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Abstract

In this work we present a formulation of Coulomb’s friction in a fractured elastic

body as a PDE control problem where the observed quantity is the tangential

stress across an internal interface, while the control parameter is the slip i.e. the

displacement jump across the interface. The cost function aims at minimizing

the norm of a non-linear and not everywhere differentiable complementarity

function, written in terms of the tangential stress and the slip. The interesting

point of this method is that gives rise to an iterative procedure where at each

iteration we solve a problem with given slip at the interface, without resorting

to the use of Lagrange multipliers. We carry out a formal derivation of the

method, with some preliminary results, and a numerical experiment to verify

the efficacy of the technique.
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1. Introduction

The problem of modeling an elastic continuum in the presence of fractures

that may slide has been the subject of intense study due to its application to

many engineering and environmental problems, as well as to its mathemati-

cal interest. The most common models for frictional interfaces are Coulomb’s,
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where the presence of sliding is related to the ratio between tangential and

normal stresses at the fractured interface, and the Tresca one which is a simpli-

fied model where sliding occurs whenever the tangential stress overcome a fixed

threshold. A seminal reference for this class of problems can be found in [20].

While Tresca problem gives rise to a classical variational inequality and several

uniqueness results are available, the Coulomb’s model gives rise to a pseudo-

variational formulation which still poses several challenges at the analytical and

numerical level.

On the analytical side, a review of recent results and some conditions for

uniqueness of the Coulomb’s friction model is contained in [25].

On the numerical level, several schemes have been presented for this class

of problems, a few mentioned in the following. A first class of methods is

based on the solution of an optimality system derived from a Lagrangian or

augmented Lagrangian formulation using generalized or semi-smooth Newton

schemes [1, 26]. In [17] a primal-dual active set method is used on a dual-

Lagrange formulation discretized using mortar techniques. The iterative scheme

is applied to find the zero of a non-smooth complementary function for the

friction condition which has some similarity with the one presented in this work.

The technique has then been used in [5] to study contact mechanics in fractured

poroelastic media. In [21] the reader may find a review of other fixed point

techniques for both Tresca and Coulomb’s friction problems.

A different class of techniques avoid the use of Lagrange multiplier by em-

ploying an extension of the Nitsche’s method to contact problems. Nitsche’s

method, originally introduced as a way to impose Dirichlet conditions in elliptic

problems, can be seen as a special consistent penalization technique. For an

introduction to Nitsche’s method for boundary conditions and interface prob-

lems the reader may consult [13, 14] and [19] for its extension to more general

boundary conditions. In this class of methods we cite [2, 3], where the fric-

tion interface conditions are treated as non-linear Robin-type conditions and

enforced via an iterative scheme. A similar technique is used in [12], applied

to earthquake rupture. Another interesting family of Nitsche’s based schemes
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are those presented in [8, 11, 6, 9], where a complementarity function for the

contact problem is ingeniously exploited to derive a Nitsche’s type penalization

method. An overview is given in [7].

In this work we make a first attempt to a different formulation. For the sake

of simplicity, we focus only on the friction condition, however the formulation

can be extended to consider also normal contact. We recast the problem as a

control problem where the control variable is the slip, i.e. the jump of tangential

displacement across the fracture, while the observed variable is the tangential

stress. We derive a complementary function which is different, yet equivalent,

to that used in [17] or in [9]. We seek the zero of the complementary function

by minimizing a cost functional, which eventually depends only on the slip. To

this purpose we propose a simple gradient procedure which involves the solution

of a primal and a dual problem governed by the same linear operator. One

advantage of the technique, which does not make use of Lagrange multiplier,

is that both primal and dual problem are differential problems where the slip,

which is the jump of the displacement across the interface, is imposed on the

whole fracture, thus a ”standard” problem easily implementable using standard

finite elements.In particular, we do not need to divide the fracture into two time

dependent portions according to the magnitude of tangential stress to account

for the fact that part of the fracture could slip, while the remaining part is stuck

due to friction.

The scope of this work is to present the methodology and some preliminary

numerical results, leaving its analysis to forthcoming work. We hope that this

different point of view may open-up new insight about this interesting problem.

The paper is organized as follows. In Section 2 we recall the Coulomb’s

friction model and set up the notation used in Section 3, where we illustrate

the control problem formulation. Section 4 is dedicated to the description of

the numerical algorithm. Section 5 illustrates some numerical tests and it is

followed by conclusions.
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2. The model

We will consider a domain Ω ⊂ R2, open, bounded and with Lipschitz bound-

ary, cut by an internal planar (or C1) interface Γ that represents the fracture.

The fracture Γ partitions Ω into two disjoint subdomains, here indicated by Ω+

and Ω−, so that Ω = int(Ω+ ∪ Ω− ∪ Γ). We set ΩΓ = Ω \ Γ = Ω+ ∪ Ω−. We

indicate with nΓ the normal to Γ, conventionally oriented from Ω+ to Ω−, while

n+ = −n− = nΓ are the normal vectors oriented outwards with respect to the

respective domain.

For a sufficiently regular scalar function f : ΩΓ → R we define the average

and jump across Γ as

{f} =
f+ + f−

2
and JfK = f+ − f−

respectively, where, for x ∈ Γ,

f±(x) = lim
δ→0+

f(x + δn±Γ ).

This definition extends naturally to vector valued functions f : ΩΓ → R2, as

{f · n} =
f+ · n+ + f− · n−

2
=

Jf · nΓK
2

,

and

Jf · nK = f+ · n+ − f− · n− = 2{f · nΓ}.

In ΩΓ, we indicate with u the displacement and with σ = σ(u) the Cauchy

stress tensor given by an elastic law of the form

σ(u) = λ tr(ε(u)) + 2µε(u), (1)

where, assuming linear elasticity, the strain tensor is given by the symmetric

gradient of the displacement,

ε(u) =
1

2
(∇u +∇Tu).

