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SUMMARY

This paper is concerned with ICDD (Interface Control DomainDecomposition) method, a strategy
introduced for the solution of partial differential equations (PDEs) in computational domains partitioned into
subdomains that overlap. After reformulating the originalboundary value problem with the introduction of
new additional control variables, the unknown traces of thesolution at internal subdomain interfaces, the
determination of the latter is made possible by the requirement that the (a-priori) independent solutions in
each subdomain undergo a minimization of a suitable cost functional.
We illustrate the method on two kinds of boundary value problems, one homogeneous (an elliptic PDE),
the other heterogeneous (a coupling between a second order advection-diffusion equation and a first order
advection equation). We derive the associated optimality system, analyze its well posedness, and illustrate
efficient algorithms based on the solution of the Schur-complement system restricted solely to the interface
control variables. Finally, we validate numerically our method through a family of numerical tests and
investigate the excellent convergence properties of our iterative solution algorithm.

KEY WORDS: Multifield Problems, Heterogeneous Problems, Domain Decomposition Methods,
Advection-Diffusion,hp-Finite Elements, Spectral Elements

1. INTRODUCTION

ICDD (Interface Control Domain Decomposition) is astrategyfor the solution of partial differential
equations (PDEs) in computational domains partitioned into subdomains that overlap. It shares
analogies and differences with similar strategies, most remarkablywith thatbased on the Schwarz
overlapping method (see [1, 2, 3]).

The distinguishing (and original) feature of ICDD method isthat the original boundary value
problem is reformulated with the help of new additional variables, the unknown traces of the solution
at internal subdomain interfaces, that play the role ofcontrolvariables. Their determination is made
possible by the requirement that the (a-priori) independent solutions in each subdomain undergo a
minimization of a suitablecost functional.

What distinguishes between different kinds of ICDD method is the role (and meaning) of the
interface control variables - they can be either Dirichlet,or Neumann, or Robin traces of the
subdomain unknowns - and the type of cost functional chosen -it can express different kinds of
norm of the difference between the two solutions in overlapping areas or on internal interfaces.

∗Correspondence to: Paola Gervasio, DICATAM, Università diBrescia, via Branze 38, I-25123 Brescia, Italy. E-mail:
gervasio@ing.unibs.it
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When the ICDD method is applied to classical (homogeneous) elliptic equations, as we do in the
first part of this paper, it can be regarded as (yet) another domain decomposition (DD) method to
solve elliptic problems. In fact, a specific version of it wasearly introduced in [4], then in [5] where
the name of Virtual Control Methods was coined, and it was more recently revisited, generalized and
optimized by the authors of this paper in [6, 7]. However, what makes it interesting in the version
proposed in this paper, are its convergence properties of grid independence, robustness with respect
to the possible variation of operator coefficients, and its built-in coarse global structure.

ICDD methods become especially attractive when applied to solve heterogeneousPDEs, that is
coupled problems where different kinds of PDE are set up in different subdomains. A noticeable
example is in multiphysics applications, in which case the different PDEsare designed tomodel
different kinds of physics. Examples include fluid-structure interactions (modeled e.g. by Navier-
Stokes equations coupled with the system of linear or nonlinear elasticity), the coupling between
surfaceandsubsurface flows (modeled e.g. by Stokes and Darcy equations[8, 9]), etc. In those
cases, the minimization problem set on the interface control variables that is enforced by ICDD
methods can in principle assure the correct matching between the two different physics without
requiring the a-priori determination of the interface transmission conditions at the interface between
them.

In this context, ICDD methods can be regarded not only as a newway to numerically solve a
given boundary value problem, but also as a new (alternative) way to model multiphysics problems
and, at the same time, provide a tool to find numerical solutions efficiently.

In this paper the heterogeneous problem considered is one arising from the coupling of an
advection-diffusion equation with an advection equation,the latter beingderived by the original
equation by dropping the diffusion term in a subregion of theoriginal computational domain.

The problem is simple but not too simple for testing the properties of the ICDD method.
In both cases (either homogeneous and heterogeneous) the given boundary value problem is

reformulated as anoptimality system, then reduced to an interface problem that depends solely
on the interface control variables.

After replacing the interface problem by its discrete version (obtained using thehp-Galerkin
approximation), we illustrate the solution algorithm and extensively analyze its rate of convergence
as a function of the discretization parameters (the grid-spaceh and the polynomial degreep), the
geometrical parameters (thickness of the overlapping area, number of subdomains in the partition),
and the physical parameters (the piecewise constant valuesof the diffusion coefficient, the Péclet
number of the advection-diffusion operator).

The ICDD method enjoys excellent convergence properties and represents a novel and fairly
general paradigm to face both homogeneous and heterogeneous PDEs in domain decomposition
environments.

The outline of the paper is as follows. In Section2 we recall the setting and formulation of ICDD
methods for homogeneous elliptic problems. In Section3 we extend onespecial instance ofICDD
methods (the one that shows the best convergence properties) to the case of heterogeneous coupling
between Advection and Advection–Diffusion problems. In Section 4 we describe the reduction
of the optimality systems associated to minimization problems to the interface control variables
through the Schur-complement approach, moreover we reformulate ICDD methodsalgebraically.
We concludein Sections5 and6 by addressinga variety of test cases for both homogeneous and
heterogeneous problems.

2. ICDD METHODS FOR ELLIPTIC PROBLEMS

Let Ω ⊂ Rd (d = 1, 2, 3) be an open bounded domain with boundary∂Ω, ΓD andΓN two open
subsets of∂Ω such that∂Ω = ΓD ∪ ΓN andΓD ∩ ΓN = ∅. Let L be thesecond orderlinear elliptic
operator

Lu = div(−ν∇u + bu) + γu, (1)
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whereν ∈ L∞(Ω) is such that∃ν > 0 : ν(x) ≥ ν ∀x ∈ Ω, whileb ∈ [W 1,∞(Ω)]d andγ ∈ L∞(Ω),
with γ(x) ≥ 0 in Ω are such that the elliptic operator is coercive (see [10] for a detailed description
of assumptions required).

Let us consider theboundary-value problem
ProblemP :

Lu = f in Ω
u = φD onΓD

∂nL
u = φN onΓN ,

(2)

wheref ∈ L2(Ω), φD ∈ H1/2(ΓD), φN ∈ H−1/2(ΓN ) are assigned functions satisfying suitable
compatibility conditions onΓN ∩ ΓD (see [11]), and∂nL

u denotes the conormal derivative ofu:

∂nL
u = νn · ∇u − b · nu,

n being the unit normal vector external to∂Ω.
We splitΩ into 2 overlapping subdomainsΩ1 andΩ2 such that

Ω = Ω1 ∪ Ω2,

then we setΩ12 = Ω1 ∩ Ω2, Γi = ∂Ω12 \ ∂Ωi, Γi
D = ΓD ∩ ∂Ωi andΓi

N = ΓN ∩ ∂Ωi for i = 1, 2.
See Fig.1 for a simple example inR2.

Ω1

Ω2

Ω12
Γ1Γ2

ΓD

ΓN

Figure 1. Partition ofΩ ⊂ R2 in two overlapping subdomains

We consider two multidomain formulations ofProblemPΩ:
ProblemPΩ12

:
Lu1 = f in Ω1

Lu2 = f in Ω2

u1 = u2 in Ω12,
(3)

ProblemPΓ1∪Γ2
:

Lu1 = f in Ω1

Lu2 = f in Ω2

Ψ(u1) = Ψ(u2) onΓ1 ∪ Γ2,
(4)

both supplemented with boundary conditions

ui = φD|Γi
D

onΓi
D i = 1, 2,

∂nL
ui = φN |Γi

N
onΓi

N , i = 1, 2.
(5)

We denote byΨ(ui) either the trace ofui onΓ1 ∪ Γ2, or its conormal derivative∂nL
ui onΓ1 ∪ Γ2,

or else a linear combination betweenui and∂nL
ui. Thus, depending on the choice ofΨ, condition

(4)3 may become, either
u1 = u2 onΓ1 ∪ Γ2, (6)

(which stands at the base of Schwarz method) or

∂nL
u1 = ∂nL

u2 onΓ1 ∪ Γ2, (7)
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or else
βu1 + ∂nL

u1 = βu2 + ∂nL
u2 onΓ1 ∪ Γ2, (8)

whereβ ≥ 0 is a suitable parameter. The equality (7) on Γ1 should be understood as follows. The
normal vectorn on Γ1 is directed outward ofΩ1 and the conormal derivative ofu2 is computed
upon restrictingu2 to Ω12. On the other hand, onΓ2 the normal vectorn is directed outward ofΩ2

and the conormal derivative ofu1 is taken upon restricting it toΩ12.
Since (7) is a special case of (8) corresponding toβ = 0, in the following we will consider only the
more general condition (8).

The following result was proved in [10].

Proposition 2.1
Both problems (3) and (4) are equivalent to (2) in the sense thatui = u|Ωi

, i = 1, 2. In particular,
they are well-posed.

Even if multidomain formulations (3) and (4) share the same solution at the continuous level, they
lead todifferentnumerical methods, that behave in a different way with respect to the discretization
parameters and the overlap thickness, as we will show in Section 5.

ICDD methodsare designedto solve problems (3) and (4). Theyconsist in introducing two control
functionsλ1 andλ2 which play the role of unknown Dirichlet (or Robin) data at the interfacesΓ1 and
Γ2 of the decomposition and in minimizing the difference between thecorrespondingsolutionsu1

andu2 through a suitable cost functional defined onΩ12 (for problem (3)) or ∂Ω12 \ ∂Ω = Γ1 ∪ Γ2

(for problem (4)).
For the sake of simplicity, we putΓN = ∅ (thusΓD = ∂Ω) andφD = 0. We define the following

Hilbert spaces:

Vi = {vi ∈ H1(Ωi) : vi = 0 onΓi
D}, V D

i = {vi ∈ Vi : vi = 0 onΓi}

endowed with the canonical norm ofH1(Ωi), andV = V1 × V2, VD = V D
1 × V D

2 , endowed with
the corresponding graph norms.

For i = 1, 2, let us introduce the vector spaces of admissibleDirichlet controls

ΛD
i = H

1/2
00 (Γi) = {µ ∈ H1/2(Γi) : ∃v ∈ H1(Ωi), v = µ onΓi, v = 0 onΓi

D},

that are Hilbert spaces when endowed with the canonical normin H
1/2
00 (Γi), and setΛD =

ΛD
1 × ΛD

2 , endowed with the corresponding graph norm(see [12, 13]).
For i = 1, 2 we define the state problems:

Luλi,f
i = f in Ωi,

uλi,f
i = λi onΓi,

uλi,f
i = 0 on∂Ωi \ Γi,

(9)

moreover, we denote byuλi

i = uλi,0
i the solution of(9) with f = 0, and we setλ = [λ1, λ2] and

uλ = [uλ1

1 , uλ2

2 ]. Because of problems linearity,uλi,f
i = uλi,0

i + u0,f
i , whereu0,f

i is the solution of
(9) with λi = 0.

Similarly, the Hilbert spaces of admissibleRobincontrols (withβ ≥ 0) are

ΛR
i = (H

1/2
00 (Γi))

′, (10)

endowed with the canonical norm of(H1/2
00 (Γi))

′ and setΛR = ΛR
1 × ΛR

2 , endowed with the
corresponding graph norm.

