 Steady-state geostrophic flow

We first consider the test case 2 of [55], where the solution is a steady
state flow with velocity field corresponding to a zonal solid body rota-
tion and h field obtained from the velocity ones through geostrophic
balance. All the parameter values are taken as in [55]. The flow ori-
entation parameter has been chosen here as α = π/2 − 0.05, making
the test more challenging on a longitute-latitude mesh. Error norms
associated to the solution obtained on a mesh of 10 × 5 elements for
different polynomial degrees are shown in tables 1, 2 and 3 for h, u and
v, respectively. All the results have been computed at tf = 10 days
at fixed maximum Courant numbers Ccel = 8, Cvel = 2, so that differ-
ent values of ∆t have been employed for different polynomial order.
We remark that the resulting time steps are significantly larger than
those allowed by typical explicit time discretizations for analogous DG
space discretizations, see e.g. the results in [38]. The spectral decay in
the error norms can be clearly observed, until the time error becomes
dominant. For better comparison with the results in [38], we consider
again the configuration with ph = 6, pu = 7 on 10× 5 elements, which
corresponds to the same resolution in space as for the 150× 8× 8 grid
used in [38]. While ∆t = 36 s is used in [38] giving a l∞(h) ≈ 8×10−6,
the proposed SISLDG formulation can be run with ∆t = 3600 s, in
which case l∞(h) ≈ 3 × 10−7, and the average number of iterations
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required by the linear solver is 1 for the TR substep and 4 for the
BDF2 substep.

ph pu ∆t [s] l1(h) l2(h) l∞(h)

2 3 4800 5.558× 10−3 6.805× 10−3 1.914× 10−2

3 4 3600 6.017× 10−4 8.176× 10−4 2.569× 10−3

4 5 2880 1.743× 10−5 2.405× 10−5 9.024× 10−5

5 6 2400 1.586× 10−6 2.281× 10−6 1.058× 10−5

6 7 2057 8.829× 10−8 1.206× 10−7 4.926× 10−7

7 8 1800 1.246× 10−8 1.590× 10−8 4.158× 10−8

8 9 1600 5.641× 10−9 5.952× 10−9 6.320× 10−9

Table 1: Relative errors for h with different polynomial degrees, SWE test
case 2 with α = π/2− 0.05 at time tf = 10 days.

ph pu ∆t [s] l1(u) l2(u) l∞(u)

2 3 4800 6.351× 10−2 6.432× 10−2 1.143× 10−1

3 4 3600 9.505× 10−3 1.037× 10−2 2.106× 10−2

4 5 2880 4.288× 10−4 4.887× 10−4 2.393× 10−3

5 6 2400 4.598× 10−5 4.830× 10−5 1.706× 10−4

6 7 2057 2.057× 10−6 2.262× 10−6 5.879× 10−6

7 8 1800 2.162× 10−7 2.358× 10−7 6.428× 10−7

8 9 1600 2.013× 10−8 2.276× 10−8 3.268× 10−8

Table 2: Relative errors for u with different polynomial degrees, SWE test
case 2 with α = π/2− 0.05 at time tf = 10 days.

Another convergence test was performed for ph = pu = 3, in-
creasing the number of elements and correspondingly decreasing the
value of the time step. In this case, the maximum Courant num-
bers vary because of the mesh inhomogeneity, so that 2 < Ccel < 18,
0.5 < Cvel < 4. The results are reported in tables 4, 5 and 6 for h,
u and v, respectively. The empirical convergence order qemp

2 based
on the l2 norm errors has also been estimated, showing that in this
stationary test convergence rates above the second order of the time
discretization can be achieved.
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ph pu ∆t [s] l1(v) l2(v) l∞(v)

2 3 4800 1.001× 10−1 1.016× 10−1 2.698× 10−1

3 4 3600 1.859× 10−2 1.823× 10−2 6.848× 10−2

4 5 2880 7.376× 10−4 7.428× 10−4 2.884× 10−3

5 6 2400 8.185× 10−5 8.307× 10−5 2.574× 10−4

6 7 2057 3.074× 10−6 3.173× 10−6 1.123× 10−5

7 8 1800 3.370× 10−7 3.432× 10−7 1.323× 10−6

8 9 1600 2.175× 10−8 2.317× 10−8 5.124× 10−8

Table 3: Relative errors for v with different polynomial degrees, SWE test
case 2 with α = π/2− 0.05 at time tf = 10 days.