We have indicated with λ and µ the Lamè parameters, which we assume to be

both positive and bounded in ΩΓ.
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We assume quasi-static mechanical balance, which means that we are facing

the following differential equation

−divσ(u) = g in ΩΓ, t ≥ 0. (2)

The dependence on time may be due to the boundary conditions, for instance in

the presence of incremental loads, or on the forcing term g. The latter situation

may arise in the simulation of poroelasticity problems when the mechanical part

is split from the fluid flow computation, as in a fixed stress procedure [18]. We

assume, however, that the evolution in time is sufficiently small to allow us

neglecting the dynamic term in the mechanical balance.

The equations are supplemented by boundary conditions and interface con-

ditions. In particular, a possible situation isu = u∂ on ∂Ωu

σ(u) · n = t∂ on ∂Ωσ.

(3)

We assume that |∂Ωu ∩ ∂Ω+| > 0 and |∂Ωu ∩ ∂Ω−| > 0, which means that

each portion of the domain has a part of the boundary where displacements are

imposed.

Here, u∂ and t∂ are given data, possibly depending on time. Since we are

using a quasi-static approach, we do not need initial conditions because the

solution u(t) at each t ≥ 0 is determined by the value of the boundary and

forcing data at that time.

The system of equations (1),(2), (3) must be closed by suitable interface

conditions on Γ. We first define the normal component of the stress on Γ and

the corresponding vector as

σn = (σ · nΓ) · nΓ, σn = σnnΓ.

The tangential stress on Γ is given instead by

τ = σ · nΓ − σn. (4)
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Note that u may be discontinuous on Γ, consequently also normal and tangential

stresses take a-priori two different values in correspondence to the plus and

minus side of Γ.

Analogously, we define tangential and normal components of the displace-

ment on Γ,

un = un · nΓ = (u · nΓ)nΓ, ut = u− un, (5)

and in the following we will use the suffixes n and t to indicate the normal and

tangential component of a vector on Γ.

To describe the sliding conditions, we define

G = |{τ}|+ µfσn,

where, | · | indicates the Euclidean norm, µf > 0 the friction coefficient, assumed

constant, and σn a reference value of the normal component of the effective stress

on the fracture, which may be taken as

σn = {σn}. (6)

We mention that in a poroelastic problem σn should account also for the com-

ponent linked to fluid pressure. We also define on Γ the displacement velocity

and its tangential component as

u̇ =
∂u

∂t
and u̇t =

∂ut
∂t

. (7)

We assume that the fracture may only act as a potentially sliding surface

(yet the model may be readily extended to the case of possible aperture of the

fracture). Consequently, at each time t the interface conditions on Γ may be

expressed as 
JunK = 0,

JσnK = 0,

Jτ K = 0,

(8)
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complemented by the Coulomb’s friction conditions [20]

{τ} = 0 if σn ≥ 0;
G ≤ 0,

∃β ≤ 0 s.t Ju̇tK = β{τ},

βG = 0.

otherwise.
(9)

Note that the balance of normal stresses implies that both σn and τ are

indeed continuous across Γ. However, also in view of the possible use of broken

spaces in the numerical discretization, we will keep indicating the jumps for the

normal and tangential components of the total stress.

Thanks to (8) at each time t we are able to identify two measurable portions

of Γ, indicated by ΓD = ΓD(t) and ΓD = ΓD(t):ΓD(t) = {x ∈ Γ : G(x) < 0},

ΓN (t) = Γ \ ΓD(t),

(10)

as well as the convex set

K−µfσn
= {z ∈ Rd : |z| − µfσn ≤ 0}.

We assume that, for any t, ΓN (t) is Lesbegue measurable and ΓN (t) ⊂⊂ Γ is a

proper subset. This condition implies that supp(β) ⊂⊂ Γ. In other words, we

do not allow the interface to become completely broken.

2.1. The semi-discrete problem

It is useful to rewrite our problem at discrete times. To this purpose, we

define the time step ∆t and the sequence of time instants tn = n∆t for n =

0, 1, . . .. At time t = tn+1 we make the following approximation

Ju̇t(tn+1)K =
Jut(tn+1)K− Jut(tn)K

∆t
=
β(tn+1)

∆t
, (11)
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where β now indicates the incremental displacement. We can then write our

differential problem as: at each tn+1 find u = u(tn+1) that satisfies

−divσ(u) = g in ΩΓ,

u = u∂ on ∂Ωu

σ(u) · n = t∂ on ∂Ωσ

JunK = JσnK = 0, on Γ.

Jτ K = 0, on Γ.

(12a)

and, on Γ 

{τ} = 0 if σn ≥ 0
G ≤ 0,

∃β ≤ 0 s.t β = β{τ},

βG = 0.

otherwise
(12b)

It is understood that all time dependent quantities are computed at time

tn+1 and that now β depends also on the time step, while β = β(tn+1) is as

defined in (11). It can be noted that (12) is equivalent to a static Coulomb’s

friction problem.

2.2. Functional setting

We use the standard notation and norms for Lesbegue and Sobolev spaces

for functions in ΩΓ = Ω \ Γ. We define

L2(ΩΓ) = {v : ΩΓ → R :

∫
Ω

v2 <∞)},

and we will use the same notation in boldface for vector functions whose com-

ponents are in L2(ΩΓ). Note that since Γ is a set of zero 2-measure, a function

in L2(ΩΓ) is naturally identified with a function in L2(Ω). So, for u and v in

L2(ΩΓ) we may write the L2 inner product as

(u, v)L2(ΩΓ) =

∫
ΩΓ

uv =

∫
Ω

uv,

8



and ‖u‖L2(ΩΓ) =
√

(u, u)L2(ΩΓ). The definition is readily extended to the space

L2(ΩΓ) of vector functions with components in L2(ΩΓ), where

(u,v)L2(ΩΓ) =

∫
Ω

u · v.