In this case, (9) is replaced by

Luλi,f
i = f in Ωi,

βuλi,f
i + ∂nL

uλi,f
i = λi onΓi

uλi,f
i = 0 on∂Ωi \ Γi,

(11)
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where nowλi ∈ ΛR
i are the Robin controls and condition (11)2 holds inΛR

i .
The interface controls are determined through the solutionof a minimization problem as follows:

Case 1: Minimization in the normL2(Ω12):

inf
λ1,λ2

J0(λ1, λ2), with J0(λ1, λ2) =
1

2
‖uλ1,f

1 − uλ2,f
2 ‖2

L2(Ω12). (12)

Case 2: Minimization in the normH1(Ω12):

inf
λ1,λ2

J1(λ1, λ2), with J1(λ1, λ2) =
1

2
‖uλ1,f

1 − uλ2,f
2 ‖2

H1(Ω12). (13)

Case 3: Minimization in the normL2(Γ1 ∪ Γ2):

inf
λ1,λ2

J0,Γ(λ1, λ2), with J0,Γ(λ1, λ2) =
1

2
‖uλ1,f

1 − uλ2,f
2 ‖2

L2(Γ1∪Γ2)
. (14)

Each functional defined in (12) – (14) can be rewritten in the general form

J∗(λ1, λ2) =
1

2
‖uλ1,f

1 − uλ2,f
2 ‖2

∗, (15)

where‖ · ‖∗ is the canonical norm on the observation spaceV∗, which is eitherL2(Ω12) or H1(Ω12)
or L2(Γ1 ∪ Γ2), respectively in Case 1, 2 or 3.

The minimization problems (12), (13) and (14) with constraints (9) (or (11)) are in fact optimal
control problems and they can be analyzed by using the classical theory of optimization (see, e.g.,
[14]). The controls are of boundary type (actually they are interface controls); the observation is
distributed on the overlap in both (12) and (13), while it is of boundary type in (14).

Problems (12) and (13) with constraints (9) were proposed in the papers by Glowinski et al.
[4] and Lions et al. [5], without however being analyzed. In [4] these methods were calledLeast-
Squares Conjugate-Gradient Methods, while in [5] they were namedVirtual Control Methods. The
latter nomenclature has been used also by the authors of thispaper in previous works (see [7, 6]).

SinceJ∗ is convex, the classical way to prove thatJ∗ admits a unique minimizer consists in:

1. proving that‖uλ1

1 − uλ2

2 ‖∗ = |||λ|||∗ is a norm on the spaceΛ (eitherΛD orΛR) of the controls;
2. considering the completion̂Λ of Λ with respect to the norm||| · |||∗. As a matter of fact, it is

not guaranteed that the spaceΛ is complete w.r.t. to the norm||| · |||∗. Notice that the abstract
space obtained by completion can be “very large”, however this is not an issue when using
finite dimensional approximations, as we will see in Section4 (see (37) and (38)).;

3. writing the Euler-Lagrange (EL) equation

〈〈J ′
∗(λ),µ〉〉 = (uλ1,f

1 − uλ2,f
2 , uµ1

1 − uµ2

2 )∗ = 0 ∀µ ∈ Λ̂, (16)

whereΛ̂ stands for either̂Λ
D

or Λ̂
R

, while 〈〈·, ·〉〉 denotes the duality between̂Λ and its dual
space, and〈〈λ,µ〉〉 = 〈λ1, µ1〉 + 〈λ2, µ2〉;

4. proving by the Lax-Milgram Lemma that the EL equation (16) admits a unique solution.

The following result holds.

Proposition 2.2
In all Cases 1–3,‖uλ1

1 − uλ2

2 ‖∗ = |||λ|||∗ is a norm on the control spaceΛ (either ΛD or ΛR).
Moreover, each one of the minimization problems (12) – (14) admits a unique solutionλ ∈ Λ̂,
that is the solution of the EL equation (16).

Proof. When Dirichlet controls are considered the proof is given in [10, Sect. 4]. The proof for
Robin controls can be repeated following the same guidelines. As a matter of fact, the regularity of
the state solutions of (11) with λ ∈ ΛR is the same of the solution of (9) with λ ∈ ΛD. The other
arguments of the proof can be used in the same way.
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For i = 1, 2 we define the bilinear formsai : Vi × Vi → R

ai(ui, vi) =

∫

Ωi

(ν∇ui − bui) · ∇vi +

∫

Ωi

γuivi (17)

and the linear functionalsFi : Vi → R

Fi(vi) =

∫

Ωi

fvi. (18)

The computation of the minimizerλ can be achieved by solving theOptimality System (OS)
associated to (16), that we report below.

In the case of Dirichlet controls the OS reads:
Cases 1-2: findu ∈ V, p ∈ VD, λ ∈ Λ̂

D
such that fori = 1, 2 with j = 3 − i:

ai(ui, vi) = Fi(vi), ui = λi onΓi ∀vi ∈ V D
i

ai(vi, pi) = (ui − uj, vi)∗ ∀vi ∈ V D
i

〈〈[∂nL
p1, ∂nL

p2],µ〉〉 = 0 ∀µ = (µ1, µ2) ∈ Λ̂
D

;

(19)

Case 3: findu,p ∈ V, λ ∈ Λ̂
D

such that fori = 1, 2 with j = 3 − i:

ai(ui, vi) = Fi(vi), ui = λi onΓi ∀vi ∈ V D
i

ai(pi, vi) = 0, pi = (ui − uj) onΓi ∀vi ∈ V D
i

2∑

i=1

∫

Γi

((ui − uj) + pj)µidΓ = 0 ∀µ = (µ1, µ2) ∈ Λ̂
D

.

(20)

In the case of Robin controls the OS reads:
Cases 1-2: findu ∈ V, p ∈ V, λ ∈ Λ̂

R
such that fori = 1, 2 with j = 3 − i:

ai(ui, vi) +

∫

Γi

βuivi = Fi(vi) + 〈λi, vi|Γi
〉 ∀vi ∈ Vi

ai(vi, pi) +

∫

Γi

βvipi = (ui − uj , vi)∗ ∀vi ∈ Vi

〈〈µ, [p1, p2]〉〉 = 0 ∀µ ∈ Λ̂
R
;

(21)

Case 3: findu ∈ V, p ∈ V, λ ∈ Λ̂
R

such that fori = 1, 2 with j = 3 − i:

ai(ui, vi) +

∫

Γi

βuivi = Fi(vi) + 〈λi, vi|Γi
〉 ∀vi ∈ Vi

ai(pi, vi) +

∫

Γi

βpivi =

∫

Γi

(ui − uj)vi ∀vi ∈ Vi

〈〈µ, [u1 − u2 + p2, u2 − u1 + p1]〉〉 = 0 ∀µ ∈ Λ̂
R
.

(22)

Both OS (19) and (21) are obtained starting by the Euler-Lagrange equation (16) and integrating
by parts.Thereforethe dual statespi are the solutions of elliptic problems which are dual of the
primal state problems (9) (or (11)).

On the contrary, both OS (20) and (22) are not obtained by integration by parts. They have been
defined in order to guarantee existence and uniqueness of minimizer (e.g., see theorem 4.3 of [10]
for the Dirichlet case) and the functionspi are the solutions of state problems of the same nature
(and not dual) of either (9) or (11).
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Remark 2.1
When applyingICDD methods to decompositions ofΩ usingM > 2 subdomains, we distinguish
between strip-wise decompositions,wheneach overlapped region is shared only by two subdomains,
and cross-wise decompositions, in which more than two subdomains can share a non-emptyregion.
In the former case the subdomainsΩk for k = 1, . . . , M can be numbered sequentially, so that all
the odd (even, resp.) subdomains can be grouped in a unique disconnected subdomaiñΩ1 (Ω̃2, resp.)
and the analysis presented above still holds providedΩi is replaced bỹΩi (for i = 1, 2). Otherwise
in the latter case, we defineΩij = Ωi ∩ Ωj for i 6= j and replace the cost functionals (15) by

J∗(λ) =
1

2

M∑

i,j=1

i>j
Ωij 6=∅

‖uλi,f
i − u

λj ,f
j ‖2

∗,ij (23)

where∗, ij stands forL2(Ωij), H1(Ωij) or L2(∂Ωij). The formulation of OS (19)–(20) and (21)–
(22) follows by replacingΩ12 with Ωij for anyi, j = 1, . . . , M and counting everyoverlapping area
once.

We refer to [15] for the analysis of the convergence rate of ICDD methods forelliptic selfadjoint
problems.

In the next Section we introduce ICDD methods forheterogeneous PDEs, namely anAdvection
– Advection/Diffusion coupled problem. We will come back tothe homogeneous caseaddressed
until now (i.e. onewith the same differential operator in both subdomains) in Section4, where we
will formulate the discretization of the OS (19) – (20), and in Section5 where we report numerical
results validating the robustness of ICDD methods with respect to the variations of the coefficients
of the problem.

3. ICDD FOR THE COUPLING OF ADVECTION WITH ADVECTION/DIFFUSION
PROBLEMS

Let us consider the coupling of Advection and Advection/Diffusion equations (in brief A–AD), that
is of interest whenconsidering aglobal advection-diffusion problemwith dominating advective
field, whose solution features internal and/orboundary layers (see Fig.2). In such a case the
presence of the viscous termmight not be essentialfar from the layer;by dropping it yields a
reducedorder differential operator in the latter region.

We decompose the computational domainΩ as described in Section2, therefore we look for two
functionsu1 andu2 (defined inΩ1 andΩ2, respectively) such thatu1 satisfies the advection equation

L̃u1 = div(bu1) + γu1 = f, in Ω1, (24)

while u2 satisfies the advection-diffusion equation

Lu2 = f, in Ω2, (25)

whereL is defined in (1).
The boundary conditions for the subproblems are inherited by the original one by taking care of

the advective problem inΩ1. As a matter of fact the first-order problem is well posed onlywhen
the Dirichlet condition is assigned on theinflowboundary(∂Ω1)

in, where for any non-empty subset
Γ ⊆ ∂Ω1, we set

the inflowpart ofΓ : Γin = {x ∈ Γ : b(x) · n(x) < 0},

theoutflowpart ofΓ : Γout = {x ∈ Γ : b(x) · n(x) > 0}

and
Γ0 = Γ \ (Γin ∪ Γout).
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Ω1

Ω2

Ω12

Γ1

Γ2 layer

Figure 2. Graphic representation of a 2D A-AD heterogeneouscoupling

Therefore we assume that(∂Ω1 \ Γ1)
in ⊂ ΓD, we set Γnz

2 = Γ2 \ Γ0
2 and define the

heterogeneous
ProblemPH

Γ1∪Γ2
:

L̃u1 = f in Ω1

Lu2 = f in Ω2

u1 = u2 onΓin
1 ∪ Γnz

2

u1 = φD on (∂Ω1 \ Γ1)
in

ν
∂u2

∂n2
= 0 onΓ0

2

u2 = φD onΓ2
D

∂nL
u2 = φN onΓ2

N .