Nx ×Ny ∆t [s] l1(h) l2(h) l∞(h) qemp
2

10× 5 3600 2.557× 10−4 3.495× 10−4 1.403× 10−3 −
20× 10 1800 2.187× 10−5 2.889× 10−5 1.566× 10−4 3.6
40× 20 900 2.530× 10−6 3.353× 10−6 1.430× 10−5 3.1
80× 40 450 3.996× 10−7 5.534× 10−7 3.134× 10−6 2.6

Table 4: Relative errors for h with different number of elements, ph = pu = 3,
SWE test case 2 with α = π/2− 0.05 at time tf = 10 days.

Nx ×Ny ∆t [s] l1(u) l2(u) l∞(u) qemp
2

10× 5 3600 2.769× 10−3 3.358× 10−3 8.948× 10−3 −
20× 10 1800 2.896× 10−4 3.720× 10−4 2.414× 10−3 3.2
40× 20 900 3.647× 10−5 4.563× 10−5 2.473× 10−4 3.0
80× 40 450 6.826× 10−6 1.035× 10−5 9.525× 10−5 2.1

Table 5: Relative errors for u with different number of elements, ph = pu = 3,
SWE test case 2 with α = π/2− 0.05 at time tf = 10 days.
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Nx ×Ny ∆t [s] l1(v) l2(v) l∞(v) qemp
2

10× 5 3600 3.309× 10−3 3.346× 10−3 8.250× 10−3 −
20× 10 1800 4.016× 10−4 4.233× 10−4 1.255× 10−3 3.0
40× 20 900 5.180× 10−5 5.578× 10−5 2.329× 10−4 2.9
80× 40 450 9.405× 10−6 1.214× 10−5 7.763× 10−5 2.2

Table 6: Relative errors for v with different number of elements, ph = pu = 3,
SWE test case 2 with α = π/2− 0.05 at time tf = 10 days.
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7.2 Unsteady flow with analytic solution

In a second, time dependent test, the analytic solution of (1)-(2) de-
rived in [29] has been employed to assess the performance of the pro-
posed discretization. More specifically, the analytic solution defined in
formula (23) of [29] was used. Since the exact solution is periodic, the
initial profiles also correspond to the exact solution an integer number
of days later. The proposed SISLDG scheme has been integrated with
ph = 4 and pu = 5 up to tf = 5 days on meshes with increasing reso-
lutions, where the time step is decreased accordingly. In this case, the
maximum Courant numbers vary because of the mesh dishomogeneity,
so that 4 < Ccel < 26, 1.25 < Cvel < 8. Error norms for h, u, v of the
above-mentioned integrations have been computed at tf = 5 days and
displayed in tables 7 - 9. Empirical order estimation shows that full
second order accuracy in time is attained.

Nx ×Ny ∆t [s] l1(h) l2(h) l∞(h) qemp
2

10× 5 3600 5.456× 10−3 6.120× 10−3 9.537× 10−3 -
20× 10 1800 1.246× 10−3 1.397× 10−3 2.143× 10−3 2.1
40× 20 900 3.039× 10−4 3.410× 10−4 5.207× 10−4 2.0
80× 40 450 7.548× 10−5 8.475× 10−5 1.292× 10−4 2.0

Table 7: Relative errors for h with different number of elements, Läuter test
case.

Nx ×Ny ∆t [s] l1(u) l2(u) l∞(u) qemp
2

10× 5 3600 6.567× 10−2 7.848× 10−2 1.670× 10−1 -
20× 10 1800 1.665× 10−2 1.994× 10−2 3.931× 10−2 2.0
40× 20 900 4.210× 10−3 5.032× 10−3 9.811× 10−3 2.0
80× 40 450 1.057× 10−3 1.261× 10−3 2.452× 10−3 2.0

Table 8: Relative errors for u with different number of elements, Läuter test
case.

