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Abstract

We present a two-dimensional semi-conservative variant of the depth-averaged material
point method (DAMPM) for modelling flow-like landslides. The mathematical model is given
by the shallow water equations, derived from the depth-integration of the Navier-Stokes
equations with the inclusion of an appropriate bed friction model and material rheology,
namely Voellmy and the depth-integrated Bingham viscoplastic stress model, respectively.
We have verified the validity and performance of the proposed numerical method in different
idealised settings and tested its behaviour in a realistic scenario.

1 Introduction and motivations

Among the many types natural disaster that are being made more frequent by climate change,
landslides are one of the most dangerous: not only due to their potentially catastrophic impact in
terms of human fatalities and economic damage, but also due to their intrinsic unpredictability
[1, 2]. Continuous monitoring of areas prone to landslides is imperative. In situ detection
systems, such as piezometers and strain gauges, allow accurate monitoring of internal pressures
and surface displacements of the area of interest, while satellite surveys can provide detailed
topographic and elevation information of the study area [3]. However, empirical monitoring
alone is often not sufficient to ensure effective management of an hazardous situation, including
preventive capability [4, 5]. The high cost and technical complexity of of realistic experimental
analysis therefore warrant the need of developing accurate numerical simulation models for
landslides.

The phenomenology of landslides is heterogeneous and consists of several stages. In the
initiation phase, the landslide can be modeled as a rigid body subject to gravity, hydrodynamic
soil conditions, and pore pressure, which can result in intermittent slides and abrupt changes
in velocity. In the run-out phase, in contrast, the landslide material displays a a viscoplastic
behaviour and a regime dominated mainly by advection. In this phase, the advancement and
evolution of the front depend mainly on the rheology and orography of the area of interest [6].
In many situations, such as debris flows or mudslides, the run-out is characterized by fluid-like
behavior and sustained horizontal speeds.

In this work, we focus on the simulation of the evolution of fast-moving landslides immedi-
ately after the initiation phase and on the tracking of the advancement front, which is of the
utmost importance for predicting the areas which will be impacted and, thus, estimate and/or
prevent damages. The basic mathematical model used to describe gravity-driven free surface
flows consists of a set of two-dimensional equations, derived from the Navier-Stokes equation
for an incompressible fluid by integrating in the vertical direction.

Following the work of [7, 8], we propose a semi-conservative variant of the depth-averaged
material point method (DAMPM), which is the depth-integrated version of the Material Point
Method (MPM), which originally evolved as an extension of the Particle In Cell (PIC) method
[9, 10], and has recently attracted a growing interest for its amenability to acceleration on
innovative parallel computing architectures [11, 12].

The use of a depth-averaged formulation for the run-out analysis is useful when considering
phenomena occurring over large areas, which would be extremely expensive to simulate with a
fully 3D mode [6]. To account in more detail for the effect of the impact of landslides or mudflows
on barriers and membranes of complex geometry and smaller characteristic dimensions, we plan
in the future to couple the model disussed in this work with 3D particle models for studying
impact scenarios [13, 14, 15]. In this context, the equation for the hydrostatic pressure gradient
1
2ρg∇(h2) is also considered in its conservation form and fully integrated into the numerical
framework for the management of viscoplastic and fluid-like materials.

The paper is organized as follows. Section 2 is devoted to the presentation of the governing
equations, the rheology, and the constitutive models that we adopted to deal with flow-like
landslides. We present the complete derivation of the semi-conservative form of the equations

2



in Section 2.3 and of the numerical method in Section 3. Section 4 deals with numerical
experiments, showing some well-balancing and accuracy tests carried out in different idealized
scenarios and, in Section 4.3, the results of a simulation of a real test case, namely the Bindo-
Cortenova landslide. Finally, Section 5 is devoted to some conclusions and perspectives for
future work.

