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Abstract

The applicability of classical geostatistical tools to the reconstruction
of PM10 concentration fields over the entire Po Valley has been assessed,
based on a large dataset of daily PM10 data spanning the period 2003-
2006. The impact of data detrending by the median polish procedure and
of the variogram model chosen for the geostatistical estimates have been
investigated, by comparison of the results obtained with several isotropic
variogram models as well as with anisotropic flexible variogram models.
The relative merits of the different approaches were evaluated by cross-
validating the resulting reconstructions and performing normality tests on
the corresponding residuals. Although exponential and linear variograms
yield reliable reconstructions in most of the cases, the analysis has high-
lighted significant seasonal and interannual variations in the basic features
of the estimated concentration fields and residual correlation structure. As
a consequence, none of the classical models is able to cope with all the
different situations encountered, while the anisotropic flexible variogram
models appear to provide a more robust tool for automatic reconstruction
of the PM10 concentration fields without expert user intervention.
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1 Introduction

The present study is devoted to the assessment of geostatistical tech-
niques for estimation of concentration values of particulate matter with di-
ameter less than 10 µm over Northern Italy and in paerticular over the Po
Valley. A precise estimate of the PM10 concentration values is of paramount
importance for air quality management, since epidemiological studies have
shown adverse human health effects produced by the exposure to high PM10
concentrations (see e.g. [12]). Worldwide guidelines and regulations fix
limits of ambient PM10 mass concentrations (see e.g. [9]), which are well
known to be exceeded over large periods of time in many areas of North-
ern Italy. Respiratory and cardiovascular disorders are associated both to
the particles toxicity and to their small dimensions, thanks to which par-
ticles can penetrate in the respiratory and even in the circulatory system.
Geostatistical interpolation techniques are an attractive option to monitor
this phenomenon in a systematic and automatic way, especially consider-
ing how the need for reliable concentration estimates contrasts with the
sparse and inhomogeneous nature of the available measurement network.
It would be desirable to develop a tool that can provide such estimates
in real time with minimum expert user intervention, in order to support
environmental management decisions that have often various economic and
social implications.

In this paper, the applicability of kriging reconstruction techniques (see
e.g. [5], [13], [14]) to PM10 concentration fields has been assessed, using a
large dataset of PM10 pollution data covering the entire Po Valley over a
time span of 4 years. In the present study, only more standard geostatistical
procedures were considered, in order to establish a first reference for further
analyses to be carried out with more advanced techniques using a Bayesian
approach along the lines proposed in [2]. The data were analyzed in order
to exclude measurement stations not covering a sufficiently large time span
in each year and a smaller dataset consisting of approximately 90% of the
original data was selected, in order to eliminate possible boundary effects
and to exclude isolated stations that were identified as outliers. Seasonal
means were then computed, from which the geostatistical estimates were
derived.

In order to assess the relative merits of different possible approaches to
geostatistical interpolation of these data, ordinary kriging reconstructions
were carried out with various variogram models. From a preliminary screen-
ing, exponential and linear variogram models were identified as the most
appropriate to fit the empirical variograms obtained. Along with classical
isotropic variograms, the anisotropic flexible variogram model introduced
in [1] was also employed. In spite of not having received much attention
since it was proposed, this variogram seems to yield a very attractive pos-
sibility for variogram estimation, since it only requires minimal a priori

assumptions on the variogram functional form and it can very naturally
cope with anisotropic data. Furthermore, since the PM10 concentration
fields can be assumed to have a significant deterministic mean component
depending on meteorological factors and on the nature of the primary emis-
sions, the impact of data detrending was also assessed, whereby detrending
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was performed by the median polish procedure (see e.g. [5]).
The assessment of the different kriging reconstructions was carried out

by performing a cross validation for each seasonally averaged dataset, by re-
peatedly using one of the data items to compute normalized residual with
respect to the kriging prediction obtained on the basis of the remaining
items. A Jarque-Bera test (see e.g. [8]) was used to check whether these
residuals are normally distributed. In general, this is indeed the case, so
that the confidence intervals predicted by the kriging procedure can be as-
sumed to provide a reliable statistical estimate of the concentration values.
The effective coverage of these intervals was also assessed a posteriori and
found to be, in most case, very close to the theoretical one.

However, strong seasonal and interannual variations in the basic features
of estimated concentration fields and of the residual correlation structure
have been identified, which are even more apparent if time averages over
shorter time periods are considered. As a result, there does not seem to be
a unique isotropic variogram model capable to yield correct results in all
the different situations encountered within the large dataset available. On
the other hand, the anisotropic flexible variogram model yield reconstruc-
tions that are much less sensitive to these changes, so that they seem to
constitute a good option for the development of a fully automated and ob-
jective reconstruction procedure that can be used to provide environmental
regulators and health authorities with reliable real time estimates of PM10
concentrations.

