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Abstract— Finding effective ways to perform cancer sub-
typing is currently a trending research topic for therapy opti-
mization and personalized medicine. Stemming from genomic
field, several algorithms have been proposed. In the context
of texture analysis, limited efforts have been attempted, yet
imaging information is known to entail useful knowledge for
clinical practice. We propose a distant supervision model for
imaging-based cancer sub-typing in Intrahepatic Cholangiocar-
cinoma patients. A clinically informed stratification of patients
is built and homogeneous groups of patients are characterized
in terms of survival probabilities, qualitative cancer variables
and radiomic feature description. Moreover, the contributions
of the information derived from the ICC area and from
the peritumoral area are evaluated. The findings suggest the
reliability of the proposed model in the context of cancer
research and testify the importance of accounting for data
coming from both the tumour and the tumour-tissue interface.

Clinical relevance—In order to accurately predict cancer
prognosis for patients affected by ICC, radiomic variables of
both core cancer and surrounding area should be exploited and
employed in a model able to manage complex information.

I. INTRODUCTION

Intrahepatic Cholangiocarcinoma (ICC) is an aggressive
disease of the family of cholangiocarcinomas, which are
tumors that stem from cholangiocytes of the biliary tree
[1]. Because of its increasing incidence and mortality over
the past three decades, it is now more than ever arising
the urgency to further characterize the disease at early
stages, as to modulate therapies and clinical decisions. In
fact, detecting at baseline information that might inform the
therapeutic pathway would allow to design more efficient
lines of treatments. Such perspective has recently grown and
developed in a research field, called personalized medicine,
that hinges its root in efficiently extracting insights from
multi-source patient data to shape clinical practice.

The promise made by personalized medicine in cancer
research calls for special efforts for fully exploiting the
information of data generated from different sources. A
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(luca.vigano@hunimed.eu) are with the Division of
Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital,
Rozzano, Milan, Italy and the Department of Biomedical Sciences,
Humanitas University, Pieve Emanuele, Italy

4F. Fiz (francesco.fiz@galliera.it) is with the Nuclear
Medicine Unit, E. O. Ospedali Galliera, Genova

6F. Ieva (francesca.ieva@polimi.it) is with the Department
of Mathematics, Politecnico di Milano, Milan, Italy and the Center for
Health Data Science, Human Technopole, Milan, Italy

pivotal role in this sense has been played by imaging texture
analysis, i.e., radiomics. It has become more and more impor-
tant thanks to its advantage to non-invasively give access to
tumor characterization [2]. Pertinently, radiomics consists in
high-throughput quantitative features extracted from regions
of interest in medical images such as CT or MRI scans.
These features, also known as radiomic or texture features,
can be many and are agnostic with respect to the clinical
application. They represent a way to describe the information
entailed in medical images and transform such information
into matrix-shaped data, easier to handle and study [3].
However, radiomics is known to intrinsically possess some
limitations, among all instability with respect to segmentation
procedures and complexity in exhaustively shape the imaging
representation of the lesions. In the context of ICC research,
it has been recently proposed to explore a wider area of
liver tumor for analysis, including both the very core of the
lesion and the margin surrounding it, as to capture also the
information of the tumor-tissue interface [4].

On the other hand, for as high-dimensional as they can be,
radiomic data need to be properly analyzed to stratify patients
basing on their cancer imaging texture characteristics. Ulti-
mately, such analysis would devise subpopulations with dif-
ferent prognosis on which different therapeutic actions could
be implemented. Many different techniques exist in literature
to perform cancer sub-tying, mainly related to genomics.
Recently, a promising distant-supervised approach has been
borrowed from genomics and proposed for radiomic data,
with the scope of carrying out clinically insightful patient
clustering [5]. Such approach was proven to outperform
other cancer subtyping methods proposed for genomic-based
stratification purposes [6]. The concept of distant supervision
comes from the Natural Language Processing field, where it
is used to do relation extraction and sentiment analysis [7]. It
consists on the training of a model for a task different from
the final scope, using labels that are not completely pertinent
with the problem to be tackled. It thus brings the possibility
to solve tasks with non-retrievable labels in a supervised way.
Here, the aim is to cluster patients in groups with different
prognosis exploiting their imaging characteristics to predict
survival estimates.

