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Abstract 
We introduce a general class of mixture models to study water uptake, 

degradation, erosion, and drug release from degradable polydisperse polymeric matrices. 
The mathematical model is based on a finite number of constituents describing the 
polydisperse polymeric system, i.e. each representing collection of chains whose size 
belongs to a finite interval of degree of polymerization. In order to model water uptake 
and drug release, two additional constituents (water and drug) constitute the mixture.  

Constituents diffuse individually accordingly to Fick’s first law and balances of 
mass of constituents yield partial differential equations that govern the reaction-diffusion 
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system. Hydrolysis, a chemical reaction that breaks down larger chains into smaller ones, 
is accounted with reactions terms quantifying sources and sinks of polymeric chains and 
a sink of water. Hydrolysis couples the system of equations and nonlinearities appear 
through constitutive specification of the diffusivities of constituents on the current 
network, reaction rates, and boundary conditions. 

The mathematical model is independent of the number of constituents describing 
the polydisperse polymeric system and hydrolysis kinetics describe with accuracy the 
overall decrease in molecular weight distribution and satisfies a monomer conservation 
principle. A shift between two different types of solutions of the system of partial 
differential equations, each identified to surface or bulk erosion, is obtained with the 
variation of a single non-dimensional number, the Thiele modulus, which measures the 
relative importance of the mechanisms of reaction and diffusion. Results of drug release 
confirm that drug release from bulk eroding matrices is diffusion-controlled, whereas for 
surface eroding polymers, drug release is enhanced in an erosion-controlled process. 

1 Introduction 
 Polymer-based systems have had an enormous impact on drug delivery therapies 
[1]. The techniques employed today differ in concept but all of them share one particular 
feature, the mechanism of diffusion of certain species, the drug, through a matrix, usually 
polymeric in nature. In one approach, the drug is physically entrapped in a solid polymer 
capsule that can be injected or implanted in the body. Early forms of these systems 
involved non-degradable polymers in membrane-controlled diffusion such as silicone 
rubber, which could release low molecular weight drug for extremely long times [2]. 
Alternatively, drugs were also physically embedded in polymers at concentrations high 
enough to create a series of interconnecting pores through which the drug could afterward 
slowly diffuse from a matrix system [3]. Subsequently, biodegradable polymers were 
utilized, where the combination of diffusion through the pores as well as polymeric 
matrix degradation and erosion allows controllable release rates [4]. 
 The process of degradation and erosion of polymers, i.e. the loss of mechanical 
integrity due to extensive backbone chain scission, has received particular attention 
recently as the availability and utilization of synthetic biodegradable polymers has 
increased dramatically over the last 50 years [5]. Degradable materials have found a wide 
variety of applications in the medical field ranging from biodegradable sutures [6], pins 
and screws for orthopedic surgery [7], local drug delivery [1], tissue engineering 
scaffolds [8], and biodegradable endovascular and urethral stents [9,10]. When used for 
load-bearing applications, the contribution of the polymer is required for a limited period 
of time, the healing time, and the polymer can be engineered to degrade at a rate that will 
transfer the load to the healing tissue, which require the understanding of the load bearing 
capabilities of the device as well as their evolution due to degradation over time [11]. On 
the other hand, for drug delivery implants, attention is shifted to delivery kinetics and 
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their changes during degradation and erosion, in order to ensure an effective dose, 
without reaching toxic levels. 

The ability to predict the evolution of biodegradable polymers over the course of 
degradation would enhance the biodegradable drug eluting implant design process. When 
conditions are simple and the desired life-time of the implant is fairly well-know, a “trial 
and error” approach has proven to be sufficient in producing reasonably reliable devices. 
On the other hand, in more complex situations when drug elution occurs in conjunction 
with mechanical loading, the lack of rational design tools has severely hampered the 
development of biodegradable implant technology. 

Polymer degradation is the irreversible chain scission process that breaks polymer 
chains down to oligomers and finally monomers. Extensive degradation leads to erosion, 
which is the process of material loss from the polymer bulk. Such materials can be 
monomers, oligomers, parts of the polymer backbone, or even parts of the polymer bulk. 
Hence, degradation and erosion are distinct but related processes [12]. For polymeric 
matrices charged with drug, these phenomena should not be confused with drug 
dissolution, which is thought to describe the process of change of state from the initially 
solid drug into diffusible dissolved drug [13,14].  

Drug release from stable polymers is usually governed by the mechanism of 
diffusion and is commonly referred to as diffusion-controlled drug release [15]. In the 
case of unstable polymers, whose matrices degrade and erode, drug release is affected by 
the physicochemical changes occurring. When the reactivity of the polymeric bond is 
low, resulting in greater timescales of reaction when compared to the timescale of 
diffusion, drug release occurs solely during the initial lifetime of the implant (as it 
diffuses) and may not be much affected by degradation and erosion. But on the other 
hand, if degradation occurs at a comparable timescale, drug release occurs in an erosion-
controlled process [15]. A general improvement of the overall diffusive properties of the 
matrix enhances (and sometimes dictates) drug release, which essentially result from the 
dramatic morphological changes occurring due to degradation and erosion: e.g. degree of 
crystallinity initially increases due to preference of degradation of the amorphous phase, 
overall water sorption increases substantially, and macropores and voids form (cf. 
[16,17]). 

The prevailing mechanism of biological degradation of synthetic aliphatic 
polyesters (the main class of biodegradable polymers used in biomedical applications, 
such polylactic acid or polyglycolic acid) is random scission of the hydrolytically 
unstable backbone chain by passive hydrolysis [18]. The rate of swelling of common 
aliphatic polyesters is usually much higher than the rate of hydrolysis, hence the reaction 
occurs extensively through the swollen polymer bulk and the common mode of erosion 
observed in this class of polymers is bulk erosion [19,20].  
  Hydrolysis is a very intricate process that occurs at the molecular level [21]: 
Although the reactivity of each bond might be equal when considered individually, the 
large number of repeating units involved and their inherent steric environment, weak 
links, and branches may influence locally the rate of reaction. Ultimately, experiments 
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with gel permeation chromatography provide data to model the mechanism of 
degradation [22,23] and kinetic parameters are obtained from the evolution of 
experimentally obtained molecular weight distributions. An approach pioneered by Kuhn 
[24] and Montroll and Simha [25] employs combinatorial statistics to derive analytical 
solutions of the evolution of molecular weight distribution assuming that bond scission 
can be described with a known probability density function (e.g. equiprobable random 
scission, central Gaussian, or parabolic) and simple initial conditions. A second technique 
to model polymer degradation relies on a system of differential kinetic equations which 
describe the depolymerization rates of individual bonds and upon integration yield the 
temporal evolution of the molecular weight distribution [26], but a complete kinetic 
scheme represents thousands of differential equations even for modest size 
macromolecules. A third common method employs Monte Carlo simulations applied to 
populations of polymeric chains [27-29], a versatile approach that can technically 
overcome the simplifying assumptions needed on the others, but realistic simulations may 
require an excessive amount of computational resources. 
 Concerning polymer erosion, the choice of effective mathematical modeling tools 
is, however, not straightforward. Furthermore, existing erosion models are usually 
intrinsically linked to drug release models as most research efforts have aimed at both 
phenomena. Two main approaches to model erosion can be currently identified: models 
based on differential equations that consider the erodible material as a continuum where 
species dissolve and diffuse; and stochastic models that describe degradation and erosion 
as a probabilistic event (cf. [15] for a comprehensive review). 
In the scope of the deterministic approach, Heller and Baker [30] pioneered with a simple 
model for degradation and drug release from bulk eroding polymers consisting of steady 
state water diffusion coupled with a reaction equation describing the kinetics of the 
degradation mechanism, and which in turn changed the permeability describing drug 
diffusion within the matrix. Lee [31] proposed a simplified model for surface erosion and 
drug release from polymer films based on the movements of two fronts, a diffusion front 
and an erosion front. Thombre, Joshi and Himmelstein [32-34] proposed a 
comprehensive theory for drug release, water penetration, and erosion from eroding 
polymer and corroborated the theoretical findings with experimental results. Similar 
methods based on diffusion equations that account degradation, erosion, and drug release 
in more complex systems have been developed since [35-37], but the usual drawbacks of 
this kind of models are still present: the difficulty arising from modeling preferential 
degradation of the amorphous phase compared with the crystalline phase, and the 
incorporation of changes in the microstructure caused by the erosion mechanism and are 
usually specified within phenomenological reasoning. 
On the other hand, stochastic models complemented with Monte-Carlo simulations to 
simulate surface or bulk eroding polymers have been developed (cf. Zygourakis [38] and 
Gopeferich and co-workers [15,39]). Erosion is described as being a probabilistic event 
and the polymer matrix as a grid of pixels, to each different property can be assigned and 
hence a distinction between the crystalline and amorphous phase can be considered. By 
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removing eroded pixels from the grid, the stochastic evolution of a polymeric matrix was 
obtained and experimentally measurable parameters, such as porosity and weight loss, 
were calculated.  Erosion fronts and a distinction between erosion modes were inferred 
from the results and their fit to experimental data allowed the determination of erosion 
rate constants. Although such models have shown good performances because of their 
versatility to account a multitude of phenomena occurring due to degradation (e.g. the 
formation of voids inside the polymer bulk as well as in the treatment of moving fronts 
for surface erosion), their coupling with deterministic models based on Fick’s law for 
drug release is not straightforward. Furthermore, the computational cost associated with 
Monte-Carlo simulations is generally much larger than the one of standard (finite 
difference or finite element) methods for partial differential equations. 