For comparison, analogous errors have been computed with the
same discretization parameters but employing the off centered Crank
Nicolson method of [52] with θ = 0.6. The resulting improvement in
the errors between the TRBDF2 scheme and the off-centered Crank
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Nx ×Ny ∆t [s] l1(v) l2(v) l∞(v) qemp
2

10× 5 3600 1.174× 10−1 1.198× 10−1 2.316× 10−1 -
20× 10 1800 2.939× 10−2 3.002× 10−2 5.561× 10−2 2.0
40× 20 900 7.336× 10−3 7.497× 10−3 1.390× 10−2 2.0
80× 40 450 1.833× 10−3 1.874× 10−3 3.464× 10−3 2.0

Table 9: Relative errors for v with different number of elements, Läuter test
case.

Nx ×Ny ∆t [s] l1(h) l2(h) l∞(h) qemp
2

10× 5 3600 1.444× 10−2 1.633× 10−2 2.398× 10−2 -
20× 10 1800 8.742× 10−3 9.894× 10−3 1.445× 10−2 0.7
40× 20 900 4.814× 10−3 5.451× 10−3 7.956× 10−3 0.9
80× 40 450 2.526× 10−3 2.861× 10−3 4.177× 10−3 0.9

Table 10: Relative errors for h with different number of elements, Läuter test
case with off centered Crank Nicolson, θ = 0.6.

Nicolson is achieved at an essentially equivalent computational cost in
terms of total CPU time employed.

Nx ×Ny ∆t [s] l1(u) l2(u) l∞(u) qemp
2

10× 5 3600 1.800× 10−1 2.092× 10−1 3.810× 10−1 -
20× 10 1800 1.077× 10−1 1.255× 10−1 2.155× 10−1 0.7
40× 20 900 5.895× 10−2 6.880× 10−2 1.186× 10−1 0.9
80× 40 450 3.084× 10−2 3.603× 10−2 6.234× 10−2 0.9

Table 11: Relative errors for u with different number of elements, Läuter test
case with off centered Crank Nicolson, θ = 0.6.
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Nx ×Ny ∆t [s] l1(v) l2(v) l∞(v) qemp
2

10× 5 3600 3.608× 10−1 3.665× 10−1 5.166× 10−1 -
20× 10 1800 2.164× 10−1 2.198× 10−1 3.041× 10−1 0.7
40× 20 900 1.185× 10−1 1.203× 10−1 1.671× 10−2 0.9
80× 40 450 6.195× 10−2 6.291× 10−2 8.809× 10−2 0.9

Table 12: Relative errors for v with different number of elements, Läuter test
case with off centered Crank Nicolson, θ = 0.6.
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7.3 Cross-polar geostrophic flow

In this section we consider the test case proposed in [33]. It consists
in a cross-polar flow with a geostrophically balanced initial state. The
initial datum for h is given by a low and a high located symmetrically
at the left and the right sides of the north pole, respectively. The ini-
tial velocity components are geostrophically balanced with the initial
h. Viewed from the north pole, this low/high pattern rotates in the
clockwise direction around the pole and after 10 days of integration the
(slightly deformed) pattern returns to the initial location. Although
no analytical solution is available for this test, it is interesting to check
how the proposed method behaves in this case, since the cross-polar
direction of the flow makes the experiment particularly challenging
on a longitude-latitude mesh, as the one used in the present imple-
mentation. Results computed at tf = 10 and tf = 15 days with a
mesh of 50 × 25 elements, ph = 4, pu = 5, and time step ∆t = 900
s resulting in Ccel ≈ 43, Cvel ≈ 4 are displayed in figure 6(a) - 6(f).
It can be seen that the results are in good agreement with analogous
results obtained with high order DG methods on meshes without sin-
gularities at the poles, see e.g. [17], [38]. The same experiment has
been repeated with static adaptation of the polynomial degree in such
a way to mimic a reduced grid, i.e. by gradually decreasing the local
polynomial degree when approaching the poles. More specifically, the
maximum polynomial degree was taken equal to 4 everywhere apart
from the three rows of elements closest to the poles, for which the
degree was assumed to decrease from 4 to 1 while approaching the
pole. The error with respect to the nonadaptive solution is reported
in tables 13-14, while it must be noticed that the better conditioning
lead by the local polynomial degree reduction near poles results in
a dramatic reduction of the total number of iterations of the linear
solver at each timestep, leading to a value ∆average

iter ≈ 43%.

time [days] l1(h) l2(h) l∞(h)