2 Governing equations

We summarize the mathematical model we adopted to deal with flow-like landslides. For a
complete derivation, see [16, 17]. We start by making the following assumptions:

A1. The area of interest presents a gentle slope, so we can perform averaging in the vertical
direction;

A2. The terrain curvature can be neglected;

A3. The vertical velocities and accelerations are negligible compared with the horizontal coun-
terparts;

A4. The depth of the landslide h is smaller than its horizontal extension.

Let Ω ⊂ R2 be a Cartesian domain and let (0, T ] be a time interval with T > 0. We consider
the conservative form of the depth-averaged equations for the unknown elevation h and linear
momentum hv, given by

∂th+∇ · (hv) = 0,

∂t(hv) +∇ ·
(
v ⊗ hv +

1

2
gh2 ⊗ 1

)
=

1

ρ
∇ · (hσ) + 1

ρ
Bf − gh∇Z,

(1)

where v = [u, v]T is the horizontal velocity vector, g the gravitational acceleration, ρ the density
of the material, assumed constant, Bf = [Bx, By]

T the bed friction, Z = Z(x, y) the orography,
and σ = [σxx, σyy, σxy] the deviatoric part of the Cauchy stress tensor.

2.1 The rheology

We have enriched the right-hand side of the equation (1) with the bed friction termBf , following
the Voellmy rheology model, that is

Bf = −
(
pA tanφ+ ρgh tanφ+

ρg|v|2

ξ

)
v

|v|
, (2)

where pA is the atmospheric pressure, φ the friction angle and ξ the turbulence friction accel-
eration term.

The nature of the phenomena under investigation justifies the combination of a turbulent
and a frictional model [18, 19], and this assumption has been shown to produce good results
for velocity and deposition during simulations [20].

2.2 The constitutive law

To define the Cauchy stress tensor σ, we resort to the depth-integrated visco-plastic Bingham
stress model, given by

σ =

(
2µ+

τY
I2

)
ε. (3)
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Here, µ is the viscosity of the material, τY the yield shear stress and ε the tensor of the two-
dimensional strain rate defined by

ε =

[
∂xu

1
2(∂yu+ ∂xv)

1
2(∂xu+ ∂yv) ∂yv

]
.

The term I2 = 1
2ε : ε is the second invariant of the depth-integrated three-dimensional strain

rate tensor

ε =


ε11 ε12

1
2∂zu

ε21 ε22
1
2∂zv

1
2∂zu

1
2∂zv −(ε11 + ε22)

 ,

where we have set ε33 = −(ε11 + ε22) thanks to the incompressibility constraint.
For the computation of I2, according to [6, 17], we need to estimate the quantities ∂zu and

∂zv. To this aim, we exploit the relation for steady-state, laminar, and simple shear fluid.

∂zv =
3

2 + ζ

v

h
, (4)

where ζ = τY /τB ∈ [0, 1] and τB is the bed resistance force. To estimate the quantity ζ, we use

|v| = τB
6µ

(2 + ζ)(1− ζ2). (5)

Equation (5) can be rewritten as

ζ3 + (3 + a)ζ + 2 = 0, with a =
6µ|v|
τY h

.

We replace the equation of the third degree in ζ with the optimal second-degree approximation,
which has a maximum error equal to 1/32 and is given by

48ζ2 − (114 + 32a)ζ + 65 = 0. (6)

The equation has two solutions; we take the positive one as the only physically meaningful.
Finally, the invariant I2 can be calculated by replacing the solution of Equation (6) with (4).

2.3 Semi-conservative shallow water system

We derive the semi-conservative form of the system (1) by eleborating the left-hand side of the
momentum equations. Without loss of generality, we illustrate only the x-momentum equation.

