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Abstract

In this paper we analyze the numerical oscillations affecting time-staggered schemes for 0D-3D
fluid-structure interaction (FSI) problems, which arise e.g. in the field of cardiovascular modeling, and
we propose a novel stabilized scheme that cures this issue. We study two staggered schemes. In the
first one, the 0D fluid model prescribes the pressure to the 3D structural mechanics model and receives
the flow. In the second one, on the contrary, the fluid model receives the pressure and prescribes
the flow. These schemes are respectively known, in the FSI literature, as Dirichlet-Neumann and
Neumann-Dirichlet schemes, borrowing these terms from domain decomposition methods, although
here a single iteration is performed before moving on to the next time step. Should the fluid be
enclosed in a cavity, the Dirichlet-Neumann scheme is affected by non-physical oscillations whose
origin lies in the balloon dilemma, for which we provide an algebraic interpretation. Moreover, we
show that also the Neumann-Dirichlet scheme can be unstable for a range of parameter choices.
Surprisingly, increasing either the viscous dissipation or the inertia of the structure favours the onset
of oscillations. Our analysis provides an explanation for this fact and yields sharp stability bounds
on the time step size. Inspired by physical considerations on the onset of oscillations, we propose
a numerically consistent stabilization term for the Neumann-Dirichlet scheme. We prove that our
proposed stabilized scheme is absolutely stable for any choice of time step size. These results are
verified by several numerical tests. Finally, we apply the proposed stabilized scheme to an important
problem in cardiac electromechanics, namely the coupling between a 3D model and a closed-loop
lumped-parameter model of blood circulation. In this setting, our proposed scheme successfully
removes the non-physical oscillations that would otherwise affect the numerical solution.

Keywords Fluid-structure interaction, Time-staggered schemes, Numerical stability, Multiscale models,
Cardiovascular simulations

MSC Classification 65N

1 Introduction

The numerical solution of fluid-structure interaction (FSI) problems presents many challenges [2, 14, 31,
48]. Numerical instabilities often accompany time-staggered schemes, which alternate the solution of fluid
and solid subproblems [11, 15, 17, 24]. The numerical stability of these schemes has been investigated in
[8] and in subsequent works [4, 13, 16, 28]. In these research works, however, either the flow rate of the
incoming fluid or its pressure is considered to be assigned. This framework therefore does not include
cases of practical interest, such as the interaction between a cardiac chamber and blood. In this case,
in fact, the blood flow entering and leaving the chamber is not known a priori, but should be related
to the blood pressure by means of a suitable mathematical model describing the dynamics of the heart
valves [23, 43] (see Fig. 1). This can lead to numerical instabilities when using staggered schemes. As a
matter of fact, non-physical oscillations may occur even with simplified fluid models, such as 0D models
(lumped-parameter models) and by neglecting fluid inertia [3, 23, 32, 43]. These issues are still not well
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Figure 1: Representation of two model problems that fall within the scope of this paper. The problem
(a) consists of a cardiac chamber, represented as an idealized spherical cavity (in red), interacting with
blood (in blue), whose state is characterized by the pressure p and the volume V . The dynamics of the
chamber accounts for stiffness (Epass), inertia (M), viscosity (C) and the presence of an active tension
(Ta). The chamber is connected to an external region of pressure pext through a valve, characterized by a
blood flow resistance R, which is very large when pext ≥ p (closed valve), very small when pext < p (open
valve). As we will show, this problem can be formally reduced to the piston problem (b), in which a fluid
exerts a pressure p against a piston characterized by stiffness (E), inertia (M) and viscous damping (C).
The fluid flow is determined as Q = (pext − p)/R, where R is the fluid flow resistance. More details will
be provided below.

understood, and, to the best of our knowledge, to date there is no mathematical explanation for the
onset of oscillations and no estimates that can predict for which parameter values and time step sizes
they occur. Moreover, the only known cure to date is to use monolithic schemes (that is, solving the
coupled problem in one shot) instead of staggered ones.

In this paper we analyze and propose a cure for these numerical oscillations. To this end, we consider
the cardiac case as a model problem with a great applicative interest. This test case comprises several
features that are challenging from the numerical standpoint. Indeed, when the heart valves are closed
(during the so-called isovolumetric phases of the heartbeat), the problem translates into that of an
incompressible fluid enclosed in a cavity. Instead, when the outflow valves open, we have a rapid flow
ejection. Furthermore, this problem presents some peculiarities, related to the fact that the structure
does not move in a purely passive way, but might present an active stress. This, as we shall see, has
implications for numerical stability, and can be a further cause of non-physical oscillations. As for the
fluid, we will limit ourselves to a 0D description, which is typically adopted for simulations of cardiac
electromechanics [3, 23, 32, 43], and which in itself poses a wide range of numerical challenges.

At the continuous level, the 3D structure model and the 0D fluid model are coupled by imposing
the continuity of fluxes and pressures [35, 43]. At the numerical level, instead, several coupling schemes
between the 3D and the 0D sub-models are possible. An approach is to solve them simultaneously, as a
single monolithic system, by means, e.g., of a Newton nonlinear solver [23]. This requires at each iteration
the calculation of the Jacobian matrix, which contains the derivatives of the residual with respect to the
unknowns. However, assembling the blocks of the Jacobian matrix associated with the fluid model might
involve a significant implementation effort, especially for fluid models with a large number of unknowns
(see e.g. [1, 43]). An attractive alternative to monolithic schemes is represented by staggered schemes
(in some contexts called partitioned schemes), that alternate the solution of the fluid model and of the
structure mechanics model. This allows for a much easier implementation than monolithic schemes and
yields the possibility to reuse pre-existing (even black-box) solvers for either the 3D structure model or
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the 0D fluid model. However, as mentioned, staggered schemes may suffer from numerical instability,
which is manifested in non-physical oscillations in the solution.

In this paper we will focus on two staggered schemes. Within the first one, the structural model
provides the flows and receives the pressures from the fluid model; within the second scheme, instead,
the structural model provides the pressures and receives the flows. These schemes are known in the
literature, respectively, as Dirichlet-Neumann and Neumann-Dirichlet scheme [4, 8, 24, 28]. These names
are borrowed, with a little abuse of notation, from the field of domain decomposition methods (see e.g.
[38, 50]). However, it is important to note that, while in domain decomposition methods one iterates
between the two models until convergence, with time-staggered schemes one advances to the next time
step after a single iteration between the two models. Although with a 0D fluid there is no physical
boundary, we will use the terms Dirichlet-Neumann and Neumann-Dirichlet by analogy to the 3D case.
Indeed, in the 0D case, the Dirichlet condition translates into imposing fluid flow, while the Neumann
condition into imposing pressure.

Although the Dirichlet-Neumann scheme requires a simpler implementation than Neumann-Dirichlet’s
(pressures are assigned as boundary conditions to the structure mechanics model and fluxes are post-
processed from the displacement), it is characterized by serious numerical instability issues when an
incompressible fluid is enclosed in a cavity (this is the case, e.g., of isovolumetric phases of the heartbeat
[25]). This issue, known as balloon dilemma, is explained by the impossibility to satisfy the incompress-
ibility constraint of the fluid contained in the cavity if the pressure is assigned [5, 20]. As a workaround,
it is possible to iterate the resolution of the structure mechanics problem, updating the pressure based
on an estimate of the cavity compliance (i.e. ∂V /∂p, where p and V are the cavity pressure and volume,
respectively), in order to satisfy the volumetric constraint [18, 25]. However, a poorly accurate estimate
of the compliance could lead to a very slow convergence or even to failure of the solver.

To avoid the balloon dilemma, the pressures acting inside the cavities should not be decoupled from
the displacement. This requirement can be accommodated in the framework of the Neumann-Dirichlet
staggered approach, in which the structure mechanics model is solved under the constraint that the
volume contained in the cavity coincides with that predicted, at the previous iteration, by the fluid
model. Then, the obtained pressure is provided to the fluid model, to advance to the next time iteration.
The pressure in the cavity can be interpreted in this context as a Lagrange multiplier that ensures that
the volume constraint is satisfied [3, 35, 43].

The Neumann-Dirichlet scheme solves the balloon dilemma and prevents the spurious oscillations
that would otherwise occur for cavity problems when using the Dirichlet-Neumann scheme. However, it
is possible that in presence of a rapid fluid flow (e.g. in cardiac case, when at least one valve is open)
non-physical oscillations still occur, even when using the Neumann-Dirichlet scheme. In Fig. 2 we display
an example of oscillations obtained when applying the Neumann-Dirichlet scheme to a multiscale model
of cardiac electromechanics of the left ventricle (the model is described in detail in Sec 5.2). As we will
show, these oscillations may depend on the time step used, on the model parameters (in particular the
stiffness, viscosity and inertia associated with the structure) and on the force generation model in use.

As mentioned, this paper has a twofold objective. On the one hand, it aims to provide a theoretical
basis that explains the occurrence of these oscillatory phenomena and that can predict for which parameter
values and for which time step range the numerical scheme is stable. On the other hand, it proposes a
stabilized scheme that cures these non-physical oscillations, while retaining the advantages of staggered
schemes.

The paper is organized as follows. First, in Sec. 2, we introduce the mathematical models and the
numerical schemes considered in this paper. Then, in Sec. 3 we study the numerical stability of the
schemes introduced above. In Sec. 4 we propose a cure for the observed instability issues, by means
of the introduction of a numerically consistent stability term. Then, in Sec. 5, we present and discuss
several numerical results obtained, on the one hand, with a model FSI problem and, on the other hand,
with a multiscale and multiphysics model of cardiac electromechanics. Finally, we draw our conclusions
and final remarks in Sec. 6.
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Figure 2: Non-physical oscillations, obtained when employing the Neumann-Dirichlet scheme to numer-
ically approximate the left ventricle model of cardiac electromechanics described in Sec 5.2. The graph
shows the simulation results in the pressure-volume phase plane. The onset of oscillations is shown in
two enlargements (left).

2 Mathematical models and numerical schemes

In this section we introduce a generic model of cardiac mechanics and blood dynamics, encompassing
many of the models available in the literature [3, 23, 32, 43] and the associated numerical schemes that
will be addressed in the sequel of this paper.