10 5.848× 10−6 1.338× 10−5 1.101× 10−4

15 8.365× 10−6 1.871× 10−5 1.014× 10−4

Table 13: Relative errors for h between adaptive and uniform solution in
cross polar flow test case.
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(a) h field (b) u field (c) v field

(d) h field (e) u field (f) v field

Figure 6: Orthographic projection of the cross-polar geostrophic flow after
10 days (top) and 15 days(bottom), Ccel ≈ 43, Cvel ≈ 4.

time [days] l1(u) l2(u) l∞(u)

10 1.469× 10−3 3.055× 10−3 1.267× 10−2

15 1.717× 10−3 3.700× 10−3 1.704× 10−2

Table 14: Relative errors for u between adaptive and uniform solution in
cross polar flow test case.

time [days] l1(v) l2(v) l∞(v)

10 1.478× 10−3 3.294× 10−3 3.092× 10−2

15 1.972× 10−3 3.970× 10−3 3.836× 10−2

Table 15: Relative errors for v between adaptive and uniform solution in
cross polar flow case.
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7.4 Zonal flow over an isolated mountain

We have then performed numerical simulations reproducing the test
case 5 of [55], given by a zonal flow impinging on an isolated mountain
of conical shape. The geostrophic balance here is broken by orographic
forcing, which results in the development of a planetary wave propa-
gating all around the globe.

Plots of the fluid depth h as well as of the velocity components
u and v at 15 days are shown in figures 7-9. The resolution used
corresponds to a mesh of 60 × 30 elements with ph = 4, pu = 5, and
∆t = 900 s, giving a Courant number Ccel ≈ 58 in elements close to
the poles. It can be observed that all the main features of the flow are
correctly reproduced. In particular, no significant Gibbs phenomena
are detected in the vicinity of the mountain, even in the initial stages
of the simulation.
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Figure 7: h field after 15 days, isolated mountain wave test case, Ccel ≈ 58.
Contour lines spacing is 50 m.

The evolution in time of global invariants during this simulation
is shown in figures 10(a), 10(b), 10(c), respectively. Error norms
for h and u at different resolutions (corresponding to a Ccel ≈ 6),
ph = pu = 3, have been computed at tf = 5 days and displayed in ta-
bles 16 - 17 with respect to a reference solution given by the National
Center for Atmospheric Research (NCAR) spectral model [22] at reso-
lution T511. It is apparent the second order of the proposed SISLDG
scheme in time. Since, as observed in [22], the National Center for
Atmospheric Research (NCAR) spectral model incorporates diffusion
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Figure 8: u field after 15 days, isolated mountain wave test case, Ccel ≈ 58.
Contour lines spacing is 4 m s−1.

terms in the governing equations, while the proposed SISLDG scheme
does not employ any diffusion terms nor filtering, nor smoothing of
the topography, for this test it seemed more appropriate to compute
relative errors with respect to NCAR spectral model [22] solution at
an earlier time, tf = 5 days, when it can be assumed that the effects
of diffusion have less impact. Error norms for h and u have been
computed at tf = 15 days at different resolutions (corresponding to a
Ccel ≈ 7), ph = pu = 3, and displayed in tables 18 - 19.

Nx ×Ny ∆t[min] l1(h) l2(h) l∞(h) qemp
2

12× 6 20 8.19× 10−4 1.08× 10−3 5.90× 10−3 -
24× 12 10 1.49× 10−4 2.08× 10−4 1.92× 10−3 2.4
48× 24 5 2.88× 10−5 4.25× 10−5 8.40× 10−4 2.3

Table 16: Relative errors for h with different number of elements, isolated
mountain wave test case, tf = 5 days.

Finally the mountain wave test case has been run on the same
mesh of 60× 30 elements, ∆t = 900 s, with either static or static plus
dynamic adaptivity. The tolerance ǫ for the dynamic adaptivity [52]
has been set to ǫ = 10−2. Results are reported in terms of error norms
with respect to a nonadaptive solution at the maximum uniform res-
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Figure 9: v field after 15 days, isolated mountain wave test case, Ccel ≈ 58.
Contour lines spacing is 4 m s−1.