(26)

Notice that the interface condition forΩ1 is assigned only on the inflow part of the interfaceΓ1,
while that forΩ2 is given on the subset ofΓ2 whereb · n 6= 0.

The analogous of problem (3) is not considered in this context, since in general there isno
guarantee thatu1 = u2 in Ω12 for heterogeneous problems (see, e.g., [7, 16]).

A preliminary study of the A–AD coupling with overlapping subdomains has been carried out in
[7, 16, 6, 10]. Following the formalism introduced in [10], we are going now to define the ICDD
method with interface observation and to analyze it.

First, we introduce some useful spaces. Given an open domainD ⊂ Rd with Lipschitz boundary
∂D and givenS ⊆ ∂D, we define

L2
b(S) = {v : S → R : v

√
|b · nS | ∈ L2(S)}, (27)

wherenS denotes the outward normal versor toS, and

Xb(D) = {v ∈ L2(D), div(bv) ∈ L2(D) : v ∈ L2
b(∂D)}. (28)

They are bothHilbert spaces (see [17]) with respect to their natural norms:

‖u‖L2

b
(S) =

(∫

S

|b · n|u2dS

)1/2

, ‖u‖Xb(D) =
(
‖u‖2

L2(D) + ‖div(bu)‖2
L2(D) + ‖u‖2

L2

b
(∂D)

)1/2

.

Finally, we define the spaces of the controls:

Λ1 = L2
b(Γin

1 ), Λ2 = H
1/2
00 (Γnz

2 ).

The ICDD formulation for the heterogeneous coupling (26) reads as follows (see Figure2): look
for the interface controlsλ1 ∈ Λ1 andλ2 ∈ Λ2 solutions of

inf
λ1,λ2

Jb(λ1, λ2) withJb(λ1, λ2) =
1

2

∫

Γin
1

∪Γnz
2

|b · n|(uλ1,f
1 − uλ2,f

2 )2, (29)
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whereuλ1,f
1 anduλ2,f

2 are the solutions of

L̃uλ1,f
1 = f in Ω1

uλ1,f
1 = 0 on (∂Ω1 \ Γ1)

in

uλ1,f
1 = λ1 a.e. onΓin

1 ,

Luλ2,f
2 = f in Ω2

uλ2,f
2 = 0 on∂Ω2 \ Γ2

uλ2,f
2 = λ2 onΓnz

2

∂nL
uλ2,f

2 = 0 onΓ0
2.

(30)

We require that∃β0 > 0 such that12∇ · b + γ ≥ β0 in Ω1, to ensure the first-order problem in
(30) has unique solution.

Thanks to the regularity of the data, it holdsuλ2,f
2 ∈ H1(Ω2), whileuλ1,f

1 ∈ Xb(Ω1), moreover if
S coincides witheitherΓin

1 orΓnz
2 , it holdsH1/2(S) ⊂ L2

b(S), thenthe integrals in (29) are bounded
and the definition ofJb makes sense.

As done for the homogeneous elliptic case, since bothL̃ and L are linear, we can write
uλi,f

i = uλi

i + u0,f
i (for i = 1, 2), whereuλ1

1 anduλ2

2 are the solution of (30) with f = 0, then we
setλ = (λ1, λ2) anduλ = (uλ1

1 , uλ2

2 ).
We define

Ṽ1 = Xb(Ω1), Ṽ D
1 = {v ∈ Ṽ1 : v|(∂Ω1\Γ1)in = 0},

we takeV2 and V D
2 as in Section2 and we setVH = Ṽ1 × V2, VD

H = Ṽ D
1 × V D

2 and ΛH =

Λ1 × Λ2. Finally we define the bilinear form̃a : Ṽ1 × Ṽ1 → R:

ã(u1, v1) = −

∫

Ω1

u1b · ∇v1 +

∫

Ω1

γu1v1 +

∫

∂Ωout
1

b · nu1v1.

The Euler-Lagrange equation〈J ′
b(λ),µ〉 = 0 associated to theminimizationproblem (29)–(30)

reads: ∫

Γin
1

∪Γnz
2

|b · n|(uλ1,f
1 − uλ2,f

2 )(uµ1

1 − uµ2

2 ) = 0 ∀µ ∈ ΛH (31)

while the optimality system reads: findu,p ∈ VH , λ ∈ ΛH such that

a1(u1, v1) = F1(v1) ∀v1 ∈ V D
1 , u1 = λ1 a.e. onΓin

1 ,

a2(u2, v2) = F2(v2) ∀v2 ∈ V D
2 , u2 = λ2 onΓnz

2 , ν
∂u2

∂n2
= 0 onΓ0

2

a1(p1, v1) = 0 ∀v1 ∈ V D
1 , p1 = u1 − u2 a.e. onΓin

1

a2(p2, v2) = 0 ∀v2 ∈ V D
2 , p2 = u2 − u1 onΓnz

2 , ν
∂p2

∂n2
= 0 onΓ0

2∫

Γin
1

|b · n|((u1 − u2) + p2)µ1dΓ +

∫

Γnz
2

|b · n|((u2 − u1) + p1)µ2dΓ = 0 ∀µ ∈ ΛH .

(32)

Remark 3.1
When the computational domain is partitioned in two non-overlapping subdomainsΩ1, Ω2 with
sharp interface (i.e. such thatΩ1 ∪ Ω2 = Ω, Ω1 ∩ Ω2 = ∅ andΓ = ∂Ω1 ∩ ∂Ω2), the heterogeneous
A–AD coupling has been analyzed in [17, 18, 6, 19]. In [17, 19] the authors provided a suitable set
of interface conditions on the sharp interfaceΓ of the decomposition, i.e.

u1 = u2 onΓin

b · nu1 + νn · ∇u2 − b · nu2 = 0 onΓ
(33)

wheren is the unit normal vector toΓ oriented fromΩ1 to Ω2.
These conditions express the continuity of the velocity field across theinflow part of the unique

interfaceΓ and the continuity of the fluxes across the whole interfaceΓ. In such case a suitable
version of the classical Dirichlet-Neumann method ([20, 17]) is applied to solve the heterogeneous
problem.

Other domain decomposition approaches based on virtual controls or extended variational
formulation on non-overlapping subdomains have been addressed in [6, 18, 21] to face similar
heterogeneous coupled problems.
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4. DISCRETIZATION

In this Section we brieflyaddress the discretization ofthe differential equations andthe solution of
the associatedoptimality systems (19) – (20) and (21) – (22) in discrete form.

Both primal and dual differential problems in each subdomain are discretized byhp Finite
Element Methods (hp-FEM).

4.1. hp-FEM discretization

For i = 1, 2, let Ti be a partition of the computational domainΩi ⊂ Rd in either simplexes or
quadrilaterals/hexahedra (quadrilaterals whend = 2 and hexahedra whend = 3). We denote bŷT
the reference element, that can be either the reference simplex with vertexes0 and the points on the
axis whose distance from the origin is1, or thed−dimensional cube(−1, 1)d.

We namesimplicial the partitions composed by simplexes andquad those partitions formed by
quadrilaterals/hexahedra. The first ones are typical of classical FEM, the others of Spectral Elements
Methods (SEM) with tensorial structure (see [22, 23]).

We suppose that each elementT ∈ Ti is obtained by aC1 diffeomorphismFT of the reference
element T̂ and we suppose that two adjacent elements ofTi share either a common vertex
or a complete edge or a complete face (whend = 3). For eachT ∈ Ti we denote byhT =
diam(T ) = maxx,y∈T |x − y| the diameter of elementT and we definehi = maxT∈Ti

hT . Then,
when simplicial partitions are considered, we require thatthe grid is regular in eachΩi (see, e.g.,
[13]).

Given an integerp ≥ 1, let us denote byPp the space of polynomialswhoseglobal degreeis
less than or equal top in the variablesx1, . . . , xd and byQp the space of polynomials that are of
degree less than or equal top with respect to each variablex1, . . . , xd. The spacePp is associated to
simplicial partitions, whileQp to quad ones.

The finite dimensional space onΩi is defined by

Xi,δi
= {v ∈ C0(Ωi) : v|T ◦ FT ∈ Pp, ∀T ∈ Ti} (34)

in the simplicial case and by

Xi,δi
= {v ∈ C0(Ωi) : v|T ◦ FT ∈ Qp, ∀T ∈ Ti}, (35)

for quads, and we setNΩi
= dim(Xi,δi

).
The parameterδi is an abridged notation for “discrete”, that accounts for the local geometric size

hi and the local polynomial degreep.
Finally, let Mi be the set of the nodesxj of the mesh inΩi and MΓi

⊂ Mi the set of nodes
xj ∈ Mi ∩ Γi, we denote byNΩi

andNΓi
their cardinality, respectively, and byIi = {1, . . . , NΩi

}
andGi = {j ∈ Ii : xj ∈ MΓi

} the corresponding sets of indices.
For quadsthe meshMi is built by mapping the nodes of the Legendre-Gauss-Lobatto(LGL)

quadrature formulas from̂T to the genericT through the mappingsFT , in order to ensure
exponential decay for both interpolation and quadrature errors ([22]).

The finite dimensional spaces in which we look for thehp-FEM solution are defined as follows:

Vi,δi
= Vi ∩ Xi,δi

, V D
i,δi

= V D
i ∩ Xi,δi

,

ΛD
i,δi

= {λi,δi
∈ C0(Γi) : ∃ vi,δi

∈ Vi,δi
with λi,δi

= vi,δi
|Γi

},

ΛR
i,δi

= {λi,δi
∈ L2(Γi) : ∃ vi,δi

∈ Vi,δi
with λi,δi

= ∂nL
vi,δi

+ βvi,δi
onΓi}.

(36)

ThenΛD
i,δi

is asubspace ofΛD
i andΛR

i,δi
a subspace ofΛR

i , and therefore

ΛD
δ = ΛD

1,δ1
× ΛD

2,δ2
⊂ ΛD ⊆ Λ̂

D
. (37)

Similarly,

ΛR
δ = ΛR

1,δ1
× ΛR

2,δ2
⊂ ΛR ⊆ Λ̂

R
. (38)
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In Vi,δi
we consider the basis of the characteristic Lagrange polynomials

BΩi
= {ϕi,j , with j ∈ Ii}

associated to the meshMi.
Moreover, we denote byBΓi

the finite dimensional basis inΛD
i,δi

such that each basis function
µi,j is the restriction toΓi of a suitable basis function ofVi,δi

that is not identically null onΓi, i.e.

BΓi
= {µi,j = ϕi,j |Γi

, with j ∈ Gi}.

It follows that thediscrete Dirichlet controlswill be identified by the real(nodal)values

(λi,δi
)j = λi,δi

(xj), with j ∈ Gi. (39)

The characterization of the discrete Robin controls requires more care.
Let Tk ⊂ Ωi bethe generic element inΩi, we introduce the set

Ei = {k : meas(∂Tk ∩ Γi) > 0}

and, for anyk ∈ Ei, the edgeseik = ∂Tk ∩ Γi. Thanks to definition ofXi,δ, for anyvi,δi
∈ Xi,δi

it
holdsvi,δi

|T k
∈ C1(T k) and then∂nL

vi,δi
makes senseon eik.