We also define

H1(ΩΓ) = {v ∈ L2(ΩΓ) : ∇v ∈ L2(ΩΓ)}, (13)

with

(u, v)H1(ΩΓ) = (u, v)L2(Ω) +

∫
Ω

∇u · ∇v, (14)

and

‖u‖2H1(ΩΓ) =
√

(u, u)H1(ΩΓ). (15)

Analogous definition for vector valued functions:

H1(ΩΓ) = {v : ΩΓ → Rd : v ∈ L2(ΩΓ) : ∇v ∈ L2(ΩΓ)},

with the usual definition of inner product and norm.

The spaceH1(ΩΓ) is a broken space, since its elements may be discontinuous

across Γ. We thus define the following trace spaces

T t = {v : Γ→ Rd : vn = 0, vt ∈ [H1/2(Γ)]d−1}, Tn = H1/2(Γ).

If v ∈ H1(ΩΓ) then JvtK and {vt} are elements of T t, while JvnK and {vn}
are in Tn.

For the description of the variational formulation we consider, for the sake of

simplicity, homogeneous Dirichlet boundary conditions on the whole ∂Ω. The

extension to more general settings may be carried out by standard means. We

define the following subspaces

V = {v ∈H1(ΩΓ) : v|∂Ω = 0}, V t = {v ∈ V : JvnK = 0},
V n = {v ∈ V : JvtK = 0}, V 0 = V t ∩ V n,

(16)

and the following bilinear form and functional for functions in H1(ΩΓ)

a(u,v) =

∫
ΩΓ

σ(u) : ε(v), F (v) =

∫
ΩΓ

g · v,
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where we have assumed g ∈ L2(Ω).

It is well known [20] that problem(12) has a weak form which can be ex-

pressed as the following variational inequality:

Problem 2.1. Find u ∈ V such that

a(u,v − u) + j(u,v)− j(u,u) ≥ F (v − u), ∀v ∈ V (17)

where

j(u,v) =

∫
Γ

µf |σn(u)||δ(vtΓ)|,

with δ(v) = JvtΓK− Jut(tn)K.

In the case of a Tresca problem, where σn is constant, the problem is well-

posed [20], while in the more general case existence of solution has been demon-

strated only if µf is sufficiently small [22], while non-uniqueness of solution has

been shown in [15, 16]. A recent uniqueness criterion, which still implies a

sufficiently small µf , can be found in [25].

We want, however, to construct a different formulation for the problem and

we start to derive its weak form in the case where β ∈ T t is a now given datum.

More precisely, we consider the problem

−divσ(u) = g in Ω,

u = 0 on ∂Ω,

JuK = Jut(tn)K + β on Γ,

Jσ · nΓK = 0 on Γ.

(18)

We proceed formally, by choosing a regular test function v which is zero on

∂Ω and applying the Stokes theorem, to get

< −divσ(u),v >=

∫
ΩΓ

σ(u) : ε(v)−
∫

Γ

J(σ(u) · nΓ) · vK.

Omitting the dependence on u we have
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−
∫

Γ

J(σ · nΓ) · vK = −
∫

Γ

Jσ · nΓK · {v} −
∫

Γ

{σ · nΓ} · JvK =

−
∫

Γ

Jτ K · {vt} −
∫

Γ

JσnK{vn} −
∫

Γ

{τ} · JvtK−
∫

Γ

{σn}JvnK. (19)

Using the previous relations and the interface conditions in (18), we may

finally write that u satisfies∫
ΩΓ

σ : ε(v)−
∫

Γ

{τ} · JvtK−
∫

Γ

{σn}JvnK =

∫
ΩΓ

ρg · v. (20)

for all test functions v that are zero on ∂Ω.

We now consider the linear and bounded lifting operator Rt : T t → V t

defined as

{Rtt} = t, ∃c : ‖Rtt‖H1(ΩΓ) ≤ c‖t‖T t
, ∀t ∈ T t. (21)

as well as Rn : Tn → V n,

{Rnn · nΓ} = n, ∃c : ‖Rnn‖H1(ΩΓ) ≤ c‖n‖Tn , ∀n ∈ Tn. (22)

From (20) we can infer the weak formulation of problem (18) as

Problem 2.2. Given Rβ = Rt (Jut(tn)K + β), find u = ũ + Rβ where ũ ∈ V 0

statisfies

a(ũ,v) = F (v)− a(Rβ ,v), ∀v ∈ V 0. (23)

Proposition 2.1. Problem 2.2 is well posed and is equivalent to (18).

Proof. Well posedness is obtained by noting that the restriction of ũ in Ω± is in

H1
0(Ω±). Consequently, we can apply Korn’s Lemma to obtain that there exists

and α > 0 such that a(ũ, ũ) ≥ α‖ũ‖2
H1(ΩΓ)

. The right hand side is a functional

on V whose continuity derives from the continuity of F and a, as well as the

boundedness of the lifting operator. Therefore, well posedness is provided by

Lax-Milgram Lemma.

The equivalence of the problems may be ensured by observing that (20)

reduces to (23) for functions in the chosen functional spaces, and that, by con-

struction, JutK = Jut(tn)K +β. By standard arguments, we may then infer that
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a solution of (18) satisfies Problem 2.2, while a sufficiently regular solution of

(2.2) is a solution of (18).

