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SUMMARY

This paper is concerned with ICDD (Interface Control Dom&rcomposition) method, a strategy
introduced for the solution of partial differential equatts (PDES) in computational domains partitioned into
subdomains that overlap. After reformulating the origibalindary value problem with the introduction of
new additional control variables, the unknown traces ofgbleition at internal subdomain interfaces, the
determination of the latter is made possible by the requéranthat the (a-priori) independent solutions in
each subdomain undergo a minimization of a suitable costitumal.

We illustrate the method on two kinds of boundary value otd, one homogeneous (an elliptic PDE),
the other heterogeneous (a coupling between a second ahderten-diffusion equation and a first order
advection equation). We derive the associated optimajisyesn, analyze its well posedness, and illustrate
efficient algorithms based on the solution of the Schur-dempnt system restricted solely to the interface
control variables. Finally, we validate numerically our the through a family of numerical tests and
investigate the excellent convergence properties of euative solution algorithm.

KEY WORDS: Multifield Problems, Heterogeneous Problems,mam Decomposition Methods,
Advection-Diffusion,hp-Finite Elements, Spectral Elements

1. INTRODUCTION

ICDD (Interface Control Domain Decomposition) is@ategyfor the solution of partial differential
equations (PDEs) in computational domains partitioned subdomains that overlap. It shares
analogies and differences with similar strategies, mastar&ablywith thatbased on the Schwarz
overlapping method (se&,[2, 3]).

The distinguishing (and original) feature of ICDD methodhsit the original boundary value
problemis reformulated with the help of new additional ates, the unknown traces of the solution
at internal subdomain interfaces, that play the roleaftrol variables. Their determination is made
possible by the requirement that the (a-priori) indepehdelutions in each subdomain undergo a
minimization of a suitableost functional

What distinguishes between different kinds of ICDD methedhie role (and meaning) of the
interface control variables - they can be either Dirichtat,Neumann, or Robin traces of the
subdomain unknowns - and the type of cost functional chosenan express different kinds of
norm of the difference between the two solutions in overilaggareas or on internal interfaces.

*Correspondence to: Paola Gervasio, DICATAM, UniversitBudiscia, via Branze 38, 1-25123 Brescia, Italy. E-mail:
gervasio@ing.unibs.it
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When the ICDD method is applied to classical (homogenedliglie equations, as we do in the
first part of this paper, it can be regarded as (yet) anotheraito decomposition (DD) method to
solve elliptic problems. In fact, a specific version of it veesly introduced in4], then in b] where
the name of Virtual Control Methods was coined, and it wasemecently revisited, generalized and
optimized by the authors of this paper i [/]. However, what makes it interesting in the version
proposed in this paper, are its convergence propertiesairgtependence, robustness with respect
to the possible variation of operator coefficients, anduit4in coarse global structure.

ICDD methods become especially attractive when appliedicedeterogeneouBDEs, that is
coupled problems where different kinds of PDE are set up fiieréint subdomains. A noticeable
example is in multiphysics applications, in which case thieint PDEsare designed tonodel
different kinds of physics. Examples include fluid-struetinteractions (modeled e.g. by Navier-
Stokes equations coupled with the system of linear or nealirlasticity), the coupling between
surfaceand subsurface flows (modeled e.g. by Stokes and Darcy equdi®i®}), etc. In those
cases, the minimization problem set on the interface cbrm&ngables that is enforced by ICDD
methods can in principle assure the correct matching betwee two different physics without
requiring the a-priori determination of the interface sarission conditions at the interface between
them.

In this context, ICDD methods can be regarded not only as awayto numerically solve a
given boundary value problem, but also as a new (alternatiag to model multiphysics problems
and, at the same time, provide a tool to find numerical satstefficiently.

In this paper the heterogeneous problem considered is asiagafrom the coupling of an
advection-diffusion equation with an advection equatite, latter beingderived by the original
equation by dropping the diffusion term in a subregion ofdhginal computational domain.

The problem is simple but not too simple for testing the propee of the ICDD method.

In both cases (either homogeneous and heterogeneous)véite lghundary value problem is
reformulated as aoptimality systemthen reduced to an interface problem that depends solely
on the interface control variables.

After replacing the interface problem by its discrete vams{obtained using thép-Galerkin
approximation), we illustrate the solution algorithm amteasively analyze its rate of convergence
as a function of the discretization parameters (the gratep and the polynomial degreg, the
geometrical parameters (thickness of the overlapping atgaber of subdomains in the partition),
and the physical parameters (the piecewise constant vafube diffusion coefficient, the Péclet
number of the advection-diffusion operator).

The ICDD method enjoys excellent convergence propertiesrapresents a novel and fairly
general paradigm to face both homogeneous and heterogeR&lts in domain decomposition
environments.

The outline of the paper is as follows. In Sectidwe recall the setting and formulation of ICDD
methods for homogeneous elliptic problems. In Secliove extend onspecial instance dCDD
methods (the one that shows the best convergence propéotiee case of heterogeneous coupling
between Advection and Advection—Diffusion problems. Irctg® 4 we describe the reduction
of the optimality systems associated to minimization peais to the interface control variables
through the Schur-complement approach, moreover we refatenICDD methodalgebraically
We concluden Sectionss and6 by addressing variety of test cases for both homogeneous and
heterogeneous problems.

2. ICDD METHODS FOR ELLIPTIC PROBLEMS
Let Q c R? (d = 1,2,3) be an open bounded domain with boundafy, ', andI'y two open

subsets 002 such that2 = T'p UT'y andl'p NT'y = (). Let L be thesecond ordelinear elliptic
operator

Lu = div(—vVu + bu) + yu, @)
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wherev € L*°(Q) is suchthaBy > 0: v(x) > v Vx € Q, whileb € [W1>°(Q)]¢ andy € L>=(),
with v(x) > 0 in © are such that the elliptic operator is coercive (sk# for a detailed description
of assumptions required).

Let us consider thboundary-value problem

Problemp:

Lu=f in Q
U= ¢p onl'p (2)
anLu = d)N OnFN;

where f € L*(Q), ¢p € H/>(Tp), 5 € H-'/?(I'y) are assigned functions satisfying suitable
compatibility conditions o'y N T'p (see [L1]), andd,,,u denotes the conormal derivativeaf

Op,u =vn-Vu—b-nu,

n being the unit normal vector external 46.
We split(2 into 2 overlapping subdomairi®; and(2, such that

Q=0 UQ,

then we sef)io = Q1 NQo, T'; = 0049 \ o5, Fb =I'pNoQYy; andFﬁV =T'nyNoQ,; fori= 1, 2.
See Fig. for a simple example ifR2.

I'p

Figure 1. Partition of2 ¢ R? in two overlapping subdomains

We consider two multidomain formulations Bfoblem?Pg,:
ProblemPq,,:
Luy = f in 5
Lus = f in Qo (3)
ur =us N,
ProblemPr, ur,:
Luy = f in 0y
Lus = f in Oy (4)
\II(’U,1> = \I/(’LL2> onl'y UTy,

both supplemented with boundary conditions

Ui = pri, onrgﬂ': 1,2,
anLUZ' == d)N‘IWN on].—‘ﬁv, = 1,2.

()

We denote byl (u;) either the trace of; onT'; U I's, or its conormal derivative,, ,u; onT'y U Iy,
or else a linear combination betweenando,,,u;. Thus, depending on the choice ®f condition
(4)s may become, either

up =ugy onl'y Uls, (6)

(which stands at the base of Schwarz method) or

ﬁnLul = 5‘nLu2 onl'y Ul'y, (7)
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or else
Buy + On,u1 = Pug + Opuz ONT UTy, (8)

wheref > 0 is a suitable parameter. The equali®y 6nT'; should be understood as follows. The
normal vectom on I'; is directed outward of2; and the conormal derivative af, is computed
upon restricting:, to 21,. On the other hand, on, the normal vecton is directed outward of2,
and the conormal derivative af is taken upon restricting it tQ15.
Since () is a special case o8] corresponding t@ = 0, in the following we will consider only the
more general conditiorgj.

The following result was proved irL[)].

Proposition 2.1
Both problems §) and @) are equivalent to2) in the sense that; = ulg,, i = 1, 2. In particular,
they are well-posed.

Even if multidomain formulations3) and @) share the same solution at the continuous level, they
lead todifferentnumerical methods, that behave in a different way with resfgethe discretization
parameters and the overlap thickness, as we will show ind&est

ICDD methodsare designetb solve problems3) and @). Theyconsist in introducing two control
functions\; and)\, which play the role of unknown Dirichlet (or Robin) data a& thterface$'; and
I, of the decomposition and in minimizing the difference betw¢hecorrespondingolutionsu,
andus through a suitable cost functional defined@r (for problem @B)) or 912 \ 02 =T U Ty
(for problem @)).