By using the continuity equation in (1), we may replace the term ∂t(h) that appears after
explicit differentiation, obtaining, after a few simplifications,

h ∂t(u) + hu ∂x(u) + hv ∂y(u) + ∂x

(
1

2
gh2
)

= R.H.S. (7)

Note that we have left the pressure term ∂x(
1
2gh

2) in the conservative form.
Now, recalling that v = [u, v]T and that

du

dt
= ∂t(u) + v · ∇u = ∂t(u) + u ∂x(u) + v ∂y(u), (8)

collecting the term h in (7) and moving the pressure term ∂x(
1
2gh

2) at the right-hand-side, we
reach the form

h
du

dt
=

1

ρ
Bx +

1

ρ
∂x

(
σxxh− 1

2
ρgh2

)
+ ∂y(σxyh)− gh∂xZ,
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which is the x-momentum expressed with respect to the material acceleration du/dt. At this
point, we can multiply all terms by density ρ and merge the x component of the pressure
gradient ∂x(

1
2ρgh

2) with the x component of the tensor ∂x(σxxh). This leads to

ρh
du

dt
= Bx + ∂x

([
σxx −

1

2
ρgh

]
h

)
+ ∂y(σxyh)− ρgh∂xZ. (9)

The whole procedure can be applied to the y momentum in the same way.
We define an effective stress tensor σ∇ that takes into account the hydrostatic pressure

gradient simply as

σ∇ = σ − 1

2
ρgh⊗ 1,

where σ is the Cauchy stress tensor defined in (3) and 1 is the unit tensor.
Finally, by setting b = −g∇Z we can rewrite the equation in compact form as

ρh
dv

dt
= Bf +∇ · (σ∇h) + ρbh, (10)

and apply the MPM framework, according to [7, 8, 9, 10].

3 Numerical method

Although mesh-based numerical methods, such as the Finite Element Method, are frequently
used in the context of free-surface flow simulations [6, 21, 22], these techniques have difficulty
dealing with the significant changes in geometry or topology changes typical of landslide phe-
nomena. Moreover, their accuracy is strongly dependent on the quality of the mesh [23].

For this reason, particle-based methods, such as MPM, have gained popularity for the type
of simulations we are interested in, where they have been shown to be capable of efficiently man-
aging complex evolving flows and preserving the details of the material front during simulations;
see, for example, [24, 25, 26].

3.1 The Depth-Averaged Material Point Method

We provide a detailed derivation of the DAMPM, which is a variant of the Fluid-Implicit Particle
(FLIP) and Particle-in-Cell (PIC), originally developed in [10, 27, 9] for continuum mechanical
problems.

The first step is to consider the weak form of the momentum equations defined in system
(10). For this, we follow the Galerkin procedure and multiply the equation by a sufficiently
regular test function ϕ and then integrate it into the domain Ω. Finally, by applying Green’s
Theorem, we get∫

Ω
ρh

dv

dt
ϕ dx =

∫
Ω
(Bf + ρbh)ϕdx−

∫
Ω
σ∇h∇ϕdx+

∫
∂Ω

σ∇hϕn ds, (11)

where n is the outward unit normal to the boundary ∂Ω. Regarding the boundary conditions
on (11), we impose a null diffusive interface flux. Moreover, it is also worth noting that the
boundary terms do not contribute to the flow as long as the material front does not reach the
boundary of the computational domain Ω, which is considered more extensive than the region
occupied by the material itself.

3.1.1 Stage 1: Initialization of particles and grid

To discretize (11) we consider the continuum material, i.e. the landslide itself, as a finite
collection Ωp of Np Lagrangian material points, which represent in this context columns of
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material. We define on each particle a mass mp, which will be kept fixed throughout the
simulations, and the initial conditions on every physical quantity necessary to the constitutive
model, such as velocities vp, locations xp, volumes Vp, areas Ap and stresses σp, for all p ∈
{1, ..., Np}. Following the standard MPM procedure [9, 7, 23], we concentrate the mass mp on
each column by setting

ρh(x, t) =

Np∑
p=1

mpδ(x− xp), ∀x ∈ Ω, ∀t > 0,

where δ(x − xp) is the Dirac delta function. Since we consider the density ρ as constant, we
have the following,

h(x, t) =

Np∑
p=1

Vpδ(x− xp), ∀x ∈ Ω, ∀t > 0, (12)

where Vp = mp/ρ. In this way, Equation (11) can be expressed with respect to (12), and it
reads