2.1 Mathematical models

We consider a computational domain Ω0, representing the region of space occupied by the muscle tissue
at rest (see Fig. 3). The domain Ω0 can represent a 4-chamber whole heart, or a part of it, composed
of N < 4 chambers. To each point of Ω0, we associate a unit vector f0, denoting the local direction
of cardiac fibers. Let us denote by d(x, t) the displacement of the material point x at time t (we
have d : Ω0 × [0,+∞) → R3). We then introduce the variables p1(t), p2(t), . . . , pN (t), which represent
the (constant in space) blood pressures contained in the N heart chambers. Similarly, we denote by

Γendo,i
0 ⊂ ∂Ω0, for i = 1, . . . , N , the domain boundary associated with the i-th chamber (endocardial

cavity). Since the cardiac tissue is an active material, we denote by Ta(x, t) the local active tension that
acts in the fiber direction. The active tension can be a priori imposed [3], or provided by means of
a suitable cardiomyocyte model [30, 41, 47]. Finally, to model the passive mechanical behavior of the
tissue, we consider an hyperelastic model, associated with the strain energy density functionalW. Hence,
the Piola-Kirchhoff stress tensor reads

P(d, Ta) =
∂W(F)

∂F
+ Ta

Ff0 ⊗ f0√
I4f

, (1)

where the invariant I4f = Ff0 · Ff0 is a measure of the tissue stretch along the fiber direction. In
conclusion, the dynamics of the displacement field d is described by the following equation, expressing

4



Figure 3: Representation of the domain and boundary conditions of problem (2) with four cavities
(N = 4), corresponding to the two atria and the two ventricles.

the balance of momentum for the continuum [34]:

ρ
∂2d

∂t2
−∇ ·P(d, Ta) = 0, in Ω0 × (0,+∞),

P(d, Ta)N = −pi JF−TN on Γendo,i
0 × (0,+∞), for i = 1, . . . , N,

+ boundary conditions on Γother
0 × (0,+∞),

d = d0,
∂d

∂t
= 0, in Ω0 × {0},

(2)

where N denotes the outer unit normal vector and where suitable boundary conditions are assigned on
the remaining portion of the boundary Γother

0 = ∂Ω0 \
⋃N
i=1 Γendo,i

0 . Typically, spring-dashpot boundary
conditions are considered, to account for the presence of the pericardium (see e.g. [43, 52]).

For the sake of brevity, in what follows we will write Eq. (2) in the following compact form, by denoting
by p(t) = (p1(t), p2(t), . . . , pN (t)) the vector of the N pressures:{

L(d̈(t), ḋ(t),d(t),p(t), t) = 0 t > 0,

d(0) = d0, ḋ(0) = 0,
(3)

In the structure mechanics model (3), henceforth called model S, by L we denote a differential operator
that encodes both the PDE and the the associated boundary conditions. Moreover, ḋ and d̈ denote the
first and second time derivatives. These terms are associated with viscosity and inertia, respectively. In
particular, viscous effects can be due either to the boundary conditions or to a viscoelastic model used
in replacement of the hyperelastic model of Eq. (1). Some authors neglect these terms, i.e. consider a
quasi-static formulation, which can be obtained as a special case of (3) [37]. In what follows we will
investigate the effects of neglecting inertia, viscosity or both in the structure mechanics model, in terms
of numerical stability of the discrete scheme.

To close the model S, we couple it with a lumped-parameter model of fluid dynamics (denoted as
model F), describing the vessels surrounding the heart, or even the whole circulatory system. We consider
an ODE model in the form of {

ċ(t) = H(c(t),p(t), t) t > 0,

c(0) = c0,
(4)
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where c(t) is the state vector of the model F (including pressures, volume and fluxes of the circulatory
compartments represented within the model). For concrete examples of (4), see [7, 23, 43].

To couple the models S and F , we consider the following pairing condition, that enforces the corre-
spondence of the cardiac chamber volumes represented within the two models:

VS(d(t)) = VF (c(t)) t > 0, (5)

where VS = (V 1
S , V

2
S , . . . , V

N
S ) and VF = (V 1

F , V
2
F , . . . , V

N
F ) are two vectors collecting the blood volumes

associate with the N cardiac chambers, as predicted by the S and F models respectively. Hence, the
coupled FSI model F–S reads 

L(d̈(t), ḋ(t),d(t),p(t), t) = 0 t > 0,

ċ(t) = H(c(t),p(t), t) t > 0,

VS(d(t)) = VF (c(t)) t > 0,

d(0) = d0, ḋ(0) = 0, c(0) = c0.

(6)

We remark that the blood pressures p(t) can be interpreted in this context as Lagrange multipliers that
enforce the volume compatibility between the models S and F at each time t > 0.

2.2 Numerical schemes

We now deal with the numerical approximation of the FSI model F–S. Since our goal is to investigate the
numerical stability properties of the time discretization scheme, we do not focus on any particular space
discretization technique. For example, we observe that Eq. (6) can be interpreted as a system of ODEs
resulting from the semi-discretization in space of the continuous model, using, e.g., the Finite Element
Method [10]. Furthermore, for simplicity, we consider a first-order finite difference scheme to advance the
individual models in time.

We consider a uniform sampling of the time interval with time step ∆t > 0. Specifically, we define
tk = k∆t, and we denote with superscript (k) the approximation of a given variable at the k-th time
iteration (e.g., we have d(k) ≈ d(tk)).

Monolithic scheme

One solution approach is to address at each time step the monolithic system:
L
(

d(k+1) − 2d(k) + d(k−1)

∆t2
,
d(k+1) − d(k)

∆t
,d(k+1),p(k+1), tk+1

)
= 0 k = 0, 1, . . .

c(k+1) − c(k)

∆t
= H

(
c(?),p(k+1), tk+1

)
k = 0, 1, . . .

VS(d(k+1)) = VF (c(k+1)) k = 0, 1, . . .

(7)

with the following initial conditions (we shall henceforth consider these conditions to be understood)

d(0) = d(−1) = d0, c(0) = c0. (8)

Concerning the time advance of the two sub-models S and F , we consider a fully implicit scheme for
the former (due to its stiffness [19]), while for the latter we consider either an implicit scheme (setting
(?) = (k + 1)) or an explicit one (setting (?) = (k)).
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ND scheme: Neumann (fluid) - Dirichlet (solid)

An alternative approach to the monolithic scheme is to solve the two models in a staggered way. A
possible instance is:L

(
d(k+1) − 2d(k) + d(k−1)

∆t2
,
d(k+1) − d(k)

∆t
,d(k+1),p(k+1), tk+1

)
= 0 k = 0, 1, . . .

VS(d(k+1)) = VF (c(k)) k = 0, 1, . . .{
c(k+1) − c(k)

∆t
= H

(
c(?),p(k+1), tk+1

)
k = 0, 1, . . .

(9)

At each time step we first update the variable d(k+1), under the volume constraint VS(d(k+1)) =
VF (c(k)). For this condition to be satisfied, the multiplier p(k+1) must necessarily be determined si-
multaneously with d(k+1). Successively, we update the variable c(k+1) by employing the pressure vector
p(k+1) determined as above.

We denote the scheme as Neumann-Dirichlet (ND) scheme, as the fluid variable c is updated by
assigning the pressure (which, in this context, can be regarded as a stress on the fluid), while the solid
variable d is updated by assigning the volume (which amounts to prescribe the displacement).

DN scheme: Dirichlet (fluid) - Neumann (solid)

The dual of the ND scheme of Eq. (9) reads
c(k+1) − c(k)

∆t
= H

(
c(?),p(k+1), tk+1

)
k = 0, 1, . . .

VF (c(k+1)) = VS(d(k)) k = 0, 1, . . .{
L
(

d(k+1) − 2d(k) + d(k−1)

∆t2
,
d(k+1) − d(k)

∆t
,d(k+1),p(k+1), tk+1

)
= 0 k = 0, 1, . . .

(10)

Differently to the ND scheme, here the pressures p(k+1) are determined simultaneously with the variable
c(k+1) of model F , and are then passed to the model S. For this reason, we call this scheme Dirichlet-
Neumann (DN), since the fluid subproblem is solved with assigned volume (that is by controlling the
displacement), while the structural subproblem is solved with assigned stress at the boundary.

3 Stability analysis

In this section, we study the numerical stability of the schemes presented in Sec. 2.2. With this goal,
we introduce a minimal model, that is a simplified model of cardiac mechanics that features a minimal
degree of complexity, but sufficient to reproduce a variety of behaviors exhibited by more comprehensive
models.

3.1 A minimal model of cardiac mechanics

To define the minimal model F–S, we consider a zero-dimensional description of a single cardiac chamber,
depicted in Fig. 1a. More precisely, we consider the following model of cardiac mechanics (model S),
where VS(t) denotes the chamber volume and represents the unique state variable{

MV̈S(t) + CV̇S(t) + ppass(VS(t)) +ATa(t) = p(t) t > 0,

VS(0) = V0, V̇S(0) = 0.
(11)

This model accounts for both inertia and viscous damping, through the coefficients M ≥ 0 and C ≥ 0,
respectively. The coefficient A ≥ 0 is associated with the active force generated by the muscle. Finally
ppass(VS) represents the steady-state pressure corresponding to a given volume VS when the chamber is
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fully relaxed (i.e. Ta = 0). It thus corresponds to the end-diastolic (ED) pressure-volume relationship,
also known as Klotz’s curve [26]. The function ppass should be constitutively prescribed and it represents
the 0D fingerprint of the 3D hyperelastic constitutive law.

Concerning the model F , we connect the cardiac chamber to a valve and we consider a prescribed
external pressure pext(t). Thus, the chamber volume VF (t) evolves according to following simple fluid
model (model F): {

V̇F (t) = Qvalve(pext(t)− p(t)) t > 0,

VF (0) = V0,
(12)

where Qvalve is given by either Qout
valve or Qin

valve:

Qout
valve(∆p) =


∆p

Rmin
, if ∆p < 0,

∆p

Rmax
, if ∆p ≥ 0,

, Qin
valve(∆p) =


∆p

Rmax
, if ∆p < 0,

∆p

Rmin
, if ∆p ≥ 0,

(13)

where Rmax � 1 and Rmin � 1 represent the hemodynamic resistances corresponding to a closed and
open valve, respectively. The function Qout

valve (respectively, Qin
valve) describe an outflow (respectively,

inflow) valve. Indeed, the valve is open in case of negative (respectively, positive) pressure gradient and
vice versa.

Hence, the coupled minimal model F–S reads
MV̈S(t) + CV̇S(t) + ppass(VS(t)) +ATa(t) = p(t) t > 0,

V̇F (t) = Qvalve(pext(t)− p(t)) t > 0,

VS(t) = VF (t) t > 0,

VS(0) = V0, V̇S(0) = 0, VF (0) = V0,

(14)

which represents a particular case of Eq. (6), provided we adopt the following identification for the (one-
dimensional) state variables d(t) = [VS(t)] and c(t) = [VF (t)]. A further abstraction of the cardiac
mechanics minimal model (14) is the piston problem in Fig. 1b. This is formally obtained from the model
(14), by employing the linearly elastic law ppass(VS) = E(VS − V0), where E > 0 is known as elastance
and V0 is the resting volume, by neglecting active force and by assuming a constant fluid flow resistance
R.