For the sake of simplicity, we plity = () (thusT'p = 09) and¢p = 0. We define the following
Hilbert spaces:

‘/Z:{’UZEHI(QZ) : vi:OOHI‘iD}, V.

2

D:{vie‘/;:vi:()onl“i}

endowed with the canonical norm &f(Q;), andV = V; x Vo, VP = VP x V;P| endowed with
the corresponding graph norms.
Fori = 1,2, let us introduce the vector spaces of admisdibtechlet controls
AP = H)2(T) = {ne HY*T,) : Fv e H(Q), v=ponT;, v=00nT%},
that are Hilbert spaces when endowed with the canonical riar}/*(T;), and setA” =

AP x AP endowed with the corresponding graph ndsee [L2, 13)).
Fori = 1,2 we define the state problems:

Lu}’ =f inq,
’u:\lf = )\z on Fi, (9)
’u:\lf =0 OnﬁQi\Fi,
moreover, we denote by = uj“o the solution of(9) with f =0, and we setA = [\, \2] and
u* = [}, u3?]. Because of problems linearity, "/ = u*° + v, whereu?/ is the solution of
(9) with \; = 0.
Similarly, the Hilbert spaces of admissiliR@bincontrols (with3 > 0) are
Af = (Hpy" (1), (10)
endowed with the canonical norm ¢f,/*(T;))" and setA” = AR x AL, endowed with the
corresponding graph norm.
In this case, ) is replaced by

Lu} = f inQ,,

Bu}t 4+ 8,,u} =N onTy (11)
Uf\“f =0 on 9%, \ Iy,
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where now); € A are the Robin controls and conditiahlf, holds inA .
The interface controls are determined through the solutf@minimization problem as follows:

Case 1: Minimization in the norm?(Q;,):

. . 1
inf Jo(A1, A2),  With Jo(Ar, A2) = = [luy™ — up7 (|32, (12)
A,2 2

Case 2: Minimization in the normy! (Q;5):
. . 1
inf Ji(A1, M), With Ji(Ag, ) = S[luy — a7 (3 g - (13)
A1, A2 2
Case 3: Minimization in the norm?(I'; UTs):
: H 1 1 2
Jnf Jor(Ar,Az2), - with Jor(Ar, Az) = 5”“? = u e, ury- (14)
Each functional defined irnl@) — (14) can be rewritten in the general form
1
(A, 20) = Sl — g2, (15)

where| - || is the canonical norm on the observation spegevhich is either.?(215) or H(;2)
or L?(I'; UTy), respectively in Case 1, 2 or 3.

The minimization problemsl@), (13) and (L4) with constraints ) (or (11)) are in fact optimal
control problems and they can be analyzed by using the ckdgbieory of optimization (see, e.g.,
[14]). The controls are of boundary type (actually they arerfate controls); the observation is
distributed on the overlap in both?) and (L3), while it is of boundary type in1(4).

Problems {2) and (L3) with constraints §) were proposed in the papers by Glowinski et al.
[4] and Lions et al. §], without however being analyzed. 14][these methods were callécdast-
Squares Conjugate-Gradient Methoddhile in [5] they were nametirtual Control MethodsThe
latter nomenclature has been used also by the authors qfgpes in previous works (seg, [6]).

SinceJ. is convex, the classical way to prove th/atadmits a unique minimizer consists in:

1. provingthat|u}' — u3?|. = ||A]l. is @ norm on the spack (eitherA” or AT of the controls;

2. considering the completioh of A with respect to the norri - ||... As a matter of fact, it is
not guaranteed that the spagds complete w.r.t. to the norifi- ||... Notice that the abstract
space obtained by completion can be “very large”, howeverithnot an issue when using
finite dimensional approximations, as we will see in Sectigsee 87) and 39)).;

3. writing the Euler-Lagrange (EL) equation

(L), ) = (= b —uh?), =0 Ve A, (16)

whereA stands for eitheR” or A", while (-, -)) denotes the duality betweenand its dual

space, and\, p)) = (A1, p1) + (A2, p2);
4. proving by the Lax-Milgram Lemma that the EL equati@)(admits a unique solution.

The following result holds.

Proposition 2.2

In all Cases 1-3|u}* — uy?||. = |A]l. is a norm on the control spack (either A” or A%).
Moreover, each one of the minimization problemg)(— (14) admits a unique solution € A,
that is the solution of the EL equatioh®).

Proof. When Dirichlet controls are considered the proof is givefili0, Sect. 4]. The proof for
Robin controls can be repeated following the same guidglie a matter of fact, the regularity of
the state solutions ofL() with A € A% is the same of the solution o8 with A € A”. The other
arguments of the proof can be used in the same Way.
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For: = 1,2 we define the bilinear forms; : V; x V; — R

a; (’U,i, Ui) = / (I/V’U,Z - b’u,1> : V’Ui +/ YU;U; (17)
Q Q;

7

and the linear functionalg; : V; — R
Q;

The computation of the minimizeA can be achieved by solving thf@ptimality System (OS)
associated tol@), that we report below.

In the case of Dirichlet controls the ODS reads:

Cases 1-2:finch € V,pe VP, A ¢ A such that for = 1,2with j =3 —i:

ai(ui,’ui) = Fi(’l)i), U; = >\z OnFi V’Ui S V;D

ai(vi, pi) = (wi — uj,vi)s Vv; € Vz‘D (19)
~D
<<[aan17 anLPQL IJ/» =0 VN = (M17M2) € A ;

Case 3:find,pe V, A € KD such that fori = 1,2 with j = 3 — i:

ai(ui,’ui) = F(’UZ) u; = \; onl’; Yu,; € V;D
):0, pz—( 7’[1,]') onl; VWGVL-D

(20)
~D
Z/ u; — uj) + pj)pidl =0 Vo= (p1, p2) € A
In the case of Robin controls the O% reads:
Cases 1-2: findh € V,p € V, A € A such thatfor = 1,2 with j = 3 —i:
ai(ui,’ui) —+ /6’&1’02 = Fz(vz) -+ <>\i,’0i 1> Vv, € V;
I';
a;i(vi, pi) + /ﬁvipi = (u; — uj, Vi)« Yv; € Vi (21)
r;
~R
{p, [p1,p2]) =0 Ve A

Case 3:findie V,peV, A e KR such that for = 1,2 with j = 3 —i:

a;(ug, v;) /ﬁu v; = Fi(v;) + (N\i,vilr,) Yo € V;
pzvvz /61’1”1 = / U — uj)vi Vv, € V; (22)

~R
(e, [ur —ug + pa,ug —up +p1])) =0 Yp e A .

Both OS (L9) and @1) are obtained starting by the Euler-Lagrange equatiéhdnd integrating
by parts.Thereforethe dual statep; are the solutions of elliptic problems which are dual of the
primal state problemj (or (11)).

On the contrary, both O20) and @2) are not obtained by integration by parts. They have been
defined in order to guarantee existence and uniqueness ohipan (e.g., see theorem 4.3 df(]
for the Dirichlet case) and the functiops are the solutions of state problems of the same nature
(and not dual) of eitherd) or (11).
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Remark 2.1

When applyingCDD methods to decompositions 0f using M > 2 subdomains, we distinguish
between strip-wise decompositiomgyeneach overlapped region is shared only by two subdomains,
and cross-wise decompositions, in which more than two smladgtts can share a non-empéggion

In the former case the subdomaing for k£ = 1,..., M can be numbered sequentially, so that all
the odd (even, resp.) subdomains can be grouped in a unisg@iected subdomain (€22, resp.)

and the analysis presented above still holds provideid replaced by, (for i = 1,2). Otherwise

in the latter case, we defirig; = Q; N Q; for i # j and replace the cost functionalsyf by

*,9]

M
1 v A,
LN =5 30 e =) (23)

wherex, ij stands forL?(§;;), H*(§;;) or L?(99;;). The formulation of 0S19)—(20) and @1)-
(22) follows by replacing?,, with €2;; for anyi, j = 1,..., M and counting evergverlapping area
once.

We refer to [L5] for the analysis of the convergence rate of ICDD methodefigptic selfadjoint
problems.

In the next Section we introduce ICDD methods fi@terogeneous PDES, namely/Asivection
— Advection/Diffusion coupled problem. We will come backtl® homogeneous casedressed
until now (i.e. onewith the same differential operator in both subdomains)eot®n4, where we
will formulate the discretization of the O39) — (20), and in Sectiorb where we report numerical
results validating the robustness of ICDD methods witheesfo the variations of the coefficients
of the problem.

3. ICDD FOR THE COUPLING OF ADVECTION WITH ADVECTION/DIFFUEDN
PROBLEMS

Let us consider the coupling of Advection and Advectionfiisfon equations (in brief A—AD), that
is of interest wherconsidering aglobal advection-diffusion problerwith dominating advective
field, whose solution features internal andfmundary layers (see Fi@). In such a case the
presence of the viscous termight not be essentidhr from the layer;by dropping it yields a
reducedorder differential operator in the latter region.