In this work, we exploit the Survival Supervised Graph
Clustering (S2GC) model [6] as a distant supervision ap-
proach for imaging-based cancer sub-typing in ICC. Our
aims and contributions are intended to be two-fold: (1) to
provide radiomic characterization of groups of patients at
different risk of death from ICC, in a risk stratification
fashion, and (2) to study the contributions of the core cancer
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Fig. 1. In blue the number of iterations needed by the model to converge
expressed as a function of γ , while in red the value of c-index as function
of γ

information and of the peritumoral tissue information as to
discuss potentialities and limitations of such approach.

II. DATA COLLECTION

Our study included two hundred and fifty-nine patients
diagnosed with ICC from six different centers. Per every
patient radiomic features, clinical variables and qualitative
disease information were collected. Both the segmentation of
regions of interest and the feature extraction phases were car-
ried out from the portal phase of the CT scans by experienced
radiologists using the LIFEx software (www.lifexsoft.org,
[8]). The extracted radiomic data consisted of 50 variables for
the core cancer segmentation and 50 variables for the margin
segmentation. Pertinently, the margin was computed as the
5-mm region that was semi-automatically generated around
the tumor by the software and then manually corrected to
ensure that only peritumoral liver tissue had been included.
Personal, i.e., sex and age, and tumor characteristics, i.e.,
size, number of nodules, ICC pattern [9] and grading, were
included along with comorbidities and treatment information.
The characteristics of the entire study population were co-
herent with those of the patients treated in the coordinating
center [10]. This study was performed according to the
Declaration of Helsinki. The local review board approved
the study and informed consent was waived given the obser-
vational retrospective design of the study.

III. METHODS

The analyses were developed as follows. First, a patient
representation has been built from radiomic vectors as ex-
tracted from CT regions of interest, i.e., the lesions. Every
patient vector carried the information extracted from both
the core and the margin. In this sense, two different views
of the tumor were assessed and analyzed for stratification,
describing the core-margin relationship of the lesion. Second,
the distant-supervised cancer sub-typing has been performed
by (1) estimating a patient-to-patient graph basing on their
imaging characteristics and survival probabilities and (2)
clustering such graph in homogeneous subpopulations of

nodes with similar properties. The algorithm’s hyperparame-
ters have been optimized. Finally, subpopulations of patients
have been clinically characterized with clinical variables,
exogenous to the model building, in order to validate the
stratification procedure.

A. Patient-to-patient graph estimation

According to Supervised Survival Graph Clustering model
[6] and its application to radiomic data [5], we performed the
abovementioned two steps to perform cancer sub-typing and
find clinically relevant clusters in ICC patients. The distant-
supervised patient-to-patient similarity graph estimation was
optimized basing on the following objective function:

min
w;S

m

∑
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−

n
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(
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n

∑
j

SI, j = 1,Si ⪰ 0; i = 1,2, . . . .,n.

(1)

The loss function in (1) is composed by four terms,
each with a specific methodological meaning and a clinical
counterpart. The first one represents the estimate of the
overall survival risks wk for each radiomic feature of the
k−th view. Estimates were computed by solving the negative
partial log-likelihood of the Cox model, where Xk

