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Abstract This work deals with the efficient iterative solution of the system of
equations stemming from mimetic finite difference discretization of a hybrid-
dimensional mixed Darcy problem modeling flow in fractured porous media.
We investigate the spectral properties of a mixed discrete formulation based
on mimetic finite differences for flow in the bulk matrix and finite volumes
for the fractures, and present an approximation of the factors in a set of
approximate block factorization preconditioners that accelerates convergence
of iterative solvers applied to the resulting discrete system. Numerical tests on
significant three dimensional cases have assessed the properties of the proposed
preconditioners.
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Introduction

The simulation of underground flows in fractured porous media is of great
interest for a large number of geophysical applications, such as oil produc-
tion, CO2 storage, and groundwater contamination and remediation. It is well-
known that the presence of fractures and/or faults strongly influence subsur-
face flows. The major challenges from the numerical viewpoint are represented
by i) geometric complexity, and ii) strong heterogeneity of materials at dif-
ferent space scales. While micro-fractures can be accounted for by means of
homogenization/upscaling techniques, large fractures and faults play a more
complex role, acting as paths or barriers for the flow, and therefore they have
to be included in the model explicitly. Fractures are characterized by a small
aperture compared to their typical length and the size of the domain, thus a
widely employed approach consists in modeling them as (d − 1)-dimensional
interfaces immersed in a d-dimensional porous medium (the bulk). A reduced
(d − 1)-dimensional problem is then solved on the surfaces representing the
fractures, with physically-consistent coupling conditions accounting for the
exchange of fluid between fractures and porous medium.

From the computational viewpoint, this dimensionally-hybrid setting avoids
the need for extremely fine grids to resolve the fracture’s scales. Assuming that
the fractures are filled by a porous medium with its own porosity and perme-
ability, Darcy’s law can be used for modeling both d-dimensional bulk and
the (d−1)-dimensional fracture flow problems. The first dimensionally-hybrid
model for flow in fractured porous media has been proposed in [3] in the
case of a very permeable fracture. Later on, in [48] it has been generalized
to fractures featuring low permeability. These models were derived based on
the assumption that there is one single fracture cutting the bulk domain in
exaclty two non-overlapping subdomains; the extension to the case of a fully
immersed fracture has been analyzed in [5]. This dimensionally-hybrid model
has also been extended to the case of a two-phase flow in [44,41]. One of the
main issues concerning discretization of the flow in heterogeneous media is
mesh generation. Indeed, the grid has to be conforming with the fractures,
but whenever the number of fractures is very large such a constraint can re-
sult in a unaffordable computational burden, particularly whenever fractures
feature small intersection angles, or they are nearly coincident. Indeed, in such
cases, the conformity constraint can lead either to very fine grids, or to low-
quality elements (small angles, high aspect ratios). To overcome this difficulty
a possible strategy consists in the use numerical schemes that can support
arbitrarily shaped polygonal and polyhedral meshes, and that guarantee good
approximation properties also in presence of low-quality mesh elements.

Indeed, in recent years, the exploitation of computational meshes composed
of polygonal and polyhedral elements has become very popular in the field of
numerical methods for partial differential equations because the flexibility they
offer allows for the design of efficient computational grids when the underlying
problem is characterized by a strong complexity of the physical domain. Sev-
eral conforming and non-conforming numerical discretization methods which
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admit polygonal/polyhedral meshes have been proposed in recent literature;
here, we mention, for example, Mimetic Finite Differences (MFD) [29,27,17,
11], high-order polyhedral Discontinuous Galerkin (PolyDG) methods, [12,31,
9,10], Virtual Element methods (VEM), [14,15], and the Hybrid High-Order
(HHO) method, [35,32].

In this paper, continuing the work initiated in [11] we focus on Mimetic
Finite Differences, which in the last years have been successfully applied to a
wide range of problems, as for example diffusion-type problems [27,28,16,6],
electromagnetism [26], plate equations [18], non-linear and control problems [7,
8], and to model two-phase flows [45]. We refer to [13,17] for a comprehensive
review on MFD schemes. In the context of numerical modeling of flows in
fractured porous media, MFD have been successfully used in [11,2,40]. Several
other numerical techniques have been proposed in the recent years for fractured
media flow, reflecting the importance of the subject for various applications.
With no claim of completeness, in addition to the already cited literature we
mention here some recent works by several research groups [53,1,24,25,23].