We decompose the computational dom@ias described in Sectidh) therefore we look for two
functionsu; andu (defined in2; and(., respectively) such that, satisfies the advection equation

Luy = div(buy) + yu; = f, inQ1, (24)
while u; satisfies the advection-diffusion equation
L’LL2 = fa in QQ7 (25)

whereL is defined in {).

The boundary conditions for the subproblems are inherifeth® original one by taking care of
the advective problem if;. As a matter of fact the first-order problem is well posed amhen
the Dirichlet condition is assigned on timlow boundary(92; ), where for any non-empty subset
I C 994, we set

theinflowpartof':  I'"™ = {x € I': b(x) - n(x) < 0},

theoutflowpart of ' :  T'°** = {x € ' : b(x) - n(x) > 0}

and _ _
%=1\ (I'm yTout).
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Iy
e %4
/ -
Iy
layer
0 r Y
Qi

Figure 2. Graphic representation of a 2D A-AD heterogeneoupling

Therefore we assume thatdQ; \I'1)" c T'p, we set I'3* =T \T9 and define the
heterogeneous

ProblemPf! . :

E’U,l = f in O
Lus = f in Qs
Ul = up onT{"UTy*
U = ¢D on (891 \Fl)zn (26)
u% =0 onlY
a’ng 2
uz = ¢p onl'%

Onus = dn  ONTR.

Notice that the interface condition fér; is assigned only on the inflow part of the interfdce
while that forQ), is given on the subset @f, whereb - n # 0.

The analogous of problenB) is not considered in this context, since in general therrois
guarantee that; = us in Q15 for heterogeneous problems (see, e.g.1p)).

A preliminary study of the A—AD coupling with overlappingsilomains has been carried outin
[7, 16, 6, 10]. Following the formalism introduced irLp], we are going now to define the ICDD
method with interface observation and to analyze it.

First, we introduce some useful spaces. Given an open doairR? with Lipschitz boundary
oD and givenS C 9D, we define

L3(S) = {v: S = R: vy/[b-ng| € L*(S)}, (27)
whereng denotes the outward normal versorSpand
Xp(D) = {v e L*(D), div(bv) € L*(D) : v € L} (dD)}. (28)
They are bothHilbert spaces (sed.}]) with respect to their natural norms:

1/2 1/2
lullzz(s) = (/S b n|u2d5) » Nullx 0y = (||U||%2(D) + ||div(bu)|[F2(py + ||U||%g(ap))

Finally, we define the spaces of the controls:

A= L3(T), Ao = Hy)*(T3).

The ICDD formulation for the heterogeneous coupli@i§)(reads as follows (see Figug& look
for the interface controla; € A; and)\; € Ay solutions of

. . 1
AllI})f\‘z Jb(>\1, )\2) Wltth(Al, )\2) = 5 /

b-nf(u —up>!)?, (29)

Fi” UF;Z
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whereu;'’ andu)>/ are the solutions of

N . Lul2f — f in Q
A1, y
Lup' =f ingy 4 u/\zz,f -0 onofy \ I'y
ui\l"f =0 on (9 \ I'y)™ g‘”c

U _

nz
A1, f in 2 - >\2 on FQ
u =\ a.e.onl’
1 ! 1o Op,uy>’ =0 onTY.

(30)

We require thati3y > 0 such that%v b+~ > [y in 4, to ensure the first-order problem in
(30) has unique solution.

Thanks to the regularity of the data, it holds' € H*(Qy), whileu}" € Xy,(€;), moreover if
S coincides witheitherT{" or I's#, it holds H'/2(S) c L} (), thenthe integrals inZ9) are bounded
and the definition off, makes sense B

As done for the homogeneous elliptic case, since hbtand L are linear, we can write
uf = ud +ul7 (for i = 1,2), whereu}* andu)? are the solution of30) with f = 0, then we
setA = (A, A2) andu? = (u}?, u)?).

We define

‘71 = Xb(Ql), ‘71D = {’U c ‘71 : ”U|(891\F1)m = 0},

we takeV, and V2 as in Section2 and we setVy = V; x Vo, VE = VP x V2 and Ay =
A1 x As. Finally we define the bilinear forra : V; x Vi — R:

E(ul,vl) = — / ’U,lb . V”Ul + /"}/Ul”Ul +/b cNuU1vq.
1951 (o2 oQgut

The Euler-Lagrange equatiguy (A), u) = 0 associated to theinimizationproblem @9)—(30)
reads:

b n|(w) — ) (uf —ub?) =0 Vp € Ay (31)

rinurp=

while the optimality system reads: findp € Vg, A € Ay such that

al(ul,vl) = Fl(vl) Yv, € VlD, u; = A\ a.e. OnF’i”,
0

ag(UQ,UQ) = FQ(UQ) Yvg € VQD, Uy = Ao OanZ, Va—ZQ =0 oan

. 2
al(pl, Ul) =0 Vv, € VlD, pP1 = U1 —ug a.e. onl”ln 5 (32)
ag(p2,02>:0 Vg G‘/QD, P2 = U2 — U1 On].—‘gz, 1/8—22 =0 Oan

2
v |b . 1’1|((U1 — UQ) +p2)M1dF +/ |b . n|((u2 — Ul) +p1)u2df =0 V/L S AH
r- rpe
Remark 3.1

When the computational domain is partitioned in two nonHapping subdomaing;, 2, with
sharp interface (i.e. such th@j UQ, = Q, Q; N Qs = 0 andT’ = 9Q; N 99,), the heterogeneous
A-AD coupling has been analyzed ih7, 18, 6, 19]. In [17, 19] the authors provided a suitable set
of interface conditions on the sharp interfdcef the decomposition, i.e.

U] = U onT

b -nu; +vn-Vus —b-nuy, =0 onl (33)

wheren is the unit normal vector tb oriented fromQ2; to Q.

These conditions express the continuity of the velocitydfadross thénflow part of the unique
interfacel” and the continuity of the fluxes across the whole interfacén such case a suitable
version of the classical Dirichlet-Neumann methdeD([17]) is applied to solve the heterogeneous
problem.

Other domain decomposition approaches based on virtuarateror extended variational
formulation on non-overlapping subdomains have been addcein §, 18, 21] to face similar
heterogeneous coupled problems.
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4. DISCRETIZATION

In this Section we briefiaddress the discretization tife differential equations arttle solution of
the associatedptimality systems19) — (20) and Q1) — (22) in discrete form

Both primal and dual differential problems in each subdomeie discretized by:p Finite
Element Methodsi{p-FEM).

4.1. hp-FEM discretization

Fori=1,2, let 7; be a partition of the computational domaih c R? in either simplexes or
quadrilaterals/hexahedra (quadrilaterals when 2 and hexahedra wheh= 3). We denote byl’
the reference element, that can be either the referencéesimjih vertexe® and the points on the
axis whose distance from the originlisor thed—dimensional cubé-1, 1)%.

We namesimplicial the partitions composed by simplexes anadthose partitions formed by
quadrilaterals/hexahedra. The first ones are typical ssatal FEM, the others of Spectral Elements
Methods (SEM) with tensorial structure (s&2[23]).

We suppose that each elemént 7; is obtained by aC! diffeomorphismF of the reference
elementT and we suppose that two adjacent elementsZobhare either a common vertex
or a complete edge or a complete face (whesa 3). For eachT € 7; we denote byhr =
diam(T) = maxx ycr |x — y| the diameter of elemerft and we definéy; = maxrcr, hr. Then,
when simplicial partitions are considered, we require thatgrid is regular in each; (see, e.g.,
[13)).

Given an integep > 1, let us denote by, the space of polynomialwhoseglobal degreds
less than or equal tp in the variables:, ...,z and by@Q, the space of polynomials that are of
degree less than or equaligovith respect to each variablg, . . ., z4;. The spac@, is associated to
simplicial partitions, whileQ,, to quad ones.

The finite dimensional space 6n is defined by

Xi,éi = {’U S C()(ﬁz) : ’UlT o FT S Pp, VT € Z} (34)
in the simplicial case and by
X’i,éi = {U S CO(QL) S U o Fr e @p, VT € 'TL}, (35)

for quadsand we selV,, = dim(X; 5,).

The parameted; is an abridged notation for “discrete”, that accounts ferltital geometric size
h; and the local polynomial degree

Finally, let M; bethe set of the nodes; of the mesh inQ2; andMr, C M, the set of nodes
x; € M; NT;, we denote byVq, and Nr, their cardinality, respectively, and iy = {1, ..., No, }
andg; = {j € Z; : x; € Mr, } the corresponding sets of indices.

For quadsthe meshM; is built by mapping the nodes of the Legendre-Gauss-LokatBEl)
quadrature formulas from’ to the genericI’ through the mapping®, in order to ensure
exponential decay for both interpolation and quadraturerg([22]).