Np∑
p=1

mp
dvp

dt
ϕp =

Np∑
p=1

ApB
f
p ϕp +

Np∑
p=1

ρVp bp ϕp −
Np∑
p=1

Vpσ
∇
p ∇ϕp, (13)

where Ap is the area of the column associated with the pth particle and ϕp := ϕ(xp).
In order to compute the differential terms in (13), a fixed Eulerian grid is generated to cover

the entire physical domain of interest Ω. Grid type can be Cartesian or unstructured, and the
most common element shapes used are squares or triangles [23]. Figure 1 shows the typical
MPM scheme, with the Eulerian grid and Lagrangian points. In this work, we consider square
elements on which we define the standard finite element space Q1(Ω) of continuous piecewise
bilinear polynomials. The shape functions in one dimension, say x−direction, are given by

Nx
i (x) =

1− |x− xi|
∆x

if |x− xi| < ∆x

0 otherwise
, (14)

where ∆x is the element size in the x−direction, and xi is the generic grid node i ∈ {1, ..., Nv}.
The two-dimensional counterpart is the tensor product of the one-dimensional functions along
the two directions, as follows.

Ni(x, y) := Nx
i (x)⊗Ny

i (y). (15)

It is important to note that while the use of C0 basis functions makes calculations easier and
more affordable, it can also contribute to the instability of cell crossing due to the presence of
discontinuous gradients [23, 28]. This phenomenon, which occurs when a particle crosses from
one element to another, can be mitigated by controlling the time step ∆t [23]. In this work, we
consider

∆t ≤ C · ∆x

maxp ∥vp∥2
, (16)

where C is the CFL condition.
Other possibilities, which would, however, increase computational cost and compromise the

locality of the problem, are to consider smoother functional spaces by using the B-splines or
to resort to more complex MPM formulations, such as the Generalized Interpolation MPM
(GIMP). The reader interested in an exhaustive discussion about these variants can refer to
[23, 28, 29, 30].
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((a)) A Eulerian grid is defined in
the domain Ω, while the continuum
material is discretized as a set Ωp

of Np Lagrangian points, each of
which has a proper physical prop-
erty.

((b)) The P2G procedure. The
physical quantities defined in the
particles are projected, through the
basis functions Ni(xp), onto the
corresponding grid nodes to assem-
ble the nodal forces Fi.

((c)) Advective phase on the grid
nodes. Nodal accelerations ai and
velocities vi, here depicted with red
arrows, are computed by using the
nodal massesMi and the total force
Fi.

((d)) The G2P procedure. The ad-
vective phase is projected back to
the particles.

((e)) Final stage of the method.
Once the stresses σ∇

p are calcu-
lated, the particle positions xp are
updated and the scheme can be
started again.

Figure 1: Illustration of the classic MPM algorithm.
.

After the shape functions Ni(x, y) are introduced, we can proceed to the semi-discrete form
of the system (10). The particle material acceleration, as well as the test function can be
approximated as

ap :=
dvp

dt
=

Nv∑
i=1

aiNi(xp), ϕp =

Nv∑
i=1

ϕiNi(xp), ∇ϕp =

Nv∑
i=1

ϕi∇Ni(xp), (17)

so that equation (13) becomes
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Nv∑
i=1

ϕi ·
Nv∑
j=1

Mij aj =

Nv∑
i=1

ϕi ·
Np∑
p=1

ApB
f
p Ni(xp)+

+

Nv∑
i=1

ϕi ·
Np∑
p=1

ρVp bpNi(xp)−
Nv∑
i=1

ϕi ·
Np∑
p=1

Vp σ
∇
p ∇Ni(xp), (18)

where Mij is the mass matrix defined by

Mij =

Np∑
p=1

mpNi(xp)Nj(xp).

Since Equation (18) holds for every sequence {ϕi}i∈{1,...,Nv},we finally reach the form

Nv∑
j=1

Mijaj =

Np∑
p=1

ApB
f
p Ni(xp) +

Np∑
p=1

ρVpbpNi(xp)−
Np∑
p=1

Vp σ
∇
p ∇Ni(xp), (19)

for all i ∈ {1, ..., Nv}.