We will consider the formulation proposed in [11], where a mixed MFD
approximation for the coupled Darcy’s model is analyzed for a fully immersed
fracture network. The linear system of equations stemming from the discretiza-
tion has the form of a generalized saddle point system, sometimes referred to
as double saddle point problem [4], readingMc B

T CT

B 0 0
C 0 −T

 up
pΓ

 =

 g
h

hΓ

 ,
for suitable matrices that will be defined in Section 1, and where u, p and
pΓ contain the approximate solution for the bulk velocity, bulk pressure, and
fracture pressure, respectively, while the vectors g, h and hΓ contain the terms
arising from the forcing and boundary data.

In this paper we analyze the spectral properties of the system of equa-
tions stemming from the considered MFD-FV discretization. More precisely,
we prove that, as expected, the condition number of the double saddle point
system depends on the contrast of the permeability in the bulk and in the
fractures, and, asymptotically, it grows as O(h−3), h being the characteristic
mesh size. To reach this result we extended the work of [47] and we make use
of a conjecture, so far verified only numerically.

We the address the problem of efficiently solving the above linear system
of equations by devising suitable preconditioning algorithms to accelerate the
convergence of iterative schemes. We have chosen classical approximate block
factorization (ABF) preconditioners because they can be readily implemented
in existing codes since they make use of quantities directly available. We pro-
pose a technique to construct the approximation of the factors, which, despite
its simplicity, has proved to be rather effective.
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In the context of preconditioners for fractured porous media simulations,
we mention the recent work [30], where a set of norm-equivalent precondition-
ers [46] are presented, though for a different approximation scheme than the
one adopted in this work, some of which show some analogies to the one pro-
posed here. In the context of saddle-point problems arising in geomechanics,
we mention also block preconditioners based on the use of approximate in-
verse, like the ones adopted in [21]. However, in this work we decided to focus
on simpler factorized block approximations straightforwardly implementable
in an existing code for flow in fractured porous media.

The paper is structured as follows. In Section 1, we introduce the hybrid-
dimensional mathematical model and its numerical approximation based on
the approach of [11]. In Section 2, In Section 3, we then present some tech-
niques for preconditioning the linear system of equations. The performance of
the proposed preconditioners are then assessed in Section 4 on three-dimensional
test cases. Finally, in Section 5 we draw some conclusions.

1 Mathematical model and its numerical approximation

The mathematical model we consider in this work follows [40] and [11]. We will
recall it briefly, for the sake of completeness. Let Ω ⊂ R3 be an open, convex
polyhedral domain representing a porous medium saturated by a fluid. The
medium is fractured, and the fractures are modeled as a collection of planar
surfaces. More precisely, with Γ we denote the fracture network given by the
union of MΓ fractures γk, for k = 1, . . . ,MΓ , where γk is a 2-dimensional
planar open domain embedded in R3, i.e. Γ =

⋃MΓ

k=1 γk.
We indicate with ikj = ∂γi ∩ ∂γj the intersection between fracture γi and

fracture γj , possibly being the empty set, and with I the set of all intersections
ikj with non-zero 1-measure. Finally, ΩΓ = Ω \ Γ denotes the part of the
domain occupied by the rock matrix, which in the following we will indicate
as bulk.

Flow in the bulk and in the fractures is assumed to be governed by Darcy’s
law. We are thus assuming that fractures are filled by a porous medium with
different porosity and permeability with respect to the surrounding porous
matrix. We denote with K a symmetric positive definite permeability tensor,
which we assume to be piece-wise constant in ΩΓ , and with f a possible source
term. We assume also that the fluid and the medium are incompressible and we
neglect gravitational effects. Note that, since the fluid viscosity µ is considered
constant, we have defined K = µ−1K, being K the actual material permeability
tensor.

As for the fractures, we use the reduced model originally developed in [48]
for a single fracture, extended to fracture networks as explained in [40]. In
particular, we assume that on each γk we can identify a normal vector nk and
that we can decompose the permeability K̂k of the material in the fracture
into a normal component K̂nk and a symmetric semi-definite tensor K̂τk so



Preconditioning techniques for flow in fractured porous media 5

that K̂k = K̂nknk ⊗ nk + K̂τk , with K̂nk > 0 and vT K̂τkv > 0 if v × nk 6= 0,

while K̂τknk = 0. Following [48], we may define on each fracture the fracture
aperture lk > 0 (assumed constant in each γk), effective tangential and normal

permeability Kτk = l
k
K̂τk , and Knk = l−1

k
K̂nk , as well as the normal effective

resistivity ηk = K−1nk = lkK̂
−1
nk

. For all functions defined on each γk we will use
normally the subscript Γ to denote their direct product on the whole Γ ,

ηΓ =
⊗
γk∈Γ

ηk, KΓ =
⊗
γk∈Γ

Kτk , and Kn,Γ =
⊗
γk∈Γ

Knk .