The finite dimensional spaces in which we look for theFEM solution are defined as follows:

Vis, =Vin Xis,, fo;i =V NnXis,
Ail,)éi ={\is, € CO(FZ') :3 s, € Vi, With A\ 5. = vis, |0, }s (36)
Aféi = {)\i,éi S LQ(FL) = Vi5; € V;',gi with )\i,éq, = a,LLv“;% + 6’1)1‘75% on Ft}

ThenAP; is asubspace of” andA; a subspace of?, and therefore
AP = AP; < AP; c AP C RV (37)

Similarly, -
Af = Al x A5, CATC AT, (38)
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In V; s, we consider the basis of the characteristic Lagrange patyals
BQi = {@i,j; Wlthj S Iz}
associated to the mesh;.

Moreover, we denote bir, the finite dimensional basis imf& such that each basis function
;. ; is the restriction td@’; of a suitable basis function &f s, that is not identically null oi’;, i.e.

Br, = {pi; = @i jlr,, with j € G;}.
It follows that thediscrete Dirichlet controlsvill be identified by the realnodal)values
()‘iﬁm)j = )\i757’ (Xj), Wlthj S QL (39)

The characterization of the discrete Robin controls rexguinore care.
Let T} C Q; bethe generic element if};, we introduce the set

& ={k: meagdT, NT;) >0}

and, for anyk € &;, the edges;, = 9T}, N I';. Thanks to definition of\; 5, for anyv; 5, € X; 5, it
holdsv; s, |ﬂ € C'(Ty) and ther,,, v; 5, makes sensen e;y,.
In view of definition @6)s, for anyu; ; € Br, and; s, € Af&,

(Aiois Hig) = Z/ Ais; Mg (40)
ik

keg; V€

thenthe nodal values of theiscrete Robin controlare giverby

Cis)i =S / Mo, ey, With j € G. (41)
ik

ke&; Ve

By a similar argumentstarting from
<<[aan1a a’ﬂLPQ]a H>> = <aan1) ,LL1> + <aan2) ,LL2>

for any p = [p1, po] € KD, we can compute the left hand side dB); by using the following
formula and 40) as follows. For any € G;

(Onypis i) = D Pis, (X0)(Onyp Pies i) = D Pisi(X0) Y / Ony it Hi,j - (42)
ik

LeT; LeT; keg&; Ve

(D%)jé

The matrices associated to the bilinear formnand the discrete inner products read:
(Ai)ij = ai(pij, wi1), (M) = (wij,pil)r2,), forl,j=1,...,Ng,.

Because of the difficulty to compute integrals exactly fagép, typically when quad partitions
are used, Legendre-Gauss-Lobatto quadrature formulassarketo approximate both the bilinear
formsa; and theL?—inner products in2; (as well as on the interfaces). This leads to the so called
Galerkin approach with Numerical Integratid®-NI) [22, 24] and to the Spectral Element Method
with Numerical Integration (SEM-NI).
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4.2. Discretization and solution of the OS

The OS has six unknown functions:
- the primal state variablas, us;

- the dual state variables, p-;

- the control variableg, \s.

All the differential and integral equations of the OS areragpnated byhp-FEM andu; s,, p; s, ,
\i s; are the corresponding discrete solutions.Métc M; be the subset of the non-Dirichlet nodes
of Q; and N its cardinality. (We have eliminated Dirichlet nodes onlbtite external boundary
andtheinterface.)

Let us denote by:

- u,p; € RNYO%, for i = 1,2, the arrays whose entries are the values of the discreteapsitates
u; s, and of the discrete dual statgs;,, respectively, at the nodes Y;

- \; € RV fori = 1,2 the arrays of the values of the discrete conkigl, atthe nodes afl; N T';,
as defined in eithe3Q) or (41).

For simplicity we consider the case of homogeneous Dirichlenditions on the external
boundaryof?, so that the external boundary degrees of freedom are dioppe

We start by analyzing the case with Dirichlet controls.
4.3. Distributed observation. Dirichlet controls

Fori = 1,2 we define the following matrices:

- A;; is the submatrix ofd; obtained by selecting both rows and columns associatecetndtes
of MY;

B; is the submatrix of4; obtained by selecting the rows associated to the nodéaind the
columns associated to interface node$lgin I';

CY andCy’ are submatrices of a matri; which depends on whether we are minimizing either
the cost functionall(2) or (13). More precisely, foi, j = 1,..., N,

(@i, i) 12(0,,) N Casel
(€ = |
(igs i) 1 (1) 1N Case 2
Those columns of’; associated to nodes @ are stored irC!*, the others irC?;

- D, are the matrices associated to the discretization of thestagation of the OS, as defined in
(42).

Therefore, we set

A:|:A11 0 :|7B:|:Bl 0 :|7CO:|:C? Cg],CF:[Cfl ng],

0 A22 0 B2 *Ci) Cg _C{I ng
(43)
[ Dy 0 [ w _ | m _ M _| &
o=l b e[l es (R (R ] [2]
so that the matrix form of the OS9.9) reads
A 0 B u
Co AT Cr P | = (44)

0 D 0 A

G x
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By introducing the Schur-complement matfxof G with respect to the control variabke
A o0 ][ B
Sp ==[0 D }{ Co AT ] { Cr

and the vector

]DMU”@A”B&) (45)

Wy = DAY 1O AT
the Schur-complement system associated to43préads
SpA =1 (46)

and itcan be regarded ake discrete counterpart of the Euler equativg) (see [LO, Sect. 4.1]).
Since( is singular and the (3,3)-block @f is null, any other block elimination of eithép, A)
or (u, A) from system 44) would lead to ill-posed Schur-complement matrices.
The solution of the Schur-complement systef)(can be efficiently computed by Krylov
methods as, e.g., Bi-CGStal2{]), preconditioned whenever this is convenient.
At the kth Bi-CGStab iteration, i\(*) is a known array, the computation of the matrix-vector
productxy® = S, A% is performed by the following algorithm which, in fact, refte the three
steps of the OS.

Algorithm 4.1(Schur-complement evaluation)
Distributed observation - Dirichlet controls. Give#”, computex®) = SpA*

1. solvedu® = —BA® i.e. useA®) as Dirichlet data on the interfac&s and null functions
F; to solve primal states problems and fiad;

2. solve ATp®) = Cyu®, i.e., useu® to assemble the right hand side for the dual state
problems and fingh(*);

3. computex® = Dp*) | i.e. compute the normal derivativesp;ﬁﬁ;) at the interface§);.

The right hand side , is computedff-line (once and for allpy a similar algorithm:

Algorithm 4.2(y ,, evaluation)
Distributed observation - Dirichlet controls. Givéncomputey

1. solveduf = f,i.e. use null Dirichlet data on the interfadésandF; as in (L8) to solve primal
states problems and find';

2. solveA”pl = Cyu/;

3. computey)s, = Dp/.

The most expensive part of Algorithilis the solution of both primal and dual problems, thus
one matrix-vector productp A*) requires to solve two differential problems in each subdama

We can compute a Cholesky or LU factorization of bothy and Ay, off-line, before the
iterations start, and then solve the associated triangylstems every time we have to compute
the matrix-vector producSDA(k>, otherwise we can solve each systeimu, = —B;\; (and the
corresponding dual problem) by the Preconditioned Congugradient (PCG) method (ame
variants of its for non-symmetric problems). Low-order Fpkéconditioners can be used when
SEM-NI discretization is adopted. It is well known (see,.42®, 24]) that such preconditioners
cluster the eigenvalues of SEM-NI matrices independeritlgediscretization.

Remark 4.1Additive and multiplicative versions)

The solution of the primal state problems (similar consatiens hold for the duals) can be
performed either concurrently or sequentially, yieldirither additive or multiplicative versions
of the algorithm. More precisely, the fornd4) corresponds to the additive version, while the
multiplicative one can be achieved by eliminating eitherthariable\; or A, from (44).

Remark 4.2

Instead of solving the Schur-complement systé#),(it is possible to solve the discrete optimality
system {4) simultaneously for the primal states, dual states andratsnusing the so-calledne-
shot(or all-at-oncg approach analyzed i, 27, 28, 29].
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Remark 4.3

In principle the discretizationso be usedn Q; and{; may be totally unrelated, so that either
the polynomial degrees; and/or the mesh size inside each subdorthimay differ one another.
This implies that the restrictions to the overlapping regit . of the partitions7; and 7, may
not match onQ;, and theset up of an intergrid interpolation operat@rom either7; to 75 or
viceversa is needed to compute both the terfigu; — Cu,) and(C}*A; — C32 ). This step
can be expensive if the overlapping region is wide and théhegeare very fine if;,.

In our numerical tests, only matching meshes on the overififpe/taken into account when the
minimization of both cost functionald ®) and (L3) areperformed.