We now note that having computed u we can recover the stresses on Γ by

exploiting again (20) as follows,

< {τ}, t >= a(u, Rtt)− F (Rtt), ∀t ∈ T t, (24a)

< {σn}, n >= a(u, Rnn)− F (Rnn), ∀n ∈ Tn, (24b)

where < ·, · > denotes the duality pairing between T t and Tn with their respec-

tive dual. We have the following result:

Proposition 2.2. For u = u(β) solution of (23), {τ (β)} = {τ (u(β))},
computed using (24a), is an affine functions of β, and there exists constants

0 < ct ≤ ct such that

ct‖β1 − β2‖ ≤ ‖{τ (β1)− τ (β2)}‖ ≤ ct‖β1 − β2‖.

Moreover, if F = 0 in (24a), {τ (β)} is a linear and continuous function and

there exists a α > 0 such that

< {τ (β)},β >≥ α‖β‖2. (25)

Proof. The proof is a consequence of the properties of the Dirichlet-to-Neumann

operator (also called Steklov-Poincaré operator), and the coercivity of the bilin-

ear form a(·, ·) on V . For some details on the Dirichlet-to-Neumann operator

the reader may consult [25] or [24]. The constants depend on the continuity

and coercivity constants of the form a as well as the constants in the trace

inequality.

2.3. The friction condition

We now reformulate the friction condition via a complementary function.

First of all, for a ρ ∈ R, we define the following:
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• Projection operator: Pρ : Rd → Kρ,

Pρ(v) =


0 if ρ ≤ 0,

v if |v| < ρ,

ρv|v|−1 otherwise.

(26)

Note that we can use the more compact definition

Pρ(v) = v −max (0, |v| −max(ρ, 0)) v|v|−1. (27)

• Augmented tangential stress N : Rd × Rd → Rd, for a γ > 0:

N = N(t,ν) = t− γν. (28)

• Complementary function Dρ : Rd × Rd → Rd:

Dρ(t,ν) = t− Pρ(N(t,ν)) = t− Pρ(t− γν). (29)

In the following, for the sake of simplicity and convenience, we will sometime

indicate with N(β) or N(u) the quantity N({τ (u)},β), where u is the solution

of equation (18) for a given β. The same applies for Dρ(β) and Dρ(u), which

will sometimes be used to indicate D({τ (u)},β).

We define

ξ = ξ(t,ν) = max

(
0, 1− max(ρ, 0)

|t− γν|

)
= max

(
0, 1− max(ρ, 0)

|N(t,ν)|

)
. (30)

We have that

Dρ(t,ν) = (1− ξ)γν + ξt. (31)

Since, by construction, 0 ≤ ξ < 1 for all admissible values of ρ and of its

arguments, Dρ(u) is a convex combination of the tangential stress and the

penalty term γβ.

Now, for ρ = −µfσn, ν = β, t = u we can state the following result,

Proposition 2.3. The friction condition (12b) is equivalent to the following

equality

D−µfσn
(u) = {τ (u)} − P−µfσn

({τ (u)} − γβ) = 0 (32)

on Γ.
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Proof. In the case σn ≤ 0 (extensive case), clearly (32) implies {τ} = 0, as

in (12b), and viceversa. We will then consider the case σn > 0. Assume that

(12b) is satisfied. If β = 0 then |{τ}−γβ| = |{τ}| ≤ −µfσn, since G ≤ 0. This

implies P−µfσn
(N(u)) = {τ (u)}, and thus D−µfσn

(u) = 0.

If instead β 6= 0 then the second and third condition in (12b) imply |{τ}| =
−µfσn = µf |σn| (since σn ≤ 0), and N(u) = {τ} − γβ = {τ} − γβ{τ} =

(1 + ω){τ}, with ω = −γβ > 0. Thus, |N(u)| = |{τ} − γβ| = (1 + ω)|{τ}| =

(1 + ω)µf |σn| > µf |σn| and, consequently,

P−µfσn
(N(u)) = −µfσn

N(u)

|N(u)| = µf |σn|
N(u)

(1 + ω)µf |σn|
=

1

1 + ω
N(u) =

1 + ω

1 + ω
{τ (u)} = {τ (u)}.

Therefore, D−µfσn
(u) = 0. We have then proved that (12b) leads to the satis-

faction of (32).

Now, we prove the converse. We have two possible cases. The first is

|N(u)| = |{τ} − γβ| ≤ −µfσn, (33)

then D−µfσn
(u) = 0, which implies {τ} − {τ} + γβ = γβ = 0. Thus, β = 0

and (33) gives |{τ}| ≤ −µfσn, i.e. G ≤ 0, which is in agreement with (12b).

If we assume instead

|N(u)| = |{τ} − γβ| > −µfσn, (34)

we have

P−µfσn
(N(u)) = −µfσn

N(u)

|N(u)| =
−µfσn

|{τ (u)} − γβ| (τ (u)− γβ) .

Consequently, D−µfσn
(u) = 0 implies

{τ (u)}+
µfσn

|{τ (u)} − γβ| (τ (u)− γβ) = 0,

and, therefore,

β =
1

γ

( |{τ (u)} − γβ|
µfσn

+ 1

)
{τ (u)}.
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Since we have assumed σn < 0, we can write

β = β{τ (u)}, with β =
1

γ

(
1− |{τ (u)} − γβ|

µf |σn|

)
< 0, (35)

since |{τ (u)} − γβ| > µf |σn|. We have already found that

{τ (u)} =
µf |σn|

|{τ (u)} − γβ| ({τ (u)} − γβ) ,

then, by taking the Euclidean norm on both sides, we get |{τ (u)}| = µf |σn|,
by which G(u) = 0, and this completes the proof.

This interpretation opens up different possibility. The first, developed by Y.

Renard, Chouly et al. [7, 10] is to develop a Nitsche’s formulation that exploits

this condition. In this work we explore another possibility, described in the next

section.

3. A control problem formulation

We set in the following ρ = −µfσn and we indicate with < ·, · > the duality

pairing between T t and its dual, while (·, ·) indicates the inner product in the

relevant spaces.