In section 2, the PM10 dataset we considered is described in detail,
along with the procedure used to exclude outliers from the dataset actually
used in the geostatistical analysis. In section 3, the stochastic model for
the data is introduced and the data detrending procedure is briefly out-
lined. The variograms reconstructed based on isotropic exponential and
linear variogram models are presented and discussed in detail. In section
4, flexible variogram models are briefly reviewed along with the the tech-
nique used for their estimation based on the available data. In section 5 the
cross validation of the chosen variogram models and detrending technique
is discussed. In section 6, the actual concentration values reconstructed by
kriging procedure are presented, along with the estimated variance of the
underlying stochastic fields. The reconstructions show clearly that, espe-
cially in the winter season, concentration values are often well above those
allowed by the current legislation, even in areas with relatively low primary
production. In section 7, the main results obtained are summarized and
some conclusions are drawn on the optimal choice of geostatistical model
for this type of pollution data.

2 The PM10 concentration dataset for North-

ern Italy

PM10 pollution is an environmental issue of great concern in North-
ern Italy. In most part of the main urban areas of the Po Valley, extended
over four regions (Emilia Romagna, Lombardia, Piemonte and Veneto) both
long-term an short-term air quality limits are not attained ([10],[11]). Ambi-
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ent fine particulate matter is both of primary and secondary origin: primary
PM 10 is directly emitted by anthropogenic or natural sources, such as com-
bustion processes, mechanical production, and traffic, while secondary PM
is produced by chemical-physical trasformations and reactions of gaseous
precursors. The morphology of this area induces the formation of a pecu-
liar microclimate, since the Po Valley is surrounded in the North and in
the West by the Alpes and in the South by the Appennines. These moun-
tain chains retain air masses in the Po Valley, reducing pollution transport
across the mountainous region and retaining pollutants in the lowest lay-
ers of the atmosphere. Intense urban pollution events are also favoured
by the continental climate of this area, characterized by hot summers, wet
winters with minimum temperatures often below zero, persistent fog, very
low wind speed and frequent thermal inversions, that reduce the height of
the boundary layer and limit the pollutants diffusion in the atmosphere.
The meteorological, climatic and morphological uniformity of the area of
the Po Valley appears to justify the application of geostatistic interpolation
techniques, that rely on stationarity and, often, isotropy hypotheses, to the
phenomenon of PM10 air pollution. Furtermore, the application of geosta-
tistical techniques is also justified by the rather uniform PM10 concentra-
tion levels over the entire Po valley, as a consequence of the particularly
relevant contribution of secondary PM to the measured PM10 mass.

Figure 1: Locations of the measurement stations in the Po Valley, Northern
Italy.

The data set used in this study is formed by PM10 daily averaged con-
centration values, measured from January 2003 to December 2006 by the
air quality monitoring network of the above mentioned regions. The mea-
surement networks evolved over these years, both in terms of number and
location of the monitoring sites and in terms of the measurement instru-
ments themselves. For each single year, the present analysis has only used
PM10 daily concentrations provided by monitoring stations that had been
collecting at least 75% of the annual data. Depending on data availability,
the overall number of annual time series considered is about 80. Monitoring
stations are mainly located in urban areas (approximately 56% of the sta-
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tions comprised in the network) with with a roughly equal number at traffic
exposed sites and at urban background sites (i.e. sites in urban areas where
levels are representative of the exposure of the general urban population).
Suburban areas with heavy traffic emissions account for 27% of the sta-
tions, while 21% is located in suburban areas with background emissions.
Only 5% of the station is located in industrial areas and approximately the
same number at rural background sites.

PM10 concentrations have been measured using different instruments,
based on different measurement principles such as the gravimetric method,
Beta attenuation monitors (BAM) and TEOM (Tapered Element Oscillat-
ing Microbalance). The gravimetric method is the reference method for
PM10 measurement at European level (EN12341 norm). The same regu-
lation establishes a standard procedure for assessing whether other mea-
surement techniques yield data that can be considered equivalent to those
obtained by the reference method. The dataset used in this study consists
of values that have been collected at measurement sites validated accord-
ing to the EN12341 norm. The gravimetric method measures the net mass
on a filter, determined by weighing the filter before and after sampling
air containing particulate matter, in a temperature and relative humidity
controlled environment. Filters are equilibrated for 24 hours at constant rel-
ative humidity between 20% and 40% and at constant temperature between
15C and 30C, in order to minimize the liquid water associated with soluble
compounds and to minimize the loss of volatile species. The gravimetric
method works continuously in time and returns daily average measures.
The method based on Beta attenuation determines PM10 concentration by
filtering a polluted air volume. The mass concentration is calculated from
the level of the Beta radiation absorbed by the clean filter and by the filter
with the mass deposition. TEOM is formed by an oscillating monitor with
a filter that accumulates particulate matter. The mass deposition induces
changes in the instrument oscillation frequency, that are converted in mass
concentration measures. The inlet air is heated to 30C−50C to keep mois-
ture in the vapour phase, or dried with a diffusion dryer. As a consequence,
semivolatile compounds like ammonium nitrate and volatile organics can
volatilize and for this reason the use of TEOM can lead to underestimation
of the true PM10 concentrations, especially during the colder seasons, if
compared to the values obtained by the gravimetric reference method (see
e.g. [3]). Potential measurement artifacts reported for TEOM, resulting
in PM10 mass underestimation due to the loss of semivolatiles, have been
accounted for by correcting measured concentrations by means of proper
experimental correction factors.