3.1.2 Stage 2: the P2G process

The particle momenta (mv)p can be projected on the grid nodes as

(mv)i =

Np∑
p=1

(mv)pNi(xp), (20)

while the body force bp, friction Bf
p and stresses σ∇

p defined on each particle are used to collect

the nodal external and internal forces Fext
i and Fint

i , respectively defined as

Fext
i =

Np∑
p=1

ρVp bpNi(xp),

Fint
i =

Np∑
p=1

ApB
f
p Ni(xp)−

Np∑
p=1

Vp σ
∇
p ∇Ni(xp),

(21)

then, by lumping the mass matrix Mij so that

Miai ≃
Nv∑
j=1

Mijaj ,

the equation (19) can be essentially written as

Miai = Fint
i + Fext

i , ∀i ∈ {1, ..., Nv}. (22)

The total force Fi = Fext
i + Fint

i collected at the nodes, as shown in Figure 1(b), allows
computing the nodal acceleration ai and the nodal velocity vi, by using the lumped mass
matrix Mi, as

ai =
Fi

Mi
, vi =

(mv)i
Mi

. (23)

Finally, the new velocities ṽv are calculated using an explicit time integration scheme directly
at the nodes, as shown in Figure 1(c).

ṽi = vi +∆t ai. (24)
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3.1.3 Stage 3: the G2P process and particle update

Once the velocities are updated, they are projected back to the particles, to update the positions
xp. To this aim, there are two different ways to compute the projection from nodes to particles:
the PIC way and the FLIP way [31].

In the PIC way, the updated particle velocity ṽp is obtained directly from the nodal one, as

ṽp =

Nv∑
i=1

ṽiNi(xp). (25)

In the FLIP way, the particle velocity is instead obtained by using the nodal increment, as

ṽp = vp +

Nv∑
i=1

(ṽi − vi)Ni(xp). (26)

In this work we chose to follow the PIC way, which, although more dissipative than the FLIP
method, it has the advantage of being more stable, according to [23, 31]. With the new particle
velocities, is it possible to compute the position update x̃p, by using the equation of motion

x̃p = xp +∆t ṽp. (27)

3.1.4 Stage 4: stresses update and reset

Here we compute the updated particle stresses σ̃∇
p , following the so-called Update Stresses Last

(USL) technique, in which the new stresses are updated, with respect to the constitutive model
chosen, only after the nodal velocities ṽi are computed. Therefore, we need to estimate the
increase in strain ∆εp, using the grid velocities ṽi just calculated in (24), in such a way that

∆εp =
∆t

2

Nv∑
i=1

(
∇Ni(xp) ṽi + (∇Ni(xp) ṽi)

T
)
. (28)

Finally, we estimate the stress increment ∆σ∇
p , by following the constitutive model shown in

Section 2.2, as
σ̃∇
p = σ∇

p +∆σ∇
p . (29)

Although the USL approach has been shown to be rather dissipative, it is advantageous in
terms of stability and convergence compared to other stress update techniques [32, 33].

The last step of the method is to update the depth hp while satisfying the mass balance
defined in (1). Following the work of [7], the updated h̃p is given by

h̃p =
hp

1 + tr(∆εp)
. (30)

Once the depth of the particles hp and the positions xp are updated, as shown in Figure 1(e),
the time is advanced and the nodal variables are reset to zero, to restart the cycle.

4 Numerical Results

The present numerical framework has been applied both in idealized settings and in realistic
scenarios. In this Section, we present the numerical results related to some benchmarks well-
known in the literature, in which we have investigated the reliability of the proposed method.
At the end of the Section, we show the results of the simulation of a real landslide, occurring
in Italy in 2002.
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4.1 Well-balancing test

The aim of the first test we carried out is to verify that the DAMPM scheme preserves the
well-balancing property in the presence of a non-flat bottom. We notice that, to our knowledge,
a well-balancing test with the Depth Averaged MPM has never been conducted.

Figure 2: Lake-at-rest problem notation.