i is the
radiomic vector in k− th view of i− th patient and Ri the set
of patients observed alive almost at time Ti. In addition, δi is
the censoring variable, n is the number of patients and m the
number of radiomic views. Co-regularization between views’
contributions on prediction and penalization of covariates
are performed by a L2 regularization (second term) and L1
regularization (third term) respectively. Specifically, λ drives
the regularization between radiomic views which, in this
particular case, refer to the tumor core texture and the margin
texture. By analyzing the control parameter λ we want
to investigate the relationship of the core-margin interface
with respect to prognostic risks. On the other hand, the
sparsity control parameter η addresses the problem of high-
dimensional data, in a feature selection fashion. In addition,
importance ranking of features may be deduced according
to the penalization coupled with each variable. These terms
embody the core of distant supervision. In fact, we predict
survival-related risks using a Cox proportional model and
intend to exploit such risks, along with the imaging itself, in
the definition of similarity between patients. Accordingly,
the final term of (1) performs the learning of the graph
S structure, i.e., its affinity matrix. It considers both the
distance between observations in terms of radiomic views
and the survival information of patients estimated in the first
term. S is the Rn×n affinity matrix of the patient-to-patient
similarity graph where Si, j represents the similarity between
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Fig. 2. Values of c-index as function of η for four different values of λ

patients i and j. γ is the learning rate and µ a trade-off
parameter. In this way, two tasks are performed: the survival
analysis with the computation of w given S and the similarity
graph S estimation given the risks w.

B. Hyperparameters optmization

Grid search has been implemented for parameter optimiza-
tion: optimal values were found for λ (the co-regularization
parameter), η (the l1 penalization parameter) and γ (the
learning rate) by maximizing the Harrell’s concordance index
(c-index) of the estimated survival risks. Values returning the
higher c-index were selected as optimal values. As displayed
in Figure 1, the optimal choice was 0.04 for γ , meaning
that convergence is almost guaranteed but requires several
iterations, whereas regularization was found to be negligible.
As shown in Figure 2, λ = 0 and η = 0 were the values that
lead to the higher c-index performance.

C. Spectral clustering

A spectral clustering algorithm has been implemented for
clustering the graph nodes, i.e., the patients, as it is suitable
for medical application involving graphs [11]. The number
of clusters nc has been chosen by following the eigengap
heuristic, which can be applied to the graph Laplacians,
either normalized or non-normalized [12]. This consists in
choosing nc such that all the eigenvalues up to the nc− th
one are small whereas the (nc+1)−th one is relatively large.
Accordingly, the value of nc = 4 was selected. Clusters have
been further characterized with exogenous clinical variables,
testing differences on survival times and tumor qualitative
scores. Radiomic contributions to risk of death from ICC
have also been analyzed and discussed. P-values lower than
0.05 were considered significant and Bonferroni correction
for multiple testing has been used.

IV. RESULTS

Four cluster of patients have been obtained from the pro-
posed pipeline, leading to four different risk classes. Of note,
exploratory analysis has detected no confounders among
clinical and personal variables. In Figure 3, the Kaplan-
Meier overall survival probability curves for such groups are
displayed. Group 3 (yellow line) and group 4 (grey line),

Fig. 3. Kaplan-Meier curves estimating clusters’ survival probability.

however containing only few patients, were associated to
better and worse prognosis, with not-achieved and 42 days
median survival time respectively; group 1 (red line) featured
patients with slightly poorer yet promising prognosis with
median survival time of 3324 days; while group 2 (blue
line) exhibited patients at higher risk of death from ICC with
median survival time of 779 days.

Beside life expectancy, the four groups were different
in terms of qualitative tumor assessment. Dimensions of
tumors were found higher in groups at worse prognosis (p-
value = 0.0050). Tumors with pattern 3 were associated
to bad-prognosis groups (p-value = 0.0129) while tumors
with pattern 1 were significantly more present in the better-
prognosis groups. Groups with higher median survival time
contained patients with single nodule and at-risk groups had
patients with a higher number of nodules (p-value = 0.008).
The number of comorbidities was significantly different
among subpopulations as well, with higher values in at-
risk groups (p-value = 0.0166). Additionally, the majority of
patients who underwent Neoadjuvant Chemotherapy and Mi-
nor Hepatectomy were found in the better-prognosis groups
(p-value = 2.072e-05) while patients mainly undergoing
Major Hepatectomy without perioperative chemotherapy in
the worse-prognosis groups (p-value = 0.0025). This shows
that patients undergoing minor surgery without perioperative
chemotherapy and those undergoing major surgery with
chemotherapy have intermediate prognosis.