For these reasons, the aim of this work is to set up a general class of mathematical 
models capable to account for degradation (bond scission leading to physicochemical 
changes) and erosion (diffusion and washing away of byproducts leading to mass loss) 
and describe in a unified sense both bulk and surface modes. The model is developed 
within the deterministic framework of continuum mechanics and mixture theory. The key 
ingredients constituting the mathematical model are: 

(i) the description of the polymer as a polydisperse system which differentiates 
properties of chains of different sizes and the description of the matrix as a 
mixture of polymer, water and drug; 

(ii) polymer degradation kinetics, which allow the precise description of the evolution 
of population of chains of different sizes, accounting for their production and 
destruction due to hydrolytic scission; 

(iii) suitable constitutive laws to characterize transport properties of the mixture 
constituents through the polydisperse polymeric network, as well as their 
evolution as the nature of the network changes. 

 
While the first item deals essentially with the nature of the system, items (ii) and (iii) 

describe the mechanisms of reaction and diffusion respectively. Phenomenologically, 
four distinct but related phenomena occur concurrently and must be described with the 
mathematical modeling: 

(i) water uptake: following in vivo implantation or in vitro submersion, water 
penetrates the initially dry and non-degraded polymeric network through the 
mechanism of diffusion; 

(ii) hydrolytic scission: as water becomes readily available in the vicinity of the 
chemical bonds, their likelihood of scission increases, leading to an overall 
molecular weight reduction; 

(iii) polymer erosion: smaller chains are progressively produced, which are more 
eager to dissolve and diffuse through the network leading to an overall mass loss; 

(iv) drug release: drug is released by the mechanism of diffusion through the 
polymeric matrix, whose material properties change due to degradation and 
erosion. 
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Because of the complexity of the phenomena at hand, the resulting set of equations 
can be rather cumbersome and several parameters are needed to characterize the behavior 
of the system. For this reason, a particular effort has been devoted to bring the equations 
to their non-dimensional form, putting into evidence a few characteristic quantities that 
completely determine the response of the polymeric matrix. Owing to this analysis, once 
the polymer properties are known, or more precisely, how diffusion and reaction occur, it 
is immediately understood whether the system will feature bulk eroding or surface 
eroding properties. Finally, numerical simulations based on the finite element method are 
employed to illustrate the behavior of the model for different polymer properties. 

2 Mathematical Model 
The design and construction of biodegradable drug delivery devices must involve 

a multitude of correlated physical phenomena: in most systems, water uptake, 
degradation, erosion and drug release depend on a complex, interrelated set of 
mechanisms including chemical reactions, multicomponent diffusion and physical 
changes in the system [33]. A mathematical model which incorporates all of the 
important mechanisms is a useful tool aiding the design of biodegradable drug release 
systems. 

2.1 Polydisperse polymeric systems 
Polymeric systems are usually polydisperse, i.e. they are constituted by a 

collection of molecules of different sizes instead of being composed solely by molecules 
of a single chain size (classical exceptions are most naturally synthesized proteins). This 
is a consequence of the random nature of polymerization reactions. 

Scalar averages of the entire population of molecules constituting the polydisperse 
system, namely the number-average molecular weight and the weight-average molecular 
weight ( nM  and wM , respectively), are quantities highly appraised by experimentalists 
as they allow polymeric samples to be described by single scalar quantities (cf. [40,41]). 
The polydispersity index, defined as the ratio of wM  and nM , tries to capture the 
broadness of the population. Nevertheless, the distribution of molecular weights has been 
shown to be important in many diverse applications, including flow of melts and 
solutions, aging and weathering behavior, adhesion, and flocculation [41]. When dealing 
with high molecular weights (usually with chains of lengths of tenths or hundredths of 
thousands), it becomes convenient to treat distributions as being continuous rather than 
discrete [22,23]. The most popular experimental technique for measuring distributions of 
molecular weight in a polymer system is known as gel permeation chromatography or 
size exclusion chromatography. The principle of the method consists on the time 
dependent filtration of a mixture of small and large molecules through a column packed 
with porous beads, where the filtration time of each molecule is distinguished according 
to its size [40,41]. 
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In our modeling of a polydisperse polymeric system, the polymeric system is 
discretized into N number of constituents of different averages degrees of polymerization 
(the number of repeating units in a chain, which is directly related to the molecular 
weight of a chain through the monomer molar mass 0M ). The degree of polymerization, 

]0, [x∈ ∞ , is partitioned into N mutually exclusive equidistant partitions iP  of average 
degree of polymerization ix  for 1,2,...,i N= . One has 1ix i x= , for 1,...,i N=  and 

 1 1= , ,    for  1,...,
2 2i i i
x xP x x i N⎡ ⎡− + =⎢ ⎢⎣ ⎣

. (1) 

Average degree of polymerization 1x  represents the average degree of 
polymerization of the smallest chains, i.e. “quasi-monomeric”. The average size of the 
chains increases as i increases and Nx  corresponds to the average degree of 
polymerization of the longest “quasi-polimeric” chains. In between, there is the entire 
range of 2N −  “quasi-oligomeric” different average chain sizes. 
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Figure 1. Weight fraction of constituents of a polydisperse polymeric system. A Schultz 
distribution is discretized into 20N =  partitions. The continuous distribution of weight 
fractions ( )w w x= , a result commonly obtained experimentally, is well approximated 
with a finite number of partitions. 

 
Let iw  for 1,2,...,i N=  be the weight fraction of chains inside partition iP  with 

average degree of polymerization ix . Weight fractions iw are a finite discretization of the 
continuous weight fraction distribution ( )w w x=  over the range of degree of 
polymerization ]0, [x∈ ∞   – e.g. a Schulz distribution (cf. [40,41]) given by 
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1

1( ) exp
( 1)

a
a

n n

a aw x x x
a x x

+
⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟Γ + ⎝ ⎠ ⎝ ⎠
, (2) 

where nx  and wx  are the number-average and weight-average degrees of polymerization 
respectively, Γ  is the Gamma function and constant a is a measure of the polydispersity 
of the system (as 1 1w nx x a= + ), is discretized through integration over the 
corresponding partition iP , i.e. 

 ( )
i

i
P

w w x dx= ∫ , (3) 

for 1,...,i N=  (cf. Figure 1, obtained with 20N =  partitions ranging from 0x =  to 
5 nx x=  with 0.9a = ). 

2.2 Hydrolytic Scission and Degradation Kinetics 
Although the reactivity of each bond may be identical when considered 

individually, details of the microstructure, such as weak links or steric environment, may 
influence the local rate of the reaction. This effect is exacerbated in mechanochemical 
reactions, where the magnitude of applied stress changes along the polymer backbone, 
leading to position-dependent reaction rates. 

  
Figure 2. Hydrolytic scission kinetics. A chain of average degree of polymerization ix  
has 1i −  scission locations, each of length 1x , which upon scission at location j  yield 
chains of average degree of polymerization jx  and i jx − , a reaction that occurs at rate 

,i jk . In the example, scission occurs at 3j =  
 
The localization of the broken bond is a prerequisite of any molecular modeling 

of the degradation process. A chain of average degree of polymerization ix  can be 
cleaved at i – 1 different scission locations to yield chains of smaller average degree of 
polymerization, jx  and i jx − , with 0 j i< <  (cf. Figure 2, with 3j = ). Scission locations 

{1,2,..., 1}j i∈ −  of chains of average degree of polymerization ix  are composed of 1x   
individual polymeric bonds and to each corresponds one reaction rate ,i jk . A scission 
event occurring at any bond belonging to partition j results in a similar outcome: the 
production of chains of average degree of polymerization jx  and i jx − . All possible 
outcomes of a chain of degree of polymerization ix  are  
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The depolymerization kinetics can be described by means of a system of ordinary 
differential equations (cf. [22,23]). A polymeric chain of average degree of 
polymerization ix  undergoes one of the reactions in (4). Let ( )i in n t=  denote the number 
of chains of average degree of polymerization ix  existing at time t. In a closed system, 
the rate of change of number of chains in  in partition iP  balances in the following way: 

 
rate of change rate of degradation rate of degradation

of chains  of  to smaller chains  of chains  to i i k i ix x x x x
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥>⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. (5) 

The left hand side is given by a time derivative of in . The first term of the right hand side 
of equation (5) accounts for scission of chains of average degree of polymerization ix  
occurring at any of its scission locations 1,2,..., 1j i= − . The second term accounts that 
chains of average degree of polymerization kx  with k i>  have two different locations, 
which upon scission, yield chains of average degree of polymerization ix : either when 
scission occurs at location i  or at location k i− . Balance (5) becomes 

 
1

, , ,
1 1

( )
i N i

i i j i i j j i j i i j
j j

n k n k k n
− −

+ + +
= =

= − + +∑ ∑� , (6) 

for 1,2,...,i N= . Note that for 1i = , the first sum is null (as the upper limit of the sum is 
smaller than the lower limit, a convention employed throughout this paper), which in fact 
means that chain of average degree of polymerization 1x  do not undergo 
depolymerization. 