In order to reduce possible boundary effects, within the complete do-
main encompassing all the available monitoring sites (approximately, a box
of 450 × 300km size) a smaller domain of approximately 390 × 240km has
been considered, still comprising more than 90% of the available stations.
This avoided, for example, estimating correlations with isolated stations
in subalpine valleys, typically characterized by exposure to local emissions
and peculiar meteorological conditions. Furthermore, a small number of
individual stations were classified as outliers and excluded from the anal-
ysis. This classification was done on the basis of an empirical comparison,
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whenever the measured values appeared to be very different from those at
measurement stations in the same province. This selection was justified a

posteriori considering that most of these stations had either been removed
from the official measurement network after a relatively short period (in
general, a few months) or that they employed TEOM, which in some cases
gave significantly lower PM10 concentrations with respect to measurements
carried out with instruments based on Beta or Gravimetric techniques.

For this edited dataset, time averages for winter (October-March) and
summer (April-September) were computed and all geostatistical analyses
discussed in the following sections 3-6 were carried out for these seasonal
mean values. Furthermore, averages over a period of three months were
also computed, to study in deeper detail the temporal evolution of some
statistical properties of the concentration fields.

3 Data model and isotropic variogram esti-

mation

The seasonal concentration averages yi, i = 1, . . . , N were assumed to
be realizations of a random field Y (x, ω) = µ(x) + Z(x, ω), where µ(x) is a
deterministic trend and Z(x, ω) is a constant mean, instrinsically stationary
random field (see e.g. [4] for a complete review of various stationarity
concepts). For the more classical geostatistical reconstructions, the field Z
was assumed to be isotropic, thus leading to semivariogram functions γ(h),
that were only functions of a single scalar variable, while in the case of the
flexible variogram model of [1], the field was assumed to be anisotropic and
a semivariogram function γ(h),h ∈ R2 was considered.

Since various factors (climatology, terrain morphology, location of pri-
mary emission sources) can be assumed to have a steady and direct impact
on the measured values, it is reasonable to assume that a non constant de-
terministic trend is present in the data. In this work, only detrending based
on the median polish technique (see e.g. [5]) is applied, leaving investiga-
tion of more sophisticated detrending procedures for future analyses. More
precisely, a coarse grid of 5 × 4 points was superimposed to the computa-
tional domain, with uniform spacings of approximately 80km and 60km in
the x and y directions, respectively. At these points, concentration values
were computed by the iterative process described in [5], which entails re-
peated computation of the median values along rows and columns of the
coarse grid. As an initial guess, the concentration values at the measure-
ment stations nearest to each coarse grid point was assumed. A piecewise
linear form µ(x) = a+bx+cy was then assumed for the deterministic trend
over each rectangle having four neighbouring points on the coarse grid as
vertices and the coefficients were determined for each rectangle starting
from the median polish values at the vertices. The resulting piecewise lin-
ear function was used to detrend the data and to compute the values of
zi = yi − µ(xi), i = 1, . . . , N used for the estimation of the random field Z.
The results obtained by performing ordinary kriging on the detrended data
have been compared to those of ordinary kriging with unknown constant
mean on the data without detrending.
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h 2003 2004 2005 2006

10 km 120 150 151 208

20 km 92 140 128 166

30 km 128 172 172 254

45 km 208 306 270 484

60 km 329 390 362 618

80 km 416 536 472 868

100 km 518 608 556 1010

150 km 1124 1278 1340 2148

200 km 842 1022 1022 1494

250 km 630 900 888 586

300 km 390 832 586 584

390 km 390 716 610 352

Table 1: Numerosity of distance classes used for isotropic variogram model esti-
mates: number of pairs in each distance bin for each dataset year.