The ND scheme applied to the minimal model (14) readsM
V

(k+1)
S − 2V

(k)
S + V

(k−1)
S

∆t2
+ C

V
(k+1)
S − V (k)

S
∆t

+ ppass(V
(k+1)
S ) +ATa(tk+1) = p(k+1) k = 0, 1, . . .

V
(k+1)
S = V

(k)
F k = 0, 1, . . .{

V
(k+1)
F − V (k)

F
∆t

= Qvalve(pext(tk+1)− p(k+1)) k = 0, 1, . . .

(15)
with initial conditions

V
(0)
S = V

(−1)
S = V

(0)
F = V0.

Conversely, the DN scheme reads (with the same initial conditions as above)
V

(k+1)
F − V (k)

F
∆t

= Qvalve(pext(tk+1)− p(k+1)) k = 0, 1, . . .

V
(k+1)
F = V

(k)
S k = 0, 1, . . .{

M
V

(k+1)
S − 2V

(k)
S + V

(k−1)
S

∆t2
+ C

V
(k+1)
S − V (k)

S
∆t

+ ppass(V
(k+1)
S ) +ATa(tk+1) = p(k+1) k = 0, 1, . . .

(16)
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3.2 Definitions and lemmas

Before studying the numerical stability of the schemes (15) and (16), we recall the definition of zero-
stability and absolute stability of a numerical scheme [36]. The definitions refer to the following abstract

problem, where ψ(k) ∈ Rd denotes the state variable at time tk:{
ψ(k) = Φ(ψ(k−1), tk,∆t) k = 1, 2, . . .

ψ(0) = ψ0,
(17)

We notice that both the ND an DN schemes are particular cases of Eq. (17), as we show in Sec. 3.3. We
then consider the perturbed problem:ψ̃

(k)
= Φ(ψ̃

(k−1)
, tk,∆t) + ∆tη(k) k = 1, 2, . . .

ψ̃
(0)

= ψ0 + η(0),
(18)

where η(k) denotes a suitable perturbation. We consider the following definitions [36].

Definition 1 (zero-stability). Let us consider a finite time T > 0 and a uniform subdivision of the time
interval (0, T ) into N subintervals, i.e. ∆t = T/N . The numerical scheme (17) is said zero-stable if

∃∆t0 > 0, ∃C > 0 : sup
k=0,...,N

|ψ̃
(k)
−ψ(k)| ≤ C(T ) sup

k=0,...,N
|η(k)| ∀∆t ∈ (0,∆t0],

where ψ(k) and ψ̃
(k)

are solutions to problems (17) and (18), respectively.

Definition 2 (absolute stability). Let us consider a given time step size ∆t > 0. We consider the
solution of the numerical problem for tk → +∞. The numerical scheme (17) is said absolutely stable in
correspondence to ∆t if

∃C > 0 : lim
k→+∞

|ψ̃
(k)
−ψ(k)| ≤ C sup

k≥0
|η(k)|,

where ψ(k) and ψ̃
(k)

are solutions to problems (17) and (18), respectively. Moreover, we say that the
method is unconditionally absolutely stable if it is absolutely stable for any ∆t > 0.

The zero-stability property of a scheme guarantees that its solution does not blow up on a finite time
horizon when ∆t → 0+. This is particular entails that the noise introduced by round-off errors is not
amplified. The absolute stability property deals instead with the behavior of the solution for t → +∞.
Unconditional absolute stability is a stronger notion than zero-stability [36].

The stability properties of a numerical scheme in the form (17) can be linked with the spectral
properties of the Jacobian matrix of the iteration function Φ. Specifically, they are linked with its
spectral radius (i.e. the modulus of the largest eigenvalue), denoted by ρ(·). We recall the following
result, proved in [45]:

Lemma 1 (Prop. 1 of [45]). Let us consider the numerical scheme (17) with Φ: Rd × R+ × R+ → Rd
differentiable with respect to its first argument. If the condition

∃∆t0 > 0, ∃α ∈ R : ρ

(
∂Φ(ψ, t,∆t)

∂ψ

)
≤ 1 + α∆t ∀ψ ∈ Rd, t ≥ 0, ∆t ∈ (0,∆t0] (19)

holds true, then the scheme (17) is zero-stable. Moreover, if for a given ∆t the condition

∃ ρ0 < 1: ρ

(
∂Φ(ψ, t,∆t)

∂ψ

)
≤ ρ0 ∀ψ ∈ Rd, t ≥ 0, (20)

holds true, then the scheme is absolutely stable in correspondence to ∆t.
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We have then the following result.

Lemma 2. Let us suppose that the iteration function Φ in Eq. (17) is assigned implicitly by

H(ψ(k),ψ(k−1), tk,∆t) = 0 k = 1, 2, . . . (21)

where H : Rd ×Rd ×R+ ×R+ → Rd is continuously differentiable in its first argument and differentiable
with respect to the second one. We define, for ψ2,ψ1 ∈ Rd, t > 0, ∆t > 0:

A(ψ2,ψ1, t,∆t) :=
∂H(ψ2,ψ1, t,∆t)

∂ψ2

∈ Rd×d,

B(ψ2,ψ1, t,∆t) :=
∂H(ψ2,ψ1, t,∆t)

∂ψ1

∈ Rd×d.
(22)

Then, if A(ψ2,ψ1, t,∆t) is non-singular, the Jacobian matrix of the iteration function is given by

∂Φ(ψ1, t,∆t)

∂ψ1

= −A−1(ψ2,ψ1, t,∆t)B(ψ2,ψ1, t,∆t)

where ψ2 = Φ(ψ1, t,∆t).

Proof. This is a direct consequence of the implicit function theorem (see e.g. [27]).

Thanks to Lemmas 1 and 2, both zero-stability and absolute stability of a numerical scheme assigned
in implicit form (such as the ND and DN schemes of Eqs. (9) and (10)) can be linked with the spectral
properties of the Jacobian matrix −A−1B. In particular, a spectral radius strictly lower than 1 entails
absolute stability (and hence zero-stability).

3.3 Spectral analysis

We now study, on the basis of the results of Sec. 3.2, the numerical stability of the ND and DN of Eqs. (15)
and (16). We observe that both the schemes can be recast in the abstract form (17), provided that we

define, for k ≥ 0, the state vector ψ(k) := (V
(k)
S , V

(k−1)
S , V

(k)
F , p(k))T . The matrices A and B, for the ND

and DN schemes, are respectively given by

AND =


E + M

∆t2 + C
∆t − M

∆t2 0 −1
0 1 0 0
0 0 ∆t−1 R−1

1 0 0 0

 ; BND =


−
(
M

∆t2 + C
∆t

)
M

∆t2 0 0
−1 0 0 0
0 0 −∆t−1 0
0 0 −1 0

 ;

ADN =


E + M

∆t2 + C
∆t − M

∆t2 0 −1
0 1 0 0
0 0 ∆t−1 R−1

0 0 −1 0

 ; BDN =


−
(
M

∆t2 + C
∆t

)
M

∆t2 0 0
−1 0 0 0
0 0 −∆t−1 0
1 0 0 0

 .

(23)

We have defined
E(VS) = Epass(VS) = p′pass(VS)

as the elastance of the cardiac chamber, while R denotes either Rmin or Rmax, depending on whether
the valve is open or closed. As E and R depend on the current state, also A depends on the state.
Nonetheless, we will leave this dependence as understood.

We now numerically study the spectrum of the Jacobian matrix −A−1B, for different parameters
values. As reference values, we consider those given in Tab. 1, which correspond to realistic values for the
mechanics of a human left ventricle (see Appendix A). In particular, we investigate the effect of inertia
(M 6= 0) and viscous damping (C 6= 0), compared to a quasi-static formulation of the structure mechanics
problem (M = C = 0). First, in Sec. 3.3.1, we consider the case of closed valve (R = Rmax); then, in
Sec. 3.3.2, that of open valve (R = Rmin).
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Parameter Measure unit Value

Epass mmHg mL−1 0.09
Eact mmHg mL−1 36
C mmHg mL−1 ms 24
M mmHg mL−1 ms2 8.6
Rmax mmHg mL−1 s 7.5 · 104

Rmin mmHg mL−1 s 7.5 · 10−3

Table 1: Reference parameters of the minimal model of Eq. (11). These values are derived in Appendices A
and B by means of a 0D reduction of the 3D cardiac mechanics model described in Sec. 5.2.1.
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Figure 4: Eigenvalues of the Jacobian matrix −A−1B for the ND and DN schemes in the closed valve
case (R = Rmax, E = Epass). From left to right: quasi-static case, only viscosity enabled, only inertia
enable, both viscosity and inertia enabled.

3.3.1 Closed valve

Let us consider the case of a closed valve (which corresponds to R = Rmax). In Fig. 4 we show the
dependence of the eigenvalues of −A−1B on the time step size ∆t, in the quasi-static case and when
adding inertia and/or viscosity. We observe that in all the cases, the ND scheme has all eigenvalues
with modulus less than one and it is therefore numerically stable. The DN scheme, instead, has a very
large negative eigenvalue (µ < −105). Adding inertia and viscosity slightly lowers its magnitude, which
however is still very high).

The instability of the DN scheme when the valve is closed is due to the balloon dilemma [5, 20], that is
the impossibility of satisfying the incompressibility constraint when the pressure is assigned. As a matter
of fact, by considering for simplicity the quasi-static case (C = M = 0), the eigenvalues of the Jacobian
matrix −A−1B read

µ± =
Rmax

2E∆t

(
±
√

1 +
4E∆t

Rmax
− 1

)
.

When we approach the incompressible limit (i.e. for Rmax → +∞), µ+ → 1− and µ− → −∞. Hence, the
more the valve resists blood flow, the greater the magnitude of the numerical oscillations will be, because
of the eigenvalue µ− → −∞. This provides in fact an algebraic interpretation of the balloon dilemma.

3.3.2 Open valve

Let us now consider the case of an open valve (corresponding to R = Rmin). In the case of quasi-static
mechanics, as shown in the left-most plot of Fig. 5, the ND scheme is absolutely stable for small ∆t, and
unstable for large ∆t, while the DN scheme has opposite behavior. More precisely, there exists a critical
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Figure 5: Eigenvalues of the Jacobian matrix −A−1B for the ND and DN schemes in the open valve case
and without inertia (R = Rmin, E = Epass, M = 0), for increasing viscosity (see titles).