Nx ×Ny ∆t[min] l1(u) l2(u) l∞(u) qemp
2

12× 6 20 4.33× 10−2 5.81× 10−2 1.39× 10−1 -
24× 12 10 5.70× 10−3 7.33× 10−3 1.06× 10−1 2.9
48× 24 5 1.11× 10−3 1.72× 10−3 1.56× 10−2 2.2

Table 17: Relative errors for u with different number of elements, isolated
mountain wave test case, tf = 5 days.

olution and in terms of efficiency gain, measured through the saving
of number of linear solver iterations per time-step ∆average

iter as well as
through the saving of number of degrees of freedom actually used per
timestep ∆average

dof ; these results are summarized in tables 20 - 22. The
distribution of the statically and dynamically adapted local polyno-
mial degree used to represent the solution after 15 days is shown in
figure 11. It can be noticed how, even after 15 days, higher polynomial
degrees are still automatically concentrated around the location of the
mountain.
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Nx ×Ny ∆t[s] l1(h) l2(h) l∞(h) qemp
2

12× 6 1500 2.34× 10−3 2.92× 10−3 1.49× 10−2 -
24× 12 750 5.99× 10−4 7.72× 10−4 3.87× 10−3 1.9
48× 24 375 2.00× 10−4 2.74× 10−4 1.87× 10−3 1.5

Table 18: Relative errors for h with different number of elements, isolated
mountain wave test case, tf = 15 days.

Nx ×Ny ∆t[s] l1(u) l2(u) l∞(u) qemp
2

12× 6 1500 1.12× 10−1 1.29× 10−1 2.97× 10−1 -
24× 12 750 2.09× 10−2 2.37× 10−2 5.73× 10−2 2.4
48× 24 375 6.37× 10−3 7.92× 10−3 3.39× 10−2 1.6

Table 19: Relative errors for u with different number of elements, isolated
mountain wave test case, tf = 15 days.

adaptivity ∆average
dof ∆average

iter l1(h) l2(h) l∞(h)

static 88% 10.7% 1.415× 10−4 3.314× 10−4 2.117× 10−3

static + dynamic 45% 13% 1.660× 10−4 3.419× 10−4 2.038× 10−3

Table 20: Efficiency gain and relative errors of adaptive vs. nonadaptive
solution for isolated mountain wave test case, h field.

adaptivity ∆average
dof ∆average

iter l1(u) l2(u) l∞(u)

static 88% 10.7% 1.289× 10−2 3.275× 10−2 1.524× 10−1

static + dynamic 45% 13% 1.509× 10−2 3.309× 10−2 1.475× 10−1

Table 21: Efficiency gain and relative errors of adaptive vs. nonadaptive
solution for isolated mountain wave test case, u field.
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Figure 10: Integral invariants evolution, mass (a), energy (b), potential en-
strophy (c), isolated mountain wave test case, Ccel ≈ 58.

adaptivity ∆average
dof ∆average

iter l1(u) l2(u) l∞(u)

static 88% 17% 2.501× 10−2 6.824× 10−2 6.597× 10−1

static + dynamic 45% 13% 2.833× 10−2 7.019× 10−2 6.975× 10−1

Table 22: Efficiency gain and relative errors of adaptive vs. nonadaptive
solution for isolated mountain wave test case, v field.
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days, isolated mountain wave test case.

35



7.5 Rossby-Haurwitz wave

We have then considered test case 6 of [55], where the initial datum
consists of a Rossby-Haurwitz wave of wave number 4. This case
actually concerns a solution of the nondivergent barotropic vorticity
equation, that is not an exact solution of the system (1) - (2). For a
discussion about the stability of this profile as a solution of (1) - (2) see
[50]. Plots of the fluid depth h as well as of the velocity components
u and v at 15 days are shown in figures 12-14. The resolution used
corresponds to a mesh of 64 × 32 elements with ph = 4, pu = 5, and
∆t = 900 s, giving a Courant number Ccel ≈ 83 in elements close to
poles. It can be observed that all the main features of the flow are
correctly reproduced.
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Figure 12: h field after 15 days, Rossby-Haurwitz wave test case, Ccel ≈ 83.
Contour lines spacing is 100 m.