To verify the so-called lake at rest condition, we choose to perform the test proposed in
[17, 34, 35] for a different but equivalent formulation of the system (1), and refer to the ”still
water level” H, following the notation shown in Figure (2). At first, we notice that, in the
steady state, it holds that

∇H = −∇Z. (31)

For the sake of simplicity, we refer to the x−momentum equation of (1) and consider the term
−gH ∂xZ on the right-hand side. By replacing it with (31) and by adding and subtracting the
term gH∇H, equation (1) becomes

L.H.S. =
1

ρ

[
∇ · (hσ) +Bf

]
+ gH∇H − gH∇H + gh∇H

=
1

ρ

[
∇ · (hσ) +Bf

]
+

1

2
g∇(H2) + g(h−H)∇H.

(32)

The new formulation can be reached by moving the term 1/2g∇(H2) on the left-hand-side of
(32), by merging it with the hydrostatic pressure gradient and by using again (31), in such a
way that

∂t(hv) +∇ ·
(
v ⊗ hv +

1

2
g(h2 −H2)⊗ 1

)
=

1

ρ
Bf +

1

ρ
∇ · (hσ)− g(h−H)∇Z. (33)

We notice that the entire numerical framework proposed in Section (3) can be applied in an
analogous fashion to the new formulation, which is, unfortunately, useful only as long as the
still water level H is available.

Following the works [36, 37], we have performed the well-balancing test on two different
orthographies Z1(x, y) and Z2(x, y), respectively defined by

Z1(x) = 5 exp

(
−2

5
∥x− 5∥2

)
, Z2(x) =

{
4 if x ∈ [4, 8]2

0 otherwise
. (34)

The computational domain is defined by Ω = [0, 10]2, and the initial conditions are set to
coincide with the steady solutions, given by

h(x, t) + Zi(x) = 10,

u(x, t) = v(x, t) = 0,
∀t ∈ (0, T ], x ∈ Ω, i = 1, 2, (35)
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while the final time is set to T = 1 s. The domain Ω is discretised with a grid consisting of 2500
elements and a total of 10000 material points, that is, 4 particles per cell. This test was carried
out in the absence of friction in the whole domain Ω.

Figure 3: Solution of the well-balancing problem after 1 s of simulation, with the bottom
topography defined by Z1(x) and Z2(x respectively.

We summarise the results of the errors computed in the norms L1(Ω) and L∞(Ω) in Table
1, both for Z1 and Z2, while Figure (3) shows the final time T = 1 s for the simulations with
Z1 and Z2, respectively.

Bottom topography: Z1(x)

State variable L1(Ω) L∞(Ω)

h 2.11e− 12 3.36e− 13
hu 1.92e− 13 2.77e− 14
hv 2.47e− 13 3.05e− 14

Bottom topography: Z2(x)

State variable L1(Ω) L∞(Ω)

h 3.34e− 13 7.39e− 14
hu 4.39e− 13 6.67e− 14
hv 2.59e− 13 6.34e− 14

Table 1: Well-balancing test results in H1(Ω) and L∞(Ω) norms after 1 s of simulation.

As shown in Table (1), both errors in L1(Ω) and L∞(Ω) remain in the order of machine
precision. The results obtained verify the well-balancing property of the DAMPM. Furthermore,
it should be noted that the formulation presented in (33) allows us to avoid the instabilities that
can arise from the gradient of the topography Z(x), since the term g(h−H)∇Z vanishes when
h = H. However, in more realistic landslide situations, the steady state H is usually not easily
available and is also difficult to manage. The application of (33) to more complex scenarios
requires a more in-depth theoretical study, which goes beyond the scope of this paper.
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4.2 Conservation of mass and linear momentum

In Section 3.1.2 we have described the P2G procedure, where the quantities defined on the
particles p ∈ {1, ..., Np} are projected on the grid nodes i ∈ {1, ..., Nv} using the shape functions
Ni(xp) [38]. The first relation of (20) shows the projection of the linear momentum on the
particles (mv)p on the grid counterpart (mv)i. Since the finite element shape functions Ni

make a partition of unity, we have

Nv∑
i=1

(mv)i =

Nv∑
i=1

 Np∑
p=1

(mv)pNi(xp)


=

Np∑
p=1

(mv)p

(
Nv∑
i=1

Ni(xp)

)

=

Np∑
p=1

(mv)p.