The system of N ordinary differential equations (6) describes the degradation 
kinetics of chains of average degree of polymerization ix  and governs the evolution of 
the population of polymer molecules in a closed system. Given an initial condition, 
kinetic equations (6) can be solved for any scission scheme with common numerical 
methods for 1st order ordinary differential equations. In the case of equally-probable 
random scission starting from a monodisperse initial condition, the kinetic equations have 
a closed form analytical solution. This problem was solved by Kuhn [24] and by Montroll 
and Simha [25] (cf. [26] and references therein for other cases with closed form 
analytical solutions). 

2.3 Law of conservation of monomer 
In a closed system, the total number of monomers existing in the degrading 

sample must remain the same. The total amount of monomers M in the polymeric mixture 
of N constituents of average degree of polymerization ix , for 1,...,i N=  is given by 
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1

( ) ( )
N

i i
i

M t n t x
=

≡∑ . (7) 

 The conservation law is mathematically stated as  

 
1

( ) ( ) 0
N

i i
i

M t n t x
t t=

∂ ∂
= =

∂ ∂∑ . (8) 

Substituting equation (6) into equation (8) yields 

 
1

, , ,
1 1 1 1

( )
N i N N i

i j i i i j j i j i i j i
i j i j

k n x k k n x
− −

+ + +
= = = =

= +∑∑ ∑∑ . (9) 

Noting that 1 ix i x=  for all 1,...,i N= , it is possible to assert the validity of equality of 
equation (9), i.e. the equations governing the dynamics of the population of molecules 
respect the law of conservation of monomers. 

2.4 Fick’s 1st law of diffusion 
Constituents have the ability to diffuse along negative gradients [42]. This 

empirical law is coined as Fick’s 1st law of diffusion, which relates the diffusive flux with 
the partial density gradient, i.e. 

 grad D ρ= −J , (10) 

where ( , )tρ ρ= x  is the partial density of the constituent, ( , )t=J J x  is the diffusive flux 
of the constituent, x is the position vector characterizing the control volume dV, and t is a 
scalar that represents time. Lastly, the diffusivity of the constituent, D, is the empirically 
derived material property that governs the diffusion of the constituent through the 
medium. Gradient operator appearing in equation (10) is the common spatial gradient, i.e. 
if ( )a a= x  is a scalar field, then grad ϕ ϕ= ∂ ∂x . 

In our mathematical model, water and the polydisperse polymer system co-exist 
as constituents of the mixture. Fick’s 1st law of diffusion for the water is given by 

 grad w w wD ρ= −J , (11) 

where ( , )w w tρ ρ= x , ( , )w w t=J J x , and wD  are the partial densities, the fluxes and the 
diffusivities of water respectively. For the polydisperse polymeric system, chains of each 
partition iP  follow a corresponding governing law, 

 grad ,    for 1,...,i i iD i Nρ= − =J , (12) 

where ( , )i i tρ ρ= x , ( , )i i t=J J x , and iD  are, respectively, the partial densities, the 
fluxes, and the diffusivities corresponding to polymer chains of average degree of 
polymerization ix . 

2.5 Fick’s 2nd law of diffusion 
Balancing of mass of constituents in an open control volume dV yields the 

reaction-diffusion equations that govern the physical problem. For the entire mixture, 
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mass balance states that total mass cannot be neither created nor destroyed. Note that in 
the case of a system with reaction equations, mass can not only diffuse through the 
boundary of dV  but also can be inter-converted from one constituent to another. The 
balance of mass of each constituent in control volume dV  reads as 

  
time rate of change oftime rate of change of net flow of mass of

mass of constituent duemass of constituent in constituent into 
to reactions in 

dV dV
dV

⎡ ⎤⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

, (13) 

and limiting 0dV →  yields a reaction-diffusion partial differential equation for the 
constituent 

 div(  grad )D fρ ρ= +� , (14) 

where ρ  is the partial density of the constituent, D is the diffusivity of the constituent, 
and f  is the reaction rate of production or destruction of the constituent due to chemical 
reactions. Divergence operator div  used in equation (14) is used in its common sense, i.e. 
if ( )=v v x  is a vector field, then grad = ∂ ∂v v x  and div tr (grad )=v v . 

Balancing of mass of each individual constituent yields the system of reaction-
diffusion equations that constitute the mathematical model. For water, hydrolysis is 
accounted as a sink of water, i.e. 

 div(  grad )w w w wD fρ ρ= −� , (15) 

where 0wf >  is a reaction term accounting for the usage of water in the degradation 
reaction. 
 For each polymeric constituent, reaction terms accounting for the production and 
destruction of chains of average degree of polymerization ix  are obtained from the 
kinetic equations (6), which were considered without any reference to space and where 

( )i in n t=  described the number of chains of average degree of polymerization ix  in the 
entire system. In order obtain the reaction-diffusion equations for polymeric constituents 
in terms of their partial densities, we consider ( , )i in n t= x  as the scalar field that 
quantifies the number of chains of average degree of polymerization ix  a in 
representative volume dV that corresponds to point x at time t. 

As 0dV → , the relationship between partial density iρ  and number of molecules 
in  is 0( , ) ( , )i i it n t x M dVρ =x x , for 1,...,i N= , and where 0M  is the molecular mass of 

one monomeric unit. With this relationship, kinetic equations governing the populations 
can be obtained with respect to their partial densities, i.e. equation (6) becomes 

 
1

, , ,
1 1

( , ) ( , ) ( ) ( , )
i N i

i
i i j i i j j i j i i j

j j i j

xt k t k k t
x

ρ ρ ρ
− −

+ + +
= = +

= − + +∑ ∑x x x� . (16) 

This equation is only valid if dV is a closed system. Scaling factors appearing in the 
second term of the right hand side are responsible for accounting the progressive increase 
of partial density as the corresponding molecule becomes large and can be perceived as 
part of the reaction rate if the reaction variable is the partial density. 
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When polymeric chains are able to diffuse in and out of dV through its boundary, 
the system of N reaction-diffusion equations for the polymeric constituents is given by 

 
1

div(  grad )
N

i i i ij j
j

D Aρ ρ ρ
=

= +∑� , (17) 

where ijA  are given by the corresponding weighted sums of several relevant ,i jk  (cf. Eq. 
(16)) given by 

 
1

,
1

, ,

0 if   

if   

( ) if   

i

i mij
m

i
j i j j i

j

j i

k j iA

xk k j i
x

−

=

−

⎧ <⎪
⎪
⎪⎪− == ⎨
⎪
⎪

+ >⎪
⎪⎩

∑ . (18) 

2.6 Water consumption 
One molecule of water is consumed with each scission reaction. A schematic 

reaction accounting for water consumption is 

 ,1
2

-bonds of scission 
 H O  scission event

location  of chain 
i jk

i

x
j x

⎡ ⎤
+ ⎯⎯→⎢ ⎥

⎣ ⎦
. (19) 

If ,i jk  is the rate of reaction of a scission location with 1x  bonds at any of its bonds, then 
, 1i jk x  is the rate of consumption of water in the scission event. The rate of change of the 

number of water molecules ( , )w wn n t= x  in a representative volume dV is given by  

 
1

,

1 1 1

N i
i j

w i
i j

k
n n

x

−

= =

= −∑∑� , (20) 

which, with the relationship between wn  and wρ  as 0dV → , w w wn M dVρ =  (where 
wM  is the molecular mass of water), yields the water consumption due to the chemical 

reaction 

 
1

,
1 1 0 1

N i
w i

w i j
i j i

Mf k
M x x

ρ−

= =

=∑∑ . (21) 

When 1i = , the inner sum is null as chains of average degree of polymerization 1x  do not 
undergo scission. 

2.7 Drug release 
In addition to polymer degradation and erosion, drug release is accounted as it is a 

relevant topic in many biomedical applications that involve degradable polymers in 
conjunction with local drug elution. For drug cast into a polymeric matrix, drug release is 
a consequence of drug dissolution, which is thought to describe the process of change of 
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state from the initially solid drug into diffusible dissolved drug [13]. A classical modeling 
approach to describe drug dissolution employs a system of reaction-diffusion equations 
coupled by the Noyes-Whitney formula [43] to quantify the dissolution rate. Such models 
are intrinsically capable of making a difference between bulk or surface dissolution 
behaviors accordingly to the ratio of water and drug diffusion and the dissolution kinetics 
(e.g. [13]). 