In view of definition (36)3, for anyµi,j ∈ BΓi
andλi,δi

∈ ΛR
i,δi

,

〈λi,δi
, µi,j〉 =

∑

k∈Ei

∫

eik

λi,δi
µi,j , (40)

thenthe nodal values of thediscrete Robin controlsare givenby

(λi,δi
)j =

∑

k∈Ei

∫

eik

λi,δi
µi,j , with j ∈ Gi. (41)

By a similar argument, starting from

〈〈[∂nL
p1, ∂nL

p2],µ〉〉 = 〈∂nL
p1, µ1〉 + 〈∂nL

p2, µ2〉

for any µ = [µ1, µ2] ∈ Λ̂
D

, we can compute the left hand side of (19)3 by using the following
formula and (40) as follows. For anyj ∈ Gi

〈∂nL
pi, µi,j〉 =

∑

ℓ∈Ii

pi,δi
(xℓ)〈∂nL

ϕi,ℓ, µi,j〉 =
∑

ℓ∈Ii

pi,δi
(xℓ)

∑

k∈Ei

∫

eik

∂nL
ϕi,ℓ µi,j

︸ ︷︷ ︸
(Di)jℓ

. (42)

The matrices associated to the bilinear formsai and the discrete inner products read:

(Ai)lj = ai(ϕi,j , ϕi,l), (Mi)lj = (ϕi,j , ϕi,l)L2(Ωi), for l, j = 1, . . . , NΩi
.

Because of the difficulty to compute integrals exactly for largep, typically when quad partitions
are used, Legendre-Gauss-Lobatto quadrature formulas areused to approximate both the bilinear
formsai and theL2−inner products inΩi (as well as on the interfaces). This leads to the so called
Galerkin approach with Numerical Integration(G-NI) [22, 24] and to the Spectral Element Method
with Numerical Integration (SEM-NI).
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4.2. Discretization and solution of the OS

The OS has six unknown functions:
- the primal state variablesu1, u2;
- the dual state variablesp1, p2;
- the control variablesλ1, λ2.

All the differential and integral equations of the OS are approximated byhp-FEM andui,δi
, pi,δi

,
λi,δi

are the corresponding discrete solutions. LetM
0
i ⊂ Mi be the subset of the non-Dirichlet nodes

of Ωi andN0
Ωi

its cardinality. (We have eliminated Dirichlet nodes on both theexternal boundary
andtheinterface.)

Let us denote by:

- ui,pi ∈ R
N0

Ωi , for i = 1, 2, the arrays whose entries are the values of the discrete primal states
ui,δi

and of the discrete dual statespi,δi
, respectively, at the nodes inM0

i ;

- λi ∈ RNΓi , for i = 1, 2 the arrays of the values of the discrete controlλi,δi
at the nodes ofMi ∩ Γi,

as defined in either (39) or (41).

For simplicity we consider the case of homogeneous Dirichlet conditions on the external
boundary∂Ω, so that the external boundary degrees of freedom are dropped.

We start by analyzing the case with Dirichlet controls.

4.3. Distributed observation. Dirichlet controls

For i = 1, 2 we define the following matrices:

- Aii is the submatrix ofAi obtained by selecting both rows and columns associated to the nodes
of M

0
i ;

- Bi is the submatrix ofAi obtained by selecting the rows associated to the nodes ofM
0
i and the

columns associated to interface nodes ofMi ∩ Γi;

- C0
i andCΓi

i are submatrices of a matrixCi which depends on whether we are minimizing either
the cost functional (12) or (13). More precisely, forl, j = 1, . . . , N0

Ωi

(Ci)lj =

{
(ϕi,j , ϕi,l)L2(Ω12) in Case 1

(ϕi,j , ϕi,l)H1(Ω12) in Case 2.

Those columns ofCi associated to nodes onΓi are stored inCΓi

i , the others inC0
i ;

- Di are the matrices associated to the discretization of the last equation of the OS, as defined in
(42).

Therefore, we set

A =

[
A11 0
0 A22

]
, B =

[
B1 0
0 B2

]
, C0 =

[
C0

1 −C0
2

−C0
1 C0

2

]
, CΓ =

[
CΓ1

1 −CΓ2

2

−CΓ1

1 CΓ2

2

]
,

D =

[
D1 0
0 D2

]
, u =

[
u1

u2

]
, p =

[
p1

p2

]
, λ =

[
λ1

λ2

]
, f =

[
f1
f2

]
,

(43)

so that the matrix form of the OS (19) reads



A 0 B
C0 AT CΓ

0 D 0





︸ ︷︷ ︸
G




u

p

λ





︸ ︷︷ ︸
x

=




f

0

0





︸ ︷︷ ︸
b

. (44)
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By introducing the Schur-complement matrixS of G with respect to the control variableλ

SD = −
[

0 D
] [ A 0

C0 AT

]−1 [
B
CΓ

]
= D(AT )−1(C0A

−1B − CΓ) (45)

and the vector
ψD = D(AT )−1C0A

−1f

the Schur-complement system associated to OS (44) reads

SDλ = ψD (46)

and itcan be regarded asthe discrete counterpart of the Euler equation (16) (see [10, Sect. 4.1]).
SinceC0 is singular and the (3,3)-block ofG is null, any other block elimination of either(p,λ)

or (u,λ) from system (44) would lead to ill-posed Schur-complement matrices.
The solution of the Schur-complement system (46) can be efficiently computed by Krylov

methods as, e.g., Bi-CGStab ([25]), preconditioned whenever this is convenient.
At the kth Bi-CGStab iteration, ifλ(k) is a known array, the computation of the matrix-vector

productχ(k) = SDλ
(k) is performed by the following algorithm which, in fact, reflects the three

steps of the OS.

Algorithm 4.1(Schur-complement evaluation)
Distributed observation - Dirichlet controls. Givenλ(k), computeχ(k) = SDλ

(k)

1. solveAu(k) = −Bλ(k), i.e. useλ(k) as Dirichlet data on the interfacesΓi and null functions
Fi to solve primal states problems and findu(k);

2. solveATp(k) = C0u
(k), i.e., useu(k) to assemble the right hand side for the dual state

problems and findp(k);
3. computeχ(k) = Dp(k), i.e. compute the normal derivatives ofp

(k)
i,δ at the interfacesΓi.

The right hand sideψD is computedoff-line (once and for all)by a similar algorithm:

Algorithm 4.2(ψD evaluation)
Distributed observation - Dirichlet controls. Givenf , computeψD

1. solveAuf = f , i.e. use null Dirichlet data on the interfacesΓi andFi as in (18) to solve primal
states problems and finduf ;

2. solveATpf = C0u
f ;

3. computeψD = Dpf .

The most expensive part of Algorithm4.1 is the solution of both primal and dual problems, thus
one matrix-vector productSDλ

(k) requires to solve two differential problems in each subdomain.
We can compute a Cholesky or LU factorization of bothA11 and A22 off-line, before the

iterations start, and then solve the associated triangularsystems every time we have to compute
the matrix-vector productSDλ

(k), otherwise we can solve each systemAiiui = −Biλi (and the
corresponding dual problem) by the Preconditioned Conjugate Gradient (PCG) method (orone
variants of its for non-symmetric problems). Low-order FEM-preconditioners can be used when
SEM-NI discretization is adopted. It is well known (see, e.g. [22, 24]) that such preconditioners
cluster the eigenvalues of SEM-NI matrices independently of the discretization.

Remark 4.1(Additive and multiplicative versions)
The solution of the primal state problems (similar considerations hold for the duals) can be
performed either concurrently or sequentially, yielding either additiveor multiplicativeversions
of the algorithm. More precisely, the form (44) corresponds to the additive version, while the
multiplicative one can be achieved by eliminating either the variableλ1 or λ2 from (44).

Remark 4.2
Instead of solving the Schur-complement system (46), it is possible to solve the discrete optimality
system (44) simultaneously for the primal states, dual states and controls, using the so-calledone-
shot(or all-at-once) approach analyzed in [26, 27, 28, 29].
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Remark 4.3
In principle the discretizationsto be usedin Ω1 andΩ2 may be totally unrelated, so that either
the polynomial degreespi and/or the mesh size inside each subdomainΩi may differ one another.
This implies that the restrictions to the overlapping region Ω12 of the partitionsT1 andT2 may
not match onΩ12 and theset up of an intergrid interpolation operator(from eitherT1 to T2 or
viceversa) is needed to compute both the terms(C0

1u1 − C0
2u2) and(CΓ1

1 λ1 − CΓ2

2 λ2). This step
can be expensive if the overlapping region is wide and the meshes are very fine inΩ12.
In our numerical tests, only matching meshes on the overlap will be taken into account when the
minimization of both cost functionals (12) and (13) areperformed.
Different conclusions can be carried out when the minimization of the cost functional (14) is
considered since, in such case, the interpolation is required only on the interfaceΓi, as we can
see the in next Section.

4.4. Interface observation. Dirichlet controls

In order to write the algebraic form of OS (20) we introduce the following new matrices, fori = 1, 2
andj = 3 − i:

- Tij is the matrix that interpolates the trace ofuj,δj
onMi ∩ Γi (obviously,Tiiui = λi);

- MΓi

i is the(d − 1)-dimensional mass matrix associated to interfaceΓi,

and we set

T =

[
0 T12

T21 0

]
, MΓ =

[
MΓ1

1 0

0 MΓ2

2

]
. (47)

Recallingthedefinitions given in (43), the algebraic form of (20) reads




A 0 B

−BT A B
−MΓT MΓT MΓ





︸ ︷︷ ︸
GΓ




u

p

λ





︸ ︷︷ ︸
x

=




f

0

0





︸ ︷︷ ︸
b

. (48)

Interpolation matricesTij depend on both meshes and overlap decomposition and the product
Tijuj (for i 6= j) requires a-prioriO(N0

Ωj
· NΓi

) floating-point operations. Nevertheless, because of
the local support of Lagrange basis functions, the computation of the matrix-vector productTijuj

involves only those elements ofTj ∩ Ωj whose intersection with the interfaceΓi is non-empty.

Remark 4.4(Non-matching grids)
The OS (20) offers the advantage of using only the trace of(uλ1,f

1 − uλ2,f
2 ) on Γi instead of the

distributed function(uλ1,f
1 − uλ2,f

2 ) in Ω12. Thus, if we use totally unrelated meshes inΩ1 andΩ2,
the interpolation ofui onΓj (with i 6= j) is bounded to the sole elementsT ∈ Ti : T ∩ Γj 6= ∅.

By introducing the Schur-complement matrixSDΓ of GΓ with respect to the control variableλ

SDΓ = MΓ

(
I −

[
−T T

] [ A 0
−BT A

]−1 [
B
B

])
= MΓ(I − (TA−1B)2) (49)

and the vector
ψDΓ = MΓ(I − TA−1B)TA−1f

the Schur-complement system associated to OS (48) reads

SDΓλ = ψDΓ (50)

and it is the discrete counterpart of the equation (20)3.



ICDD METHODS FOR COUPLED DIFFUSION AND ADVECTION-DIFFUSION PROBLEMS 15

Remark 4.5(Preconditioning of (50))
Since the mass matrixMΓ is not singular, we can left-multiply the last row of (48), or equivalently
both sides of (49), by (MΓ)−1. This operation is in fact a preconditioning step of system (50) by the
matrixMΓ.