The first step in the geostatistical estimation procedure is the choice of
an appropriate variogram model to describe the spatial correlation structure
of the data. For the estimates based on isotropic variogram models, an
empirical semivariogram was computed by either the Matheron estimator

γ(hk) =
1

2|N (hk)|

∑

(i,j)∈N (hk)

|Z(xi) − Z(xj)|
2 (1)

or the more robust estimator

γ(hk) =
1

2

(

0.457 + 0.494
|N (hk)|

)

(

1

|N (hk)|

∑

(i,j)∈N (hk)

|Z(xi)−Z(xj)|
1

2

)4

. (2)

proposed by Cressie and Hawkins ([6],[7]). Here, hk, k = 1, . . . , K denotes
a finite set of distance ranges for which the variogram is estimated, N (hk)
denotes the class of all pairs of measuremement points whose distance is
comprised in the interval [hk− 1

2

, hk+ 1

2

) (where hk+ 1

2

denotes the arithmetic

mean of the neighbouring values), and |N (hk)| is the number of pairs in
the class hk. For the present study, distance classes N (h) were computed
for the distance ranges reported in Table 1, along with the number of data
pairs belonging to each class. It can be observed how the measurement
has evolved over the years, thus increasing the amount of available data.
Furthermore, all the classes have sufficiently large size for the subsequent
estimates to be statistically significant.

These empirical variograms were used to estimate a valid variogram
model by a weighted least squares method. It is to be remarked that the
result of this least squares fit was found to be quite sensitive to the initial
guess used in the minimization algorithm. For this reasons, 104 different
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initial guesses have been considered and the variogram parameters were
chosen that gave the smallest value for the generalized least square cost
functional at the end of the minimization process.

Among isotropic variograms, we have considered exponential, linear,
Gaussian, spherical and Bessel variogram models. Only exponential and
linear variogram models appeared to yield results sufficiently close to the
empirical variogram over the whole range of spatial lags. As an example, we
show in Figures 2-5 the fitted linear and exponential variograms obtained
from the median polish detrended data starting from the Cressie-Hawkins
empirical variogram. A significant seasonal and interannual variability of
the variogram structure is clearly displayed by these estimates and summa-
rized in Tables 2-3, in which the values of the estimated variogram param-
eters are reported.

For the data without detrending, higher sill and range values are charac-
teristic of the winter periods, while much lower values are generally obtained
for the summer months. This appears to be consistent with the different na-
ture of the emissions and meteorological forcing in the two seasons. During
the winter, significant domestic heating emissions are present and the local
meteorology is characterized by smaller boundary layer thickness and large
scale synoptic systems, which imply larger scale spatial correlations. Dur-
ing the summer, small scale convection dominates, thus inducing smaller
scale spatial correlations, while much higher boundary layer values are also
responsible for the lower concentration levels (see section 6). On the con-
trary, detrended data tend to show smaller scale correlation in the winter
season than in summer, which seems to point at a stronger dependence of
the winter concentrations on deterministic factors such as emissions inten-
sity. The estimated nugget parameter is in most cases quite small, although
for some datasets and variogram models it can get as large as the sill value.

In general, the exponential model seems appropriate to recover the spa-
tial correlation structure in most of the cases, but the linear variogram
model appears to fit better the summer data in at least two of the four
considered years. In particular, for the 2004 summer season the detrended
data yield an empirical variogram so close to the linear model that For both
models, clear discrepancies from the empirical variograms can be seen in
at least one of the seasonally averaged data. This motivates the attempt,
carried out in the next section, to apply flexible variogram models, in order
to obtain accurate estimates with a tecnique that can better adapt to the
large variability displayed by the data.
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Figure 2: Exponential and linear variogram functions fitted to Median Polish
detrended data for winter (a) and summer (b) of 2003
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Figure 3: Exponential and linear variogram functions fitted to median polish
detrended data for winter (a) and summer (b) of 2004
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Figure 4: Exponential variogram functions fitted to median polish detrended
data for winter (a) and summer (b) of 2005
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Figure 5: Exponential and linear variogram functions fitted to Median Polish
detrended data for winter (a) and summer (b) of 2006.

4 Flexible variogram models and their esti-

mation

Geostatistical interpolation is usually formulated assuming the data to con-
sist in a realization of a random field Z : D × Ω → R, D ⊂ R

d with a valid
semivariogram function γ(h)) = E[(Z(x+h)−Z(x))2 ]/2. The classical char-
acterizazion of valid variograms is given in terms of conditionally negative
definite functions. In general, a piecewise linear function (in more than one
dimension, a piecewise multilinear one) is not conditionally negative defi-
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Dataset Nugget Sill Range [km]

Winter 2003 0 642 368.45

Summer 2003 0 30 53.14

Winter 2004 20 88 55.19

Summer 2004 2 27 116.63

Winter 2005 0 129 21.41

Summer 2005 0 44 24.11

Winter 2006 0 244 24.11

Summer 2006 11 43 40.05

Table 2: Temporal evolution of variogram parameters for exponential variogram
model fitted to Cressie Hawkins estimator based on raw data.