Following [11], we employ a mixed formulation in the bulk, where the un-
knowns are the Darcy velocity u and pressure p, while in the fracture network
we use a primal formulation where the only unknown is the pressure, indicated
by pΓ : Γ → R.

To describe the equations and the coupling terms we need to define the
jump and average operator across the fractures. Let v : ΩΓ → R be a regular
function so that on each γk ∈ Γ we can define v±(x) = limh→0+ v(x ± hnk),

for x ∈ γk. On Γ , we set JvK = v+ − v− and {v} =
1

2
(v+ + v−). Note that we

can identify a positive and negative side, γ+k γ−k , of each γk, so that v+ and
v− are in fact the traces of v on γ+k and γ−k , respectively.

We partition ∂ΩΓ into ∂ΩN and ∂ΩD, where we impose conditions on the
normal fluid velocity and pressure, respectively. We assume that |∂ΩD| > 0,
where |∂ΩD| here indicates the 2-measure of ΩD. As for the fracture network,
we can identify three parts of ∂Γ : ∂ΓN and ∂ΓD are the portions of ∂Γ ∩ ∂Ω
where we impose the flux or the pressure, respectively, while ∂Γ0 is the part
of the boundary of the fracture network fully immersed in the bulk. Here, we
follow the usual practice of imposing zero flux.

We can now write the differential problems in the bulk and in the fracture
networks, complemented by the coupling conditions which will be detailed
later on: 

∇p+ K−1u = 0 in ΩΓ

∇ · u = f in ΩΓ

p = g on ∂ΩD

u · n = φ on ∂ΩN

(1a)


−∇Γ · (KΓ∇Γ pΓ )− Ju · nΓ K = lΓ fΓ in Γ

pΓ = gΓ on ∂ΓD

−KΓ∇Γ pΓ · τΓ = φΓ on ∂ΓN

−KΓ∇Γ pΓ · τΓ = 0 on ∂Γ0.

(1b)

Here,∇Γ · and∇Γ denote the tangential divergence and gradient operators,
while τΓ is the unitary normal to ∂Γ parallel to the fracture tangent plane.

We now provide the interface conditions that couple the model for flow in
the bulk, cf. (1a), with that in the fractures, cf. (1b). For a ξ0 ∈ (0, 1/4], they
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are given by {
ξ0ηΓ Ju · nΓ K = {p} − pΓ on Γ

ηΓ {u · nΓ } = JpK on Γ.
(2)

The derivation can be found in the cited references. The closure parameter
ξ0 depends on the assumption made on the variation of pressure across the
fracture aperture when deriving the reduced model, and the optimal value,
corresponding to a parabolic variation, is ξ0 = 1/12. For what concerns the
conditions at the intersection between fractures, several solutions are possible.
For instance, in [51] and in [39] special conditions were studied to account for
possible strong variations of permeability between fractures (however limited
to the two-dimensional case). Here, for the sake of simplicity, we assume con-
tinuity of pressure and flux balance at each intersection, a common choice for
discrete fracture network simulations.

1.1 Weak formulation

To define the functional setting of the problem we first note that for all p ∈
[1,∞], an element of Lp(ΩΓ ) may be identified with an element of Lp(Ω), since
Γ is of zero measure. Furthermore, we state some regularity assumptions on
the data. To this purpose we indicate with ∗ and ∗ positive upper and lower
bounds of the corresponding quantity. We then require K∗ ≤ ζTKζ ≤ K∗ for
all ζ ∈ Rd \ {0} and a.e. in ΩΓ , while η∗ ≤ ηΓ ≤ η∗, KΓ∗ ≤ ζTKΓ ζ ≤ K∗Γ , for
all ζ ∈ Rd with ζ · nΓ 6= 0 and a.e. on Γ .