In the case ofP1-FEM the elimination ofMΓ does not produce benefits, on the contrary, whenQp

approximation is used on Legendre-Gauss-Lobatto nodes, the condition number ofSDΓ reduces by
a factorpd−1. We refer to [15] for a detailed analysis of the conditioning of the Schur complement
systems (46) and (50).

Given the arrayλ(k) at the k−th iteration of Bi-CGStab, the matrix vector productχ(k) =
SDΓλ

(k) is performed by the following algorithm.

Algorithm 4.3(Schur-complement evaluation)
Interface observation - Dirichlet controls. Givenλ(k), computeχ(k) = SDΓλ

(k).

1. solveAiiu
(k)
i = −Biλ

(k)
i for i = 1, 2, i.e. useλ(k)

i as Dirichlet data on the interfacesΓi and
Fi = 0 to solve primal states problems;

2. computet(k)
1 = T12u

(k)
2 andt

(k)
2 = T21u

(k)
1 , i.e. the discrete trace ofu1 on M2 ∩ Γ2 and that

of u2 onM1 ∩ Γ1 by interpolation matrices;
3. solveAiip

(k)
i = −Bi(λ

(k)
i − t

(k)
j ) with j = 3 − i, i.e., solve the dual state problems;

4. compute

χ(k) =

[
λ

(k)
1 − T12u

(k)
2 + T12p

(k)
2

T21u
(k)
1 − λ

(k)
2 + T21p

(k)
1

]
.

The computation ofψDΓ is performed similarly:

Algorithm 4.4(ψDΓ evaluation)
Interface observation - Dirichlet controls. Givenf , computeψDΓ

1. solveAuf = f , i.e. use null Dirichlet data on the interfacesΓi andFi as in (18) to solve primal
states problems and finduf ;

2. computet1 = T12u
f
2 andt2 = T21u

f
1 , i.e. the discrete trace ofu1 on M2 ∩ Γ2 and that ofu2

onM1 ∩ Γ1 by interpolation matrices;
3. solveAiip

f
i = Bitj , i.e., solve the dual state problems (withj = 3 − i);

4. compute

ψDΓ =

[
−T12u

f
2 + T12p

f
2

T21u
f
1 + T21p

f
1

]
.

As for distributed observation, also in this case the primalstate problems (and similarly the duals)
can be solved either simultaneously (additive form) or sequentially (multiplicative form).

4.5. Distributed observation. Robin controls.

Let us consider now the OS (21), all definitions given in Section4.3, and we define some new
matrices:

- the restriction matricesRi ∈ R
NΓi

×N
Ω0

i made of 0,1 implementing the restriction map fromM0
i

to MΓi
;

- matrices associated to state equations in (21)1 and (21)2, i.e.Aβ
ii = Aii + βRT

i MΓi ;

and

Aβ =

[
Aβ

11 0

0 Aβ
22

]
, R =

[
R1 0
0 R2

]
.
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The algebraic form of OS21) reads:



Aβ 0 −RT

C (Aβ)T 0
0 MΓR 0






u

p

λ


 =




f

0

0


 . (51)

Also in this case we can write the Schur-complement systemSRλ = χ of (21) with respect to the
control variable, but now

SR = −
[

0 MΓR
] [ Aβ 0

C (Aβ)T

]−1 [
−RT

0

]
= −MΓR(Aβ)−T C(Aβ)−1RT (52)

and
ψR = MΓR(Aβ)−T C(Aβ)−1f .

At the kth Bi-CGStab iteration, ifλ(k) is a known array, the computation of the matrix-vector
productχ(k) = SRλ

(k) with SR defined in (52) is performed by the following algorithm which, in
fact, reflects the three steps of the OS (21).

Algorithm 4.5(Schur-complement evaluation)
Distributed observation - Robin controls. Givenλ(k), computeχ(k) = SRλ

(k)

1. solveAβu(k) = RTλ
(k), i.e. useλ(k) as Robin data on the interfacesΓi and null functionsFi

to solve primal states problems and findu(k);
2. solve(Aβ)T p(k) = Cu(k), i.e., useu(k) to assemble the right hand side for the dual state

problems and findp(k);
3. computeχ(k) = −MΓRp(k), i.e. compute the weak trace ofp

(k)
i,δ at the interfacesΓi.

The right hand sideψR is computed by a similar algorithm:

Algorithm 4.6(ψR evaluation)
Distributed observation - Robin controls. Givenf , computeψR

1. solveAβuf = f , i.e. use null Robin data on the interfacesΓi andFi as in (18) to solve primal
states problems and finduf ;

2. solve(Aβ)T pf = Cuf with null Robin data on the interfaces;
3. computeψR = MΓRpf .

4.6. Interface observation. Robin controls

Let us consider now the OS (22), by proceeding as in previous Sections, its algebraic formreads:



Aβ 0 −RT

MΓ(R − T ) Aβ 0
MΓ(R − T ) MΓT 0






u

p

λ


 =




f

0

0


 . (53)

The Schur-complement matrix is now

SRΓ = MΓ(I − T (Aβ)−1MΓ)(R − T )(Aβ)−1RT (54)

while the right hand side is

ψRΓ = −MΓ(I − T (Aβ)−1MΓ)(R − T )(Aβ)−1f .

The corresponding algorithm to perform the matrix-vector product reads as follows.

Algorithm 4.7(Schur-complement evaluation)
Interface observation - Robin controls. Givenλ(k), computeχ(k) = SRΓλ

(k)
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1. solveAβu(k) = RTλ
(k), i.e. useλ(k) as Robin data on the interfacesΓi and null functionsFi

to solve primal states problems and findu(k);
2. computet(k)

1 = T12u
(k)
2 andt

(k)
2 = T21u

(k)
1 , i.e. the discrete trace ofu1 on M2 ∩ Γ2 and that

of u2 onM1 ∩ Γ1 by interpolation matrices, and the restrictions ofui to Γi by matricesRi;
3. solveAiip

(k)
i = MΓi

i (Riu
(k)
i − t

(k)
j ) with j = 3 − i, i.e., solve the dual state problems;

4. compute

χ(k) =

[
R1u

(k)
1 − T12u

(k)
2 + T12p

(k)
2

T21u
(k)
1 − R2u

(k)
2 + T21p

(k)
1

]
.

The right hand sideψ is computed by a similar algorithm:

Algorithm 4.8(ψ evaluation)
Distributed observation - Robin controls. Givenf , computeψRΓ

1. solveAβuf = f , i.e. use null Robin data on the interfacesΓi andFi as in (18) to solve primal
states problems and finduf ;

2. computet1 = T12u
f
2 andt2 = T21u

f
1 , i.e. the discrete trace ofuf

1 onM2 ∩ Γ2 and that ofuf
2

onM1 ∩ Γ1 by interpolation matrices, and the restrictions ofuf
i to Γi by matricesRi;

3. solveAiip
f
i = MΓi

i (Riu
f
i − tj) with j = 3 − i, i.e., solve the dual state problems;

4. compute

ψRΓ = −

[
R1u

f
1 − T12u

f
2 + T12p

f
2

T21u
f
1 − R2u

f
2 + T21p

f
1

]
.

5. NUMERICAL RESULTS

In this section we compare the ICDD methods presented above,with either Dirichlet and Robin
controls for two dimensional domains, versus the discretization parametersh andp and the overlap
thicknessδ12 = dist(Γ1, Γ2).

Then we consider jumping coefficients and discuss the robustness of ICDD methods with
interface observation and Dirichlet controls.

Each ICDD method is characterized by the type of controls (Dirichlet or Robin) and the norm
chosen for the minimization, thus we introduce the following notations:

Signature Controls Observation Cost functional OS

J0D Dir distributed J0 (12) (19)
J1D Dir distributed J1 (13) (19)
JGD Dir on interfaces J0,Γ (14) (20)
J0R Robin distributed J0 (12) (21)
J1R Robin distributed J1 (13) (21)
JGR Robin on interfaces J0,Γ (14) (22)

Only 2D geometries are considered here.
Numerical results refer to discretization with either simplicial meshes andp = 1 (identified by

the classical notationP1) or quad meshes andp ≥ 1 (identified byQp).
In general the partitionsTi in eachΩi are uniform andh denotes the global size of the mesh, but

we can also use finer mesh on the overlap, especially when jumping coefficientsgenerateinternal
layers. More precisely, when non-matching grids are used, the meshes are uniform and regular in
eachΩi and in the whole domain. When we work with matching grids we can use either uniform
and non-uniform meshes: with finer grids inΩ12 and coarser grids inΩ \ Ω12.

When the observation of the optimization problem is distributed, the simpler way of working
consists in considering matching grids on the overlapΩ12, in order to avoid interpolation processes
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Table I.Test case #1.The number of iterations reported in Figs.3–4 obeys the lawit ≃ chqps

J0D J1D JGD J0R J1R JGR

q for P1 -0.25 -0.5 0 -1 -0.5 -0.25
q for Qp 0.4 0.6 0 1.5 1 0.4
s for Qp -0.3 0.2 0 -1 -0.8 -0.4

between the state solutions on the whole overlap. On the contrary, when the observation is bounded
to interfaces, we consider both matching and non-matching grids inΩ12 (see Remarks4.3and4.4).

The efficiency of each method is measured in terms of Bi-CGStab iterations to solve the Schur
complement system associated to its OS.

As noticed in Remark4.5, the Schur complement system is preconditioned by the mass matrix on
the interfaces. The computational cost of one Bi-CGStab iteration is of 4 boundary value problems
on each subdomain and it is independent of thespecific type ofICDD methodused.

The tolerance of the stopping test is chosen equal toǫ = 10−9.

5.1. Test case #1. Homogeneous elliptic coupling with self-adjoint operatorL

Let us consider the elliptic problem (2) and setν = 1, γ = 1, b = (0, 0) and Dirichlet boundary
conditions on∂Ω. The functionsf andφD are defined so that the exact solution of the differential
problem (2) is u(x, y) = sin(πxy) + 1.

The domainΩ = (0, 1)2 is decomposed in two subdomains of the same size, the interfacesΓ1

andΓ2 are parallel to the vertical axis and symmetric with respectto the linex = 0.5, δ12 is the
thickness of the overlap. In this test case we consider matching grids inΩ12.

At first we analyze the convergence rate of ICDD methods with respect to the discretization
parametersp andh.

In Figure3 (left) the number of iterations of all ICDD methods is shown versus the mesh sizeh
for P1 discretization. The overlap thickness isδ12 = 1/10.

In Figure3 (right) the number of iterations of all ICDD methods is shownversus the polynomial
degreep for Qp discretization. The overlap thickness and the mesh-size are fixed, more precisely
δ12 = 1/10 andh = 1/10.

In Figure4 the number of iterations of all ICDD methods is shown versus the mesh sizeh of Qp

discretization, withp = 4. The overlap thickness isδ12 = 1/10.
We see that JGD is the sole method whose convergence rate is independent of the discretization

parameters, while the number of Bi-CGStab iterations of theother methods grows forp ր and
h ց. For each stage, we have computed a least-squares fit of a law like it ≃ chqps, for h andp in
the range of the values indicated in Figures3–4 andc a positive constant independent of bothp and
h. The estimated values forq ands are shown in TableI.