For what radiomic features are concerned, a ranking
has been made according to their associated risk w and
correspondent parameter of penalization. In Table I, the ten
most relevant features have been reported, each with its own
counterpart in the other view. In most of the cases, variables
provided opposite contributions to the cumulative risk of
death, supporting both the importance and the difference in
the two regions of interest.

V. DISCUSSION

The optimal values of the regularization terms, η for L1
and λ for L2, have been set to zero. On one hand, the null
L1 sparsity penalization implies the importance of all the
radiomic features in the prognosis estimating process. On the
other hand, the null L2 consistency radiomic view regulariza-
tion suggests the hypothesis of independence between core
and margin texture analysis, as claimed in previous works
[4]. Indeed, in the prediction of clinically relevant cancer
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TABLE I
WEIGHTS OF THE TEN MOST RELEVANT RADIOMIC FEATURES

Variable Core Risk Margin Risk
HUQ3 -0.3862 2.3952
HUmin -0.7687 -0.2666

GLZLM ZP 0.6417 -0.9747
GLCM Contrast -3.5331 4.0841
GLZLM LZLGE 5.9590 -3.4327

NGLDM Contrast -0.4712 -0.3298
HUExcessKurtosis -0.9529 0.1930

NGLDM Coarseness 0.6010 -0.2838
NGLDM Busyness -0.1775 -0.1023

sub-typing, the prognostic information carried by the two
views is both mandatory to consider and valuable to access.
As variable-dependent risk coefficients w can be studied
according to the penalization factor η , features that are more
likely to survive at different levels of η are to be considered
robust and important with respect to the task. Among these,
we have noticed how several radiomic variables provided
negative, i.e., subtractive, quantities to the patients’ cumula-
tive hazard. Interestingly, the very same variables provided
a different contribution when coming from the margin of
the tumor. For instance, HUQ3, which represents the third
quartile of the CT Hounsfield values, diminishes the survival
rates (risk of death) when high in the core area, since highly
calcified lesions present a marked contrast enhancement and
usually a decelerating growth pattern. It however enforces
the survival rates when high in the margin. This means
that the more accentuated this difference in the tumor-tissue
interface, the more aggressive the disease, thus the poorer
the prognosis of the outcome. Similar considerations can
be made for GLCM contrast, which is the variability of
the grey level co-occurrence matrix, and for HU Excess
Kurtosis, describing how widespread are the Hounsfield
values around the median. Opposite yet analogue conclusions
can be drawn for GLZLM ZP, that measures homogeneity
of the homogeneous zone, GLZLM LZLGE, which is the
distribution of the long homogeneous zones with low grey-
levels and NGLDM coarseness, i.e., the level of spatial
change rate in intensity. These parameters could be proxies of
intra-tumoral necrosis, detecting regions where Neoadjuvant
Chemotherapy was effective. Additionally, also when the risk
coefficient w brings the same sign in the two views, the
absolute value is never equal, leading to a milder yet similar
discussion. According to these findings, the two views pro-
vided different information that have proven their importance
to achieve a good performance in both cancer sub-typing
and survival analysis. Pertinently, a new frontier of texture
analysis is currently rising, that is the delta-texture analysis
(DTA) [13]. In fact, evaluating the difference between two
region of interest (spatial DTA) or the same region of interest
in two separate clinical time instant (temporal DTA) has
been shown to be more robust in oncological predictive task.
Moreover, the most undiscovered underpinnings of tumor
evolution would be explained with models encompassing
both delta-radiomic and genomic tumor information.

VI. CONCLUSIONS

In this work we proposed a distant supervision application
for radiomics in Intrahepatic Cholangiocarcinoma patients.
We performed cancer sub-typing for stratification of patients
into clinically relevant subpopulations. We provided radiomic
characterization of groups of patients at different risk and
we assessed the different contributions of the core cancer
information with respect to the margin information. Such ap-
plication could pave the way to spatial delta-texture analysis
in cancer research.
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