∆t that acts as threshold of absolute stability for the two schemes ND and DN (for the parameter values
here considered, it is approximately ∆t = 0.1 s). Moreover, as the zero-stability property of a scheme
deals with its behavior for ∆t→ 0+ (see Def. 1), the ND scheme, unlike the DN scheme, is zero-stable.

We now study the effect of inertia and viscosity. In Fig. 5 we consider the spectrum in the case M = 0
and for increasing viscosity. Similarly, in Fig. 6, we set C = 0 and we consider increasing values of M
(increasing inertia). The presence of either viscosity or inertia is able to stabilize the DN scheme, whereas
it worsens the stability properties of the ND scheme. More precisely, both viscosity and inertia introduce
in the spectrum associated with the ND scheme an eigenvalue with negative real part, which, for some
values of ∆t, has modulus greater than 1 thus making the ND scheme unstable. Moreover, Fig. 5 shows
that there is a critical viscosity value, above which the ND scheme is never stable. Instead, inertia makes
the ND scheme unstable for low values of ∆t (see Fig. 6). Therefore, when inertia is present, the scheme
turns out to be absolutely stable only in an interval of values of ∆t, which gets narrower and narrower as
M increases. We notice that, since for ∆t → 0+ inertia always yields an eigenvalue of modulus greater
than 1, the presence of inertia makes the ND scheme to be non zero-stable.

Finally, in Fig. 7 we show the combined effects of viscosity and inertia. This is in line with the results
obtained above: the presence of viscosity and inertia improves the stability of the DN scheme and worsens
that of the ND scheme.

3.3.3 The effect of active stress

In the minimal model (11), the amount of active stress Ta(t) is prescribed. However, very often in the
literature, the active stress is computed by means of suitable models describing the subcellular activity of
cardiomyocytes [30, 41, 47]. These models are typically characterized by a feedback from the myocardial
mechanics model: when the tissue rapidly contracts, the force generated decreases [40]. For this reason,
we now investigate the effect that this feedback may have on the stability analysis conducted above.

At the macroscopic level, the effect of the feedback acting from tissue mechanics to force generation
is known as force-velocity relationship and was first observed by the Nobel laureate Archibald V. Hill
in 1938 [22]. Its origin lies in fact at the microscopic level. The active force is generated by a very
large number (approximately 108 per mm3 of tissue) of crossbridges, that is bounded actin-myosin pairs.
Each myosin protein, due to its elasticity, acts as a microscopic spring, thus producing the active force
observable at the macroscopic level. The presence of these actin-myosin bonds not only generates a net
force in the direction of the cardiac fibres, but also has the effect of opposing rapid changes in fibre
length (whence the force-velocity relationship observed by A. V. Hill). Their action therefore results in
an increased stiffness of the tissue.

As a matter of fact, the active stiffness (that is the amount of stiffness associated with attached
crossbridges) can be computed from the active force generation at hand. Let us consider a generic force
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Figure 6: Eigenvalues of the Jacobian matrix −A−1B for the ND and DN schemes in the open valve case
and without viscosity (R = Rmin, E = Epass, C = 0), for increasing inertia (see titles).
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generation model, in the following form (that encompasses most of the models available in literature, see
e.g. [29, 30, 33, 41, 46]) 

ṙ(t) = h
(
r(t), c(t), λ(t), λ̇(t)

)
, t > 0,

Ta(t) = g (r(t)) , t > 0,

r(0) = r0,

(24)

where r(t) is the state variables vector, c(t) is the intracellular calcium concentration (an input of the
model, often denoted by [Ca2+]i), while λ =

√
I4f − 1 represents the tissue strain in the fiber direction.

Finally, h and g are suitable functions. As shown in [45], the active stiffness (henceforth denoted as Ka)
is given by

Ka =
∂Ṫa

∂λ̇
= ∇rg ·

∂h

∂λ̇
. (25)

To study the effect of using a force generation model as in Eq. (24) on the stability of the numerical schemes
considered in this paper, we proceed as follows. First, we consider the coupled model obtained by pairing
the minimal model of Eq. (14) with Eq. (24). Then, we study the spectrum of the Jacobian matrix
−A−1B associated with the numerical discretization of this coupled model and we apply Lemma 1. In
Appendix B we report the detailed calculations in this regard and we here report only the final result. We
show that adding an active mechanics model has the equivalent effect of increasing the passive elastance
Epass. More precisely, we obtain matrices equivalent to Eq. (23), but where the passive elastance Epass is
replaced by an augmented elastance given by E = Epass +Eact. As a matter of fact, the active elastance
Eact is proportional to the active stiffness Ka. This result is not surprising, but on the contrary it is in
line with the microscopic interpretation of the force-velocity relationship mentioned above, whereby the
latter results from an increase in microscopic stiffness due to attached crossbridges.

The above remarks also makes it possible to apply the results of Sec. 3.3 to the case of using force
generation models that take into account the force-velocity relationship, provided that we consider a
suitably augmented elastance. In fact, at the peak of systole, active elastance Eact is much larger
than passive elastance Epass (up to 400 times greater, see Appendix B). This implies that using a force
generation model with force-velocity relationship, rather than using a prescribed force transient, might
substantially impact the numerical stability of the scheme in use.

In Fig. 8 we study the eigenvalues of the Jacobian matrix −A−1B for both the ND and DN schemes
for increasing values of the total elastance E. Specifically, we move from the case when the tissue is fully
deactivated (E = Epass) to the case of full activation (E = Epass +Eact). Intermediate values correspond
to a partial activation of the tissue. The results show that the presence of an active stress betters the
stability properties of the DN scheme, while it worsen those of the ND scheme. Let us consider for
instance the quasi-static case (forst row of Fig. 8). When the tissue if not activated, the ND scheme is
absolutely stable if and only if ∆t < ∆t, where the stability threshold is approximately ∆t ' 2 · 10−1 s.
When the tissue is fully activated, however, the stability threshold is much stricter (∆t ' 5 · 10−4 s).

3.4 Analysis of the non-physical oscillations

The spectral analysis of Sec. 3.3 allowed us to identify the ranges of parameters and of ∆t for which the
ND and DN schemes are either stable or unstable. We now analyze, in light of the results of Sec. 3.3, the
non-physical oscillations that can occur using the two ND and DN schemes, when the stability conditions
are not met. The occurrence of these oscillations is represented schematically in Fig. 9.

Let us first consider the ND scheme (first row of Fig. 9). At the first step (ND-a), since the external
pressure (pext) is higher than the chamber pressure (p), the fluid model predicts a blood flow Q towards
the chamber and a consequent increase in volume V . At the next step (ND-b), the structure mechanics
model receives as an input the volume calculated at step ND-a and generates, due to the increase in
volume, an increase in pressure. If the time step length ∆t is sufficiently large, the pressure increase
is such that p is now greater than pext, thus generating a backflow at the fluid substep ND-c, which
leads to a decrease in volume. At step ND-d the pressure must necessarily drop, thus returning to the
state represented in step ND-a and the cycle is repeated. The onset of oscillations is therefore related
to the amplitude of pressure jumps occurring in ND-b and ND-d. If these are large enough to reverse
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Figure 8: Eigenvalues of the Jacobian matrix −A−1B for the ND and DN schemes in the open valve case
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Figure 9: Schematic representation of the oscillations occurring with the ND scheme (top) and with the
DN scheme (bottom). The substeps associated with the solution of the structure mechanics problem
(model S) are shown in blue, while those related to the fluid problem (model F) are shown in red.
The chamber is represented as a balloon, with a volume V associated with it. The height of the bullet
above the balloon symbolizes the associated pressure, while the bullet on the left represents the external
pressure. When the latter is higher, there is a positive pressure gradient between the outer and inner
regions of the chamber; when it is lower, the pressure gradient is negative.

the sign of the pressure gradient, nonphysical oscillations occur. It is clear that a large pressure jump is
favored by a small value of ∆t and by a large value of the elastance E. This is in line with the results in
Sec. 3.3. Moreover, when viscosity or inertia are included into the model, the cardiac chamber opposes
rapid changes in volume more strongly. Therefore, in ND-b and ND-d, where a volume change is imposed,
the larger the inertia or viscosity, the larger the pressure jump with which the model responds. This is
also in line with the findings of Sec. 3.3, predicting that, when using the ND scheme, the presence of
viscosity or inertia makes it more likely that oscillations will occur.

Conversely, in the DN scheme (second row of Fig. 9), the pressure is determined by the fluid model,
which receives volume changes as input from the structure mechanics model. In this case, therefore, large
elastance (E), viscosity (C) or stiffness (M) hamper the non-physical oscillations. In fact, each of these
factors causes the structure mechanics model to respond with smaller volume changes to a given pressure
change, thus preventing numerical instabilities from being generated. This is also consistent with the
results of the spectral analysis of Sec. 3.3, whereby the DN scheme enjoys better stability properties
when either E, C or M are large.

4 Stabilized scheme

In this section, we propose a numerical scheme that cures the numerical instabilities analyzed in Sec. 3.
First, in Sec. 4.1, we present the rationale behind its derivation. Then, we study its stability properties
using the tools introduced in Sec. 3.2, by considering the minimal model (Sec. 4.2). Finally, in Sec. 4.3,
we generalize the result for a generic structure model.
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4.1 Derivation of the stabilized scheme (ND-stab)

The analysis of Sec. 3 revealed that the DN scheme might feature eigenvalues with a very large modulus
(this is related to the balloon dilemma, see Sec. 3.3.1). In comparison, the worst case of the ND scheme
has less severe instabilities issues. For this reason, we focus on the latter scheme, and we aim to find a
stabilization term that cures the numerical oscillations that might occur.

Following the analysis of Sec. 3.4, the non-physical oscillations are related to the structure mechanics
substep, which updates the pressure while being unaware of the effect the pressure update will have on
the volume change within the next fluid substep. A too large change in pressure might indeed reverse
the flux through the valve. To cure this issue, we porpose to incorporate, within the structure mechanics
substep, a prediction of the volume variation due to the net blood flux that will be generated within the
next fluid substep. Specifically, within (15), we replace the equation

V
(k+1)
S = V

(k)
F (26)

by the equation

V
(k+1)
S = V

(k)
F + ∆tQstab(p(k+1), tk+1). (27)

having defined
Qstab(p, t) = Qvalve(pext(t)− p).

The additional term ∆tQstab plays the role of a stabilization term. We remark that this term is clearly
numerically consistent, as it tends to zero when ∆t → 0+ (see e.g. [39]). The stabilized ND scheme
(henceforth denoted by ND-stab scheme), then readsM

V
(k+1)
S − 2V

(k)
S + V

(k−1)
S

∆t2
+ C

V
(k+1)
S − V (k)

S
∆t

+ ppass(V
(k+1)
S ) +ATa(tk+1) = p(k+1) k = 0, 1, . . .