To simplify the derivation, we consider approximate derivatives, in particular

we assume that ρ is given, that is we ignore the variations with respect to ρ

(which can however be accounted for at the price of a more complex derivation).

This is justified by the fact that in the numerical procedure the problem will be

solved as a succession of Tresca problems.

We consider β ∈ T t as our control variable, while {τ} ∈ T ′t is our observed

variable. We assume that we can reconstruct Dρ({τ},β) as an element of T t

by the use of the Ritz representation theorem. We employ a cost function given

by the following regularised functional,

J(τ ,β) =
1

2
(Dρ(τ ,β),Dρ(τ ,β)) +

ζ

2
(β,β) = JD(τ ,β) +

ζ

2
‖β‖2L2(Γ),

where ζ ≥ 0 is the Tikhonov regularization parameter. In the following we will

set jD = |Dρ|2.
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We proceed formally by defining the following Lagrangian L : V t × T t ×
V ′t × T ′ → R

L(w,γ; q,α) = J({τ (w)},γ)+

< JwtK− Jut(tn)K− γ,α > +A(w, q)− F (q)− < {τ (w)}, JqK >,
(36)

and we seek u, β, p and λ stationary point of L: i.e.

L(u,β; p,λ) = inf
(w,γ)

sup
(q,α)

L(w,γ; q,α).

In the following we indicate with ∂xL(u,β; p,λ)[v] the directional derivative

of L w.r.t x at point (u,β,p,λ) along v, and, for the sake of notation, we write

Dρ and JD for Dρ({τ (u)},β) and JD({τ (u)},β), respectively.

We recall that τ (u) is an affine function, so

∂u{τ (u)}[v] = {τ (v)}, ∀v ∈ V t, (37)

while

∂τJD[t] =< ∂τ jD, t >=< DT
ρ ∂τDρ, t >, ∀t ∈ T t, (38)

and

∂βJD[t] =< ∂βjD, t >=< ∂βjD, t >, ∀t ∈ T t. (39)

We have that the stationary point is characterized by setting to zero the

various derivatives. This provides the building blocks of our procedure.

The primal problem. The primal problem can be obtained by setting∂pL(u,β; p,λ)[v] = a(u,v)− F (v)− < {τ (u)}, JvtK >= 0, ∀v ∈ V t,

∂λL(u,β; p,λ)[φ] =< JutK− Jut(tn)K− β,φ >= 0, ∀φ ∈ T ′t
(40)

for all v ∈ V t and all φ ∈ T ′t.
We can recognize that u is the solution of Problem 2.2. Indeed it is imme-

diate to verify that the solution of Problem 2.2 satisfies (40). Conversely, if u

satisfies (40), then the second equation tells us that JutK = Jut(tn)K + β, and u

can thus be written in the form u = ũ+Rt(Jut(tn)K+β), with ũ ∈ V 0 solution

of (23).
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The dual problem. Using (38) and (37) we can write

∂uL(u,β; p,λ)[w] = ∂τJD[{τ (w)}]+ < λ, JwtK > +a(w,p)− < {τ (w)}, JptK >

=< ∂τ jD, {τ (w)} > + < λ, JwtK > +a(w,p)− < {τ (w)}, JptK > .

So the stationary point of the Lagrangian satisfies, by exploiting the simmetry

of a(·, ·),

a(p,w)+ < ∂τ jD − JptK, {τ (w)} > + < λ, JwtK >= 0, ∀w ∈ V t. (41)

If we build the dual solution p ∈ V t such that p = p̃ +Rt(∂τ jD), and p̃ ∈ V 0

solution of

a(p̃,w) = a(Rt(∂τ jD),w), ∀w ∈ V t, (42)

we can note that expression (41) reduces to

a(p,w)+ < λ, JwtK >= 0, ∀w ∈ V t. (43)

On the other hand, from (24a) applied to the dual solution and choosing t =

JwtK, we have

< {τ (p)}, JwtK >= a(p,w), ∀w ∈ Vt.

Therefore, (43) implies λ = −{τ (p)}.
If we now consider that

∂βL(u,β; p,λ)[γ] =< ∂βjD,γ > +ζ(β,γ)− < λ,γ >,

we have

∂βL(u,β; p,λ)[γ] =< ∂βjD,γ > + < {τ (p)},γ > +ζ(β,γ) =

< ∂βjD,γ > +a(p, Rtγ) + ζ(β,γ) (44)

being p the dual solution previously defined. Since, in general,

∂βL(u,β; p,λ) = DβJ(u(β),β), (45)

the quantity at the right hand side of (44) may drive a gradient based optimiza-

tion scheme.
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We need to define the terms containing the derivatives of Dρ. We have

∂τ jD ∈


Dρ if ρ ≤ 0,

ξDρ + (1− ξ)N ·Dρ

|N|2 N if 0 < ρ < |N|,

0 if ρ > |N|,

(46)

and

∂βjD ∈


0 if ρ ≤ 0,

γ(1− ξ)
(

Dρ −
N ·Dρ

|N|2 N

)
if 0 < ρ < |N|,

γDρ if ρ > |N|.

(47)

The terms are expressed as a differential inclusion since they are not defined for

ρ = |N|, being discontinuous at that point unless D ·N = 0.

Proposition 3.1. Let us consider ζ = 0. Then Dρ({τ}(u),β) = 0 is equivalent

to DβJ({τ}(u),β) = 0. So a stationary point of JD satisfies the condition

Dρ = 0.

Proof. The first part of the equivalence is trivial: if Dρ = 0 then ∂βjD =

∂τ jD = 0. Consequently, {τ (p)} = 0 and we can conclude that DβJ = 0.