We introduce the following functional spaces for pressure and Darcy veloc-
ity in the bulk,

Q = L2(ΩΓ ), W = {v ∈ Hdiv(ΩΓ ) : Jv · nΓ K ∈ L2(Γ ), {v · nΓ } ∈ L2(Γ )},

equipped with the norms ||q||Q = ||q||L2(ΩΓ ), and ||v||2W = ||div v||2L2(ΩΓ )
+

||v||2L2(ΩΓ )
+ ||{v · nΓ }||2L2(Γ ) + ||Jv · nΓ K||2L2(Γ ). They are Hilbert spaces with

scalar products inducing the stated norms.
To account for boundary conditions, we define W0,∂ΩN = {v ∈W : v ·n =

0 on ∂ΩN}, where n is the unit outward normal to Ω and v · n is intended
in the sense of traces of elements of Hdiv(ΩΓ ). For the forcing term and the
boundary data we take f ∈ L2(ΩΓ ), φ ∈ L2(∂ΩD) and g regular enough such
that there exists an element of H1(ΩΓ ) whose trace on ∂ΩN coincides with g.

As for the model for the fracture, on each γk we define Zk = {q : q ∈
L2(γk), ∇τq ∈ L2(γk)}, and

ZΓ = {qΓ ∈
⊗
γk∈Γ

Zk : qΓ |γk = qΓ |γj on ikj , ∀ikj ∈ I},

while Z0,ΓD = {qΓ ∈ ZΓ : qΓ = 0 on ΓD}. We take φΓ ∈ L2(∂ΓN ) and gΓ
regular enough to be a trace on ΓD of functions in ZΓ .
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We define the following bilinear forms: for u, v ∈ W , q ∈ Q and qΓ , zΓ ∈
ZΓ ,

aξ(u,v) =

∫
ΩΓ

(K−1u) · v +

∫
Γ

ηΓ {u · nΓ }{v · nΓ }+ ξ0

∫
Γ

ηΓ Ju · nΓ KJv · nΓ K,

b(v, q) = −
∫
ΩΓ

q divv, c(v, qΓ ) =

∫
Γ

qΓ Jv · nΓ K,

d(qΓ , zΓ ) =

∫
Γ

(KΓ∇qΓ ) · ∇zΓ ,

and, to write the weak formulation of the problem in a more compact form,
we define Q = Q × Z, Q0 = Q × Z0,ΓD and the form B : W × Q → R :
B(v, (q, qΓ )) = b(v, q) + c(v, qΓ ). We introduce also rφ ∈ W and rφΓ ∈ ZΓ
that represent the lifting of the boundary data on ∂ΩN and ∂ΓD respectively.
Following the steps illustrated in [11,40], we can write the following weak
formulation of our problem

Problem 1 Find u ∈W0,∂ΩN , (p, pΓ ) ∈ Q0 such that{
aξ(u,v) +B

(
v, (p, pΓ )

)
= F (v) ∀ v ∈W0,∂ΩN

B
(
u, (q, qΓ )

)
−d(pΓ , qΓ ) = FΓ

(
(q, qΓ )

)
∀(q, qΓ ) ∈ Q0,

(3)

where

F (v) = −
∫
ΓD

gv · n− aξ(rφ,v),

FΓ
(
(q, qΓ )

)
= −

∫
Γ
fΓ qΓ −

∫
∂ΓN

φΓ qΓ + d(rφΓ , qΓ )−
∫
ΩΓ

fq.
(4)

Theorem 1 Problem 1 is well posed.

Proof Well posedness may be proven by exploiting the results in [40]. Since
|∂ΩD| > 0, in the cited work it is shown that aξ is continuous and coercive
in W0,∂ΩN , and B is continuous and satisfies an inf-sup condition. The con-
tinuity of the functionals at the right hand side can be assessed by standard
techniques, while d is clearly a semi-positive definite form. Well posedness then
follows, see also [22].