Dataset Nugget Sill Range [km]

Winter 2003 0 93 40.21

Summer 2003 16 66 834.87

Winter 2004 26 94 53.82

Summer 2004 0 109 1013

Winter 2005 0 82 10.6

Summer 2005 21 27 35.24

Winter 2006 0 185 14.49

Summer 2006 22 76 470.71

Table 3: Temporal evolution of variogram parameters for exponential variogram
model fitted to Cressie Hawkins estimator based on median polish detrended
data.
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nite, so that simple interpolation of the values of an empirical variogram
estimator does not yield a valid variogram function.

The concept of flexible variogram model introduced in [1] relies instead
on a different characterization of valid variograms. It was proven by these
authors that, for d = 1, under the assumption that the semivariogram is
constant for h > c, with c > 0 given, the function 2γ can be represented as

2γ(h) =

∫

R

[f(x | a1, . . . , ak, c, k) − f(x − h | a1, . . . , ak, c, k)]2dx, (3)

where f is a measurable function. The main point of the flexible variogram
model consists in choosing a piecewise constant function f, to yield as a
consequence piecewise linear valid variograms. More specifically, for k > 0
and a1, . . . , ak > 0, define the function f with support [0, c] by

f(x | a1, . . . , ak, c, k) =

k
∑

j=1

ajI

(

(j − 1)c

k
< x ≤

jc

k

)

, (4)

where I(a, b) denotes the indicator function of the interval (a, b). Hence, f is
a piecewise constant function. Using (4) in the representation theorem (3),
after some algebra we have an explicit expression of the semivariogram.
For convenience, values at a finite set of points are computed first, and
the remaining values are then recovered by linear interpolation, which is
justified since the resulting function is indeed piecewise linear. The resulting
definition of the semivariogram can then be described as follows:

• if exists an integer m such that h = mc/k,

2γ(h) =
c

k

k
∑

i=1

a2
i −

2c

k

k
∑

i=m+1

aiai−m, (5)

• if h < c, but is not an integer multiple of c/k,

2γ(h) = (1 − V )2γ
(mlc

k

)

+ V 2γ
(muc

k

)

, (6)

where ml = bhc/kc and mu = dhc/ke and V = (h − mlc/k)/(c/k),
that is, the value of the semivariogram is given by linear interpolation
of the two values at the nearest multiple integers of c/k enclosing h;

• if h > c

2γ(h) =
2c

k

k
∑

i=1

a2
i . (7)

In [1], specific variograms were then obtained by fixing a priori k and c and
estimating the ai from the data, starting from the same empirical estimators
γ̂ introduced in the previous section and using a weighted least square
algorithm. The integer k represents the number of equal size intervals in
which [0, c] is divided and over which the variogram is represented by a
different linear function. In general, k will have to be smaller than the
number of different lags used in an empirical variogram estimator.
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The representation theorem introduced above also holds in the multidi-
mensional case, so that for d > 1 one has

2γ(h) =

∫

Rd

(f(x | a1, . . . , ak, c, k) − f(x − h | a1, . . . , ak, c, k))2dx. (8)

Along the lines of [1], in the two dimensional case that is relevant for the
present application we can define piecewise constant functions on the rect-
angular domain [0, c] × [0, d] as

f(x, y | ai,j , c, d, m, n) =
m
∑

i=1

n
∑

j=1

ai,jI

[(

c(i − 1)

m
≤ x <

ci

m

)(

d(j − 1)

n
≤ y <

dj

n

)]

, (9)

for integer m, n and ai,j > 0. Substituting (9) into (8) yields then a valid
variogram function. As for the one dimensional case, values at special points
and all the others are exactly recovered by bilinear interpolation. With
this respect, it should be noticed that the original formula given in [1] for
determination of γ(h) = γ(h1, h2) at points whose coordinates are integer
multiples of c/m and d/n is only valid in the special case in which both
these numbers are positive. This is sufficient to cover the one dimensional
case, for which γ(h) = γ(−h) for all h ∈ R. In two dimensions, however,
although 2γ(h1, h2) = 2γ(−h1,−h2), in general 2γ(h1, h2) 6= 2γ(−h1, h2),
so using the original formula in [1] for a generic field could yield a non valid
variogram. In the more general case, if h1, h2 are integer multiples of c/m
and d/n, the appropriate formula is

2γ(h1, h2) =
m
∑

i=1

n
∑

j=1

ai,ja
i−sgn(h1)

j

|h1|c

m

k

,j−sgn(h2)
j

|h2|d

n

k, (10)

if 0 ≤ |h1| < c and 0 ≤ |h2| < d, where sgn(·) denotes the signum function.
For arbitrary lag values, the semivariogram is computed by bilinear inter-
polation between the values of the variogram on the corners of the rectangle
containing (h1, h2) whose vertices are the nearest integer multiples of c/m
and d/n.