V
(k+1)
S = V

(k)
F + ∆tQstab(p(k+1), tk+1) k = 0, 1, . . .{

V
(k+1)
F − V (k)

F
∆t

= Qvalve(pext(tk+1)− p(k+1)) k = 0, 1, . . .

(28)
We remark that the ND-stab scheme preserves the staggered structure of the ND scheme, as the newly

introduced term does not involve the fluid state variable V
(k+1)
F .

4.2 Stability analysis of the ND-stab scheme

We now study the numerical stability of the ND-stab scheme of Eq. (28), based on the lemmas of Sec. 3.2.
With reference to Lemma 2, the B matrix of the ND-stab scheme coincides with that of the ND scheme
(see Eq. (23)), while the A matrix changes as follows

AND−stab = AND +


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ∆t

R

 , BND−stab = BND. (29)

We have the following result.

Proposition 1. The ND-stab scheme of Eq. (28) is unconditionally absolutely stable (and hence zero-
stable) for any physically meaningful choice of parameters (that is E ≥ E0 for some E0 > 0, R > 0,
C ≥ 0, M ≥ 0).

Proof. The non-zero eigenvalues of the Jacobian matrix −A−1
ND−stabBND−stab read (they can be obtained

through symbolic computations)

µ± =
2M + (C +R)∆t±∆t

√
(C +R)2 − 4EM

2(M + (C +R)∆t+ E∆t2)
=

2M + Ĉ∆t±∆t
√
Ĉ2 − 4EM

2(M + Ĉ∆t+ E∆t2)
(30)
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where we have defined Ĉ = C +R. We consider two scenarios, depending on the sign of Ĉ2 − 4EM . Let
us first suppose that Ĉ2 ≥ 4EM . Then, we have

0 ≤ Ĉ ±
√
Ĉ2 − 4EM ≤ 2Ĉ,

which entails

0 ≤ M

M + Ĉ∆t+ E∆t2
≤ µ± ≤

M + Ĉ∆t

M + Ĉ∆t+ E∆t2
< 1.

Consider now the case when Ĉ2 < 4EM . We have:

µ± =
2M + Ĉ∆t± i∆t

√
4EM − Ĉ2

2(M + Ĉ∆t+ E∆t2)
,

which entails

|µ±|2 =
(2M + Ĉ∆t)2 + ∆t2(4EM − Ĉ2)

4(M + Ĉ∆t+ E∆t2)2

=
M2 +MĈ∆t+ EM∆t2

M2 + Ĉ2∆t2 + E2∆t4 + 2MĈ∆t+ 2ME∆t2 + 2ĈE∆t3
< 1.

The eigenvalues of the Jacobian matrix −A−1
ND−stabBND−stab are thus bounded in modulus by a constant

strictly lower than 1. The thesis follows from Lemmas 1 and 2.

In order to numerically verify the result of Prop. 1, in Fig. 10 we show the trend with respect to ∆t of
the spectrum of the Jacobian matrix −A−1B for the ND and ND-stab scheme, under different conditions
(quasi-static case, with viscosity, with inertia and finally with both viscosity and inertia). The results
show that, as expected, the ND-stab scheme has eigenvalues all less than one in modulus.

4.3 ND-stab scheme for a generic structure model

The ND-stab scheme, despite being derived for the minimal model of Eq. (28), can be generalized for a
much wider class of models of FSI problems. We now show that the stability result of Prop. 1 can be
extended to the generic structure mechanics model of Eq. (3), while still considering the minimal fluid
model (12). Interestingly, in the proof we will formally reduce the generic model to the minimal one. Let
us then consider the following FSI problem

L(d̈(t), ḋ(t),d(t), p(t), t) = 0 t > 0,

V̇F (t) = Qvalve(pext(t)− p(t)) t > 0,

VS(d(t)) = VF (t) t > 0,

d(0) = d0, ḋ(0) = 0, VF (0) = V0,

(31)

and the associated ND-stab scheme:L
(

d(k+1) − 2d(k) + d(k−1)

∆t2
,
d(k+1) − d(k)

∆t
,d(k+1), p(k+1), tk+1

)
= 0 k = 0, 1, . . .

VS(d(k+1)) = V
(k)
F + ∆tQstab(p(k+1), tk+1) k = 0, 1, . . .{

V
(k+1)
F − V (k)

F
∆t

= Qvalve(pext(tk+1)− p(k+1)) k = 0, 1, . . .

(32)

We remark that problem (31) might arise from the Finite Element space discretization of virtually any
nonlinear elastic or viscoelastic structure model. We then consider the following physically motivated
assumptions.
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Figure 10: Eigenvalues of the Jacobian matrix −A−1B for the ND and ND-stab schemes in the open
valve case (R = Rmin).

(A1) Let us define the mass matrix M and the damping matrix C as follows

M (d̈, ḋ,d, p, t) :=
∂L
∂d̈

, C (d̈, ḋ,d, p, t) :=
∂L
∂ḋ

.

We assume that both M and C has real nonnegative eigenvalues, bounded from above by λmax
M <

+∞ and by λmax
C < +∞, respectively, uniformly with respect to the arguments. This assumption

encompasses the case when inertia and/or damping are not included in the model (M = C = O,
the zero tensor).

(A2) Let us define the stiffness matrix

E (d̈, ḋ,d, p, t) :=
∂L
∂d

. (33)

We assume that E has real eigenvalues, bounded from below by λmin
E > 0, uniformly with respect

to its arguments. This assumption arises from thermodynamical requirements (ellipticity of the
stiffness operator).

(A3) For physical consistency, we need the following relationship to hold true for any choice of d̈, ḋ, d,
p, t:

∂L
∂p

= −∂VS
∂d

.

This requirement derives from the principle of momentum conservation (see [42, 43]). In Prop. 2,
we show that this holds true if, e.g., the boundary conditions of Eq. (2) are employed.

(A4) Let us define

R(p, t) := −
(
∂Qvalve(pext(t)− p)

∂p

)−1

. (34)

We assume that 0 < R(p, t) < Rmax for some Rmax < +∞, uniformly with respect to p and t. This
amounts to say that the valve has finite resistance, coherently with the valve model of Eq. (13).
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The following proposition proves that Assumption (A3) holds true in case the boundary conditions of (2)
are employed.

Proposition 2. Suppose that the chamber volume is enclosed in the surface Γendo
0 . Then, both Prob-

lem (2) and its Finite Element discretization satisfy Assumption (A3).

Proof. As in Problem (31), we consider N = 1 cavities. The weak formulation of Problem (2) reads:∫
Ω0

ρ
∂2d

∂t2
· v dV0 +

∫
Ω0

P(d, Ta) : ∇v dV0 +

∫
Γendo
0

p JF−TN · v dS0 = 0 ∀v ∈ V := [H1(Ω0)]3.

Notice that additional terms could be present for other portions of the boundary, but this would not
affect the result. It follows that, for any v ∈ V :

〈∂L
∂p

,v〉 =

∫
Γendo
0

JF−TN · v dS0,

where 〈·, ·〉 denotes the duality pairing between V and its dual V ∗.
Let us denote by Ωf

0 the volume enclosed into Γendo
0 . Moreover, we denote by Γendo(d) the result of

deforming the surface Γendo
0 according to the displacement field d, and by Ωf(d) the enclosed volume. We

denote by n the unit vector, normal to the surface Γendo(d) in the current configuration, directed from
the solid to the fluid domain. The fluid volume function then reads:

VS(d) =

∫
Ωf (d)

1 dVt =

∫
Ωf

0

J dV0.

By Reynolds transport theorem [21], the Gateaux derivative of the volume reads, for any v ∈ V

〈∂VS
∂d

,v〉 = −
∫

Γendo(d)

v · n dSt = −
∫

Γendo
0

JF−TN · v dS0,

where we have computed the pull-back in the reference configuration. This proves Assumption (A3).
To prove the discrete case, it is sufficient to take as v the elements of the base of the Finite Element
space.

We have the following stability result for the ND-stab scheme, that extends Prop. 1 to a generic
structure model.

Proposition 3. Let us consider problem (31), with assumtions (A1)–(A2)–(A3)–(A4). The ND-stab
scheme of Eq. (32) is unconditionally absolutely stable (and hence zero-stable).

Proof. The scheme (32) belongs to the abstract family (17), provided that we define the state vector

ψ(k) := (d(k),d(k−1), V
(k)
F , p(k))T . With reference to Lemmas 1 and 2, we have

A =


E + M

∆t2 + C
∆t − M

∆t2 0 −r
O I 0 0
0T 0T ∆t−1 R−1

rT 0T 0 ∆t
R

 , B =


−
(

M
∆t2 + C

∆t

)
M
∆t2 0 0

−I O 0 0
0T 0T −∆t−1 0
0T 0T −1 0

 . (35)

where we have defined r := ∂VS
∂d and where the dependence on the arguments is understood. We denote

by I and O the identity and zero matrices, respectively. We consider the generalized eigenvalues problem
µAψ + Bψ = 0, for ψ 6= 0 and we look for nonnegative eigenvalues µ 6= 0. By writing the eigenvector
as ψ = (d̂,d, VF , p)T , each eigenvalue-eigenvector pair solves

µ2 − 2µ+ 1

∆t2
Md +

µ2 − µ
∆t

C d + E d = µpr (36a)

µ− 1

∆t
VF = −µp

R
(36b)

µ2rTd = VF −
∆t

R
µp (36c)
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We first consider the case when d = 0. From (36b) and (36c), it follows VF = 0 and hence, by using
again (36b), p = 0. Thus we get ψ = 0 that is not a valid eigenvector. Therefore, from now on we assume
d 6= 0. From (36b) and (36c) it follows VF = µrTd and hence p = R

∆t (1 − µ)rTd. Replacing this into
(36a), we have: (

µ2 − 2µ+ 1

∆t2
M +

µ2 − µ
∆t

(C +RrrT ) + E

)
d = 0. (37)

We left multiply (37) by the Hermitian transpose of d, thus getting

µ2 − 2µ+ 1

∆t2
M̂ +

µ2 − µ
∆t

Ĉ + Ê = 0, (38)

where we have defined

M̂ =
dHMd

dHd
, Ĉ =

dH(C +RrrT )d

dHd
, Ê =

dHE d

dHd

Assumptions (A1) and (A4) entail 0 ≤ M̂ ≤ λmax
M and 0 ≤ Ĉ ≤ λmax

C + Rmax‖r‖2. Moreover, by

assumption (A2) we have Ê ≤ λmin
E . From Eq. (38) it follows that two eigenvalues are possible, according

to

µ± =
2M̂ + Ĉ∆t±∆t

√
Ĉ2 − 4ÊM̂

2(M̂ + Ĉ∆t+ Ê∆t2)
.