Different conclusions can be carried out when the mininidzabf the cost functional1(4) is
considered since, in such case, the interpolation is redwnly on the interfac&’;, as we can
see the in next Section.

4.4. Interface observation. Dirichlet controls

In order to write the algebraic form of O3(@) we introduce the following new matrices, foe 1,2
and; =3 —i:

- T;; is the matrix that interpolates the tracewgfs, on M; N I'; (obviously,T;;u; = A;);
- M is the(d — 1)-dimensional mass matrix associated to interfage

and we set

o T r [ M0
T[Tm ! ] M[O e | (47)

Recallingthedefinitions given in43), the algebraic form of40) reads

A 0 B u f
BT A B pl=]o0]. (48)
Mt MTT MT A 0

Gr x

[=a

Interpolation matriceq’;; depend on both meshes and overlap decomposition and thagbrod
T;;u; (for i # j) requires a-priorO(Ng - Nr,) floating-point operations. Nevertheless, because of
the local support of Lagrange basis functions, the comjuutatf the matrix-vector produd;;u;
involves only those elements @ N ©2; whose intersection with the interfate is non-empty.

Remark 4.4Non-matching grids)
The OS R0) offers the advantage of using only the trace(mj‘l’f — ugz’f) onT; instead of the

distributed function(u;' — u)*7) in Q5. Thus, if we use totally unrelated mesheslinand,,
the interpolation of;; onT'; (with ¢ # j) is bounded to the sole elemeriis= 7; : T NT; # 0.

By introducing the Schur-complement matyr of Gr with respect to the control variable
A 0 } - [ B

Spr = M" (I[ ~T T ] { BT A B D =M"'(I - (TA'B)?) (49)

and the vector
Ypr=M"(I -TA'B)TA™'f
the Schur-complement system associated to43préads
SprA =Ypr (50)

and it is the discrete counterpart of the equati®)4.
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Remark 4.5Preconditioning of%0))

Since the mass matrix/" is not singular, we can left-multiply the last row &fq), or equivalently
both sides 0f49), by (M')~. This operation is in fact a preconditioning step of systéf) by the
matrix M*.

In the case oP;-FEM the elimination of\/" does not produce benefits, on the contrary, wdgn
approximation is used on Legendre-Gauss-Lobatto nodesadition number of pr reduces by
a factorp?—!. We refer to [L5] for a detailed analysis of the conditioning of the Schur ptement
systems46) and 60).

Given the arrayA*) at the k—th iteration of Bi-CGStab, the matrix vector produgt®) =
SprA®) is performed by the following algorithm.

Algorithm 4.3(Schur-complement evaluation)
Interface observation - Dirichlet controls. Givaff”’, computex® = SprA®).

1. soIveAiquk) = —BiAEk) fori=1,2,1.e. useAEk) as Dirichlet data on the interfac&s and
F; = 0 to solve primal states problems;

2. computet!” = 71,ul” andt{¥) = 7,ul, i.e. the discrete trace af on M, N T, and that
of us on My N T’y by interpolation matrices;

3. solved;ip{"”’ = —B;(A" — t) with j = 3 — 4, i.e., solve the dual state problems;

4. compute

k) _ AY” - T12ugk) + T12P§k)

x\*) = )
T21u§k) — )\ék) + T21P§k)

The computation of) - is performed similarly:

Algorithm 4.4(« - evaluation)
Interface observation - Dirichlet controls. GivEncomputey -

1. solvedu/ = f, i.e. use null Dirichlet data on the interfadgsandF; as in (L8) to solve primal
states problems and find’;

2. computet; = Tyoul andt, = Thyu!, i.e. the discrete trace af, on M, N T, and that ofus,
onM; NT'; by interpolation matrices;

3. soIveA,L-ipi = Byt;, i.e., solve the dual state problems (wjth= 3 — 7);

4. compute

—T1211§c + T121>%c

w =
br T2111{ + T21P{c

As for distributed observation, also in this case the pristatie problems (and similarly the duals)
can be solved either simultaneously (additive form) or satjally (multiplicative form).

4.5. Distributed observation. Robin controls.

Let us consider now the O21), all definitions given in Sectiod.3, and we define some new
matrices:

NFi X N,

- the restriction matrice®; € R ! made of 0,1 implementing the restriction map frav

to Ml—‘i;
- matrices associated to state equation2i);(and @1)2, i.e.Aﬁ. = Ay + BRI M

and

e[ M0 Lae[E 0],
0 A5,



16 M. DISCACCIATI, P. GERVASIO, A. QUARTERONI

The algebraic form of O81) reads:

AP 0 —RT u f
c AanT o p|=1]0 (51)
0 MTR 0 A 0

Also in this case we can write the Schur-complement systgi = x of (21) with respect to the
control variable, but now

A8 0 ]7'[-RT - B
Sp =—[0 M'R] [ C (4T } [ 0 } = —MTR(AP)"TC(AP)"IRT (52)
and
= MIR(AP)"TC(AP)LE.
At the kth Bi-CGStab iteration, i\(*) is a known array, the computation of the matrix-vector
producty® = SxA®) with S defined in 62) is performed by the following algorithm which, in
fact, reflects the three steps of the Q3)(

Algorithm 4.5(Schur-complement evaluation)
Distributed observation - Robin controls. Givaff), computex® = SzA*)

1. solveAPu® = RTA® je. useA®) as Robin data on the interfacEsand null functions”,
to solve primal states problems and fiad);

2. solve(A#)TpH) = cu® | i.e., useu® to assemble the right hand side for the dual state
problems and fing(*;

3. computex®) = —MTRp*), i.e. compute the weak trace@f}) at the interface§;.
The right hand side) ; is computed by a similar algorithm:

Algorithm 4.6(v ; evaluation)
Distributed observation - Robin controls. GivBrcomputey

1. solveA’u’ = £, i.e. use null Robin data on the interfadgsand F; as in (L8) to solve primal
states problems and find';
2. solve(A#)Tp/ = Cu/ with null Robin data on the interfaces;
3. computey, = MT Rp/.
4.6. Interface observation. Robin controls

Let us consider now the O8%), by proceeding as in previous Sections, its algebraic femads:
u f

pl=1]0]. (53)
A 0

Srr = M"(I = T(A")"'M")(R - T)(A")"'R" (54)

AP 0 -—RT
MY (R-T) AP 0
MY(R-T) M'T 0

The Schur-complement matrix is now

while the right hand side is
Ypr = —M' (I - T(A%)"'M")(R - T)(A7)'f.

The corresponding algorithm to perform the matrix-vectaduct reads as follows.

Algorithm 4.7(Schur-complement evaluation)
Interface observation - Robin controls. Givaft), computex® = SprA®)
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1. solveAPu® = RTA® je. useA®) as Robin data on the interfacEsand null functions”,
to solve primal states problems and fiad);

2. computet(lk) = leuék) andték) = Tglugk), i.e. the discrete trace afi on My, N T’y and that
of us on M; N T’y by interpolation matrices, and the restrictionsofo I'; by matricesR;;

3. solved;;ip{") = M (R;u{" — t{")) with j = 3 — 4, i.e., solve the dual state problems;

4. compute

(k) _ R1u§k) - T1211§k) + T12p§k)

X :
T21u§k) — R2uék) + T21p§k)

The right hand side) is computed by a similar algorithm:

Algorithm 4.8(x evaluation)
Distributed observation - Robin controls. GivBrcomputey

1. solveA?u’ = £, i.e. use null Robin data on the interfadgsand F; as in (L8) to solve primal
states problems and find’;

2. computet; = Tyoul andt, = Thyul, i.e. the discrete trace af onM, N T, and that ofu,
onM; NT; by interpolation matrices, and the restrictionmgsfto I'; by matricesR;;

3. solved,;p/ = MI*(Ryu/ — t;) with j = 3 — i, i.e., solve the dual state problems;

4. compute

Rlu{ — T12ll£ + T12P£

Yrr = — .
At T2111{ — R2u£ + T21P{

5. NUMERICAL RESULTS

In this section we compare the ICDD methods presented albatte either Dirichlet and Robin
controls for two dimensional domains, versus the discaétn parameters andp and the overlap
thiCkneSS(SlQ = diSt(Fl, FQ)

Then we consider jumping coefficients and discuss the rabastof ICDD methods with
interface observation and Dirichlet controls.

Each ICDD method is characterized by the type of controlsi¢bliet or Robin) and the norm
chosen for the minimization, thus we introduce the follogvitotations:

Signature  Controls Observation  Cost functional OS

JoD Dir distributed  Jy (12) (29
J1D Dir distributed J1 (13 (29
JGD Dir on interfaces Jo,r (14) (20
JOR Robin distributed  Jy (12) (21
J1IR Robin distributed  J1 (13) (21
JGR Robin on interfaces Jo,r (14) (22

Only 2D geometries are considered here.