(36)

A similar computation shows that it is also true for the grid mass
∑

iMi and the particles mass∑
pmp.
In order to verifying the numerical conservation of mass and linear momentum, we consider

the test case defined by the collapse of a material on an inclined orography described by

Z(x, y) = 60− 1

3
x+ 15 exp

(
−(x− 50)2

7
− (y − 10)2

7

)
(37)

defined on a domain given by Ω = [0, 150]×[0, 20]m. The domain Ω and the collapsing material,
a mudflow with density ρ = 1200 kg/m3, are discretised by 2250 elements and 2100 particles,
respectively, resulting in the use of 4 particles per cell. We consider friction, with a viscosity
coefficient µ = 10 Pa · s, a friction angle φ ∼ 12◦ and a turbolence coefficient ξ = 200 m/s2.
The total simulation time is set to T = 3 s. The mud, after the sudden collapse due to its

Figure 4: Snapshot of the collapsing material on the bed described by Z(x, y) after t = 2.5 s
of simulation and Trend of the L∞ error for the momenta and masses conservation between
particles and nodes respectively .

weight, the mud starts sliding down the bed until the central obstacle is reached. As shown in
Figure 4, after collision with the obstacle, the landslide is split into two symmetric logs that
independently continue their slide along the bed until finally reunite. Figure 4 shows even
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the infinite norm error of the comparison between the calculated moments and masses on the
particles and nodes, respectively. At all time steps of the simulation, the error remains confined
to the order of machine precision for both moments mv and masses m. The test just performed
also highlights one of the main advantages of MPM, which is the automatic conservation of
mass.

4.3 Application to a real scenario: Bindo-Cortenova landslide

In this section, we consider a real-life test case regarding a landslide phenomenon that occurred
in December 2002 near Bindo-Cortenova (LC), a small town in northern Italy. The sliding
material consists of large conglomeratic rock blocks, up to 100m, surrounded by a mixture of
sandy gravel. The lower part of the hill experienced a disastrous collapse, involving a substantial
volume of approximately 1.2 million cubic metres, after an extended period of exceptionally
heavy rain [39].

Figure 5: Bindo-Cortenova landslide: on the left panel, the location of the event from a Google
Earth image, on the right panel the computational domain of interest and the initial condition.

Before starting with real scenario analysis, it is worth discussing the management of the
input data in the computational domain and particle generation in the area of interest.

One of the advantages of MPMs is the relative ease with which data, which often come from
digital images (i.e., CT scan, TIFF, or PNG images), can be converted into initial data useful for
spatial discretization of the problem analyzed [40, 41, 42]. One of the classical approaches used
in the literature is to convert each pixel in the input image into a particle. The characteristic of
the material can be deduced, for example, from the pixel color [23]. However, one of the major
problems with this approach is related to the resolution of the image itself and consequently to
the number of material points used to discretize the initial mass. In the context of landslide
simulation, input data on orography and initial conditions on the landslide itself are typically
derived from digital terrain models (DTM) generated from satellite interferometric surveys
[43, 44, 45]. Once processed, the images are presented in geoTIFF format. The DTM is typically
produced in raster format by associating each pixel with the absolute elevation attribute, but
the resolution is generally not less than 5m in spatial extent. Discretizing the initial material
by defining a material point for each pixel would generate a configuration with at most a single
particle for each cell of the background grid. This process would cause problems in the P2G
phase of the method, because for each node i ∈ {1, ..., Nv} of the grid, there would be a mass
contribution Mi that would be derived from at most 4 different particles, with the risk of losing
information and generating a cell-crossing instability. To avoid this kind of phenomenon, while
preserving a sort of independence on the data input, it is sufficient to consider the polygonal
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line drawn by the initial condition on the landslide, i.e. its perimeter, and then fill it with a
number of particles, regardless of the raster of the input geoTIFF images.