In the anisotropic case, the two dimensional analog of (1) was computed.
As an example, the distance lags in the x and y directions are reported in
Table 4, along with the number of data pairs belonging to each class for
the year 2006 only. It can be observed that, in order to obtain sufficiently
populated distance bins, a smaller number of distance classes has to be
employed.

Subsequently, also the anisotropic, flexible variogram models introduced
in [1] have been fitted to the anisotropic empirical variogram using a pro-
cedure entirely analogous to the one described above for the isotropic case.
The flexible variogram model was assumed to be given by a piecewise bilin-
ear function defined on by its values at 5 × 4 regularly spaced points over
the domain spanned by the data. As an example, the contour levels of the
anisotropic variogram fitted for the 2003 winter data are shown in figure
6, highlighting the different length scales in the two coordinate directions,
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hx/hy 15 km 30 km 60 km 150 km

15 km 104 68 103 117

30 km 80 75 112 106

90 km 231 216 367 454

150 km 166 158 298 412

250 km 182 143 284 385

400 km 75 58 114 152

Table 4: Numerosity of distance classes used for anisotropic variogram model
estimates: number of pairs in each distance bin for dataset year 2006.

that are naturally recovered by the estimation process with no need for ex-
pert user intervention. Due to the difficulty of displaying the and empirical
variogram and fitted function in the anisotropic case, no direct comparison
with the empirical variogram is shown here. However, results of the cross
validation reported in section 5 will demonstrate the good performance of
the flexible anisotropic model.
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Figure 6: Exponential isotropic (a) and flexible anisotropic (b) variogram func-
tions fitted for winter 2003 data.

5 Cross validation and normality tests

In order to assess the accuracy of the spatial predictions obtained by
geostatistical reconstruction using the previously estimated variograms, a
cross validation procedure has been carried out. More precisely, for each
measurement site xi, i = 1, . . . , N the variogram estimation and the kriging
reconstruction were carried out on the basis of the remaining N − 1 sites
and estimates Ẑi, σ̂i were obtained for the field and standard deviation
values, respectively. The normalized residuals ζi = (zi − Ẑi)/σ̂i were then
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computed and analyzed. Although these quantities do not need to follow a
Gaussian distribution for the kriging reconstruction to be consistent, if this
is the case, assuming the reconstructed field to be Gaussian is an hypothesis
compatible with the available data. For Gaussian fields, the variogram
describes completely the field stochastic structure, so that the confidence
intervals built on the basis of the kriging variance are a reliable estimate of
the reconstructed field uncertainty. On the other hand, if the residuals do
follow a Gaussian distributions, this can be seen as an indicator that the
kriging predictions not provide in that case a complete information on the
field uncertainty.

The normality of the residuals can be investigated by inspecting the
quantile-quantile plot of the residuals against the unit normal distributions.
An example of such plot is shown in Figure 7, highlighting that for most
of the measurement sites no significant deviations from Gaussianity arise.
Similar plots arise for all the considered datasets.

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

Figure 7: Quantile plot of the residual distribution based on winter 2006 Median
Polish detrended data and exponential variogram model, against the standard
normal distribution.

Furthermore, a Jarque-Bera normality test has been performed (see e.g.
[8]). The Jarque-Bera test is a two-sided goodness-of-fit test that is suitable
when a fully specified null distribution is unknown and its parameters must

be estimated. The statistical test is given by JB = N
{

S2 + (K − 3)
2
/4
}

/6,

where N is the sample size, S is the sample skewness, and K is the sample
kurtosis. For large sample sizes, the statistical test has a χ2 distribution
with two degrees of freedom. The Jarque-Bera test uses a table of critical
values computed by Monte-Carlo simulation for sample sizes less than 2000
and significance levels between 0.001 and 0.50. Critical values for the test
are computed by interpolating from the table values and using the analytic
χ2 approximation only when extrapolating for larger sample sizes. It is to
be remarked that this test is applicable also to dependent random variables,
which is indeed the case for the residuals of an estimated random field with
non trivial correlation structure.

The MATLAB jbtest function has been used, that returns the p−value
computed using inverse interpolation from the table of critical values. Small
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Dataset Confidence interval width Width variance Coverage% p−value %

Winter 2003 39.16 569.61 81.69 >50

Summer 2003 10.76 16.76 70.42 12.08

Winter 2004 38.96 0.22 95.18 19.64

Summer 2004 8.95 4.61 71.08 7.14

Winter 2005 44.05 0.20 96.25 >50

Summer 2005 19.37 33.69 87.50 7.11

Winter 2006 60.12 0.27 93.68 >50

Summer 2006 17.00 24.15 83.16 40.83

Table 5: Validation of kriging with exponential variogram model based on raw
data.