We have thus formally recovered the minimal model of Prop. 1 (see Eq. (30)). Therefore, by proceeding
as in the proof of Prop. 1, we have

|µ±| ≤
M̂ + Ĉ∆t

M̂ + Ĉ∆t+ Ê∆t2
, (39)

if Ĉ2 ≥ 4ÊM̂ ; otherwise, we have

|µ±|2 =
M̂2 + M̂Ĉ∆t+ ÊM̂∆t2

M̂2 + Ĉ2∆t2 + Ê2∆t4 + 2M̂Ĉ∆t+ 2M̂Ê∆t2 + 2ĈÊ∆t3
. (40)

In both cases, the eigenvalues have modulus strictly lower than one. This proves zero-stability. To prove
absolute stability, instead, we need to show that the eigenvalues modulus is bounded by a constant strictly
lower than 1, uniformly with respect to the state ψ. This is proved by the fact that both the right-hand
sides of Eqs. (39) and (40) are non-increasing in Ê, which is bounded from below by λmin

E , and by the fact

that they are continuous in (M̂, Ĉ), which belongs to the compact set [0, λmax
M ]× [0, λmax

C +Rmax‖r‖2].

Finally, we show how the ND-stab scheme, that we proposed on the minimal model (12), can be
generalized to more complex fluid models. The vector collecting the net blood fluxes associated with the
N , as predicetd by the fluid model, is given by

dVF (c(t))

dt
=
∂VF (c(t))

∂c
H(c(t),p(t), t).

Therefore, we define the flux function

Qstab(p, c, t) =
∂VF (c)

∂c
H(c,p, t).

The ND-stab scheme then readsL
(

d(k+1) − 2d(k) + d(k−1)

∆t2
,
d(k+1) − d(k)

∆t
,d(k+1),p(k+1), tk+1

)
= 0 k = 0, 1, . . .

VS(d(k+1)) = VF (c(k)) + ∆tQstab(p(k+1), c(k), tk+1) k = 0, 1, . . .{
c(k+1) − c(k)

∆t
= H

(
c(?),p(k+1), tk+1

)
k = 0, 1, . . .

(41)
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For this case we do not provide a theoretical result, but will show numerical evidence of the effectiveness
of the stabilization term in Sec. 5.

We notice that, unlike for the ND scheme of Eq. (9), for the ND-stab scheme the pressures p(k+1)

also account as unknowns in the second equation of the structure mechanics substep of the ND-stab
scheme of Eq. (41). The numerical resolution of the structure mechanics substep can be efficiently
performed through the Newton method. In Appendix C we report an efficient algorithm, based on a
Schur complement reduction, for solving the linear system associated with each Newton iteration.

5 Results

In this section, we present and discuss some numerical tests aimed at verifying the theoretical results
presented in this paper and the effectiveness of the proposed method. First, in Sec. 5.1, we consider the
minimal model introduced in Sec. 3.1. Then, in Sec. 5.2, we consider the application of the ND-stab
scheme to a multi-scale left ventricular model of cardiac electromechanics.

5.1 Minimal model

We consider the minimal model of Eq. (14) (see also Fig. 1a). To demonstrate the generality of the results
of Secs. 3 and 4, that is valid for both linear and nonlinear models, we consider a nonlinear law for the
passive constitutive behavior of the cardiac chamber. Specifically, we consider the Klotz’s law [26]:

ppass(V ) = An

(
V − V klotz

0

V klotz
30 − V klotz

0

)Bn

, (42)

with V klotz
0 = 10 mL, V klotz

30 = 170 mL, An = 28.2 mmHg and Bn = 2.79. We consider the parameters
reported in Tab. 1 with no active tension (Ta(t) ≡ 0). Moreover, we consider the case of an inflow
cardiac valve (i.e. Qvalve = Qin

valve). We run the simulation until time T = 0.2 s, starting with a volume
V0 = 120 mL and imposing the following external pressure transient:

pext(t) = pmin + (pmax − pmin) sin

(
π t

T

)
,

with pmin = 5 mmHg and pmax = 20 mmHg.
In this test case, the pressure inside the cardiac chamber at time t = 0 is p(0) = 10 mmHg. The valve

is therefore closed (negative pressure gradient: pext(t) − p(t) < 0) and the chamber volume is almost
constant in time. Then, approximately at t = 0.03 s, the external pressure pext(t) exceeds the internal
pressure p(t). Consequently, the valve opens and blood begins to flow into the chamber, causing an
increase in fluid volume. Finally, the sign of the pressure gradient reverses again and the valve closes,
causing the volume to become constant in time.

5.1.1 Numerical simulations

In order to numerically verify the results of Secs. 3 and 4, we perform several numerical simulations of the
model described above, for different time step sizes and by comparing the ND and the ND-stab schemes.
In each test, we superimpose the obtained numerical solutions with a reference solution, obtained by
means of a monolithic scheme and with a very small time step size (∆t = 10−6 s).

First, we consider the case when viscosity is present (C 6= 0), while inertia is neglected (M = 0).
The analysis of Sec. 3 predicts that the ND scheme is never absolutely stable for C = C (see Fig. 5).
This is verified by our numerical results. In fact, the solution of the ND scheme exhibits nonphysical
pressure oscillations throughout the duration of the open valve phase (see first two columns of Fig. 11).
Moreover, as expected, when the valve is closed the oscillations are not present. Coherently with the
predictions, these oscillations are not cured even by decreasing the time step size. Instead, the amplitude
of the oscillations remains constant (this is due to the fact that the negative eigenvalue has a horizontal
asymptote for ∆t → 0+, see Fig. 5). On the other hand, by decreasing the viscosity coefficient (in
particular for C = 0.1C) the ND scheme becomes absolutely stable for any choice of ∆t (see Fig. 5).
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Figure 11: Results of numerical simulations of the model of Sec. 5.1, in the case when viscosity is present
(C 6= 0), while inertia is neglected (M = 0). The values of C and ∆t are reported in the titles. We
compare the results obtained with the ND scheme, the ND-stab scheme and the reference solution.

Our results also confirm this prediction (see e.g. the third column of Fig. 11 for the case ∆t = 5 · 10−3 s).
On the other hand, in all the considered cases, our proposed ND-stab scheme does not present numerical
oscillations and the solution is close to the reference one.

The predictions of Sec. 3 are also verified in the case with inertia and without viscosity (M 6= 0, C = 0),
as shown in Fig. 12. Indeed, according to the stability analysis considered in Fig. 6, for ∆t = 5 · 10−3 s the
ND scheme is absolutely stable. On the other hand, when ∆t→ 0+ numerical oscillations show up, with
increasing amplitude (the eigenvalue responsible for the oscillations indeed blows up when ∆t → 0+).
Also in this case, the ND-stab successfully cures the nonphysical oscillations.

Finally, in Fig. 13 we consider the case when both viscosity and inertia are included in the model.
Also in this case, the ND scheme exhibits the nonphysical oscillations predicted by the spectral analysis
considered in Fig. 7, while the ND-stab scheme yields a stable solution, that is close to the reference one.

5.1.2 Convergence test

The ND-stab scheme introduces, in the ND scheme, a numerically consistent stabilization term of first
order (see Sec. 4.1), O(∆t), when ∆t → 0+. Since the numerical scheme of time advancement is also of
first order, we expect the ND-stab scheme to be convergent of order 1 with respect to ∆t (see e.g. [39]).

To numerically verify what said above, we solve the model of Sec. 5.1 by the ND-stab scheme, progres-
sively halving the time step size ∆t, from 2−5 s to 2−14 s. We then plot the trend of the errors obtained
against a reference solution, achieved via a monolithic scheme for ∆t = 2−20 s ' 10−6 s. For simplicity,
we only consider the case with both viscosity and inertia. In Fig. 14 we show that both the L2(0, T ) and
the L∞(0, T ) errors follow the expected first order trend with respect to ∆t, both for the pressure and
for the volume solution.

5.2 Multiscale cardiac electromechanics

We now apply the ND-stab scheme to a multiscale simulation of cardiac electromechanics. We employ
the cardiac model proposed in [43], that we briefly recall in Secs. 5.2.1 and 5.2.2. Still, we remark that the
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Figure 12: Results of numerical simulations of the model of Sec. 5.1, in the case when inertia is present
(M = M), while viscosity is neglected (C = 0). The values of ∆t are reported in the titles. We compare
the results obtained with the ND scheme, the ND-stab scheme and the reference solution.

ND-stab scheme proposed in this paper can be applied to any coupled mechanics-hemodynamics model
in the form of Eq. (6).

5.2.1 The electromechanical model

We consider a realistic left-ventricular geometry, processed from the Zygote 3D heart model [53] by
exploiting the semi-automatic meshing tool proposed in [12] (see Fig. 15b). The geometry is further
processed through the algorithm proposed in [43] to recover the unloaded reference configuration. To
generate the cardiac fibers, we adopt the Bayer-Blake-Plank-Trayanova algorithm [6]. Cardiac muscle
contraction is driven by an electrical signal that propagates throughout the myocardium, thereby causing
muscle tissue to contract. To model these processes, we adopt the monodomain equation [9], the ten
Tusscher-Panfilov ionic model [49] and the RDQ20-MF model [41] of microscale force generation. Tissue
mechanics is described through Eq. (2), where for the hyperelastic energy functional W we adopt the
quasi-incompressible exponential constitutive law of [51]. To model the interaction of the ventricle with
the pericardium, we employ spring-damper boundary conditions, while to model the interaction with
the part of the myocardium above the artificial ventricular base, we adopt energy-consistent boundary
conditions [42]. More precisely, we complement Eq. (2) with the following boundary conditions

P(d, Ta)N =
[
Kepi
⊥ (N⊗N) +Kepi

‖ (I−N⊗N)
]

d

+
[
Cepi
⊥ (N⊗N) + Cepi

‖ (I−N⊗N)
] ∂d

∂t
, on Γepi

0 × (0, T ),

P(d, Ta)N = p |JF−TN|

∫
Γendo
0

JF−TNdΓ0∫
Γbase
0
|JF−TN|dΓ0

, on Γbase
0 × (0, T ),

(43)

where the constants Kepi
⊥ , Kepi

‖ , Cepi
⊥ , Cepi

‖ ∈ R+ are associated with the stiffness and the viscosity of

the tissue surrounding the epicardium in the normal or tangential directions, respectively, and where we
denote by p the left ventricle blood pressure.
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Figure 13: Results of numerical simulations of the model of Sec. 5.1, in the case when both inertia and
viscosity are present (C = C, M = M). The values of ∆t are reported in the titles. We compare the
results obtained with the ND scheme, the ND-stab scheme and the reference solution.
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Figure 14: Error trend on the numerical solution obtained by means of the ND-scheme for the model of
Sec. 5.1.
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Figure 15: The multiscale coupled mechanics-hemodynamics model of Sec. 5.2 (a); computational mesh
and boundary tags (b); snapshots of the numerical solution at selected time instants showing the tissue
displacement (c).