Figure 6: Bindo-Cortenova landslide: two snapshots of the landslide run-out at t = 2 s and
t = 20 s, from left to right respectively.

In our context, the area of interest was discretized from DTM satellite data with a 5-m raster
in a domain Ω = [0, 1500] × [0, 1350]m2 consisting of 5.1 · 105 elements and 6.9 · 104 particles.
Following the work done in [39], the initial height of the landslide mass, shown in red on the
right panel of Figure 5, is approximately 38 m and lies on a surface inclined about 28◦ with
respect to the horizontal direction, with a residual friction angle φ equals to 34◦. Regarding
the physical aspects of the event, the material has a density ρ set to 1291 kg/m3, while the
turbulence coefficient ξ, the viscosity µ and the yield shear stress τY are set equal to 200m/s2,
2 · 103 Pa and 50 Pa · s, respectively. The final time is set to T = 20 s. Finally, the problem is
complemented by non-reflective boundary conditions.

After sudden triggering, the material collapses along the surface of the hill, following the
complex orography of the area, until the toe of the landslide approaches the north bank of the
Pioverna river. Figure 6 illustrates the distribution of the material at two different times and
the propagation of the front through the intricate local topography.

In Figure 7, the distribution of the main stresses σ∇
xx and σ∇

yy is depicted at the final instant
of the simulation, that is T = 20 s. It can be observed that the pressures along the principal
directions peak in the central regions of the landslide material, reaching magnitudes on the
order of 2 · 105 Pa.

The left panel of Figure 8 shows the profile of the domain of interest along the line x′ = 675m
in which the initial state of the landslide material, with a thickness of about 38m, and the final
state obtained by DAMPM after 20 s of simulation are superimposed, respectively. It can be
seen that the total length of the material in the final state is nearly 500 m, compared to the
initial length of approximately 400m, with a maximum height that does not exceed 30m.

To verify the accuracy of the method, the results of the numerical simulation were compared
with the final state of the landslide, obtained from topographic and satellite surveys. The right
panel of Figure 8 shows the final state, that is, the scar from the landslide, superimposed on
the numerical state, demonstrating that the extent and shape of the region obtained by the
DAMPM simulation are consistent with those derived from the surveys. It is important to note
that in this case it was considered the general trace left by the landslide during the collapse and
not only the final state of motion of each particle, as shown in Figure 6.

A final comparison of the area occupied by each region showed that the difference between
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Figure 7: Bindo-Cortenova landslide: distribution of the normal stresses σ∇
xx and σ∇

yy respec-
tively, after 20 s of simulation.
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Figure 8: On the left, the profile of the domain of interest, with initial condition (in red) and
DAMPM simulation (dotted black line). On the right, the comparison of the total displacement
of the Bindo-Cortenova landslide detected numerically and empirically.

the DAMPM simulation and the empirical one is about 16%.

5 Conclusions and perspectives

We proposed a semi-conservative variant of the depth-averaged material point method to solve
differential problems dominated by advective control, especially landslide phenomena and mud-
flows.

We verified the accuracy of the proposed framework with different benchmark tests and
showed that, by slightly varying the mathematical formulation of the problem, the method
turns out to be well-balanced in the presence of non-flat topographies. We also verified the
numerical conservation of masses and momenta between nodes and particles. Finally, we have
tested the numerical framework in a real scenario, obtaining coherent and consistent results
with respect to the available empirical data.

Modeling landslides or mudflow flow is very challenging, especially in populated areas, and
the development of predictive flow tools, in combination with impact analysis models, is an
active area of research [15, 46]. For this aim, among the various perspectives on this work,
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we mention the enrichment of the presented framework by developing more advanced DAMPM
formulations in order to limit stability issues in combination with space-adaptive states. Finally,
in order to study and simulate other kind of landslide phenomena, such as debris flows, it would
be important to consider multiphase models to take into account both the liquid and solid
phases [47].
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