Dataset Confidence interval width Width variance Coverage % p−value %

Winter 2003 22.95 30.70 81.69 13.32

Summer 2003 16.88 0.28 91.55 31.84

Winter 2004 33.87 0.85 92.77 42.03

Summer 2004 10.64 0.78 80.72 10.42

Winter 2005 42.05 0.34 98.75 10.61

Summer 2005 24.97 0.12 100.00 32.36

Winter 2006 55.65 0.55 100.00 40.50

Summer 2006 22.55 0.10 94.74 >50

Table 6: Validation of kriging with linear variogram model based on raw data.

values of p cast doubt on the validity of the null hypothesis. Using the cross
validation, the Jarque-Bera test provides a p-value representative of the
threshold below which the null hypothesis of the normality of residuals is not
refused. Thus, a p-value higher than 5% is a good index of the normality of
residuals. Along with the normality test, the effective a posteriori coverage
of the 95% significance level confidence intervals [Ẑi−3σ̂i, Ẑi +σ̂i] predicted
by kriging has been estimated for each set predicted values. Jarque-Bera p-
values and coverage percentages are shown in tables 5-5 for the exponential
and linear model applied to either detrended or raw PM10 seasonal data.
Also the average width of the confidence intervals and their sample variance
are displayed.

It can be observed that, in most cases, the Gaussian residual hypothesis
is not rejected. Furthermore, the effective a posteriori coverage of these
intervals is in general close to the theoretical one. Detrending is clearly
important in reducing the prediction uncertainty, especially in conjunc-
tion with the exponential model, while it seems to affect less the flexible
variogram predictions. In general, based on this seasonally averaged data
the exponential model applied to detrended data would appear as the best
candidate to perform reliable reconstructions.

However, the time variability of the characteristics of the sampled field

17



Dataset Confidence interval width Width variance Coverage p−value %

Winter 2003 36.31 0.17 94.37 >50

Summer 2003 19.59 0.09 92.96 19.64

Winter 2004 36.35 0.12 97.59 >50

Summer 2004 21.65 0.10 96.39 30.06

Winter 2005 35.43 0.11 97.50 16.04

Summer 2005 20.10 0.05 92.50 >50

Winter 2006 52.89 0.25 93.68 24.04

Summer 2006 23.63 0.03 95.79 >50

Table 7: Validation of kriging with exponential variogram model based on Me-
dian Polish detrended data.

Dataset Confidence interval width Width variance Coverage % p−value %

Winter 2003 32.70 0.99 95.77 >50

Summer 2003 16.40 0.20 91.55 39.35

Winter 2004 31.35 7.56 89.16 >50

Summer 2004 12.59 0.59 84.34 30.06

Winter 2005 - - - -

Summer 2005 19.68 0.06 98.75 35.87

Winter 2006 19.49 0.19 90.53 >50

Summer 2006 48.20 24.44 95.79 >50

Table 8: Validation of kriging with linear variogram model based on Median
Polish detrended data.

Dataset Confidence interval width Width variance Coverage % p−value %

Winter 2003 29.41 11.42 94.37 2.80

Summer 2003 13.09 2.06 88.73 >50

Winter 2004 26.99 5.65 90.36 49.93

Summer 2004 10.49 3.38 80.72 40.80

Winter 2005 35.44 4.67 100.00 12.43

Summer 2005 22.23 0.87 97.50 3.91

Winter 2006 33.74 15.76 85.26 42.01

Summer 2006 19.43 0.88 93.68 35.62

Table 9: Validation of kriging with anisotropic flexible variogram model based
on raw data.
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Dataset Confidence interval width Width variance Coverage % p−value %

Winter 2003 25.05 5.66 91.55 2.51

Summer 2003 12.78 1.90 87.32 45.07

Winter 2004 28.13 2.61 91.57 >50

Summer 2004 11.36 1.50 90.36 31.78

Winter 2005 31.64 2.13 96.25 11.78

Summer 2005 19.28 0.22 96.25 7.06

Winter 2006 37.41 12.84 87.37 >50

Summer 2006 19.24 0.49 94.74 45.07

Table 10: Validation of kriging with anisotropic flexible variogram model based
on Median Polish detrended data.

leads to significant variations in the effective coverage of the predicted con-
fidence intervals, as well as of their width. In some cases, as for example
winter 2005 for the linear model applied to detrended data, the fitted vari-
ogram profile consists of an almost horizontal line, thus leading to entirely
unrealistic prediction values. These variations become even more dramatic
if the same validation is carried out on datasets consisting of concentra-
tion values averaged over each year quarter. In this case, the exponential
model is unable to provide useful estimates for 5 of the 16 datasets, yielding
either very large confidence intervals or almost singular kriging matrices.
The linear model performs better for those cases in which exponential fails,
but it also displays analogous behaviour on a relevant portion of the data.
As a result, there does not seem to be a unique isotropic variogram model
capable to yield correct results in all the different situations encountered
within the large dataset available.