To model blood circulation (model F), we adopt the closed-loop lumped-parameter model of [43].
This model is based on a compartmental description of the systemic and pulmonary, arterial and venous
circulatory networks (modeled as resistance-inductance-capacitance circuits), the four cardiac chambers
(modeled by means of time-varying elastance models) and the four valves (modeled as diodes, as in Eq. 13).
The coupled 0D-3D FSI model is represented in Fig. 15a, while in Fig. 15c, the numerically obtained
tissue displacement is displayed at selected time instants. More details on the employed mathematical
models and their coupling can be found in [43].

5.2.2 Numerical approximation

For the numerical approximation of the multiscale left ventricular model (model S), we employ bilinear
Finite Elements defined on two nested hexahedral meshes (a finer one for the electrophysiological variables
and a coarser one for the structure mechanics variables). For the time integration of this multiphysics
model we employ the staggered approach proposed in [43], that envisages – at each time step – a sequential
update of the ionic variables, the electrical potential, the activation variables and finally the tissue
displacement. For the time integration of the circulation model (model F), we employ a Forward Euler
scheme.

Concerning the coupling between the model S and the model F , we compare the ND scheme with
the ND-stab scheme (see Eq. (9) and Eq. (41), respectively).

5.2.3 Comparison of ND and ND-stab schemes

In Fig. 16 we show the transients of pressures, volumes, and blood fluxes obtained using the ND and
ND-stab schemes for the numerical approximation of the multiscale model of cardiac electromechanics
and hemodynamics described in Sec. 5.2.1.

On the one hand, we notice that the solution obtained using the ND scheme presents numerical
oscillations in two phases of the heartbeat. Both of these episodes occur when at least one valve is open
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Figure 16: Numerical solution of pressures, volume and blood fluxes of the multiscale model of cardiac
electromechanics of Sec. 5.2: comparison between ND and ND-stab schemes. Top: pressure volume loop.
Bottom left: pressure transients associated with the left ventricle (pLV), the left atrium (pLA) and the
systemic arterial circulation (pSYS

AR ). Bottom right: blood fluxes across the aortic valve (QAV) and the
mitral valve (QMV).

(in one case the aortic valve, in the other case the mitral valve). This is in line with the results of
Sec. 3, which show that the ND scheme features instability issues mainly when the resistance between
the chamber and the external circulation is low, i.e. when one valve is open.

On the other hand, the stabilization term introduced by the ND-stab scheme proposed in this paper
is able to successfully remove the non-physical oscillations that would otherwise affect the volume and
pressure transients, as well as the tissue displacement and the computed stress.

6 Conclusions

In this paper we investigated the numerical stability of staggered schemes for 0D-3D FSI problems. We
focused on a problem of great applicative interest, that is the interaction between 3D models of cardiac
mechanics and 0D models of blood dynamics. We considered two schemes: the Dirichlet-Neumann (DN)
scheme, in which pressures are updated simultaneously with the variables of the fluid model, and the
Neumann-Dirichlet (ND) scheme, in which pressures are determined simultaneously with the displacement
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of the structure mechanics model.
We provided analytical results on the numerical stability of these schemes. We showed that the DN

scheme suffers from severe instability issues in case of an incompressible fluid enclosed in a cavity (e.g.,
during isovolumetric phases of an heartbeat). This is related to the so-called balloon dilemma [5, 20],
for which we provided an algebraic interpretation in terms of an eigenvalue of the Jacobian matrix that
tends to −∞ when the closed valve resistance increases, thus approaching the incompressible limit. The
ND scheme, instead, is numerically stable when the valves are closed but might exhibit nonphysical
oscillations when at least one valve is open (that is, with a non negligible fluid flow). The onset of these
numerical oscillations is associated with the following features of the model at hand.

• Stiffness of the structure. A stiff tissue (equivalently, a large elastance) promotes the onset of
oscillations. For parameters values typical of cardiac models, however, stiffness per se imposes very
mild limits on ∆t (nearly ∆t < 10−1 s).

• Viscosity. When the structure mechanics model features a large energy dissipation (either due to
viscous boundary conditions or to a visco-elastic structure mechanics model), the ND scheme is
numerically unstable. In this case, reducing ∆t does not cure the numerical instabilities.

• Inertia. Similarly to viscosity, a large inertia makes the ND scheme unstable. Moreover, when
inertial effects are included in the structure mechanics model, for small enough ∆t the ND scheme
features an eigenvalue lower than −1 and the scheme is numerically unstable. In conclusion, the
ND scheme is never zero-stable when inertia is present and consequently is never convergent.

• Active stress model with velocity dependence. When dealing with active materials, and specifically
when using a cardiac force generation model that accounts for fiber shortening velocity feedback on
active force, the ND scheme may suffer from numerical instabilities. In particular, when the tissue
is highly activated (typically in systole), crossbridge stiffness at the microscopic level has the effect,
at the macroscopic level, of an increase in the effective stiffness (the increase can be up to 400-fold).
This brings us back to the first point in this list, but with much more severe limits on ∆t.

We then introduced a numerically consistent stabilization term that is able to prevent the onset of
numerical oscillations in the ND scheme. We have shown that the stabilized ND scheme (ND-stab
scheme) is absolutely stable for any choice of ∆t and of model parameters. From the implementation
point of view, this stabilization term requires only a small modification with respect to the ND scheme.
In addition, we proposed an effective algorithm, based on a Schur complement reduction, for solving the
linear system that emerges at each Newton iteration when advancing the structure mechanics model. Our
scheme requires solving N + 1 linear systems (N being the number of cavities considered in the model),
where the matrix is the Jacobian of the standalone structure mechanics model, thus allowing reusing
pre-existing solvers and preconditioners.

Our numerical simulations confirmed the theoretical results mentioned above. Specifically, we showed
simulations obtained with a minimal FSI model, performing numerical tests under different conditions
and verifying the expected order of convergence with respect to ∆t. Then, we showed a simulation
obtained with a multiscale model of cardiac electromechanics in a left ventricle, coupled with a lumped-
parameter closed-loop model of the circulatory system. All the cases described above confirm that the
stabilization term proposed in this paper is successful in removing the nonphysical oscillations, for any
choice of parameters and for any value of ∆t.

Appendix A Derivation of the minimal model

In this appendix, we present the derivation of the minimal model of left ventricle mechanics of Eq. (11),
starting from the 3D model of Eqs. (2) and (43). More precisely, the derivation of the minimal model is
based on the energy balance stemming from the 3D model. As demonstrated in [42, 43] – by multiplying
the first equation of Eq. (2) by ∂d

∂t , integrating over Ω0 and accounting for the boundary conditions – we
have:

d

dt
K(t) +

d

dt
E(t) = Πact(t) + Πdiss(t) + Πpress(t), (44)
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that is a balance between the rate of change of the total kinetic (K) and potential (E) energy and the
power associated with active forces (Πact), viscous dissipation (Πdiss) and blood pressure (Πpress), defined
as

E(t) =

∫
Ω0

W(F)dx +
1

2

∫
Γepi
0

[
Kepi
⊥ |d ·N|

2
+Kepi

‖ |(I−N⊗N)d|2
]
dΓ0,

K(t) =
1

2

∫
Ω0

ρ

∣∣∣∣∂d

∂t

∣∣∣∣2 dx, Πact(t) = −
∫

Ω0

Ta
Ff0 ⊗ f0√
I4f

: ∇
(
∂d

∂t

)
dx,

Πdiss(t) = −
∫

Γepi
0

[
Cepi
⊥

∣∣∣∣∂d

∂t
·N
∣∣∣∣2 + Cepi

‖

∣∣∣∣(I−N⊗N)
∂d

∂t

∣∣∣∣2
]
dΓ0,

Πpress(t) = p(t) ddtV (d(t)).

where p and V represent the pressure and volume of the blood contained in the left ventricle.
To derive a lumped-parameter model for the left ventricle dynamics, we consider the volume V as a

state variable, and we express the terms of Eq. (44) as functions of V and its time derivatives, making
suitable approximations where needed.

First, by assuming that the potential energy is function of the state variable V , we have E(t) = Ẽ(V (t))

for some function Ẽ . We accordingly define the steady-state pressure corresponding to a non activated
tissue as ppass(V ) := Ẽ ′(V ).

Then, we assume that the inertial and damping effects are mainly associated with the tissue motion
in radial direction. We then consider a displacement of the form of d(x, t) = (r(t)− r0)eρ(x), where eρ is
the radial unit vector, having set without loss of generality the origin in the barycenter of Ω0. It follows:

K(t) ' 1

2

[∫
Ω0

ρ dx

]
ṙ2(t) =

1

2
MLV ṙ

2(t), Πdiss(t) ' −Cepi
⊥ |Γ

epi
0 |ṙ2(t) (45)

where MLV denotes the left ventricle mass, |Γepi
0 | is the epicardial surface area and where we assumed that

N ' eρ on the epicardium. By dimensional analysis, we assume that the ventricle volume and radius are
linked by a relationship of the type of VLV(t) = αr3(t), for some constant α. For a half-spherical cavity,
e.g., we have α = 2

3π. It follows

ṙ2(t) =
1

9
α−

2
3V −

4
3 (t)V̇ 2(t)

d

dt

(
ṙ2(t)

)
=

2

9
α−

2
3V −

4
3 (t)

[
V̈ (t)− 2

9
V −1(t)V̇ 2(t)

]
V̇ (t) ' 2

9
α−

2
3V −

4
3 (t)V̈ (t)V̇ (t)

(46)

where we have neglected the term V̇ 2(t), under the hypothesis of small velocities.
Concerning the active force power term Πact we notice that, thanks to the identity (see [45])

Ff0 ⊗ f0√
I4f

=
∂λ

∂F
,

and assuming an homogeneous active tension and fibers elongation, we have

Πact(t) = −
∫

Ω0

Ta λ̇ dx ' −|Ω0|Ta(t) λ̇(t), (47)

where |Ω0| denotes the volume of the reference domain. Finally, we need to link the fibers elongation λ
to the state variable V . We thus assume that λ = ψ(V ), for some increasing function ψ.