However for the sake of simplicity, we consider a model that relies on the 
assumption that the aqueous solubility of the drug is very high, and hence drug 
dissolution occurs very fast (e.g. comparing with the degradation time scale). As a result, 
drug release is a diffusional process; Fick’s 1st law of diffusion, the diffusive flux is given 
by 

 grad d d dD ρ= −J , (22) 

where ( , )d d tρ ρ= x , ( , )d d t=J J x , and dD  are, respectively, the partial density, diffusive 
flux and diffusivity of the drug. Balancing of mass for the drug yields 

 div(  grad )d d dDρ ρ=� , (23) 

as drug is not directly involved in the chemical reaction. Equation (23) could be 
improved by more general models for the process of dissolution of drug agglomerates to 
individual diffusible molecules. This could be modeled with an extra constituent 
accounting for the former and a reaction term in Equation (23) for the production of the 
latter (cf. e.g. [13]). 

3 Constitutive Theory  
Equations (15), (17) and (23) represent the balances of mass of each 2N +  

coexisting constituents of the mixture. So far, equation (23) governing the diffusion of 
the drug is uncoupled from the others, while equations (15) and (17) are coupled due to 
the hydrolysis reaction. Constitutive relationships for the diffusivities of each constituent 
and for the reaction rates must be specified; once known, the mathematical model is 
closed and can be solved. 

Proposed constitutive relationships are phenomenologically reasoned, should 
depend on the particular polymeric system in question, and their specific forms must be 
asserted from carefully designed experiments. Nevertheless, their generality is sufficient 
to obtain a general class of mathematical models that describe the problem. 

Constitutive equations should not be explicitly dependent on space and time. In 
one hand, one must expect that the mechanisms of reaction and diffusion should be 
independent of position and time as they describe the natural process. But on the other 
hand, hydrolysis and diffusion depend implicitly on space and timeas the nature of their 
processes is influenced by the current and local state of the mixture. 
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3.1 Diffusion 
Diffusion depends on the nature of the constituent in question and on the local 

characteristics of the mixture on which is diffusing. The diffusivity of each constituent is 
generally dependent on the current state of the polymeric network. We propose the 
general functional forms for the diffusivities of the constituents of the mixture 

 
1

1

1

( ,..., ),
( ,..., ),

( ,..., ),      for  1,...,

w w N

d d N

i i N

D D
D D
D D i N

ρ ρ
ρ ρ
ρ ρ

=
=
= =

. (24) 

In such way, equations (23) and (15) become coupled with equations (17), which become 
nonlinear. Furthermore, it should be expected that as the average degree of 
polymerization of polymeric chains increases, their diffusivity should decrease, i.e. 

1 2 ... ND D D> > > . 

3.2 Hydrolysis 
 One common tool to describe the localization of the scission event along large 
chains is a scission probability density function, which distinguishes the likelihood of 
scission among scission locations in a chain of average degree of polymerization ix , i.e. 
the relationships among ,i jk  with i fixed and {1,2,..., 1}j i∈ − . Some frequently 
encountered scission probability density functions are: random, parabolic, and central 
scission [22]. Random scission is defined with a constant probability density function 
along the length of the chain, e.g. ,1 ,2 , 1...i i i ik k k −= = = , for all 2,...,i N= , and is common 
amongst thermal reactions. Central scission is usually modeled with a Gaussian 
probability function and is more specific to stress-activated degradation, whereas 
parabolic scission results in a higher rate near the ends of the chain and is characteristic 
of the presence of long-chain branching. Nevertheless, any scission probability density 
function can be employed [22,23]. 

Hydrolysis happens due to the presence of water, hence depends on the partial 
density wρ . Therefore, the rate of scission at location j in a chain of average degree of 
polymerization ix , ,i jk , is a function of wρ . Moreover, in order to render sufficient 
generality to the mathematical model such that it accounts for generally nonlinear 
chemical reactions, the rate of hydrolysis depends on the existing amounts of polymeric 
constituents, i.e. 

 , , 1( , ,..., ),      for  2,..., , 1,..., 1i j i j w Nk k i N j iρ ρ ρ= = = − . (25) 

 Autocatalysis, a common nonlinearity occurring in hydrolytic reactions, can be 
described with general constitutive equation (25) in such a way that local presence of 
quasi-monomeric or small quasi-oligomeric chains enhances the rate of reaction. 
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4 I&BVP – Biodegradable Drug-Eluting Stent Coating 
The partial differential equations that govern the reaction-diffusion system (Eqs. 

(23), (15), and (17)) with constitutive specifications for the reaction and diffusion 
processes (Eqs. (25) and (24) respectively), under certain conditions, possess general 
solutions. These solutions must be particularized with the specification of initial and 
boundary conditions. These are the conditions that particularize the equations into a 
description of a problem concerning one body with a particular geometry and subjected 
to defined conditions on its boundary. 

The mathematical model is illustrated with a relevant initial and boundary value 
problem: cardiovascular stents coated with biodegradable polymers which are 
impregnated with drugs for local drug delivery are currently being employed [44-46]. 
Degradation, erosion and drug release profiles are of the utmost relevance for 
controllable clinical performance and of critical importance at the design stage. 

4.1 Geometry 
The polymeric coating is defined on a domain Ω  of the three-dimensional 

Euclidean space such that ∈Ωx  represents the position of a particle of the mixture that 
constitutes the stent coating. The boundary of the domain, ∂Ω , is composed of two 
disjoint portions, i.e. D N∂Ω= ∂Ω ∪∂Ω  and {}D N∂Ω ∩∂Ω = . D∂Ω  is the boundary 
where a Dirichelet type boundary condition is applied, thought to describe the interaction 
of the coating with the surrounding medium (either fluid bath in an in vitro experiment, 
or the biological tissue in the in vivo situation). A Neumann boundary condition is 
specified in N∂Ω  and describes the interaction between the polymeric coating and 
stainless steel stent bulk. 

4.2 Initial Conditions 
Initial conditions for the dependent variables at 0t =  must be specified. The 

polymer network starts out dry, i.e. 
0

0w t
ρ

=
= , and with a homogeneous initial drug 

partial density, 0
0d dt

ρ ρ
=
= . 

 The initial state of the polydisperse polymeric system is homogeneous and is 
characterized by an initial degree of polymerization distribution 0 0 ( )w w x=  and an initial 
total partial density 0ρ� . The total partial density of polymer ( , )tρ ρ= x� �  is a scalar that 
quantifies the amount of polymer existing at location x at time t and is defined as 

 
1

N

i
i

ρ ρ
=

≡∑� . (26) 

From Eq. (3) and 0 0 ( )w w x= , the initial weight fraction of chains of average degree of 
polymerization ix , 0

iw , can be obtained for 1,...,i N= . Then, the initial conditions for the 
partial densities of polymer are 0 0

0i it
wρ ρ

=
= � . 
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4.3 Boundary Conditions 
 Boundary conditions must be provided at the boundaries of the polymeric coating. 
At N∈∂Ωx , the inner core of the stent prevents any diffusion of any constituents through 
this boundary into the stainless steel bulk. Impermeable boundary conditions for Eqs. 
(23), (15) and (17) are 

 

0,      for  0,

0,      for  0,

0,      for  0,  1,...,

N

N

N

w

d

i

t

t

t i N

ρ

ρ

ρ

∈∂Ω

∈∂Ω

∈∂Ω

∂ ∂ = >

∂ ∂ = >

∂ ∂ = > =

x

x

x

x

x

x

 (27) 

for water, drug, and polymeric constituents respectively. 
At D∈∂Ωx , the coating contacts surrounding water or tissue. Water permeates 

through the interface accordingly to 

 0,      for  0( )
D

w w w w w tD Aρ π ρ ρ∞
∈∂Ω

= >⎡ ⎤∂ ∂ + −⎣ ⎦x
x  (28) 

where wρ
∞  is the concentration of water in the surrounding medium (either pure water or 

water content in tissue), wπ  is the permeability of the interface to water molecules, and A 
is a partition coefficient (with [0,1]A∈ ) which describes the amount of water that the 
polymer-interface is able to uptake at saturation. Boundary condition (28) is responsible 
for allowing the mixture to achieve a homogeneous saturated state corresponding to 

w wAρ ρ∞=  as t →∞ . The ratio of wπ  and wD  dictates the kinetics of water uptake. 
Saturation and its kinetics should depend on the local characteristics of the 

mixture at the interface; therefore the permeability of water and the partition coefficient 
are specified as 

 1( ,..., )
D D

w w Nπ π ρρ
∈∂Ω ∈∂Ω

=
x x

, (29) 

 1( ,..., )
D D

NA A ρρ
∈∂Ω ∈∂Ω

=
x x

, (30) 

i.e. functions of the partial densities of polymeric constituents. Note that as all partial 
densities of polymer tend to zero, 0iρ →  for all 1,...,i N= , one should expect that 
A→ 1. 

Drug at the boundary is dissolved and diffuses to the surrounding medium (or is 
absorbed by the tissue) but this phenomena is hampered by the appreciable size of drug 
molecules causing some entrapment in the mixture. Hence, a boundary condition of the 
type 

 [ ] 0,      for  0
D

d d d dD tρ π ρ
∈∂Ω

∂ ∂ + = >
x

x  (31) 

where dπ  is the permeability of the interface to drug molecules, which is in turn 
generally given by 

 1( ,..., )
DD

d d Nπ π ρρ
∈∂Ω ∈∂Ω

=
x x

 (32) 
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Boundary conditions for the N polymeric constituents at this interface must also 
be provided. As quasi-monomeric chains are small, the corresponding boundary 
condition should approach a perfect sink condition, i.e. when they reach the interface at 

D∈∂Ωx , they are readily dissolved in the surrounding water or absorbed by the tissue, 
i.e.  