We notice that J0D and J1R behave similarly and that the worstmethod is J0R.
Now we fix the discretization and analyze the convergence rate of ICDD methods with respect to

the overlap thicknessδ12, more precisely whenδ12 → 0. To perform this analysis we can proceed in
different ways.

1. by fixing the mesh (i.e. bothh and p) on the whole domain and settingδ12 = Ch where
C = . . . , 3, 2, 1. (in this caseδ12 is bounded below by the mesh sizeh). See Figure5;

2. by fixing p, by taking uniformh in the whole domainΩ and choosingδ12 = h, in this case
bothδ12 → 0 andh → 0. See Figure6 (left);

3. only for non-matching grids, by movingδ12 to zero independently of the mesh. In this case
we fix p and the number of elements in each subdomainΩi; the mesh is uniform in each
Ωi, but obviously the mesh sizeh slowly changes and it grows up whenδ12 ց. In this case
we analyze only ICDD methods with interface observation (JGD and JGR) in order to avoid
interpolation of the state solutions on the whole overlapΩ12. See Figures6– 7.
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Figure 3.Test case #1.Iterations versus the mesh sizeh. P1 discretization,δ12 = 1/10 (at left). Iterations
versus the polynomial degreep. Qp discretization,δ12 = 1/10, the mesh size ish = 1/10 (at right)
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Figure 4.Test case #1.Iterations versus the mesh sizeh. Qp discretization withp = 4, δ12 = 1/10
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Figure 5.Test case #1.Iterations versus the overlap thicknessδ12 ≥ h. P1 discretization withh = 1/100 (at
left). Iterations versus the overlap thicknessδ12 ≥ h. Qp discretization withp = 4 andh = 1/10 (at right)

The behaviour of ICDD methods w.r.t.δ12 depends on the wayδ12 andh are relatedone another,
as said in the previous description. In all cases we look for an exponentr so thatit ≃ cδr

12, with
c > 0 independent ofδ12.

Whenδ12 = Ch, h is fixed andC = 1, . . . , 5 (results of Fig.5), r is given in TableII (top), while
whenδ12 = h (results of Fig.6 (left)), r is given in TableII (bottom).

Finally, we consider JGD and JGR with non-matching grids on the overlap andδ12 → 0
independently ofh. As we can see in Fig.6 (right), JGD and JGR show specular behaviors, more
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Table II.Test case #1.The number of iterations of Figs.5 and6-left behaves likeit ≃ cδr
12

Fig. 5 J0D J1D JGD J0R J1R JGR

r for P1 -0.8 -0.3 -0.5 0.1 0 0
r for Qp 0 -0.4 -0.5 0.2 0 0

Fig. 6-left J0D J1D JGD J0R J1R JGR

r for P1 -1 -1 -0.5 -1 -0.5 -0.4
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Figure 6.Test case #1.Iterations versusδ12 = h. P1 discretization (at left). Non-matching grids on the
overlap.h = 1/5 for Q6, h = 1/20 for P1 (at right)
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Figure 7.Test case #1.Iterations of JGD versusδ12. P1 discretization, non-matching grids on the overlap (at
left). Qp discretization withh = 1/5, non-matching grids on the overlap (at right)

precisely the number of iterations of JGD slightly grows when δ12 decreases and it is large, while
it is independent ofδ12 whenδ12 is smaller than a valueδ that depends on the discretization (either
P1 or Q6). On the contrary, the number of iteration of JGR is fixed for largeδ12 and than it grows
whenδ12 → 0. In both cases, the behavior for largeδ12, i.e.δ12 ≥ h is the oneshown in Figs.5–6.

In order to better understand the behavior of the methods forvery smallδ12, we compare the
iterations of JGD for several values ofh andp in Fig. 7. Numerical results show that

itJGD ≃ min
{

c1ph−1/2, c2δ
−1/2
12

}
, (55)

with c1, c2 positive constants independent ofh, p, δ12.
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Figure 8.Test case #2.Numerical solution obtained withQp with p = 6 and5 × 5 quad elements in each
subdomain. The convergence is achieved in 8 iterations (at left). Iterations versusδ12 (at right)

5.2. Test case #2. Homogeneous coupling, advection–diffusion operator

We consider now the advection diffusion problem (2) in Ω = (0, 2) × (0, 1) with ν = 10−4, b =
[1, 2 cos(2πx)]t, γ = 1, f = 0 and Dirichlet boundary conditionsφD = y(1 − y) on the left vertical
side of the domain andφD = 0 otherwise.

We apply Galerkin Least Squares (GaLS) stabilization techniques (see [30, 31]) to hp-FEM, more
precisely we discretize the differential problems byQp with p = 6 and5 × 5 quad elements in each
subdomain. When the methods with distributed observation (i.e. J0D, J1D, J0R, J1R) are considered
the two meshes match on the overlap. On the contrary, non-matching meshes are used for both JGD
and JGR. The numerical solution is shown in Figure8 (left).

We split the domain in two symmetric subdomains with respectto the linex = 1 and we measure
the convergence rate of various ICDD methods. For this test case we only report the number of
iterations versus the overlap thickness (see Fig.8 (right)). The behaviour of the various methods
with respect to the discretization parameters is as in the test case #1without advection (see Figs.
3–4).

As we can deduce from Figure8 (right), we observe that the most efficient method is JGD, also
in presence of non-null advective fields.

5.3. Test case #3. Homogeneous coupling with jumping viscosity.

In this test case we consider only the JGD method, the most efficient one among the six methods
presented in the previous sections, and we test its robustness with respect to jumps discontinuities
of the elliptic coefficientν.

We takeΩ = (0, 1)2 and we decompose it in more than two subdomains, as describedin Remark
2.1.

At first we consider discontinuous viscosityν as on a chessboard with squares of size 1/5,ν
assumes the value10 in the white squares and the valueα (as precised in TableIII ) in the black
ones, while the reaction coefficient isγ = 1. Thenwe consider a random mix of values forν as
defined in Figure9 (left).

In both cases we takeb = [0, 0]t, f = 1 and homogeneous Dirichlet boundary conditions.
The computational domain is decomposed in5 × 5 equal overlapping subdomains with overlap

thicknessδ12 = 0.01 (equal to 1% of the side ofΩ), Qp discretization is considered in each
subdomain withp = 12 and3 × 3 non-uniform quad elements.

The size of the overlap is responsible in general for the convergence rate of the Bi-CGStab
iterations and, in the case of discontinuous coefficient, also for the accuracy of the approximation.
More precisely, if the jump of the coefficient is very large, the high variation of the solution is
correctly captured without oscillations only if the discretization is fine enough in a small region
around the jump. We can achieve good results, e.g., by using avery small overlap, then considering



22 M. DISCACCIATI, P. GERVASIO, A. QUARTERONI

Table III. Test case #3Iterations count and infimum of the cost functionalJ0,Γ for the chessboardand
random mixconfigurations

α iterations inf J0,Γ

10−5 16 3 · 10−22

10−3 9 1 · 10−26

10−1 13 7 · 10−31

103 11 7 · 10−35

105 8 4 · 10−34

random 10 2 · 10−19

10−1 10−2

10−210−2

10−3

10−3

10−4

10−5

10−610−6

111

10

10

10

10 102

102

103

103103 104

104

106

Figure 9.Test case #3Values of the viscosityν in Ω for the random mix case (at left). Numerical solution
of advection-diffusion problem withν = 10 or ν = 10−3 as on a5 × 5 chessboard andb = [−y, x]t. The
solution is computed by JGD andQp with p = 12 and 3 × 3 quad elements in each subdomain. The

convergence is achieved in 10 iterations (at right)

matching meshes and discretizing the overlap with one spectral element (along the direction across
the jump) and by using a moderately large value of the polynomial degreep. Otherwise we can use
a generous overlap in spite of adoptinga higher polynomial degreep. On one hand, the smaller the
overlap thickness, the slower the convergence rate to the minimum point. On the other hand, the
larger the polynomial degreep, the more expensive the solution of the boundary value problems
inside each subdomain. Therefore, a careful tuning of the discretization parameters is in order to
minimize the computational costs without compromising accuracy or stability.

In TableIII we report the iterations count and the infimum of the cost functional J0,Γ obtained
at convergence, for different values of the parameterα. The iterations count refers to Bi-CGStab,
called here to solve the Schur complement system (48). The stopping test is satisfied when the norm
of the residual is reduced up to10−12.

The results show that the convergence rate of JGD to the solution of the minimum problem (14)
is independent of the jumps of the coefficients.

At last we consider again the chessboard configuration of theviscosity withν = 10 in the white
squares andν = 10−3 on the black ones, but now we take non-null advective field, precisely
b = [−y, x]t.

Again, we setγ = 1, f = 1 and homogeneous Dirichlet boundary conditions. The discretization
is the same used for the case with nullb.

The numerical solution, computed with stabilized GalerkinLeast Squareshp-FEM, is shown in
Figure9 (right).
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Table IV.Test case #3, advection-diffusion problem. Iteration counts of JGD andinfimum of the cost
functionalJ0,Γ versus the overlap thickness

δ12 iterations inf J0,Γ

1 · 10−1 9 3.50 · 10−26

5 · 10−2 9 7.40 · 10−27

2 · 10−2 10 1.58 · 10−26

1 · 10−2 10 2.96 · 10−26

5 · 10−3 11 6.99 · 10−27

2 · 10−3 12 2.98 · 10−27

1 · 10−3 12 8.70 · 10−28

Table V.Test case #4. Iterations count of JGD for fixedh = 1/7, δ12 = 0.01 andν = 10−3 (at left). Iterations
count of JGD for fixedp = 2, δ12 = 0.1 andν = 10−3 (at right)

p 1 2 3 4 5 6 7 8

#it 3 3 3 3 3 3 3 3

h 1/10 1/20 1/30 1/40 1/50

#it 3 2 1 1 1

Table VI.Test case #4. Iterations count of JGD for fixedp = 4, h = 1/16 andν = 10−3

δ12 0.1 0.05 0.02 0.01 0.005 0.002 0.001

#it(matching grids) 3 2 2 3 5 9 13
#it(non-matching grids) 1 2 4 3 5 6 6

We have analyzed the number of iterations of JGD and the infimum of J0,Γ attained at
convergence with respect to the overlap thicknessδ12, the results are shown in TableIV and show
that the method behaves as with self-adjoint elliptic operators (see Test case #1).

Even if the theoretical analysis of convergence rate of ICDDmethods is in progress, we can
state that JGD is optimal with respect to discretization parameters and it is robust with respect to
variations of coefficients for both self-adjoint and advection-diffusion differential elliptic operators.

5.4. Test case #4

We consider again the sole JGD method and we test its robustness in the presence of internal layers,
due to low regularity of the advective fieldb.

We takeΩ = (0, 1)2, γ = 1, f = 1, homogeneous Dirichlet boundary conditions and

b = [100 arctan(|(x − 0.5)(y − 0.5)|), 10]t

(see Fig.10 (left)). The viscosity will be specified after.
The computational domain is decomposed in 2 equal overlapping subdomains with overlap

thicknessδ12, the interfaces are parallel to the axisx = 0. The discretization is performed by
stabilized (GLS)Qp [32].