Let now suppose that we are at a stationary point, i.e. DβJ = 0, then from

(45) we have

∂βjD + {τ (p)} = 0 a.e. on Γ. (48)

We now exploit (25) to state that

< {τ (∂τ jD)}, ∂τ jD >=< {τ (p(∂τ jD))}, ∂τ jD >≥ α‖∂τ jD‖2,

for a α > 0.

Thus, in a stationary point,

0 =< ∂βjD + {τ (p)}, ∂τ jD >≥< ∂βjD, ∂τ jD > +α‖∂τ jD‖2.

Since it may be shown, using the definitions in (46) and (47), that <

∂βjD, ∂τ jD >≥ 0, we derive that ‖∂τ jD‖2 ≤ 0, thus necessarily ‖∂τ jD‖ = 0
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a.e.. This result implies ‖{τ (p)}‖ = 0, and, as a consequence of (48), also

‖∂βjD‖ = 0. Using again (46) and (47), together with the previous results, we

obtain

γ‖Dρ‖ = ‖∂βjD + γ∂τ jD‖ ≤ ‖∂βjD‖+ γ‖∂τ jD‖ = 0

by which we conclude that ‖Dρ‖ = 0.

4. The numerical algorithm

We here present a gradient-based iterative procedure that for a given u(0) at

time t = 0 solves at each time step the control problem to find the slip vector

on the fracture that ensures the satisfaction of the friction condition. We here

assume that the domain Ω is polyhedral and that Γ is piecewise planar, so that

we can discretise the domain with a conforming grid Mh of elements K, such

that ∪K = Ω. The mesh Mh can be partitioned into M+
h and M−h , which

cover Ω+ and Ω−, respectively.

We assume that Mh is conforming also to the fracture, which means that

we can identify on Γ a d− 1 dimensional grid Γh which satisfies

Γh = Γ+
h = Γ−h =Mh ∩ Γ.

The iterative procedure seeks at each time tn = n∆t an approximation

uh = unh ∈ V h ⊂ V , where unh ' u(tn) and V h is a generic finite element space.

It means that a function uh ∈ V h can be expressed as linear combination of

finite element basis functions, as

uh(x) =
∑
i∈I+

u+
i ψ

+
i (x) +

∑
i∈I−

u−i ψ
−
i (x) +

∑
i+∈G+

u+
i+ψ

+
i+(x)

∑
i−∈G−

u−i−ψ
−
i−(x),

(49)

where I± collect the indexes of the degrees of freedom for which supp(ψ±i ) ⊂
Ω±, (we recall that Ω± are open sets), while I± those for which supp(ψ±)∩Γ± 6=
∅. The scalars u±i and u±i± are the degrees of freedom, i.e. the unknowns of our

discrete problem. Clearly, the basis functions ψ±i span a subset of V 0.
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Since Mh is conformal to Γ we can approximate the trace space T t, for

instance, as

T t,h = {th : th = {vt,h}, for a vh ∈ V h},

where vt,h indicates the tangential component of vh. Analogously for Tn,h, the

approximating space of Tn. We note that for each index i+ ∈ G+
h there is a

corresponding index i− ∈ G−h so that ψ−i− |Γ = ψ+
i+ |Γ, and we set

Gh = {(i+, i−), i+ ∈ G+
h , i

− ∈ G−h : ψ−i− |Γ = ψ+
i+ |Γ}.

4.1. The algebraic setting

We are now in the position of describing the algebraic setting for the solution

of (23), and analogously for (42).

Following the decomposition (49) we can define uΩ± as the vectors of the

internal degrees of freedom appearing the first two terms of the sum, while

uΓ+ and uΓ− are the vectors of the dofs on the interface Γ that appear in the

last two. Furthermore we indicate with Σh the vector containing the degrees

of freedom for the reconstructed discrete normal stresses σ(uh) · nΓ. Starting

from the weak form (20) we may build the following linear system, were we

have not yet imposed the conditions on Γ:
AΩ+Ω+ 0 AΩ+Γ+ 0

0 AΩ−Ω− 0 AΩ−Γ−

AΓ+Ω+ 0 AΓ+Γ+ 0

0 AΓ−Ω− 0 AΓ−Γ−




uΩ+

uΩ−

uΓ+

uΓ−

 =


fΩ+

fΩ−

fΓ+ +MΣh

fΓ− −MΣh

 .

Here, the various matrices indicated by A are the contributions to the standard

stiffness matrix, while M is the mass matrix on Γ, which can be computed, since

the discretization is conforming, as

Mij =
1

2

(∫
Γ+

ψi+ ·ψj+ +

∫
Γ−
ψi− ·ψj−

)
.

We have the following relations,

uΓ+ = {uh}+
1

2
JuhK, uΓ− = {uh} −

1

2
JuhK, (50)
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where {uh} and JuhK are the vectors whose components are (u+
i+ + u+

i−)/2 and

u+
i+ − u

+
i− , for (i+, i−) ∈ Gh, respectively.

Thus, the previous system may be rewritten as
AΩ+Ω+ 0 AΩ+Γ+

1
2AΩ+Γ+

0 AΩ−Ω− AΩ−Γ− − 1
2AΩ−Γ−

AΓ+Ω+ 0 AΓ+Γ+
1
2AΓ+Γ+

0 AΓ−Ω− AΓ−Γ− − 1
2AΓ−Γ−




uΩ+

uΩ−

{uh}
JuhK

 =


fΩ+

fΩ−

fΓ+ +MΣh

fΓ− −MΣh


We now replace the last two block-rows with their sum and difference, respec-

tively. We further impose the condition Jσ(uh) · nΓK = 0 by setting JΣhK = 0.