By replacing Eqs. (45)–(47) into Eq. (44), we get

1

9
MLV α

− 2
3V −

4
3 (t)V̈ (t)V̇ (t) + ppass(V (t))V̇ (t) + |Ω0|Ta(t)ψ′(V (t))V̇ (t)

+
1

9
Cepi
⊥ |Γ

epi
0 |α−

2
3V −

4
3 (t)V̇ 2(t)− p(t)V̇ (t) = 0,
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which entails
M(V )V̈ (t) + C(V )V̇ (t) + ppass(V (t)) +A(V )Ta(t) = p(t),

having defined

M(V ) =
1

9
MLV α

− 2
3V −

4
3 (t), C(V ) =

1

9
Cepi
⊥ |Γ

epi
0 |α−

2
3V −

4
3 (t), A(V ) = |Ω0|ψ′(V (t))

as the equivalent mass, viscosity and active stress factor. Finally, for simplicity we assume the factors
M , C and A as constants by setting M = M(V ), C = C(V ) and A = A(V ), for a reference volume V .
The minimal model thus reads:

M V̈ (t) + C V̇ (t) + ppass(V (t)) +ATa(t) = p(t). (48)

To provide realistic values of the coefficients entering in Eq. (48), we consider the 3D electromechanical
model, based on the Zygote heart [53], described in Sec. 5.2.1. Specifically, we set |Ω0| = 100 mL,

|Γepi
0 | = 140 cm2, MLV = 0.1 kg and Cepi

⊥ = 2 · 104 Pa s m−1. To link the chamber radius and its volume,
we assume a half-sphere approximation (α = 2

3π). From simulation data, we estimate the derivative of
ψ as ψ′ = 3.5 · 10−3 mL−1. To define ppass, we fit the end-diastolic pressure-volume relationship through
the Klotz’s curve [26] of Eq. (42). Finally, to compute the coefficients we set V = 120 mL. The resulting
coefficients are reported in Tab. 1.

Appendix B The effect of active stress on numerical stability

We here provide details on the discussion of Sec. 3.3.3, regarding the role played by active stress in the
stability analysis of Sec. 3. As a minimal model of active force generation, we consider the generalized
Huxley model of [40], that reads

K̇a(t) = −rKa(t) + µKP (t), t > 0,

Ṫa(t) = −r Ta(t) + µTP (t) + λ̇(t)Ka(t), t > 0,

Ka(0) = Ka,0, Ta(0) = Ta,0,

(49)

where r, µK and µT are suitable constants and P (t) represents the fraction of permissive regulatory units
at time t. The so-called permissivity P (t) is in fact the chemical input of the model. Specifically, we have
P (t) = 0 when the tissue is relaxed, P (t) > 0 when activated. As shown in [40], model (49) exhibits the
main experimental features of force generation in sarcomeres and can be regarded as a linearization of
more complex models. To link the microscopic to the macroscopic level, coherently with the derivation
Appendix A, we set λ(t) = ψ(V (t)). Let us consider the ND scheme, that reads

M
V

(k+1)
S − 2V

(k)
S + V

(k−1)
S

∆t2
+ C

V
(k+1)
S − V (k)

S
∆t

+ ppass(V
(k+1)
S ) +AT (k+1)

a = p(k+1) k = 0, 1, . . .

K
(k+1)
a −K(k)

a

∆t
= −rK(k+1)

a + µKP (tk+1), k = 0, 1, . . .

T
(k+1)
a − T (k)

a

∆t
= −r T (k+1)

a + µTP (tk+1) +
ψ(V

(k+1)
S )− ψ(V

(k)
S )

∆t
K(k+1)

a , k = 0, 1, . . .

V
(k+1)
S = V

(k)
F k = 0, 1, . . .{

V
(k+1)
F − V (k)

F
∆t

= Qvalve(pext(tk+1)− p(k+1)) k = 0, 1, . . .

(50)
The updated active stress then reads

T (k+1)
a =

1

1 + r∆t

[
T (k)

a +K(k+1)
a

(
ψ(V

(k+1)
S )− ψ(V

(k)
S )

)
+ ∆tµTP (tk+1)

]
. (51)

30



Thus, for ∆t→ 0+

T (k+1)
a ≈ T (k)

a +K(k+1)
a

(
ψ(V

(k+1)
S )− ψ(V

(k)
S )

)
(52)

which entails (since K
(k)
a varies slowly) that

T (k+1)
a ≈ T a +K(k+1)

a ψ(V
(k+1)
S ), (53)

Replacing Eq. (53) into Eq. (50), we get:

M
V

(k+1)
S − 2V

(k)
S + V

(k−1)
S

∆t2
+C

V
(k+1)
S − V (k)

S
∆t

+ppass(V
(k+1)
S )+AK(k+1)

a ψ(V
(k+1)
S )+AT a = p(k+1) (54)

Therefore, we formally recover the case of prescribed active stress (see Eq. (15)), provided that we replace
the purely passive pressure function ppass(VS) with

ppass+act(VS) = ppass(VS) +AKaψ(VS). (55)

The first term of Eq. (55) accounts for the passive elastance, while the second one accounts for the active
elastance, due to microscale crossbridge links. In conclusion, for ∆t → 0+, the stability analysis of
Sec. 3.3 is still valid, provided that we redefine the elastance as E = Epass + Eact, where

Epass(VS) = p′pass(VS); Eact(VS) = AKaψ
′(VS). (56)

By using the parameters of the original model (see [40]), we get Eact = 36 mmHg mL−1.
We now check whether the two additional eigenvalues associated with the dynamics of Ka and Ta can

introduce instabilities in the numerical solution or not. From the second equation, it follows

K(k+1)
a =

1

1 + r∆t

[
K(k)

a + ∆tµKP (tk+1)
]
. (57)

Thus, the active stiffness dynamics is associated with the eigenvalue

µ = (1 + r∆t)−1 < 1, (58)

that cannot be responsible of numerical instabilities, being strictly lower than one.
To study the eigenvalue associated with the dynamics of Ta, instead, we consider the following approx-

imate equation, obtained by neglecting high-order effects in the mechanics equilibrium and by subtracting
the equation for two consecutive time steps:

p(k+1) − p(k) ≈
(
ppass(V

(k+1)
S )− ppass(V

(k)
S )

)
+A

(
T (k+1)
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a

)
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S )

(
V
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S − V (k)

S

)
+A

(
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a − T (k)
a
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Epass(V

(k+1)
S )
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(
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S )− ψ(V

(k)
S )

)
+A

(
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a − T (k)
a

)
.

(59)

Therefore, replacing (59) into Eq. (50), we have

(1 + r∆t)T (k+1)
a = T (k)

a +K(k+1)
a

(
ψ(V

(k+1)
S )− ψ(V

(k)
S )

)
+ ∆tµTP (tk+1)

≈ T (k)
a +

K
(k+1)
a ψ′(V (k+1)

S )

Epass(V
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S )

((
p(k+1) − p(k)

)
−A

(
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a − T (k)
a
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+ ∆tµTP (tk+1),

(60)

which entails that the eigenvalue associated with the dynamics of Ta is approximated by

µ =
1 + Eact

Epass

1 + r∆t+ Eact

Epass

< 1, (61)
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Figure 17: Eigenvalues of the Jacobian matrix −A−1B for the ND scheme in the open valve case:
comparison of the exact eigenvalues and their approximation obtained through the asymptotic analysis
of Appendix B.

which cannot lead to numerical instabilities either.
To validate the results of the asymptotic analysis of the current appendix, we numerically compute

the eigenvalues of the Jacobian matrix −A−1B associated with the ND scheme when the model F–S
is coupled with the activation model (49) (that is scheme (50)) under different conditions (quasi-static
case, with viscosity, inertia or both) and for different values of ∆t. Then, we compare the results with
the eigenvalues obtained when the ND scheme is applied to the F–S alone (that is scheme (15)), with
an increased elastance (E = Epass + Eact). To the latter set eigenvalues, we also append the estimated
eigenvalues of Eqs. (58) and (61). The results, shown in Fig. 17, show that, as expected, for small values
of ∆t the approximation is very accurate. Moreover, the eigenvalues obtained through the asymptotic
approximation provide an accurate estimate of the stability thresholds.

Appendix C Algorithm for the resolution of the structure me-
chanics substep of the ND-stab scheme

We present an algorithm for the numerical resolution of the nonlinear system of equations arising from
the structure mechanics substep of the ND-stab scheme of Eq. (41). To ease the notation, we write the
nonlinear system at hand as {

r
(k)
d (d(k+1),p(k+1)) = 0,

r(k)
p (d(k+1),p(k+1)) = 0,

(62)

having defined the residuals

r
(k)
d (d(k+1),p(k+1)) = L

(
d(k+1) − 2d(k) + d(k−1)

∆t2
,
d(k+1) − d(k)

∆t
,d(k+1),p(k+1), tk+1

)
,

r(k)
p (d(k+1),p(k+1)) = VS(d(k+1))−VF (c(k))−∆tQstab(p(k+1), c(k), tk+1).
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We solve the nonlinear system (62) by means the Newton method. Specifically, to update the state
variables (d(k),p(k)) from iteration k to k+1, we set d0 = d(k), p0 = p(k) and then we iteratively update
according to dj+1 = dj + ∆dj , pj+1 = pj + ∆dj , where the increments ∆dj and ∆dj are solution of the
linear system (

Jjdd Jjdp
Jjpd Jjpp

)(
∆dj

∆pj

)
= −

(
r

(k)
d (dj ,pj)

r
(k)
p (dj ,pj)

)
. (63)

Finally, we set d(k+1) = dj , p(k+1) = pj where j is the Newton iteration after a suitable convergence
criterion is attained.

Concerning the numerical solution of the linear system (63), we adopt a Schur complement reduction,
as proposed in [43, 44]. We notice that, denoting by N the number of cavities in the mechanical model,
we can split the matrices and vectors as

Jjdp =

 jd1 . . . jdN

 , ∆pj =

∆p1

...
∆pN

 ,

Jjpd =

 jT1d
...

jTNd

 , r(k)
p (dj ,pj) =

 r1

...
rN

 .

At each Newton iteration we first solve the following N + 1 linear system associated with the Jacobian
matrix of the structure mechanics problem:

Jjddw = r
(k)
d (dj ,pj), Jjddwi = jdi for i = 1, . . . , N.

Then, we recover the pressure increments by solving the N ×N linear system (we recall that N ≤ 4):Jjpp −

 jT1d
...

jTNd


 w1 . . . wN


∆pj =

 r1 − j1d ·w
...

rN − jNd ·w.


Finally, the displacement increment is computed as:

∆dj = −w −
N∑
i=2

wi∆pi.
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