The numerical solution corresponding to viscosityν = 10−6 is shown in Fig.10 (right), it
is computed withp = 8 and mesh-sizeh = 1/16. The overlap thickness isδ12 = 0.01. The
convergence of JGD is achieved in 3 iterations up to a toleranceǫ = 10−12.

Also in this case the convergence rate of JGD is independent of both polynomial degreep and
mesh-sizeh as it is shown in TableV.

We analyze the behavior of JGD also versus the overlap thickness (see TableVI ) and the value
of the viscosity, that is a constant ranging between10−6 and1 (see TableVII ). In both cases we
consider either matching and non-matching grids on the overlap. From TableVII it is evident
that the convergence rate of JGD depends on bothν and δ12 and, smaller the viscosity greater
the convergence rate.
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Figure 10.Test case #4.Advection fieldb (at left). Numerical solution of advection-diffusion problem with
viscosityν = 10−6 obtained by JGD and stabilizedQp with p = 4, h = 1/16 andδ12 = 0.001 with non-

matching grids (at right)

Table VII. Test case #4. Iterations count of JGD for fixedp = 4, h = 1/16 andδ12 = 0.001

matching grids non-matching grids
ν #it inf J0,Γ #it inf J0,Γ

1 35 3 · 10−31 26 4 · 10−34

10−1 36 1 · 10−30 25 6 · 10−31

10−2 35 4 · 10−30 14 6 · 10−31

10−3 13 1 · 10−31 6 1 · 10−32

10−4 5 1 · 10−34 3 4 · 10−33

10−5 2 4 · 10−34 3 6 · 10−29

10−6 1 3 · 10−34 3 3 · 10−29

6. NUMERICAL RESULTS FOR A-AD COUPLING

In this section we report three test cases showing the robustness of ICDD method JGD also for the
heterogeneous coupling between Advection and Advection-Diffusion problems.

In the first test case the advective field is parallel tox axis, the computational domain is split in
two overlapping subdomains and the interface of the hyperbolic domain has both inflow and outflow
parts. The discretization is not uniform on the whole domain, and non-matching grids are considered
on the overlap.

In the second test case the vector field is diagonal w.r.t bothaxis, the computational domain is
decomposed in 4 rectangular subdomains, the first one is of “hyperbolic type” (in the sense that there
the reduced differential operator is discretized) while the other three subdomains are of “elliptic
type”. The discretizationis adapted tothe behaviour of the solution and non-matching grids are
used on the overlap regions. Thewholeinterface of the hyperbolic domain is of output type so that
the solution inside the hyperbolic domain only depends on external data. The ICDD iterations take
into account interactions among the elliptic subdomains.

In the last test case the advective field behaves like a cosine, the computational domain is split
in two hyperbolic and two elliptic subdomains as in a chessboard, according to the presence of two
layers. In this case the interfaces of both hyperbolic subdomains have inflow and outflow subsets.
The meshes used are highly non-conforming on the overlap regions.

We test the robustness of the ICDD method JGD (with interfaceobservation and Dirichlet
controls) w.r.t. the variations of the viscosity and of the overlap tichkness.
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Table VIII. Test case #5. Interfaces setting: smaller the viscosity, wider the hyperbolic domain

ν xg δ12 ∈

10−5 0.995 [2.e − 5, 2.e − 3]
10−4 0.98 [2.e − 5, 2.e − 2]

ν xg δ12 ∈

10−3 0.95 [2.e − 5, 2.e − 2]
10−2 0.5 [2.e − 5, 2.e − 2]
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Figure 11.Test case #5. Numerical solution forν = 10−2, the interfaces are parallel to they− axis and the
corresponding abscissa arex1,2 = 0.5 ± 0.0002 (at left). Numerical solution forν = 10−5, the interfaces

are parallel to they− axis and the corresponding abscissa arex1,2 = 0.995 ± 0.00002 (at right)

6.1. Test case #5

Let us consider now the heterogeneous coupling described inSection3 between advection and
advection-diffusion differential problems.

Let us setΩ = (−1, 1)2, ν is a small positive constant that will be specified later,b = [y, 0]t,
γ = 1, f = 1. If we take constant viscosityν we are in presence of a convection-dominated problem
whose solution features a boundary layer of withO(ν/|b|) (when ν/|b| is small enough, or
equivalently, the Péclet number is large) on the right vertical side of the computational domain.

We decompose the computational domain in two overlapping subdomainsΩ1 = (0, xg +
δ12/2) × (−1, 1) andΩ2 = (xg − δ12/2, 1)× (−1, 1) (where bothxg andδ12 will be precised later)
and we solve the heterogeneous minimization problem (26) by the ICDD method (29)–(30). In
agreement with names given in Sect.5 for the homogeneous elliptic problem, the ICDD method
(29)–(30) is named JGD, since the observation is on the interface and the controls are of Dirichlet
type.

The boundary conditions are specified for the two subproblems as follows. For what concerns
the hyperbolic problem, the inflow part of the external boundary is (∂Ω1 \ Γ)in = {(x, y) : x =
−1, y > 0} and there we setφD = 1, while for the elliptic problem we set homogeneous Dirichlet
conditionφD = 0 on the right vertical side and homogeneous Neumann condition ν∂u/∂n = 0 on
the two horizontal sides of∂Ω2 \ Γ2.

By taking some values ofν in the interval[10−5, 10−2], we choosexg andδ12 as shown in Table
VIII .

The numerical solutions computed byhp-FEM of Qp type are shown in Fig.11, for ν = 10−2

andν = 10−5. In the hyperbolic domain and along they direction inside the elliptic domain the
polynomial degree isp = 5, while along thex direction in the elliptic domain it is larger in order
to capture the layer without oscillations (more precisely,it is p = 8 whenν = 10−2, p = 12 when
ν = 10−3, p = 16 whenν = 10−4, p = 20 whenν = 10−5). As a matter of fact, for the solution of
this problem GLS stabilizations either do not dump oscillations or show over diffusion.

In TableIX we report the number of iterations that JGD requires to converge up to the tolerance
ǫ = 10−12.
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Table IX.Test case #5. JGD iterations

ν
δ12 10−2 10−3 10−4 10−5

2 · 10−5 21 22 16 11
4 · 10−5 17 20 14 9
1 · 10−4 19 17 13 6
2 · 10−4 17 16 11 4
4 · 10−4 17 14 9 3

ν
δ12 10−2 10−3 10−4 10−5

1 · 10−3 14 13 6 2
2 · 10−3 13 11 4 2
4 · 10−3 12 7 3 –
1 · 10−2 10 6 2 –
2 · 10−2 8 4 2 –

We notice that the method is robust when the viscosity becomes very small w.r.t. the magnitude
of the advective field. As for the homogeneous elliptic case,the number of iterations grows when
the overlap thickness decreases, but it remains bounded when the viscosity tends to zero.

6.2. Test case #6

Let us consider problem (2) in Ω = (0, 1)2, whereν is a small positive constant,b = [1, 1]t, γ = 1,
f = 1 andφD = 0.

When ν is small enough, two boundary layers occur at the top and at the right sides of the
computational domain. We analyze the behavior of ICDD method JGD when the elliptic coefficient
ν ranges from10−6 to 10−2.

For any value ofν considered, we solve the global homogeneous elliptic problem (2) by (14) as
well as the heterogeneous A – AD coupling (26) by ICDD method (29)– (30) (or equivalently (32))
by settingν = 0 in the subregion of the domain far from the layers.

We measure the difference inL2-norm between the state solution of the homogeneous ICDD
(with elliptic problems in all the subdomains) and that of the heterogeneous ICDD, as well as the
efficiency of the ICDD method in terms of iterations count.

We split the computational domain in2 × 2 rectangular subdomains whose interfaces are close
to the boundary layers (see Fig.12). We setΩ1 = (0, xΓ + δ/2) × (0, yΓ + δ/2), Ω2 = (0, xΓ +
δ/2)× (yΓ − δ/2, 1), Ω3 = (xΓ − δ/2, 1)× (0, yΓ + δ/2) andΩ4 = (xΓ − δ/2, 1)× (yΓ − δ/2, 1),
the thickness of the overlap isδ = 0.01 (corresponding to 1% of the side of the computational
domain) for all the cases, whilexΓ = yΓ will be specified later and they will be chosen so that they
do not fall in the boundary layer region.

In the heterogeneous case, we solve the hyperbolic equationin the subdomainΩ1 and the elliptic
equation inΩk with k = 2, 3, 4. We setΩ̃2 = ∪4

k=2Ωk.
In each subdomain we discretize the boundary value problemsby Q2 Finite Elements, stabilized

with Galerkin Least Squares (GLS) techniques (see [30]) for the elliptic case.
In Fig. 12 (right) we report the numerical solution forν = 10−6, while in TableX we show

the number of Bi-CGstab iterations required by JGD up to reducing the residual of 12 orders of
magnitude for both homogeneous (#ite) and heterogeneous (#ith) couplings.

By denoting withue anduh the state solutions of the homogeneous and heterogeneous couplings,
respectively, we report the errors‖ue − uh‖L2(Ω1) and‖ue − uh‖L2(eΩ2).

Numerical results show that, for any considered value ofν, to solve the heterogeneous problem
instead of the homogeneous one is advantageous and the differences between the heterogeneous and
homogeneous solutions vanish whenν tends to zero.

The mesh inΩ1 is fixed in10 × 10 elements, while in the other subdomains we consider different
meshes versus the values ofν. More precisely, we fix50 × nν elements inΩ2, nν × 50 in Ω3 and
nν × nν in Ω4, with nν = 5 whenν = 10−2, 10−3, 10−4 andnν = 10 whenν = 10−5, 10−6.

In all cases the meshes are non-matching on the overlaps.
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Figure 12.Test case #6. The decomposition of the computational domain (at left). The numerical solution of
the heterogeneous coupling withν = 10−6, obtained by stabilizedQ2 finite elements (at right)

Table X. Test case #6. Iterations count and errors between heterogeneous solutionuh and global elliptic
solutionue

ν xΓ #ith #ite ‖ue − uh‖L2(Ω1) ‖ue − uh‖L2(eΩ2)

10−2 0.9 6 9 9.48 · 10−5 1.61 · 10−5

10−3 0.95 5 11 2.38 · 10−6 2.41 · 10−7

10−4 0.95 7 13 1.83 · 10−7 1.10 · 10−8

10−5 0.95 7 13 1.49 · 10−7 7.10 · 10−9

10−6 0.98 6 13 1.48 · 10−7 6.90 · 10−9

6.3. Test case #7

In this last test case we setΩ = (0, 0.5) × (0, 1), ν = const > 0 (it will be specified later),b =
[1, cos(2πx)]t, γ = 0.1, f = 0, and the following Dirichlet conditions:

φD =

{
10y(y − 0.3)(0.9 − y) whenx = 0
0 otherwise.

Whenν is small with respect to|b| two boundary layers occur on both right vertical and top
horizontal side, while the solution is quite regular in the rest of the domain. Then we decompose the
computational domain in 4 overlapping subdomains as shown in Fig.13 (left) and we solve elliptic
problems in bothΩ2 andΩ3, and hyperbolic problems inΩ1 andΩ4. The interfaces are positioned
in xg = 0.48 ± δ12 andyg = 0.87 ± δ13, the overlap thickness will be precised in TableXI.