 1 0,      for  0
D

tρ
∈∂Ω

≈ >
x

. (33) 

On the other side of the spectrum of degree of polymerization, as longest chains are 
unable to diffuse, an approximation to an impermeable boundary condition is expected, 
i.e. 

 0,      for  0
D

N tρ
∈∂Ω

∂ ∂ ≈ >
x

x , (34) 

In between, a shift from both behaviors depicted by conditions (33) and (34) should exist. 
The general boundary condition, 

 [ ] 0,      for  0
D

i i i iD tρ π ρ
∈∂Ω

∂ ∂ + = >
x

x , (35) 

is specified for all 1,...,i N=  where iD  and iπ  are the diffusivity and the permeability of 
polymeric chains of average degree of polymerization ix . The permeability describes the 
complex behavior occurring at the interface, either when the polymer is in contact with a 
fluid bath or in contact with biological tissue. The permeability of each constituent is 
generally specified to be a function of the current state of the network at the interface, i.e. 

 1( ,..., )
DD

i i Nπ π ρρ
∈∂Ω ∈∂Ω

=
x x

. (36) 

Furthermore, it is expected that as the degree of polymerization of chains increase, their 
permeability at the interface should decrease, i.e. 1 2 ... Nπ π π> > > . 

5 Particular Constitutive Assumptions 
In order to simplify the constitutive specification of the problem and illustrate the 

behavior of the mathematical model with numerical results, the system is particularized 
with several simplifications on the governing equations, in the constitutive specifications, 
and on the boundary conditions. Non-dimensionalization of the governing equations 
renders them applicable to any particular polymeric system and yields one non-
dimensional number that relate the mechanisms of diffusion and reaction. 

5.1 Diffusion 
It is reasonable to consider scalar quantities that describe the characteristics of the 

polymeric network, e.g. the network partial density ρ�  (cf. Eqs. (26)). In this way, instead 
of diffusivities of constituents depending on the entire set of polymeric partial densities, 
the specific forms of constitutive equations (24) are sole functions of the scalar measure 
of the state of the polymeric network. Constituents diffusivities are simplified to 
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( ),
( ),

( ),      for  1,...,

w w

d d

i i

D D
D D
D D i N

ρ
ρ
ρ

=
=
= =

�
�
�

. (37) 

In order to further simplify the constitutive specification, the diffusivity of water, 
wD , is considered as the baseline diffusivity, i.e. 

 ( )wD D D ρ= ≡ � , (38) 

which we refer as D, the diffusivity in a network of polymeric partial density ρ� . The 
diffusivity 1D  is smaller than the diffusivity of water as of chains of average degree of 
polymerization 1x  are considerably larger than molecules of water. We will consider that 
their diffusivity is n times smaller than the baseline diffusivity of water, i.e. 1D D n= . 
Furthermore, the diffusivity of polymeric chains decreases as their size increases 
following the base n, i.e. the diffusivity of chains of average degree of polymerization ix  
is n times smaller than the diffusivity of chains of average degree of polymerization 1ix − . 
Therefore, we specify  

 1 ,      for  1,...,i
i iD D n D n i N−= = = . (39) 

 Drugs commonly employed are usually large molecules. The diffusivity of the 
drug dD  is considered to be similar to the diffusivity of one of the polymeric constituents 
of comparable size. More precisely, there is one {1,2,..., }k N∈  for which drug molecules 
and chains of average degree of polymerization kx  are of comparable size and 

 k
d kD D D n= = . (40) 

Equations (38)-(40) specify all the constituents diffusivities in terms of a single 
diffusivity, the baseline diffusivity ( )D D ρ= � , which is the only material property 
characterizing the process of diffusion that needs to be specified: an exponential increase 
of diffusivity from D D∞=  towards 0D D=  as 0ρ →�  is assumed, i.e. 

 0( ) ( )D D D D e ρ αρ ∞ ∞ −= + − �� , (41) 

where α  is a constant that reflect the variation of D with ρ� . 
Note that these assumptions – diffusion of polymer chains decreases with chain 

size (cf. Eq. (39)); the drug diffuses like a chain of comparable size (cf. Eq. (40)); and 
finally, the particular form for the dependence on the diffusing medium (cf. Eq. (41)) – 
are phenomenologically reasoned. They are employed in order to significantly decrease 
the complexity of the general constitutive assumptions and illustrate the behavior of the 
model. 

5.2 Random Scission 
Random scission is defined by all the polymeric bonds having the same scission 

probability, independently of to which chain they belong or where along that chain they 
are located. Each scission location is composed by a segment of 1x  polymeric bonds, any 
of which upon scission causes the same effect. Therefore, for random scission, all 
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scission rates ,i jk  are equal for all chains of average degree of polymerization ix  and 
corresponding 1i −  scission locations, i.e. 

 , 1,      for  2,...,   and  1,..., 1i jk kx i N j i= = = − , (42) 

where k is  the rate of hydrolysis of the particular type of polymeric bond. 
 Instead of considering the general nonlinear rates of scission described by Eq. 
(25), we assume that random hydrolysis is a 1st order reaction with water, i.e. the 
polymeric bond has reaction rate that follows a linear relationship with partial density of 
water such that 

 ( )w wk k kρ ρ= = � , (43) 

where k�  is the water dependent reaction rate of the polymeric bond. In such way, bilinear 
terms (bilinear on wρ  and one iρ ) appear in the reaction terms of Eqs. (15) and (17). 

5.3 Geometry and Boundary Conditions 
 As the usual thickness of stent coatings is very small when compared with stent 
dimensions, the geometry of the body can be though of as an infinite slab. A semi-inverse 
method can be employed to reduce the governing equations of the problem to one spatial 
dimension, z, the coordinate across the thickness of the infinite slab. The domain of the 
problem, Ω , is [ ]0,z L∈Ω = , where L is the coating thickness. Neumann boundary 

N∂Ω  corresponds to 0z = , whereas z L=  represents the interface between the 
polymeric coating and the surrounding media. The dependent variables wρ , dρ  and iρ  
for 1,...,i N=  are functions of position z and time t, i.e. ( , )w w z tρ ρ= , ( , )d d z tρ ρ= , and 

( , )i i z tρ ρ=  for 1,...,i N= . 
Boundary conditions at 0z =  follow directly from Eq. (27). Water saturation boundary 
condition at z L=  is dictated by the partition coefficient, A, and the water permeability, 

wπ . Both depend on the characteristics of the polymeric network at the interface 
through z Lρ =

� .  
For the former, we account that water uptake increases as the polymer erodes, 

leading to an eventual total replacement of the swollen network with a mixture solely 
composed of pure water. In its non-degraded state, the saturation condition is determined 
by 1A∞ < . As erosion of the polymer at the interface leads to a decrease in z Lρ =

� , we 
propose the linear relationship 

 0( ) 1 (1 ) z L
z LA A A

ρ
ρ

ρ
∞ =

=
= ≡ − −

�
�

�
, (44) 

such that as 0z Lρ =
→� , 1A→ , which at saturation equilibrium results in a mixture 

characterized by w wρ ρ∞→  and 0iρ →  for all 1,...,i N= . 
For the latter, we propose the following functional form 

 0( ) ( ) z L
w z L e βρπ π π π πρ =−∞ ∞

=
= ≡ + − �� , (45) 
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where π ∞  and 0π  are lower and upper bounds for permeability wπ , and constant  β  
describe its variation with z Lρ =

� . 
Similarly to the specification of the diffusivity of the polymeric constituents (cf. 

Eqs. (38) and (39)), all the permeabilities of polymeric constituents iπ  for 1,...,i N=  
decrease following a base m, i.e. 

 1 ,      for  1,...,i
i i m m i Nπ π π−= = = , (46) 

where it is considered that all chains permeate accordingly to a fraction of the baseline 
wπ  specified by Eq. (45). Permeation of smaller chains at the interface occurs much 

faster than larger chains, which become inapt to permeate due to their size and 
entanglements.  

Similarly as for the specification of the diffusivity of the drug, dD  (cf. Eq.(40)), 
the permeability of the interface to drug molecules is comparable to chains of similar 
size, i.e. of average degree of polymerization kx , with 1 k N≤ ≤ . Therefore, the 
permeability dπ  employed in the corresponding boundary condition is given by 

 k
d k mπ π π= = . (47) 

5.4 Non-dimensional problem 
 In order to non-dimensionalize the dependent variables of the problem, the water 
density on the surrounding medium, wρ

∞ , the initial drug concentration, 0
dρ , and the 

initial polymer density, 0ρ� , are employed accordingly. The non-dimensional dependent 
variables are distinguished by a superposed bar and are given by 

 0 0,          ,          ,      for  1,...,w d i
w d i

w d

i Nρ ρ ρρ ρ ρ
ρ ρ ρ∞= = = =

�
. (48) 

 With a characteristic length scale, the coating thickness L, non-dimensional space 
and differential operators grad ( )i  and div ( )i  are given by 

 ,       grad ( )  grad ( ),       div ( )  div ( )zz L L
L

= = =i i i i . (49) 

 The rate of random scission of a polymeric bond (Eq. (42)) yields a characteristic 
time scale of reaction; hence non-dimensional time and non-dimensional time 
differentiation are 

 ( ) 1 ( ),        w
w

t k t
t tk

ρ
ρ

∞
∞

∂ ∂
= =

∂ ∂
i i�

� . (50) 

 Constitutively specified diffusivity D (cf. Eq. (41)) will be non-dimesionalized 
with D∞ , i.e. 