On the other hand, as shown in Table 5, the anisotropic flexible vari-
ogram model yield reconstructions that appear to be much less sensitive to
these changes. In view of the development of a a fully automated and ob-
jective reconstruction procedure that can be used to provide environmental
regulators and health authorities with reliable real time estimates of PM10
concentrations, this anisotropic model seems to constitute an appropriate
choice.

6 Reconstruction of concentration and stan-

dard deviation fields

The PM10 concentrations fields have been reconstructed using ordinary
kriging, starting from either the detrended or raw data, with the exponential
and flexible variogram models discussed in the previous sections. As an
example, the following figures represent the PM10 reconstructed fields in
winter and summer seasons of the year 2005. The reconstructed fields are
qualitatively and quantitatively similar, although the standard deviation
values obtained with the flexible variogram model appear to be uniformly
smaller over larger areas. Concentration peaks are located over urban and
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Dataset Confidence interval width Width variance Coverage p-value %

First quarter 2003 22.39 7.63 84.51 <0.01

Second quarter 2003 9.30 4.69 64.79 48.25

Third quarter 2003 12.10 2.40 77.46 >50

Fourth quarter 2003 22.71 6.55 91.55 >50

First quarter 2004 25.30 9.82 84.34 >50

Second quarter 2004 9.40 4.18 66.27 31.90

Third quarter 2004 9.94 3.48 73.49 >50

Fourth quarter 2004 25.83 6.06 85.54 22.00

First quarter 2005 37.87 5.93 89.87 26.14

Second quarter 2005 20.53 0.23 94.94 2.62

Third quarter 2005 19.11 0.36 93.67 0.24

Fourth quarter 2005 33.61 0.22 88.61 22.31

First quarter 2006 35.10 29.30 79.38 >50

Second quarter 2006 22.46 0.44 94.85 0.4867

Third quarter 2006 19.10 0.54 95.88 >50

Fourth quarter 2006 34.88 19.92 85.57 >50

Table 11: Validation of kriging with anisotropic flexible variogram model based
on Median Polish detrended data: quarterly averaged data.

industrialized areas, but occasionally also in less densely populated, mostly
rural areas, such as the Lodi (LO) and Cremona (CR) provinces. The peak
values and their locations vary remarkably from year to year, with the
Turin (TO), Milan (MI) and Verona (VR) provinces displaying in turn the
highest concentration values. Especially in the winter season (see e.g. the
reconstruction obtained using the flexible variogram model for winter 2006),
the estimated values, that can be considered reliable with high probability
given the analyses presented in the previous sections, are remarkably higher
than the maximum concentration values allowed by the current legislation.

7 Conclusions

The applicability of classical geostatistical tools to the reconstruction
of PM10 concentration fields over Northern Italy has been assessed, based
on a large dataset of daily PM10 data spanning the years 2003-2006. The
impact of the variogram model chosen for the geostatistical estimates has
been investigated, by comparing the results obtained with several isotropic
variogram models as well as with anisotropic flexible variogram models.
Although exponential and linear variograms yield reliable reconstructions
in most of the cases, the analysis has highlighted significant seasonal and
interannual variations in the basic features of the estimated concentration
fields and residual correlation structure. None of the classical models ap-
pears able to cope with all the different situations encountered, while the
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Figure 8: PM10 concentration values (a) and standard deviations (b) recon-
structed using ordinary kriging with exponential variogram in winter 2005.
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Figure 9: PM10 concentration values (a) and standard deviations (b) recon-
structed using median polish kriging with exponential variogram in winter 2005.
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Figure 10: PM10 concentration values (a) and standard deviations (b) recon-
structed using median polish kriging with anisotropic flexible variogram in winter
2005.
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Figure 11: PM10 concentration values (a) and standard deviations (b) recon-
structed using ordinary kriging with exponential variogram in summer 2005.
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Figure 12: PM10 concentration values (a) and standard deviations (b) recon-
structed using median polish kriging with exponential variogram in summer
2005.
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Figure 13: PM10 concentration values (a) and standard deviations (b) recon-
structed using median polish kriging with anisotropic flexible variogram in sum-
mer 2005.
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Figure 14: PM10 concentration values (a) and standard deviations (b) recon-
structed using median polish kriging with anisotropic flexible variogram in winter
2006.
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anisotropic flexible variogram models appear to constitute a more robust
tool for automatic reconstruction of the PM10 concentration fields without
expert user intervention.

As a prosecution of this work, the development of such a tool is en-
visaged, in which the use of anisotropic, flexible variogram models will be
complemented by a Bayesian approach along the lines of [2], in order to
provide environmental regulators and health authorities with reliable real
time estimates of PM10 concentrations.
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