The evolution in time of global invariants during this simulation
is shown in figures 15(a), 15(b), 15(c), respectively. Error norms for
h and u at different resolutions, corresponding to a Ccel ≈ 32 and
ph = 4, pu = 5 have been computed at tf = 15 days and are dis-
played in tables 23 - 24 with respect to a reference solution given
by the National Center for Atmospheric Research (NCAR) spectral
model [22] at resolution T511. It is apparent the second order of the
proposed SISLDG scheme in time. Unlike the NCAR spectral model,
the proposed SISLDG scheme does not employ any explicit numerical
diffusion.

Finally, the Rossby-Haurwitz wave test case has been run on the
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Figure 13: u field after 15 days, Rossby-Haurwitz wave test case, Ccel ≈ 83.
Contour lines spacing is 8 m s−1.

Nx ×Ny ∆t[min] l1(h) l2(h) l∞(h) qemp
2

10× 5 60 2.92× 10−2 3.82× 10−2 6.75× 10−2 -
20× 10 30 5.50× 10−3 6.80× 10−3 1.11× 10−2 2.4
40× 20 15 1.40× 10−3 1.80× 10−3 3.20× 10−3 2.0

Table 23: Relative errors for h with different number of elements, Rossby-
Haurwitz wave test case.

same mesh of 64×32 elements, ∆t = 900 s, with either static or static
plus dynamic adaptivity. The tolerance ǫ for the dynamic adaptivity
[52] has been set to ǫ = 5 × 10−2. Results are reported in terms of
error norms with respect to a nonadaptive solution at the maximum
uniform resolution and in terms of efficiency gain, measured through
the saving of number of linear solver iterations per time-step ∆average

iter

as well as through the saving of number of degrees of freedom actually
used per timestep ∆average

dof ; these results are summarized in tables 25
- 27. The distribution of the statically and dynamically adapted local
polynomial degree used to represent the solution after 15 days is shown
in figure 16. It can be noticed how, even after 15 days, and even if
the maximum allowed ph is 4, the use of the adaptivity criterion with
ǫ = 5 × 10−2 leads to the use of at most cubic polynomials for the
local representation of h.
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Figure 14: v field after 15 days, Rossby-Haurwitz wave test case, Ccel ≈ 83.
Contour lines spacing is 8 m s−1.

Nx ×Ny ∆t[min] l1(u) l2(u) l∞(u) qemp
2

10× 5 60 4.065× 10−1 3.775× 10−1 2.305× 10−1 -
20× 10 30 7.79× 10−2 7.33× 10−2 5.67× 10−2 2.4
40× 20 15 2.04× 10−2 1.95× 10−2 1.76× 10−2 1.9

Table 24: Relative errors for u with different number of elements, Rossby-
Haurwitz wave test case.

adaptivity ∆average
dof ∆average

iter l1(h) l2(h) l∞(h)

static 88% 10.7% 2.182× 10−4 3.434× 10−4 2.856× 10−4

static + dynamic 45% 13% 2.358× 10−3 2.963× 10−3 5.157× 10−3

Table 25: Efficiency gain and relative errors of adaptive vs. nonadaptive
solution for Rossby-Haurwitz wave test case, h field.
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Figure 15: Integral invariants evolution, mass (a), energy (b), potential en-
strophy (c), Rossby-Haurwitz wave test case, Ccel ≈ 83.

adaptivity ∆average
dof ∆average

iter l1(u) l2(u) l∞(u)

static 88% 10.7% 7.041× 10−3 1.236× 10−2 2.834× 10−2

static + dynamic 45% 13% 3.639× 10−2 3.387× 10−2 2.678× 10−2

Table 26: Efficiency gain and relative errors of adaptive vs. nonadaptive
solution for Rossby-Haurwitz wave test case, u field.
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Figure 16: Statically and dynamically adapted local ph distribution at 15
days, Rossby-Haurwitz test case.

adaptivity ∆average
dof ∆average

iter l1(u) l2(u) l∞(u)

static 88% 10.7% 3.158× 10−3 3.250× 10−3 1.148× 10−2

static + dynamic 45% 13% 2.723× 10−2 2.432× 10−2 2.646× 10−2

Table 27: Efficiency gain and relative errors of adaptive vs. nonadaptive
solution for Rossby-Haurwitz wave test case, v field.