1.2 Numerical scheme

Let Ωh be a partition of ΩΓ into non-overlapping polyhedra (bulk cells) P,
conforming to the fracture Γ . We define the mesh spacing as h = maxP∈Ωh hP,
where hP is the diameter of cell P. Let Fh be the set of facets of the cells in
Ωh, i.e. any f ∈ Fh is a facet of a P ∈ Ωh. To be able to represent jumps
and average values, the facets laying on Γ will be doubled. More precisely,
FΓh = Γ ∩ Fh is formed by pairs of geometrically identical facets (f+, f−) that
cover Γ . This also implies that Ωh induces a natural partition of Γ , that we
indicate by Γh, into planar facets f̂, called fracture cells, and for any f̂ ∈ Γh
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there is a couple of bulk facets f+(̂f), f−(̂f) ∈ Fh that coincide geometrically

with f̂. The set Fh may then be partitioned as

Fh = F0
h ∪ FΓh,+ ∪ FΓh,− ∪ FΓDh ∪ FΓNh = F0

h ∪ FΓh ∪ F∂Ωh ,

where F∂Ωh = F∂ΩDh ∪ F∂ΩNh collects the boundary facets, i.e. Dirichlet and
Neumann facets, F0

h collects the internal facets and FΓh = FΓh,+ ∪ FΓh,− is the
union of the decoupled fracture facets. We denote by Fh(P) ⊂ Fh the facets

of a P ∈ Ωh and Nf
P = card(Fh(P)). For the cells in Ωh we make the following

assumptions [17].

Assumption 1 There exist two positive real numbers Ns and ρs independent
on h such that Ωh admits a conforming sub-partition Th made of tetrahedra
such that:

– each polyhedron P is star-shaped with respect to a point xP ∈ P and each
facet f is star-shaped with respect to a point xf ∈ f.

– every polyhedron P ∈ Ωh admits a decomposition Th|P of at most Ns

tetrahedra. Moreover, the sub-partition Th is simple, i.e., it is built in the
following way. Firstly, each facet f is subdivided into triangles by connecting
each vertex of f with xf . Secondly, each element P is decomposed into
tetrahedra by connecting each vertex of P and each point xf , with f ∈
Fh(P), to the point xP;

– every tetrahedron T ∈ Th is regular, i.e. the ratio between the radius rT
of the inscribed sphere and the diameter hT is bounded from below by ρs,
i.e.

rT
hT
≥ ρs > 0.

These assumptions impose some limitations on the shape of the admissible ele-
ments, which however are not too restrictive. Indeed, the grid Ωh may contain
rather generally shaped elements, like non-convex cells. For the forthcoming
analysis, we make the following assumption.

Assumption 2 The meshes Ωh and Γh are aligned with the discontinuities of
the piecewise constant permeability tensors K and KΓ , respectively. Moreover,
Γh satisfies a K-orthogonality property in the sense of [38,36], i.e. there exists

a set of control points {xf}f∈Fh such that for any f ∈ Fh, xf ∈ f̊ and, for any
pair of neighboring elements facets f, f ′ ∈ Fh sharing a segment σ, it holds
that σ is orthogonal to the segment joining the control points xf and xf′ .

We point out that the above assumption on aligned grid is common in the anal-
ysis of flows in fractured porous media, and that the K-orthogonality property
assumed on Γh is standard in the framework of finite volume schemes. We refer
to the recent paper [19] for details on effective strategies for mesh generation
and implementation aspects in the context of Virtual Element approximations
of coupled multi-dimensional flow problems.
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Fig. 1 Degrees of freedom: velocity (left), pressure (right).

We denote by |P| and |f| the volume of the polyhedron P and the area
of the facet f, respectively. For every facet f ∈ Fh we consider a unit normal
vector nf , and in particular, for every couple of fracture facets f+, f− ∈ FΓh ,
we set nf+ = nf− = nΓ , while we denote by nP,f the unit normal vector on a
facet f ∈ Fh(P) of cell P, and we set αP,f = nf ·nP,f , while we indicate with xP

and xf the barycentres of P and f, respectively.

To simplify the set-up of the algebraic system stemming from the discretiza-
tion of (1), we restrict ourselves to the case ∂ΩN = ∅. The more general case
may be treated by standard techniques that do not alter the properties of the
numerical scheme (as long as |∂ΩD| > 0).

We approximate the discrete pressure fields with piecewise constant values
on each cell, and the bulk velocity with constant normal values on each facet.
Let NP = card(Ωh), NΓ = card(Γh), and Nf = card(Fh). We set QΩh =
RNP , QΓh = RNΓ and Wh = RNf and we denote with ph ∈ QΩh , and pΓ,h ∈
QΓh the vectors of discrete pressure in the bulk and in the fracture network,
respectively. We will indicate the global space of discrete pressures as Qh =
QΩh × QΓh . With pP, respectively pf̂ , we indicate the approximation of the

pressure on bulk cell P and on the fracture network facet f̂, that is

pP '
1

|P|

∫
P

p, and pf̂ '
1

|̂f|

∫
f̂

pΓ . (5)

As standard in MFD methods the degrees of freedom for velocity in the
bulk approximate with a constant value the normal velocity across each cell
facet. Therefore, if uh ∈ Wh is the vector of velocity degrees of freedom, we
indicate with

uf '
1

|f|

∫
f

u · nf (6)

its component of uh associated to facet f.