After a further division by 2 of the last block-row, we finally obtain
AΩ+Ω+ 0 AΩ+Γ+

1
2AΩ+Γ+

0 AΩ−Ω− AΩ−Γ− − 1
2AΩ−Γ−

AΓ+Ω+ AΓ−Ω− AΓ
1
2 ÃΓ

1
2AΓ+Ω+ − 1

2AΓ−Ω−
1
2 ÃΓ

1
2AΓ




uΩ+

uΩ−

{uh}
JuhK

 =


fΩ+

fΩ−

fΓ+ + fΓ−

1
2 (fΓ+ − fΓ−) +M{Σh}

 ,
(51)

where we have set AΓ = AΓ+Γ+ +AΓ−Γ− andÃΓ = AΓ+Γ+ −AΓ−Γ− .

The imposition of JuhK = βh, where βh is the vector with the nodal values

of β allows us to compute the actual unknowns [uΩ+ ,uΩ− , {uh}]T by solving

the following reduced system,
AΩ+Ω+ 0 AΩ+Γ+

0 AΩ−Ω− AΩ−Γ−

AΓ+Ω+ AΓ−Ω− AΓ




uΩ+

uΩ−

{uh}

 =


fΩ+ − 1

2AΩ+Γ+βh

fΩ− + 1
2AΩ−Γ−βh

fΓ+ + fΓ− + 1
2 ÃΓβh

 , (52)

which is in fact the discretization of (23), and to reconstruct the degrees of

freedom at the interface using (50), as

uΓ+ = {uh}+
1

2
βh, uΓ− = {uh} −

1

2
βh.

The terms indicated with f in (52) stem from the discretization of the forcing

terms and of the possible lifting terms in the case of non-homogeneous Dirichlet

boundary conditions.
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The average normal stress on Γ may then be computed solving

2M{Σh} = fΓ− − fΓ+ +AΓ+Ω+uΩ+ −AΓ−Ω−uΩ− +AΓβh + ÃΓ{uh}, (53)

from which one can easily compute the normal and tangential components at

each node, and thus the value of {τh} and σn,h.

Since the problem is self-adjoint, the same matrix govern the finite element

discretization of the dual problem (42), for which we adopt the same finite

element space.

4.2. A steepest descent algorithm

At each time step tn → tn+1 the algorithm reads as follows.

Set β
(0)
h = 0 and, for k = 0, 1, . . .,

1. Find u
(k)
h by solving (52), and compute the corresponding values of {τ}(k)

h

and {σn}(k)
h , using (53). We can then compute ρ(k) = −µf (σn)(k), D

(k)
h =

Dρ(k)({τh}(k),β
(k)
h ) and the corresponding cost function J (k).

2. Compute the discrete dual solution p
(k)
h ∈ V h by solving (52) where all

the terms indicated by f are set to zero and βh = ∂τJ
(k)
D,h is evaluated

using (46).

3. For a given step size αk compute β
(k+1)
h by solving

β
(k+1)
h = (1− αkζ)β

(k)
h − αk

(
∂βj

(k)
D,h + {τ (p

(k)
h )}

)
, (54)

where ∂βj
(k)
D,h is the vector with the components of the approximation of

∂βjD at the mesh nodes and {τ (p
(k)
h )} is obtained with the aid of (53).

The iteration continues until ‖β(k+1)−β(k)
h ‖L2(Γ) ≤ tol, being tol a given toler-

ance.

The step αk may be set by using a sufficient decrease rule as explained, for

instance, in [23].

5. Numerical tests

In this section we investigate the performance of the new technique through

numerical experiments. Numerical experiments are performed casting the prob-
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∂Ω1 ∂Ω3

∂Ω2

∂Ω4

Γ

y

x

∂Ω1 u = 0 ;

p = 0 ;

∂Ω2 σ(u) · n = 0 ;

p = 0 ;

∂Ω3 u = [−0.02,−0.025] ;

p = 0 ;

∂Ω4 σ(u) · n = 0 ;

p = 0

Figure 1: On the left, a sketch of the domain and surface labeling. On the right, boundary

conditions of the primal and adjoint problem.

lem in the Discontinuous Galerkin (DG) framework. This choice is mainly

motivated by the natural handling of discontinuous fields by the DG method.

The interested reader can find the formulation of the mechanical problem in the

DG framework, together with the interior penalty method, in [4] and citations

therein. Focusing on the set up of the numerical experiment, we consider a unit

square domain with a central fracture (namely Γ) as shown in the left part of

Figure 1. According to the nomenclature shown in Figure 1, we consider the

domain clamped on ∂Ω1 and we impose a displacement u = [−0.02,−0.025] on

∂Ω3. Stress free conditions are considered in the remaining boundaries. Con-

cerning the dual problem, homogeneous Dirichlet conditions are imposed on the

whole boundary ∂Ω. Focusing on the friction model we consider a limit friction

cofficient µf = 0.4 implying that when the slip tendency, defined as ST = τ/σn

reaches the limit µf the fracture can slip. We will refer with ST (βkh) to the slip

tendency obtained imposing the displacement jump JuK = βkh on Γ. The dis-

placement imposed on the boundary ∂Ω3 is the only driving force of the primal

problem and, if we impose a continuous displacement on the fracture, results in

the continuous displacement field shown in Figure 2. Such deformations lead to

a slip tendency along the fracture that exceeds the friction limit and ignites the

algorithm described 4. Focusing on the steepest descent algorithm we consider,

as reference case, γ = 2, ζ = 0 and αk = 0.0002. In the left part of Figure 3
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Figure 2: Displacement field in the domain. The deformations are amplified of a factor 5

for visualization purposes; however we recall that we are working in the assumption of small

displacements and small deformations.

the slip tendency (ST (βkh)) along the fracture is shown after k = 0, 100 and

600 iterations. We can notice that the imposition of the βkh, evaluated with Eq.