Numerical results refer to discretization with either siitipl meshes angh = 1 (identified by
the classical notatioR, ) or quad meshes and> 1 (identified byQ,,).

In general the partitiong; in each(2; are uniform and: denotes the global size of the mesh, but
we can also use finer mesh on the overlap, especially whenijgnepefficientggenerataénternal
layers. More precisely, when non-matching grids are usedntieshes are uniform and regular in
each(); and in the whole domain. When we work with matching grids we ase either uniform
and non-uniform meshes: with finer grids{i, and coarser grids ift \ Q1.

When the observation of the optimization problem is disttéll, the simpler way of working
consists in considering matching grids on the oveflap in order to avoid interpolation processes



18 M. DISCACCIATI, P. GERVASIO, A. QUARTERONI

Table I.Test case #1IThe number of iterations reported in Figs4 obeys the lawt ~ ch9p®

| JObD JID JGD JOR JIR JGR

gforP, | -025 -05 O -1 -05 -0.25
gforQ, | 0.4 0.6 0 15 1 0.4
sforQ, | -0.3 0.2 0 -1 -08 -04

between the state solutions on the whole overlap. On theargntvhen the observation is bounded
to interfaces, we consider both matching and non-matchiidlg in 21> (see Remarkd.3and4.4).

The efficiency of each method is measured in terms of Bi-ClhBémations to solve the Schur
complement system associated to its OS.

As noticed in Remark.5, the Schur complement system is preconditioned by the mas#on
the interfaces. The computational cost of one Bi-CGStahtitm is of 4 boundary value problems
on each subdomain and it is independent ofgpecific type oiCDD methodused

The tolerance of the stopping test is chosen equaktal 0—°.

5.1. Test case #1. Homogeneous elliptic coupling withasdjthint operatorL

Let us consider the elliptic problen2)(and setv =1, v =1, b = (0,0) and Dirichlet boundary
conditions o). The functionsf and¢p are defined so that the exact solution of the differential
problem @) is u(z, y) = sin(wxy) + 1.

The domainQ = (0,1)? is decomposed in two subdomains of the same size, the icésifa
andTl'; are parallel to the vertical axis and symmetric with respgedhe linex = 0.5, d,5 is the
thickness of the overlap. In this test case we consider rmggrids inQ;s.

At first we analyze the convergence rate of ICDD methods wéspect to the discretization
parameterg andh.

In Figure 3 (left) the number of iterations of all ICDD methods is shovarsus the mesh size
for P, discretization. The overlap thicknessiis = 1/10.

In Figure3 (right) the number of iterations of all ICDD methods is shovemsus the polynomial
degreep for Q,, discretization. The overlap thickness and the mesh-sizdixad, more precisely
019 = 1/10 andh = 1/10.

In Figure4 the number of iterations of all ICDD methods is shown versesmesh sizé of Q,
discretization, wittp = 4. The overlap thickness i, = 1/10.

We see that JGD is the sole method whose convergence ratéejsendent of the discretization
parameters, while the number of Bi-CGStab iterations ofdtieer methods grows fas ~ and
h \.. For each stage, we have computed a least-squares fit of &k t chip®, for h andp in
the range of the values indicated in FiguBed andc a positive constant independent of bptand
h. The estimated values fgrands are shown in Tablé.

We notice that JOD and J1R behave similarly and that the weeghod is JOR.

Now we fix the discretization and analyze the convergeneeaBliCDD methods with respect to
the overlap thickness o, more precisely whedy, — 0. To perform this analysis we can proceed in
different ways.

1. by fixing the mesh (i.e. both andp) on the whole domain and settirg, = Ch where
C =...,3,2,1.(in this case&), is bounded below by the mesh sizg See Figuré&;

2. by fixing p, by taking uniform# in the whole domairf2 and choosing» = #, in this case
bothd;» — 0 andh — 0. See Figure (left);

3. only for non-matching grids, by moving- to zero independently of the mesh. In this case
we fix p and the number of elements in each subdon§ginthe mesh is uniform in each
Q;, but obviously the mesh siZeslowly changes and it grows up whép, .. In this case
we analyze only ICDD methods with interface observationd{#&d JGR) in order to avoid
interpolation of the state solutions on the whole oveflap. See Figure§—7.
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Figure 3.Test case #llterations versus the mesh sizeP; discretizationgi, = 1/10 (at left). Iterations
versus the polynomial degreeQ, discretizationg;2 = 1/10, the mesh size i = 1/10 (at right)
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Figure 4.Test case #llterations versus the mesh sizeQ,, discretization withp = 4, 6;2 = 1/10
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Figure 5.Test case #1lterations versus the overlap thicknéss > h. P; discretization withh, = 1/100 (at
left). Iterations versus the overlap thicknéss > h. Q, discretization withp = 4 andh = 1/10 (at right)

The behaviour of ICDD methods w.rd;,» depends on the wayi» andh are relatecone another
as said in the previous description. In all cases we look foexponent- so thatit ~ ¢d7,, with
¢ > 0 independent of5.

Whend o = Ch, hisfixed andC' = 1,...,5 (results of Fig5), r is given in Tabldl (top), while
whend,, = h (results of Fig6 (left)), r is given in Tabldl (bottom).

Finally, we consider JGD and JGR with non-matching grids be tverlap andy;s — 0
independently of.. As we can see in Fig (right), JGD and JGR show specular behaviors, more



20 M. DISCACCIATI, P. GERVASIO, A. QUARTERONI
Table II. Test case #1The number of iterations of Fig5.and6-left behaves liket ~ ¢d7,
Fig.5 | Job JID JGD JOR JIR JGR
r for Py -08 -03 -05 01 0 0
r for Qp 0 -04 -05 0.2 0 0
Fig.6-left | JOD JID JGD JOR JIR JGR
rforPy | -1 -1 -0.5 -1 -0.5 -04
10’ 10°
——J0D ——JGDqj
——J1D ——JGRa,
—a— JGD —a—ﬂg[R)pl
—e—JOR —e— P
2 102\ ue |2 1
S ——JGR S
§ M §
2 =
101\ 10t \
10° 10° : :
10° 10" 10" 10° 10° 10"

h = 512 512

Figure 6.Test case #llterations versug,2 = h. Py discretization (at left). Non-matching grids on the
overlap.h = 1/5 for Qg, h = 1/20 for P; (at right)

1 25
« —+—p=1
—+—h =1/20 2
16 \\—-—;L:1/40 ‘ P
—=—h = 1/60 20 =3
14 —p=d
2] 5—_9_9\9—9—9\6\ p=>5
Sz —p=6
°
310 0 ]
8t <
5, 4
6,
A =3 2 L 100 167 107 10"
10 10 10 10 512

612

Figure 7.Test case #1terations of JGD versug ». Py discretization, non-matching grids on the overlap (at
left). Q, discretization withh = 1/5, non-matching grids on the overlap (at right)

precisely the number of iterations of JGD slightly grows whe, decreases and it is large, while
it is independent of;, whend,, is smaller than a valuéthat depends on the discretization (either
P; or Q). On the contrary, the number of iteration of JGR is fixed ogéd,, and than it grows
whendi, — 0. In both cases, the behavior for largg, i.e.d12 > & isthe oneshown in Figs5-6.

In order to better understand the behavior of the methodsdor smallé;», we compare the
iterations of JGD for several values lofandp in Fig. 7. Numerical results show that

(55)

itjop ~ min {clph_l/Q, 025;21/2} ,

with ¢1, co positive constants independent/ofp, d1s.



ICDD METHODS FOR COUPLED DIFFUSION AND ADVECTIONDIFFUSION PROBLEMS 21
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Iterations

H
=

10" 10° 0’ 10" 10°
12

Figure 8.Test case #2Numerical solution obtained witfy, with p = 6 and5 x 5 quad elements in each
subdomain. The convergence is achieved in 8 iterationeffat lterations versué, , (at right)

5.2. Test case #2. Homogeneous coupling, advection-idiffoperator

We consider now the advection diffusion proble®) in Q = (0,2) x (0,1) with v = 1074, b =
[1,2cos(2mz)], v = 1, f = 0 and Dirichlet boundary conditions, = y(1 — y) on the left vertical
side of the domain andp = 0 otherwise.

We apply Galerkin Least Squares (GaLS) stabilization teghes (see30, 31]) to hp-FEM, more
precisely we discretize the differential problems@®ywith p = 6 and5 x 5 quad elements in each
subdomain. When the methods with distributed observatienJOD, J1D, JOR, J1R) are considered
the two meshes match on the overlap. On the contrary, nookingtmeshes are used for both JGD
and JGR. The numerical solution is shown in Fig8i(éeft).

We split the domain in two symmetric subdomains with respette linex = 1 and we measure
the convergence rate of various ICDD methods. For this t@st eve only report the number of
iterations versus the overlap thickness (see &ifright)). The behaviour of the various methods
with respect to the discretization parameters is as in thieciese #1without advection (see Figs.
3-4).