 0( ) 1 ( 1)DD D D D e
D

ρ αρ ∞ −
∞= = = + − �� , (51) 
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where non-dimensional constant 0α α ρ= � . The non-dimensional form of the governing 
equations is (the bar notation was dropped for convenience, all quantities are non-
dimensional) 

 ( )
1

( 1) div  grad  
N

w w w i
i

iD K
i

ρ ρ ρ ρ
=

−
= Λ − ∑� , (52) 

  div grad d dk

D
n

ρ ρ⎛ ⎞= Λ ⎜ ⎟
⎝ ⎠

� , (53) 

 1
1

( 1) 2 div  grad 
N

i ji wii
j i

iD ix
jn

ρ ρρ ρρ
= +

⎡ ⎤⎛ ⎞ − − += Λ +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
∑� , (54) 

where non-dimensional number K is a ratio between molar volumes of water, wV , and 
chains of average degree of polymerization 1x   in the dry state , 0V , i.e. 

 0 1
0

0

w w

w

V M M xK
V ρ ρ∞= =

�
, (55) 

and non-dimensional number, Λ  , the Thiele modulus, is defined by 

 2
w

D
L kρ

∞

∞
Λ = � . (56) 

The Thiele modulus characterizes the relative rate of diffusive transport over the rate of 
degradation [33] and can be seen as the ratio between timescales of reaction and 
diffusion, i.e. reaction diffusionτ τΛ =  where reaction 1 ( )wkτ ρ∞= �  and diffusion 2L Dτ ∞= . Thus, if 
Λ  is much larger than unity, the transport of the constituents governs the overall 
behavior of the system. On the other hand, if Λ is smaller than unity, the reaction is 
prevalent with respect to diffusion. 
 Boundary conditions must also be brought to a non-dimensional form. At 

0z z L≡ = , Eq. (27) follows directly. The permeability at the interface 1z =  (cf. Eq. 
(45)) is non-dimensionalized with π ∞ , i.e. 

 10
1

( ) 1 ( 1) z

z
e βρππ π π πρ

π
=

−∞
∞=

= = = + − �� . (57) 

Non-dimensional constants is given by 0β β ρ= � . A non-dimensional functional form 
for the partition coefficient A (cf. Eq. (44)) is employed, i.e. 

 
1

( ) 1 (1 )
z z L

A A Aρ ρ∞
= =

= ≡ − −� � . (58) 

Boundary condition for the water constituent (cf. Eq. (28)) becomes (the bar notation was 
once again dropped for convenience, all quantities are non-dimensional) 

 
1

0,      for  0( )w
w

z

tD A
z
ρ π ρ

=

∂⎡ ⎤ = >Λ +ΓΛ −⎢ ⎥∂⎣ ⎦
, (59) 

where non-dimensional numberΓ  relates the baseline permeability and diffusivity at the 
interface and is given by 
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 L
D
π ∞

∞Γ = . (60) 

Boundary conditions for the polymeric constituents (cf. Eq. (35)) become 

 
1

0,      for  0i
ii i

z

D t
n z m

ρ π ρ
=

∂⎡ ⎤ = >Λ +ΓΛ⎢ ⎥∂⎣ ⎦
. (61) 

Finally, boundary condition at 1z =  for the drug follows from Eq. (31) and in its non-
dimensional form is given by 

 
1

0,      for  0d
dk k

z

D t
n z m

ρ π ρ
=

∂⎡ ⎤ = >Λ +ΓΛ⎢ ⎥∂⎣ ⎦
, (62) 

which is similar to boundary condition imposed on chains of average degree of 
polymerization kx . 

6 Methods 
The numerical solution of the reaction diffusion system (cf. Eqs. (52)-(54)) was 

obtained with the implementation of a finite element formulation using COMSOL. A 
general algorithm to generate the formulation was constructed such that solutions with 
different N and Λ  could be easily obtained. 

The domain [0,1]Ω =  was meshed with 100 quadratic Lagrange elements, a 
number that was sufficient to achieve mesh independency and describe in a suitable 
fashion sharp gradients associated with surface erosion. The maximum degree of 
polymerization considered was 600Nx = , which for poly(L-lactic acid) is a commonly 
obtained degree of polymerization (e.g. [47]). Since the molar mass of the lactic acid 
monomer is 0 90 g/molM = , the molecular weight of the polymer sample is 54,000. The 
smallest average degree of polymerization 1x  is obtained once the number of partitions 

20N =   is defined, i.e. 1 30Nx x N= = . Molecules of such degree of polymerization 
feature a molecular weight of 2700 g/mol. 
 For simplicity, the initial polymer was considered to be monodisperse at the 
maximum average degree of polymerization. Nevertheless, any other initial condition 
could be employed with the specification of different initial weight fraction distributions. 
The considered initial conditions for the polymer are given by 101 0... 0Nt tρρ −= == = = , 

0 1N tρ = = , and for the water and the drug by 0 0w tρ = =  and 0 1d tρ = = .  
Although not necessary due to the non-dimensionalization procedure, the density 

of dry poly(L-lactic acid) is widely reported in the literature as 0 31.25 g/cmρ =�  [48,49], 
and typical drug content in stent coatings are reported to be in the range of 33%-67% of 
drug mass per polymeric mass, hence we set 0 30.5 g/cmdρ =  [50]. Drugs are typically 
average-sized molecules – e.g. Paclitaxel and Sirolimus (two drugs commonly employed 
in drug eluting stents) have a molecular weights of 853.906 g/mol and 914.172 g/mol 
[51,52]. Therefore, we set 1k =  (when 20N =  and 1 30x = ), i.e. drug molecules behave 
similarly to chains of average degree of polymerization 1x . 



 23

0

0.2

0.4

0.6

0.8

nondimensional diffusivity Di
of chains of average degree of polymerization xi

no
nd

im
en

si
on

al
 d

iff
us

iv
ity

 D
i 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15D16D17D18D19D20

 
Figure 3. Relative diffusivity iD  of chains of different average degree of 

polymerization ix . As chains become smaller, their diffusivity increases. Diffusivity of 
water is considered to be the baseline, i.e. 1wD = . A threshold behavior is employed, i.e. 

0iD ≈  for 11 20i≥ ≥ , with the meaning that the largest chains barely diffuse through the 
network. 

 
Changes in diffusivity and permeability occur due to degradation and erosion 

(described with constitutive relationships (41) and (45) respectively). We specify 
0 1000D D∞= , 0 1000π π ∞= , and 0.1α β= = with the meaning that diffusivity and 

permeability increase dramatically (one thousand-fold) as degradation and erosion lead to 
0ρ →� . Constants α  and β  are responsible for a strong nonlinear behavior with 

( 1)D Dρ ∞= ≈� , i.e. the initial condition. 
 Non-dimensional number Γ  and bases n and m are chosen such that qualitative 
boundary conditions (cf. Eqs. (33) and (34)) are ensured. We consider that the shift 
between the approximations of the perfect sink condition for quasi-monomeric molecules 
towards the no-flux condition for the largest chains of average degree of polymerization 

Nx  occurs gradually, with both terms of the boundary condition (61) having the same 
relevance for species of medium degree of polymerization. Therefore, we set 

2( )Nm nΓ =  with 1.5n =  and 3m = . Although this choice of bases for the decrease of 
diffusivity is arbitrary and phenomenologically reasoned, it is expected that the decrease 
in diffusivity is nonlinear with increasing chain length and possess a threshold behavior, 
i.e. within a range of small chain sizes, diffusivity decreases somewhat but beyond some 
degree of polymerization, chains mostly become inapt to diffuse (Figure 3 shows the non-
dimensional diffusivity iD  vs. ix  with 20N = ). 
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We employ data from Siparski et al. [53] for the partition factor of a non-
degraded network of polylactic acid. The authors studied the degradability of polylactic 
acid films and found that at 50 ºC and 90% relative humidity, the water uptake of the 
polymer was 0.7%, i.e. 0.007 g water/g PLA. Similar data under different testing 
conditions has been found by Cairncross et al. [54] and by Yoon et al. [55]. We set 

1%A∞ = , i.e. the saturated non-degraded polymer uptakes water up to a partial density of 
w wAρ ρ∞ ∞= . Note that due to degradation and erosion, 1A→  as 0ρ →�  (cf. Eq.(58)). 