(54), suddenly leads to a huge reduction of the excess of the ST with respect to

the friction limit. In the right part of Figure 2, the evolution of βkh at different

iterations number is reported. In particular during the first iterations, curve

k = 0 and k = 100, we observe the formation of a negative peak of βkh located

in correspondance of the maximum excess of ST (βkh) and, as a consequence,

0.0

0.1

0.2

0.3

0.4

ST

0 0.5 1
y[m]

µf

iter 0
iter 100
iter 600 −5.0

−2.5

0.0

β
·1
0−

5
[m

]

0 0.5 1
y[m]

iter 0
iter 100
iter 600
iter 2000

Figure 3: Slip tendency, on the left, and β on the right along the fracture Γ at different

iterations.
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Figure 4: Dual problem solution at the first iteration. x and y component on the left and

right, respectively. The white region outlines the active part of the fracture.

−0.005

0.000

0.005

0.010

0 0.5 1
y[m]

τ(p)

dβdJ

0

5×10−5

0.0001

0 0.5 1
y[m]

τ(p)

dβdJ

0

1×10−5

2×10−5

3×10−5

0 0.5 1
y[m]

τ(p)

dβdJ

Figure 5: Gradient components {τ (p
(k)
h )} and ∂βj

(k)
D,h at different iterations from left to right

k = 0, 300 and 800.

of the maximum value of ξ and Dρk . In this initial phase we also notice that

βkh does not vanish where the fracture is not exceeding the friction limit and

two smaller positive peaks form near the boundary between the active and non

active part of the fracture. Such effect is due to the nature of the dual problem

in Ω+ and Ω− as we can see in Figure 4 where the x and y component of the

dual variable p are reported at the first iteration. We notice that, although the

forcing term of the dual problem vanishes where the fracture does not exceed

the friction limit, the corresponding solution p is not trivial in the inactive part.

In particular the term ∂ypx reaches its maximum at the boundary between the

active (the region outlined in white in Figure 4) and inactive part of the fracture.

Recalling that, for the chosen fracture geometry, {τ (p
(k)
h )} ∝ {∂xpy +∂ypx} we

can now understand the cause for the formation of peaks of slip velocity in the
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Figure 6: Final ST (k = 600) using different Γ.
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Figure 7: βk obtained with different γ at k = 100 and k = 600, on the left and right sides,

respectively.
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Figure 8: Final slip tendency on the left, and β on the right, obtained for different mesh

refinement
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inactive part of the fracture. It is interesting to notice that, after the initial drop

of the ST (βkh) excess, the remaining iterations of the algorithm (k = 600, 2000)

have indeed the effect of reducing, until it vanishes, βkh in the inactive part of

the fracture as we can see in the right part of Figure 2. We recall that β
(k+1)
h

is obtained through Eq. (54) and in Figure 5 we report {τ (p
(k)
h )} and ∂βj

(k)
D,h

at different iterations. We notice that during the first iterations {τ (p
(k)
h )} is

predominant, resulting in the initial ST reduction. After this initial phase the

term ∂βj
(k)
D,h, that takes into account also the penalization of βh in the inactive

part of the fracture, builds up driving the reduction of the positive, unphysical,

peaks of βh.

To test the sensitivity of the method to parameters we performed the same

numerical experiment using different γ so that its effect on the algorithm can be

investigated. In Figure 6 we show the ST (βh), after 600 algorithm iterations,

obtained with γ = 0.5, 1, 2 and 4. We notice that increasing values of γ reduce

the accuracy in the fulfillment of the constraint µf on ST . In Figure 7 we show

βkh at k = 100 and k = 600 on the left and right part, respectively. We observe

that increasing γ leads to a faster reduction of βkh in the inactive part of fracture.

Comparing βkh (Figure 7) and ST (βkh) (Figure 6) at different k we notice that,

from an empirical point of view, the higher the choice of γ the fewer iterations

are needed to compute a consistent βh that vanishes in the inactive part of

the fracture. On the other hand, the higher the magnitude of γ the lower the

accuracy at which ST (βh) fulfills the constraint imposed by the limit friction

µf . Finally we investigate the effect of the characteristic grid size in the case

γ = 2. In Figure 8 we report the ST (βkh) and βkh, for k = 600, on the left and

right part, respectively. We can notice that while the final ST is not influenced

by the refinement of the grid, the final profile of βkh (at k = 600) varies with the

refinement converging to an asymptotic value.
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Conclusions

We have presented a technique based on control theory of PDEs to impose

Coulomb friction condition along the interface of a fractured material. In this

control problem the control variable is the slip along the fracture, while the

observed variable is the tangential stress, which should not exceed the limit

Coulomb’s friction. The cost function aims at setting to zero a non-linear com-

plementary function.

The resulting problem can be solved by an iterative procedure where, at

each iteration, the slip along the fracture is imposed, with no need to introduce

Lagrange multipliers. The matrix governing the primal and dual problem asso-

ciated with the minimization procedure does not change during the iterations,

and is the same matrix in the case of self-adjoint problems as the one considered

here. This contrasts with other techniques where the matrix coefficients vary

during the iterations, due to the nature of the frictional interface, where a point

can transition from stuck to slipping, and vice-versa, in time and during the

iterations within the same time step.

We have here derived the model in a rather formal way, a more thorough

analysis of its properties will be subject of further work. Also, the numerical

minimization algorithm we have used is rather basic and not yet optimized.

Indeed, the procedure could be made more efficient for instance with a dynamic

choice of the step length. However, the main objective of this work was to show

that the proposed methodology is applicable and converges to a physically sound

solution. The tests we have performed support the theoretical findings. More

advanced (and efficient) algorithms such as quasi-Newton schemes like BFGS,

or other acceleration techniques, may be implemented and will be tested in the

future.

The main objective of this paper was indeed mainly to present the deriva-

tion of this original method in some detail, and justify it by some numerical

experiments. We think that is may give a different insight on the numerical

solution of Coulomb friction problems.
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