As we can deduce from Figuf(right), we observe that the most efficient method is JG als
in presence of non-null advective fields.

5.3. Test case #3. Homogeneous coupling with jumping vtgcos

In this test case we consider only the JGD method, the mostezffione among the six methods
presented in the previous sections, and we test its rolasstmigh respect to jumps discontinuities
of the elliptic coefficient.

We take() = (0, 1) and we decompose it in more than two subdomains, as desanifmark
2.1

At first we consider discontinuous viscosityas on a chesshoard with squares of size /5,
assumes the valud in the white squares and the valugas precised in Tablgl) in the black
ones, while the reaction coefficient4is= 1. Thenwe consider a random mix of values foras
defined in Figure® (left).

In both cases we take = [0, 0]*, f = 1 and homogeneous Dirichlet boundary conditions.

The computational domain is decomposed ir 5 equal overlapping subdomains with overlap
thicknessdi, = 0.01 (equal to 1% of the side of?), Q, discretization is considered in each
subdomain withp = 12 and3 x 3 non-uniform quad elements.

The size of the overlap is responsible in general for the emyance rate of the Bi-CGStab
iterations and, in the case of discontinuous coefficiest &r the accuracy of the approximation.
More precisely, if the jump of the coefficient is very larghethigh variation of the solution is
correctly captured without oscillations only if the disiization is fine enough in a small region
around the jump. We can achieve good results, e.g., by usiegyasmall overlap, then considering
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Table lll. Test case #3terations count and infimum of the cost functiongl for the chessboardand
random mixconfigurations

o | iterations inf Jor
1070 16 3.107%
1073 9 1-107%¢
107! 13 7-107%

103 11 7.1073%°
10° 8 41073
random| 10 2-107"

1 10* | 1 1075 1

1072 10 |1072| 10 | 102

10761 1073| 107%| 10% | 106

10 |10~ 102 | 1072] 10

103 | 107%| 10® | 10* | 1073

Figure 9.Test case #3%alues of the viscosity in © for the random mix case (at left). Numerical solution

of advectiondiffusion problem withv = 10 or » = 10~3 as on & x 5 chessboard ant = [—y, z]*. The

solution is computed by JGD and), with p =12 and 3 x 3 quad elements in each subdomain. The
convergence is achieved in 10 iterations (at right)

matching meshes and discretizing the overlap with one sgdedement (along the direction across
the jump) and by using a moderately large value of the polyabdegreep. Otherwise we can use
a generous overlap in spite of adoptbigher polynomial degreg. On one hand, the smaller the
overlap thickness, the slower the convergence rate to th@rmam point. On the other hand, the
larger the polynomial degreg the more expensive the solution of the boundary value probl
inside each subdomain. Therefore, a careful tuning of tkeretization parameters is in order to
minimize the computational costs without compromisinguaacy or stability.

In Tablelll we report the iterations count and the infimum of the costtional J,  obtained
at convergence, for different values of the parametefhe iterations count refers to Bi-CGStab,
called here to solve the Schur complement sys#Bj {The stopping test is satisfied when the norm
of the residual is reduced up 10— '2,

The results show that the convergence rate of JGD to thei@olot the minimum problem1(4)
is independent of the jumps of the coefficients.

At last we consider again the chessboard configuration ofige®sity withv = 10 in the white
squares and’ = 10~2 on the black ones, but now we take non-null advective fielécigely
b = [—y,x]'.

Again, we sety = 1, f = 1 and homogeneous Dirichlet boundary conditions. The digetson
is the same used for the case with riull

The numerical solution, computed with stabilized Galelkéast Squaresp-FEM, is shown in
Figure9 (right).
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Table IV.Test case #3advection-diffusion problem. Iteration counts of JGD anfimum of the cost
functional Jy - versus the overlap thickness

d12 | iterations  infJor
1-1071 9 3.50-10726
5.1072 9 7.40-10727
2.1072 10 1.58 - 1072%¢
1-1072 10 2.96 10726
5.1073 11 6.99 - 10727
2.1073 12 2.98 10727
1-1073 12 8.70-10728

Table V.Test case #4terations count of JGD for fixell = 1/7, 12 = 0.01 andv = 103 (at left). Iterations
count of JGD for fixedh = 2, §;2 = 0.1 andv = 103 (at right)

»p |1 2 3 4 5 6 7 8 h | U10 120 1/30 1/40 1/50
#t|3 3 3 3 3 3 3 3 #wit)3 2 1 1 1

Table VI. Test case #4terations count of JGD for fixegl = 4, h = 1/16 andv = 1073

012 | 01 005 0.02 0.01 0.005 0.002 0.001
#it(matching grids) 3 2 2 3 5 9 13
#it(non-matching grids) 1 2 4 3 5 6 6

We have analyzed the number of iterations of JGD and the imfinodi J, - attained at
convergence with respect to the overlap thickngssthe results are shown in Tablé and show
that the method behaves as with self-adjoint elliptic ojpesa(see Test case #1).

Even if the theoretical analysis of convergence rate of IGDEthods is in progress, we can
state that JGD is optimal with respect to discretizatiorapgaters and it is robust with respect to
variations of coefficients for both self-adjoint and adi@ttdiffusion differential elliptic operators.

5.4. Test case #4

We consider again the sole JGD method and we test its rolassiméhe presence of internal layers,
due to low regularity of the advective field
We take) = (0,1)%, v = 1, f = 1, homogeneous Dirichlet boundary conditions and

b = [100 arctan(|(z — 0.5)(y — 0.5)]), 10]*

(see Figl0 (left)). The viscosity will be specified after.

The computational domain is decomposed in 2 equal ovengppubdomains with overlap
thicknessd», the interfaces are parallel to the axis= 0. The discretization is performed by
stabilized (GLS)Q, [32].

The numerical solution corresponding to viscosity= 10-% is shown in Fig.10 (right), it
is computed withp =8 and mesh-sizeh = 1/16. The overlap thickness ig;» = 0.01. The
convergence of JGD is achieved in 3 iterations up to a toteras- 1012,

Also in this case the convergence rate of JGD is independdmith polynomial degree and
mesh-sizé: as it is shown in Table .

We analyze the behavior of JGD also versus the overlap tegki(see Tablgl) and the value
of the viscosity, that is a constant ranging betw&en® and1 (see TableVIl). In both cases we
consider either matching and non-matching grids on thelapeFrom TableVIl it is evident
that the convergence rate of JGD depends on bo#émd 5;2 and, smaller the viscosity greater
the convergence rate.
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Figure 10.Test case #4Advection fieldb (at left). Numerical solution of advectiediffusion problem with
viscosityr = 10~% obtained by JGD and stabilize@, with p = 4, h = 1/16 andd;» = 0.001 with non-
matching grids (at right)

Table VII. Test case #dterations count of JGD for fixed = 4, h = 1/16 andéd;2 = 0.001

matching grids| non-matching grids
14 #it inf JO,F #it inf JO,F
1 35 3-1073 | 26 4.10734
1071 | 36 1-1073%° | 25 6-10731
1072 | 35 4-107%° | 14 6-10731
107213 1-107% | 6 1-10732
107*] 5 1-107%* | 3 4.10738
107 2 4-107%* | 3 6-10%°
107 1 3-10% ]| 3 3.107%

6. NUMERICAL RESULTS FOR A-AD COUPLING

In this section we report three test cases showing the noéssiof ICDD method JGD also for the
heterogeneous coupling between Advection and Advectidfodion problems.

In the first test case the advective field is parallet taxis, the computational domain is split in
two overlapping subdomains and the interface of the hygierdomain has both inflow and outflow
parts. The discretization is not uniform on the whole domaird non-matching grids are considered
on the overlap.

In the second test case the vector field is diagonal w.r.t Brit the computational domain is
decomposed in 4 rectangular subdomains, the first one ig/pEftolic type” (in the sense that there
the reduced differential operator is discretized) while tther three subdomains are of “elliptic
type”. The discretizatios adapted tdhe behaviour of the solution and non-matching grids are
used on the overlap regions. Timboleinterface of the hyperbolic domain is of output type so that
the solution inside the hyperbolic domain only depends deraal data. The ICDD iterations take
into account interactions among the elliptic subdomains.

In the last test case the advective field behaves like a catieecomputational domain is split
in two hyperbolic and two elliptic subdomains as in a cheasthoaccording to the presence of two
layers. In this case the interfaces of both hyperbolic sotains have inflow and outflow subsets.
The meshes used are highly non-conforming on the overlapneg

We test the robustness of the ICDD method JGD (with interfaloservation and Dirichlet
controls) w.r.t. the variations of the viscosity and of tveidap tichkness.
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Table VIII. Test case #3nterfaces setting: smaller the viscosity, wider the migpic domain

v 24 012 € v Zg 012 €
107°  0.995 [2.e —5,2.c— 3] 107*  0.95 [2.e—5,2.e— 2]
107* 098 [2.e—5,2.¢c—2] 1072 05 [2.e—5,2.e—2]

Figure 11.Test case #5Numerical solution for = 1072, the interfaces are parallel to the- axis and the

corresponding abscissa arg» = 0.5 + 0.0002 (at left). Numerical solution for = 107, the interfaces
are parallel to thg— axis and the corresponding abscissasare = 0.995 £ 0.00002 (at right)

6.1. Testcase #5

Let us consider now the heterogeneous coupling describ&eation3 between advection and
advection-diffusion differential problems.