40



7.6 Nonhydrostatic inertia gravity waves

In this section we consider the test case proposed in [47]. It con-
sists in a set of inertia-gravity waves propagating in a channel with a
uniformly stratified reference atmosphere characterized by a constant
Brunt-Wäisälä frequency N2 = 0.01. The domain and the initial and
boundary conditions are identical to those of [47]. The initial pertur-
bation in potential temperature radiates symmetrically to the left and
to the right, but because of the superimposed mean horizontal flow
(u = 20m/s), does not remain centered around the initial position.
Contours of potential temperature perturbation, horizontal velocity,
and vertical velocity time tf = 3000 s are shown in figures 17, 18, 19,
respectively. The computed results compare well with the structure
displayed by the analytical solution of the linearized equations pro-
posed in [1] and with numerical results obtained with other numerical
methods, see e.g. [4]. It is to be remarked that for this experiment
300×10 elements, pπ = 4, pu = 5 and a timestep ∆t = 15 s were used,
corresponding to a Courant number Csnd ≈ 25.
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Figure 17: Contours of perturbation potential temperature in the internal
gravity wave test.
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Figure 18: Contours of horizontal velocity in the internal gravity wave test.

−
0.001

−
0.

00
1

−
0.001

−0.001

−0.001

−0
.0

01

−
0.001

−
0.001

−0.001

−
0.

00
1

−
0.

00
1

−
0.

00
1 0.

00
1

0.
00

1

0.001

0.
00

1

0.001

0.
00

1

0.001

0.
00

1

0.001

0.
00

1

0.001

0.
00

1
0.001

0.
00

1

0.001

0.
00

1

0.001

0.
00

1

0.001

0.
00

1

0.001 0.
00

1

0.001

0.
00

1

0.001 0.
00

1

0.001

0.
00

1

0.001

0.
00

1

0.0010.003
0.003

0.003
0.003

0.003
0.003

0.003
0.003

0.
00

3

0.
00

3

x

z

0 0.5 1 1.5 2 2.5 3
x 10

5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 19: Contours of vertical velocity in the internal gravity wave test.
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7.7 Rising thermal bubble

As nonlinear nonhydrostatic time-dependent experiment, we consider
in this section the test case proposed in [23]. It consists in the evolution
of a warm bubble placed in an isentropic atmosphere at rest. All data
are as in [23]. Contours of potential temperature perturbation at
different times are shown in figure 20. These results were obtained
using 64 × 80 elements, pπ = 4, pu = 5 and a timestep ∆t = 0.5 s,
corresponding to a Courant number Csnd ≈ 17.
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Figure 20: Contours (every 0.2 K and the zero contour is omitted) of per-
turbation potential temperature in the rising thermal bubble test at time 10
min, 14 min, 15 min and 16 min respectively in clockwise sense.
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8 Conclusions and future perspectives

We have introduced an accurate and efficient discretization approach
for typical model equations of atmospheric flows. We have extended
to spherical geometry the techniques proposed in [52], combining a
semi-Lagrangian approach with the TR-BDF2 semi-implicit time dis-
cretization method and with a spatial discretization based on adaptive
discontinuous finite elements. The resulting method is unconditionally
stable and has full second order accuracy in time, thus improving stan-
dard off-centered trapezoidal rule discretizations without any major
increase in the computational cost nor loss in stability, while allowing
the use of time steps up to 100 times larger than those required by
stability for explicit methods applied to corresponding DG discretiza-
tions. The method also has arbitrarily high order accuracy in space
and can effectively adapt the number of degrees of freedom employed
in each element in order to balance accuracy and computational cost.
The p−adaptivity approach employed does not require remeshing and
is especially suitable for applications, such as numerical weather pre-
diction, in which a large number of physical quantities is associated
to a given the mesh.

Furthermore, although the proposed method can be implemented
on arbitrary unstructured and nonconforming meshes, like reduced
Gaussian grids employed by spectral transform models, even in ap-
plications on simple Cartesian meshes in spherical coordinates the
p−adaptivity approach can cure effectively the pole problem by reduc-
ing the polynomial degree in the polar elements, yielding a reduction
in the computational cost that is comparable to that achieved with re-
duced grids. Numerical simulations of classical shallow water and non-
hydrostatic benchmarks have been employed to validate the method
and to demonstrate its capability to achieve accurate results even at
large Courant numbers, while reducing the computational cost thanks
to the adaptivity approach. The proposed numerical framework can
thus provide the basis of for an accurate and efficient adaptive weather
prediction system.
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