Water consumption in the chemical reaction is directly related to non-dimensional 
number K  (cf. Eq. (55), where for polylactic acid, 18 g/molwM =  and 0 90 g/molM = ). 
The non-dimensionalized form of the problem permits to disregard the need for particular 
values for the diffusion and reaction mechanisms, giving instead relevance to their ratio 
measured by the Thiele modulus. In order to be consistent, we employ data obtained for 
polylactic acid by Siparsky et al. [53]. They report reaction rates of the polymeric bond of 

2 15 10  dayk − −= ⋅ , and diffusivity of water inside the non-degraded initial network as 
7 2 110  cm sD∞ − −= . Considering a typical stent coating of 10 μmL = [56] and that the 

reaction occurs at saturated conditions of the initial network, one obtains 1700Λ =  (cf. 
Eq. (56)). Such Thiele modulus ( 1Λ� ) is indicative of bulk degradation and erosion, as 
the process of diffusion strongly dominates over the chemical reactions. We analyze 
Thiele modulus of 0.01Λ =  and 1000Λ = , which approximate the distinct ends of the 
spectrum of behaviors ranging in between pure surface and bulk erosion. 

A useful scalar quantity to quantify degradation is the network average degree of 
polymerization, x� , defined as 

 
1

N

i i
i

x xρ
=

≡∑� , (63) 

which is a scalar measure of degradation. while for drug release we analyze the amount 
of drug released up to a certain time, which is obtained by integration over the coating, 
i.e. 
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The non-dimensional time employed in the non-dimensionalization procedure was 
taken with respect to the reaction process (cf. Eq. (50)) and in order to make a suitable 
comparison between drug release rates with different Thiele modulus, it is necessary to 
employ a non-dimensional time with respect to the diffusion process, t , which is simply 
given by t t= Λ . 

We perform two types of analysis of the non-dimensional form of the governing 
equations:  

(i) we look at the behavior of a closed system, where the polymer is assumed to 
be initially fully hydrated, 0w wt Aρ ρ∞ ∞

= = , and it does not interact with the exterior, i.e. 
with Neumann conditions (27) at 0z =  and 1z = ; 
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(ii) we analyze the case of an initially dry open system which is immersed in 
water at 0t = . 
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Figure 4. Decrease in network average degree of polymerization vs. time in a 

closed system. When both boundaries are adiabatic, degradation kinetics can be 
analyzed independently of diffusion. Hydrolytic scission leads to a decrease in average 
degree of polymerization of the entire polymeric system and its rate of decrease is 
independent of the number of the partitions and equations describing the system. The 
state of maximum degradation, when all chains are of average degree of polymerization 

1x , is better approximated as N increases. 

7 Results 
When considering a saturated closed system, the kinetics of degradation can be 

analyzed independently of diffusion. Starting from homogeneous (in space) initial 
conditions, diffusion does not occur, polymer does not escape through the boundaries, 
and the solution remains homogeneous and independent of z for all time t. We observed 
that degradation kinetics is N-independent, i.e. within numerical accuracy, degradation is 
independent of the number of partitions N and equations describing the system. The 
network average degree of polymerization, x�  (cf. Eq. (63) and Figure 4), decrases over 
time and its decreasing trend is increasingly better approximated as N increases.. 
Although the approximation of the solution generally improves as N increases; the 
improvement obtained with 20N >  does not compensate for the computational cost 
associated with solving a system of 20N >  equations. The initial rate is very well 
approximated even with 5N = . On the other hand, as N is related to the size of smallest 
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chains, the state of maximum degradation (when all chains are of average degree of 
polymerization 1x ) is better approximated as N increases. 
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Figure 5. Temporal evolution of the weight fraction distribution iw  (of chains of average 
degree of polymerization ix ). As scission takes place, larger chains yield smaller chains. 
As scission is random, a wide variety of chains sizes is produced initially (at time 

0.05t = ), but as time progresses, the number of smaller chains increase as a result of 
scission of larger chains. The distribution evolves from a monodisperse initial 
distribution given by 1 19... 0w w= = =  and 20 1w =  towards another monodisperse 
distribution given by 1 1w =  and 2 20... 0w w= = =  at the state of maximum degradation. 

 
 Polymer degradation, which is perceived as the general reduction in chain size, is 
observed with the evolution of the distribution of weight fraction of the polymeric 
constituents (Figure 5, for 20N = , for non-dimensional time 0.05t = , 0.5, 1.0, 1.5, 2.0, 
2.5, and 3.0). As time proceeds and scission takes place, the initially monodisperse 
polymer composed solely of chains of average degree of polymerization 20x  yields 
initially a wide variety of chains of all sizes. Then, the longer chains disappear and 
originate a large numbers of smaller chains. 
 When the system is open, polymeric chains can leave the system through its 
boundary at 1z =  and the smaller chains produced by degradation are more prone to 
diffuse. Erosion, which is perceived as the general decrease in partial polymer densities, 
ensues. 
 Depending on the value of the Thiele modulus, Λ , different modes of degradation 
and erosion occur. When 1000Λ =  (cf. Figure 6a and 6b), diffusion occurs at a much 
faster rate than the chemical reaction and water saturates the polymer across the entire 
thickness before significant scission takes place (Figure 6a). Polymeric byproducts are 
produced almost homogeneously across the thickness of the coating and their consequent 
diffusion is responsible for giving bulk erosion characteristics to the behavior of the 
reaction-diffusion system. Polymeric density ρ�  decreases in a homogeneous fashion 
across the coating as smaller chains diffuse away (cf. Figure 6b). As degradation and 
erosion takes place, more water is able to enter and saturate the coating: wρ  increases as 
saturation at the interface increases upon degradation (cf. Figure 6a). Ultimately, 
degradation and erosion leads to 0ρ →�  and 1wρ →  everywhere, with the meaning that 
the entire coating eroded and was replaced by surrounding water. 

When 0.01Λ = , the surface erosion mode is observed. Hydrolytic scission occurs 
at a much faster rate than diffusion in the network and degradation and erosion occur 
extensively near the boundary 1z = . The former is due to the local presence of water, 
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whereas the latter occurs due to the increased diffusivity of resultant byproducts. Due to 
water consumption in the chemical reaction, water molecules do not penetrate further into 
the coating before full degradation had occurred upstream. A front that travels from 1z =  
to 0z =  develops, separating initially virgin and dry polymer (characterized by 1ρ =� , 

w Aρ ∞≤ , and a network with high resistance to diffusion) from a region where the fully 
degraded and eroded polymer gave place to the surrounding fluid (characterized by 

0ρ →� , 1wρ → , and very large diffusivities). 
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Figure 6. Profiles of partial density of water wρ  and partial density of polymer ρ�  at 
several t for 1000Λ = . Bulk erosion is clearly observed. The partial density of polymer 
decreases almost homogeneously from its initial value 1ρ =�  towards 0ρ →�  and is 
progressively replaced by surrounding water as the eroded polymer is able to uptake 
more water, i.e. initial saturation promotes ( 0)w t Aρ ∞= =  but 1A∞ →  and 1wρ →  as 
the material erodes. 
 

Drug release also shows dramatic changes when changing the Thiele modulus. As 
Λ  decreases and the mode of erosion shifts from bulk degradation towards surface 
degradation, a change in drug delivery profile is observed. In bulk eroding matrices, drug 
release is dictated and controlled by diffusion, which is a first-order process, 
characterized by a straight line in a log-log plot of total amount of drug released vs. time 
(cf. Figure 8),. On the other hand, when decreases in Λ  promote a shift to surface erosion 
mode, the release of drugs departs from the 1st order release rate characterized by the sole 
diffusion mechanism and is enhanced due to degradation and erosion, i.e. drug release 
becomes erosion-controlled. This enhancement leads to drug release occurring faster in 
surface eroding polymers than in a bulk (higher slopes in Figure 8) and moreover, it 
evolves in a nonlinear way. 

8 Discussion 
Biodegradable polymers have been usually classified as either surface eroding or 

bulk eroding polymers and most models start from this assumption at inception [20]. 
Surface erosion has been modeled with moving boundaries (cf. e.g. [31]) and bulk 
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erosion with spatially independent degradation rates reflecting the steady state water 
saturation condition that usually occurs before appreciate scission takes place (cf. e.g. 
[30]). Furthermore, degradation and erosion are often blurred and modeled in a conjunct 
manner. 
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Figure 7. Profiles of partial density of water wρ  and partial density of polymer ρ�  at 
several t for 0.01Λ = . Surface erosion is clearly observed. A front develops and travels 
from 1z =  towards 0z = . The partial density of polymer decreases sharply at the surface 
and hardly any changes occur upstream. The front separates two regions: non-degraded 
and dry polymer existing upstream (characterized by 1ρ =� ) and pure surrounding water 
downstream ( 0ρ →�  and 1wρ → ). 
 

Taking this into consideration, the proposed model separates the distinct but 
related phenomena of polymer degradation, thought to be the chemical changes occurring 
in the material due to hydrolysis, and polymer erosion, the process of diffusion and 
washing away of degradation byproducts. Hydrolytic scission leads to a marked decrease 
in chain size as larger molecules are cleaved into smaller. Then, as smaller chains are 
eager to diffuse, erosion ensues [19]. Water uptake occurs immediately after as the matrix 
is inserted in a fluid bath or implanted in vivo and drug release follows during the 
expected release time [4]. 