Let us set2 = (—1,1)?, v is a small positive constant that will be specified lates [y, 0],
~ =1, f = 1. If we take constant viscositywe are in presence of a convection-dominated problem
whose solution features a boundary layer of wiifv/|b|) (when v/|b| is small enough, or
equivalently, the Péclet number is large) on the right eattside of the computational domain.

We decompose the computational domain in two overlappingdsmainsQ; = (0,z, +
012/2) x (—=1,1) andQy = (z4 — d12/2,1) x (—1,1) (where bothz, andd,» will be precised later)
and we solve the heterogeneous minimization probl26) by the ICDD method Z9)—(30). In
agreement with names given in Segtfor the homogeneous elliptic problem, the ICDD method
(29)—(30) is named JGD, since the observation is on the interfacetenddntrols are of Dirichlet
type.

The boundary conditions are specified for the two subproblamfollows. For what concerns
the hyperbolic problem, the inflow part of the external baanydis (92, \ I')"* = {(x,y) : 2 =
—1, y > 0} and there we setp = 1, while for the elliptic problem we set homogeneous Dirithle
conditiongp = 0 on the right vertical side and homogeneous Neumann conditia/on = 0 on
the two horizontal sides @2, \ I's.

By taking some values of in the interval[10—°,102], we chooser, andd,, as shown in Table
VI .

The numerical solutions computed by-FEM of Q, type are shown in Figl1, for v = 10—2
andv = 10°. In the hyperbolic domain and along thedirection inside the elliptic domain the
polynomial degree ip = 5, while along ther direction in the elliptic domain it is larger in order
to capture the layer without oscillations (more precisitlis p = 8 whenv = 1072, p = 12 when
v =1073,p =16 whenv = 1074, p = 20 whenv = 107°). As a matter of fact, for the solution of
this problem GLS stabilizations either do not dump osddlas or show over diffusion.

In TablelX we report the number of iterations that JGD requires to cayevap to the tolerance
e=10""12,
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Table IX. Test case #5JGD iterations

512 1072 107 107* 10°° 512 1072 107* 107* 10°°
2.107° | 21 22 16 11 1-107% | 14 13 6 2
4-107° | 17 20 14 9 2.107% | 13 11 4 2
1-107% | 19 17 13 6 4.107% | 12 7 3 -
2.107% | 17 16 11 4 1-1072 | 10 6 2 -
4-107* | 17 14 9 3 2.1072 | 8 4 2 -

We notice that the method is robust when the viscosity besoragy small w.r.t. the magnitude
of the advective field. As for the homogeneous elliptic céise,number of iterations grows when
the overlap thickness decreases, but it remains boundeul taeviscosity tends to zero.

6.2. Test case #6

Let us consider problen®) in 2 = (0,1)?, wherev is a small positive constart, = [1, 1], v = 1,
f=1land¢p = 0.

Whenv is small enough, two boundary layers occur at the top andearight sides of the
computational domain. We analyze the behavior of ICDD meth®eD when the elliptic coefficient
v ranges fron0~% to 102.

For any value oi- considered, we solve the global homogeneous elliptic prak®) by (14) as
well as the heterogeneous A — AD couplirig) by ICDD method 29)— (30) (or equivalently 82))
by settingr = 0 in the subregion of the domain far from the layers.

We measure the difference i?-norm between the state solution of the homogeneous ICDD
(with elliptic problems in all the subdomains) and that of tieterogeneous ICDD, as well as the
efficiency of the ICDD method in terms of iterations count.

We split the computational domain ihx 2 rectangular subdomains whose interfaces are close
to the boundary layers (see Fifj2). We setQ; = (0,zr +6/2) x (0,yr + 6/2), Q2 = (0, 2p +
5/2) x (yr —6/2,1), Q3 = (xr — §/2,1) x (0,yr +6/2) andQy = (zr —6/2,1) X (yr — §/2,1),
the thickness of the overlap = 0.01 (corresponding to 1% of the side of the computational
domain) for all the cases, whilg- = yr will be specified later and they will be chosen so that they
do not fall in the boundary layer region.

In the heterogeneous case, we solve the hyperbolic equatiba subdomaif; and the elliptic
equation inQ;, with k = 2,3, 4. We setQs = U} _, €.

In each subdomain we discretize the boundary value probgrs Finite Elements, stabilized
with Galerkin Least Squares (GLS) techniques (8£8 [for the elliptic case.

In Fig. 12 (right) we report the numerical solution for= 10~°, while in TableX we show
the number of Bi-CGstab iterations required by JGD up to caduthe residual of 12 orders of
magnitude for both homogeneousi({.) and heterogeneou#(t;) couplings.

By denoting withu,. andu, the state solutions of the homogeneous and heterogeneapitngs,
respectively, we report the errofg. — up||z2(q,) and|lu. — uh||L2(§2).

Numerical results show that, for any considered value,db solve the heterogeneous problem
instead of the homogeneous one is advantageous and thenlifés between the heterogeneous and
homogeneous solutions vanish whetends to zero.

The mesh if?; is fixed in10 x 10 elements, while in the other subdomains we consider differe
meshes versus the valuesiofMore precisely, we fiXx0 x n, elements irs, n, x 50 in Q3 and
n, X n, in Qy, withn,, = 5 wheny = 1072, 1073,10~* andn, = 10 wheny = 10—°, 1075.

In all cases the meshes are non-matching on the overlaps.



ICDD METHODS FOR COUPLED DIFFUSION AND ADVECTIONDIFFUSION PROBLEMS 27

Qo Q

o o

Figure 12 Test case #6The decomposition of the computational domain (at left)e iumerical solution of
the heterogeneous coupling with= 10~°, obtained by stabilize@, finite elements (at right)

Table X. Test case #6. Iterations count and errors betwetsidgeneous solution;, and global elliptic

solutionu.e
v xr #itn  Fite  |lue —unllrzy) e —unllp2g,)
1072 09 6 9 9.48 -107° 1.61-107°
107% 095 5 11 2.38-107° 2.41-1077
107* 095 7 13 1.83-1077 1.10-1078
107° 095 7 13 1.49-1077 7.10-107°
107 098 6 13 1.48 -1077 6.90-107°

6.3. Test case #7

In this last test case we set= (0,0.5) x (0,1), v = const > 0 (it will be specified later)b =
[1,cos(2mx)]t, v = 0.1, f = 0, and the following Dirichlet conditions:

bp = 10y(y — 0.3)(0.9 —y) whenz =0
P70 otherwise.

Whenv is small with respect t¢b| two boundary layers occur on both right vertical and top
horizontal side, while the solution is quite regular in thstrof the domain. Then we decompose the
computational domain in 4 overlapping subdomains as showig. 13 (left) and we solve elliptic
problems in both2, and23, and hyperbolic problems i, and),. The interfaces are positioned
inz, = 0.48 &+ 0,2 andy, = 0.87 + 4,3, the overlap thickness will be precised in Table

The numerical solution of the heterogeneous coupling, edetpfory = 10~4, is shown in Fig.

13 (right). We have considered non-uniform discretizatiof2irmore precisely, the mesh is finer
in both Q5 and 3, while it is coarser in2; and (4, and they do not match on the overlaps. In
all subdomains we discretize I§y,-FEM and we use different polynomial degreand different
mesh sizeh not only among subdomains, but also alongndy directions, in order to better fit
the behaviour of the solution near the layers and to savetbpreaCPU and memory elsewhere. In
detail we use the following discretization (instead of shmythe mesh sizé, we write the number
of elements:e along any direction, the subscript denotes the axis, eitluer):

domain  p, neg Dy ney
92 6 6 6 6
Qs 10 8 10 6
Q3 16 4 12 4
Qy 4 2 4 2
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Figure 13.Test case #7The computational domain and the advective fle(dt left). The numerical solution
of the heterogeneous coupling fier= 10~ with interfaces inc, = 0.48 +5-107° andy, = 0.87 £ 104
(at right)

Table XI.Test case #7JGD iterations when = 10~%. In all cases§is = 2612

012 | JGD iterations
5-107° 21
1-1074 17

2.5-107% 12
5.-1074 10
1-1073 8

2.5-1073 7
5.-1072 6

As in the previous test cases the number of JGD iteratiordiyrdepend on the overlap tichkness
as it is shwon in Tabl&I.
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