The numerical solution of the heterogeneous coupling, computed forν = 10−4, is shown in Fig.
13 (right). We have considered non-uniform discretization inΩ, more precisely, the mesh is finer
in both Ω2 andΩ3, while it is coarser inΩ1 andΩ4, and they do not match on the overlaps. In
all subdomains we discretize byQp-FEM and we use different polynomial degreep and different
mesh sizeh not only among subdomains, but also alongx andy directions, in order to better fit
the behaviour of the solution near the layers and to save up either CPU and memory elsewhere. In
detail we use the following discretization (instead of showing the mesh sizeh, we write the number
of elementsne along any direction, the subscript denotes the axis, eitherx or y):

domain px nex py ney

Ω1 6 6 6 6
Ω2 10 8 10 6
Ω3 16 4 12 4
Ω4 4 2 4 2
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Figure 13.Test case #7. The computational domain and the advective fieldb (at left). The numerical solution
of the heterogeneous coupling forν = 10−4 with interfaces inxg = 0.48 ± 5 · 10−5 andyg = 0.87 ± 10−4

(at right)

Table XI.Test case #7. JGD iterations whenν = 10−4. In all cases,δ13 = 2δ12

δ12 JGD iterations

5 · 10−5 21
1 · 10−4 17

2.5 · 10−4 12
5 · 10−4 10
1 · 10−3 8

2.5 · 10−3 7
5 · 10−3 6

As in the previous test cases the number of JGD iterations mildly depend on the overlap tichkness
as it is shwon in TableXI .

ACKNOWLEDGEMENT

The first author acknowledges funding from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement n◦ 294229.

REFERENCES

1. B. Smith, P. Bjørstad, and W. Gropp,Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial
Differential Equations. Cambridge: Cambridge University Press, 1996.

2. A. Quarteroni and A. Valli,Domain Decomposition Methods for Partial Differential Equations. Oxford Science
Publications, 1999.

3. A. Toselli and O. Widlund,Domain decomposition methods—algorithms and theory, vol. 34 ofSpringer Series in
Computational Mathematics. Berlin: Springer-Verlag, 2005.

4. R. Glowinski, Q. Dinh, and J. Periaux, “Domain decomposition methods for nonlinear problems in fluid dynamics,”
Comput. Methods Appl. Mech. Engrg., vol. 40, no. 1, pp. 27–109, 1983.

5. J.-L. Lions and O. Pironneau, “Algorithmes parallèles pour la solution de problèmes aux limites,”C. R. Acad. Sci.
Paris Sér. I Math., vol. t. 327, pp. 947–952, 1998.

6. M. Discacciati, P. Gervasio, and A. Quarteroni,Heterogeneous mathematical models in fluid dynamics and
associated solution algorithms, vol. 2040 ofLecture Notes in Mathematics, ch. 2, pp. 57–123. Springer, 2011.
Lectures given at the C.I.M.E. Summer School held in Cetraro, July 2009. Edited by G. Naldi and G. Russo.

7. P. Gervasio, J.-L. Lions, and A. Quarteroni, “Heterogeneous coupling by virtual control methods,”Numerische
Mathematik, vol. 90, no. 2, pp. 241–264, 2001.

8. E. Miglio, A. Quarteroni, and F. Saleri, “Coupling of freesurface and groundwater flows,”Computers & fluids,
vol. 32, pp. 73–83, 2003.



ICDD METHODS FOR COUPLED DIFFUSION AND ADVECTION-DIFFUSION PROBLEMS 29

9. M. Discacciati, E. Miglio, and A. Quarteroni, “Mathematical and Numerical Models for Coupling Surface and
Groundwater Flows,”Appl. Numer. Math., vol. 43, no. 1-2, pp. 57–74, 2002. 19th Dundee Biennial Conference on
Numerical Analysis (2001).

10. M. Discacciati, P. Gervasio, and A. Quarteroni, “The Interface Control Domain Decomposition (ICDD) Method
for Elliptic Problems,” tech. rep., MOX, Politecnico di Milano, 2012. Submitted to SIAM J. on Control and
Optimization.

11. P. Grisvard,Elliptic Problems in Nonsmooth Domains. Boston, MA: Pitman (Advanced Publishing Program), 1985.
12. R. Adams and J. Fournier,Sobolev spaces, vol. 140 of Pure and Applied Mathematics (Amsterdam).

Elsevier/Academic Press, Amsterdam, second ed., 2003.
13. A. Quarteroni and A. Valli,Numerical Approximation of Partial Differential Equations. Heidelberg: Springer

Verlag, 1994.
14. J.-L. Lions,Optimal Control of Systems Governed by Partial Differential Equations. New York: Springer-Verlag,

1971.
15. M. Discacciati, P. Gervasio, and A. Quarteroni, “Interface Control Domain Decomposition Methods: numerical

aspects and validation,” tech. rep., MOX - Politecnico di Milano, 2013. In preparation.
16. V. Agoshkov, P. Gervasio, and A. Quarteroni, “Optimal control in heterogeneous domain decomposition methods

for advection-diffusion equations,”Mediterr. J. Math., vol. 3, no. 2, pp. 147–176, 2006.
17. F. Gastaldi, A. Quarteroni, and G. S. Landriani, “On the coupling of two dimensional hyperbolic and elliptic

equations: analytical and numerical approach,” inThird International Symposium on Domain Decomposition
Methods for Partial Differential Equations(J. T.F.Chan, R.Glowinski and O.B.Widlund, eds.), (Philadelphia),
pp. 22–63, SIAM, 1990.

18. P. Blanco, P. Gervasio, and A. Quarteroni, “Extended variational formulation for heterogeneous partial differential
equations,”Comput. Methods in Applied Math., vol. 11, no. 2, pp. 141–172, 2011.

19. F. Gastaldi and A. Quarteroni, “On the coupling of hyperbolic and parabolic systems: analytical and numerical
approach.,”Appl. Numer. Math., vol. 6, no. 1, pp. 3–31, 1989.

20. L. Marini and A. Quarteroni, “A relaxation procedure fordomain decomposition methods using finite elements,”
Numer.Math., vol. 55, pp. 575–598, 1989.

21. P. Blanco, P. Gervasio, and A. Quarteroni, “Mortar coupling for heterogeneous partial differential equations,” in
Domain Decomposition Methods in Science and Engineering XX(DD20, San Diego 2011)(R. Bank, M. Holst,
O. Widlund, and J. Xu, eds.), (Berlin), Springer Verlag, 2013.

22. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,Spectral Methods. Fundamentals in Single Domains.
Heidelberg: Springer, 2006.

23. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,Spectral Methods. Evolution to Complex Geometries
and Applications to Fluid Dynamics. Heidelberg: Springer, 2007.

24. C. Canuto, P. Gervasio, and A. Quarteroni, “Finite-Element Preconditioning of G-NI Spectral Methods,”SIAM J.
Sci. Comput., vol. 31, no. 6, pp. 4422–4451, 2009/10.

25. H. van der Vorst,Iterative Krylov methods for large linear systems, vol. 13 ofCambridge Monographs on Applied
and Computational Mathematics. Cambridge: Cambridge University Press, 2003.

26. T. Rees, H. Dollar, and A. Wathen, “Optimal solvers for PDE-constrained optimization,”SIAM J. Sci. Comput.,
vol. 32, no. 1, pp. 271–298, 2010.

27. H. Dollar, N. Gould, M. Stoll, and A. Wathen, “Preconditioning saddle-point systems with applications in
optimization,”SIAM J. Sci. Comput., vol. 32, no. 1, pp. 249–270, 2010.

28. A. Borzì and V. Schulz, “Multigrid methods for PDE optimization,”SIAM Rev., vol. 51, no. 2, pp. 361–395, 2009.
29. M. Benzi, E. Haber, and L. Taralli, “A preconditioning technique for a class of pde-constrained optimization

problems,”Advances in Computational Mathematics, vol. 35, pp. 149–173, 2011.
30. L. Franca, S. Frey, and T. Hughes, “Stabilized finite element methods: I. Application to the Advective-Diffusive

model,”Comput. Meth. Appl. Mech. Engrg., vol. 95, pp. 253–276, 1992.
31. P. Gervasio,Risoluzione di equazioni alle derivate parziali con metodispettrali in regioni partizionate in

sottodomini. PhD thesis, Università degli Studi di Milano, 1995.
32. A. Quarteroni,Numerical Models for Differential Problems. Series MS&A, Vol. 2, Milano: Springer, 2009.



MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

18/2013 Discacciati, M.; Gervasio, P.; Quarteroni, A.

Interface Control Domain Decomposition (ICDD) Methods for Coupled
Diffusion and Advection-Diffusion Problems

17/2013 Chen, P.; Quarteroni, A.

Accurate and efficient evaluation of failure probability for partial dif-
ferent equations with random input data

16/2013 Faggiano, E. ; Lorenzi, T. ; Quarteroni, A.

Metal Artifact Reduction in Computed Tomography Images by Varia-
tional Inpainting Methods

15/2013 Antonietti, P.F.; Giani, S.; Houston, P.

Domain Decomposition Preconditioners for Discontinuous Galerkin Meth-
ods for Elliptic Problems on Complicated Domains

14/2013 Gianni Arioli, Filippo Gazzola

A new mathematical explanation of the Tacoma Narrows Bridge col-
lapse

13/2013 Pini, A.; Vantini, S.

The Interval Testing Procedure: Inference for Functional Data Con-
trolling the Family Wise Error Rate on Intervals.

12/2013 Antonietti, P.F.; Beirao da Veiga, L.; Bigoni, N.; Verani,

M.

Mimetic finite differences for nonlinear and control problems

11/2013 Discacciati, M.; Gervasio, P.; Quarteroni, A.

The Interface Control Domain Decomposition (ICDD) Method for El-
liptic Problems

10/2013 Antonietti, P.F.; Beirao da Veiga, L.; Mora, D.; Verani,

M.

A stream virtual element formulation of the Stokes problem on polygonal
meshes

09/2013 Vergara, C.; Palamara, S.; Catanzariti, D.; Pangrazzi, C.;

Nobile, F.; Centonze, M.; Faggiano, E.; Maines, M.; Quar-

teroni, A.; Vergara, G.



Patient-specific computational generation of the Purkinje network driven
by clinical measuraments


	1 Introduction
	2 ICDD methods for elliptic problems
	3 ICDD for the coupling of Advection with Advection/Diffusion Problems
	4 Discretization
	4.1 hp-FEM discretization
	4.2 Discretization and solution of the OS
	4.3 Distributed observation. Dirichlet controls
	4.4 Interface observation. Dirichlet controls
	4.5 Distributed observation. Robin controls.
	4.6 Interface observation. Robin controls

	5 Numerical results
	5.1 Test case #1. Homogeneous elliptic coupling with self-adjoint operator L
	5.2 Test case #2. Homogeneous coupling, advection--diffusion operator
	5.3 Test case #3. Homogeneous coupling with jumping viscosity.
	5.4 Test case #4

	6 Numerical Results for A-AD coupling
	6.1 Test case #5
	6.2 Test case #6
	6.3 Test case #7