Our model is deterministic in nature and is based on the theory of mixtures. We 
consider the polymeric system as a mixture of co-existing water, drug, and N different 
polymeric constituents, each comprising a range in chain size and characterized by a 
particular average degree of polymerization ix , for 1,...,i N= . Polymeric systems are 
polydisperse and scission is responsible for changes in the distribution of degree of 
polymerization as smaller chains originate at the expense of larger ones [22,23]. Without 
considering the temporal evolution of distribution of degree of polymerization, it is 
impossible to account for changes occurring due degradation in a precise and systematic 
mode . 

Scission kinetics has been successfully modeled by means of a discrete 
approximation of the molecular weight distribution. This approach gives rise to discrete 
lumped models of a finite number of average degrees of polymerization [22,23]. We are 
able to assert the validity of the discrete kinetic model by proving that the resulting 
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discrete kinetic equations satisfy a monomer conservation principle, i.e. in a closed 
system, the total number of monomers is constant and independent of the extent of 
scission that had occurred (cf. Eq. (9)). Such conservation principle is independent of the 
discretization as the equality is valid considering any number of partitions N. 
Furthermore, scission promotes a marked decrease in network average degree of 
polymerization (cf. Figure 4) which is independent of N as well. Nevertheless, as the 
discretization of the degree of polymerization becomes finer, the state of maximum 
degradation is better characterized up to the perfect setting with 1 1x = .Overall, scission 
kinetics promotes the common shift to the left of the distribution of molecular weights 
(cf. Figure 5). 
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Figure 8. Log-log plot of total amount of drug released vs. time for several Λ . In bulk 
eroding systems, drug release is controlled solely by diffusion, a 1st order process that is 
characterized by a straight line in a log-log plot. As hydrolysis occurs at higher rates, the 
system shifts to a surface eroding mode and drug release becomes controlled by erosion 
– a departure from the straight line characterizing diffusion controlled drug release is 
observed. Furthermore, release rates in surface eroding polymers are nonlinear. 

 
The governing equations that compose the mathematical model are based on of 

reaction diffusion equations, as these two mechanisms compete in polymer degradation 
and erosion. Chemical reactions occur spontaneously: existing reagents, water and 
polymeric bonds, have higher free energy than the resultant cleaved chain. Spatial density 
gradients of constituents are dissipated with the process of diffusion. The production of 
entropy associated with scission and the dissipative nature of diffusion are the driving 
forces that govern the behavior of the system. They are the only physical mechanisms 
that need constitutive specification. We consider they should not be dependent in space or 
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time explicitly; instead, they depend on the local nature of the mixture through its 
constituents frame-invariant partial densities, and hence depend implicitly on space and 
time. 

We generally consider that diffusion of each constituent depends on the network 
in which it is diffusing (cf. Eq. (24)). Constitutive specification of the diffusivity of 
constituents could be further generalized with the inclusion of a dependence on the local 
partial density of water, wρ , i.e. the state of hydration of the mixture would enhance the 
diffusivity of constituents increasing their solubility and mobility. Similar arguments 
could be used to include or exclude a possible dependence of constituent diffusivities on 
the local amount of drug, as drug is also a part of the diffusing medium and can lead to a 
marked increase in porosity as is released – such considerations would result in a further 
nonlinear diffusion process (with respect to the corresponding dependent variables, wρ  
and dρ ). 

Hydrolysis must be specified as well. In order to allow for nonlinear chemical 
reactions, such as autocatalysis, we specify general forms for each reaction rate ,i jk  as 
functions of the partial densities of the polymeric constituents and water (cf. Eq. (4)). The 
relationship between rates ,i jk  for fixed i dictates the localization of scission along the 
length of each chain. Scission probability density functions are usually employed to 
describe such events and any scission probability density function can be employed 
[22,23]. The rates ,i jk  for fixed i are computed through integration of the scission 
probability density function over the length 1x  of the corresponding scission location. 

We particularize the general constitutive model with several assumptions in order 
to obtain a tractable model whose behavior can be analyzed and illustrated. We consider 
the case of random scission, which is described by an equal likelihood of scission among 
all bonds and characterized by the rate of reaction of an individual polymeric bond. The 
rate of reaction was chosen to increase linearly with the amount of water yielding bilinear 
terms on the reagents. Autocatalysis was not accounted for, and if so, would result in a 
more complex specification of the rate of reaction of the individual polymeric bond. We 
consider that diffusion of each constituent is alike and has a simple decreasing behavior 
with a threshold as molecules increase in size (cf. Eqs. (38)-(40)). Furthermore, the 
dependence on the local nature of the network is considered to be a function of one scalar 
measure, the local density of polymeric constituents ρ� . For simplicity, we assume that 
diffusivity increases one-thousand fold as the polymeric matrix erodes, i.e. as 0ρ →� . 

Non-dimensionalization of the governing equations allows their applicability to 
any polymeric system and results in a set of non-dimensional parameters that characterize 
the behavior of the system. The Thiele modulus (cf. e.g. [33]), a ratio between the 
characteristic times of diffusion and reaction, is the only parameter responsible for 
promoting the dramatic changes in the response of the mathematical model that we 
associate to the commonly described bulk and surface modes for erosion. 

The definition of the Thiele modulus (cf. Eq. (56)) depends on the intrinsic 
properties of the material: D∞ , k� , and the geometrical configuration of the device, which 
determines characteristic length scale L. As a result, the classification into surface of bulk 
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eroding polymers is not absolute, but depends on the device into consideration. By 
consequence, as is established previously [13,20], both behaviors can occur in the same 
polymeric system in devices of different characteristic lengths. With a similar argument, 
unstable polymers, which are known that are usually surface eroding, are characterized 
by higher reaction rates that lead to smaller Thiele numbers [32-34]. 

These observations further motivate the need for a unified model to account for 
both bulk and surface erosion. In this perspective, the efficacy of our model consists on 
the fact that remarkable different solutions of the system of governing equations are 
obtained with 1Λ�  and 1Λ� . This behavior results solely from the competing effects 
of reaction and diffusion working in conjunction with the nonlinear nature of the 
constitutive specification of the diffusivities, reaction rates and effective boundary 
condition for the interaction with the external medium.  

In the case of bulk degradation and erosion (when Λ  is large), slow chemical 
reactions result in slow changes in the mixture with which the diffusion mechanism can 
respond almost in a quasi-steady state mode. As chains become smaller, they diffuse 
away, which in turn allows increased water uptake due to an enhanced partition 
coefficient imposed at the boundary. All this spatial rearrangement of constituents 
happens at a fast pace when compared with the chemical reaction and therefore 
homogeneous rates of reactions and consequent bulk erosion are consequences of the 
differences in between reaction and diffusion time scales (cf. Figure 6). 

On the other hand, in the case of very fast chemical reactions (when Λ  is small), 
the nature of the equations become dramatically different and the response of the 
mathematical model can be associated with the commonly described surface mode of 
erosion. The initially dry polymer uptakes water near its surface and both are consumed 
in scission reactions. The smaller polymeric chains resulting from these reactions are able 
to diffuse much faster than the chains that originated them and consequently erosion of 
this superficial region happens. Due to erosion, the diffusivity over this region of the 
network and water uptake increases dramatically – in fact, changes in diffusivity that 
occurred due to degradation and erosion degenerate locally the governing equations (as D 
is considerably larger than all other coefficients). More precisely, as D  is very large (cf. 
Fick’s 2nd law of diffusion, Eq. (14)), the governing equations become of the form  

 
grad 0
grad 0
grad 0,        for   1, 2,...,

w

d

i i N

ρ
ρ
ρ

≈
≈
≈ =

  (65) 

for all constituents. The strong nonlinear increase of diffusivities (cf. Eq. (41)) with 
boundary condition (28) is fundamental to confer the governing equations the ability to 
describe surface and bulk erosion. Indeed, as far as the diffusivities increase, the 
equations degenerate into the form of Eqs. (65). Simultaneously, water is allowed to 
penetrate freely into the eroded volume owing to the increasing partition coefficient A. As 
a result, this fully degraded and eroded region is characterized by constant density 
imposed by the boundary condition, i.e. pure water density ( 1wρ = ) and perfect sink 
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conditions ( 1 ... 0d Nρ ρ ρ= = = = ) for all other constituents. A front develops and travels 
from the boundary inwards separating two distinct regions. Upstream remains only water 
as the polymer is fully degraded and eroded ( 1wρ →  and 0ρ →� ) and downstream waits 
the initially dry and virgin polymer where water was not able to penetrate yet ( 1ρ =�  and 

0wρ = ). 
Concerning drug release, the release kinetics (depicted in Figure 8) concur with 

former reported results (e.g. [33]) on the dynamics of controlled release from erodible 
polymers. The most important conclusion that can be derived is that drug release is 
strongly influenced by erosion mode of the delivery device. In particular, in agreement 
with the simulations and experimental data previously reported in the literature (e.g. [13] 
or [15] and references therein), we observe that drug release from surface eroding 
matrices is enhanced in comparison to drug release from bulk eroding matrices. 
Furthermore, this effect is evident even though, as in our case, the dominant force for 
drug release is solely diffusion rather than dissolution.  
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