In the following, whenever convenient, we will use the notation Pi, f̂i and
fi to indicate the i-th bulk cell, fracture cell and bulk facet in QΩh , QΓh and
Wh, respectively.
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The derivation of the mimetic discretization is based on the definition of
inner products on QΩh and Wh. More precisely, we have

[qh, rh]QΩh =
∑
P∈Ωh

|P|qPrP, ∀qh, rh ∈ QΩh , (7)

and, for vh and wh in Wh,

[vh,wh]Wh
= wT

hMcvh = wT
hMvh + wT

hEvh =∑
P∈Ωh

wPMPvP +
∑
f̂∈Γh

ηf̂ |̂f|
(
{wh · nΓ }f̂{vh · nΓ }f̂ + ξ0Jwh · nΓ Kf̂Jvh · nΓ Kf̂

)
.

(8)

Here,

Jvh · nΓ Kf̂ = vf+ (̂f) − vf− (̂f), {vh · nΓ }f̂ =
vf+ (̂f) + vf− (̂f)

2
, (9)

are the jumps and averages of vh across the facet f̂, ηf̂ is the value of ηΓ on

facet f̂, while M and E are the matrices that contribute to the mimetic inner
product matrix Mc = M + E.

Matrix M is the classical MFD inner product matrix, which is built by as-
sembling the cell-wise contributions MP, while E accounts for the contribution
due to the coupling conditions (2), and is defined implicitly by

wT
hEvh =

∑
f̂∈Γh

ηf̂ |̂f|
(
{wh · nΓ }f̂{vh · nΓ }f̂ + ξ0Jwh · nΓ Kf̂Jvh · nΓ Kf̂

)
. (10)

As for MP its construction follows [17], and is briefly described. Let P ∈ Ωh
and f1, . . . , fN f

P
be the facets in Fh(P). We define the matrices ZP ∈ RN f

P×d and

RP ∈ RN f
P×d as

ZP =



nT
f1
...

nT
fi
...

nT
f
N f

P


KP, RP =



αP,f1 |f1|(cf1 − cP)
...

αP,fi |fi|(cfi − cP)
...

αP,f
N f

P

|fN f
P
|(cf

N f
P

− cP)

 . (11)

Here, KP is the value of the permeability K on cell P, cfi , and cP are the
barycenters of fi and P, respectively.

The elemental mimetic inner product matrix is then given by

MP = RP

( 1

|P|
K−1P

)
RT
P + γP

(
I− ZP(ZT

PZP)−1ZT
P

)
, (12)

with

γP =
2

N f
P|P|

tr(RPK
−1
P RT

P).
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It can be proven, see [40], that Mc is symmetric positive definite and that the
inner product in (8) satisfies the requirements of consistency and stability nec-
essary for a proper MFD discretization. Another step in a MFD discretization
is the definition of the discrete divergence operator. For the case of fractured
media, it has to represent the discretization of both the divergence operator
and the flux exchange term appearing in the equation governing flow in the
fractures. We thus define DIVh : Wh → Qh and an inner product on Qh so
that, for any vh ∈Wh and (qh, q̂h) ∈ Qh,

[DIVhvh, (qh, q̂h)]Qh = [divhvh,qh]QΩh +
∑
f̂∈Γh

|̂f|q̂f̂Jvh · nΓ Kf̂ , (13)

where the i− th component of divhvh ∈ QΩh is given by

[divhvh]i =
1

|Pi|
∑

f∈Fh(Pi)

αPi,f |f|vf .

The latter relation, together with (13) and (7), allows us to construct the
matrices B ∈ RNf×NP and C ∈ RNf×NΓ such that

−[DIVhvh, (qh, q̂h)]Qh = qThBvh + q̂ThCvh. (14)

Details may be found in [11,40].

As for the equations in the fracture network, we have employed the finite
volume scheme with the two point flux approximation described in [43]. For

each fracture cell f̂i ∈ Γh, we identify the set of edges of f̂i as J(i) = {ei :

ei edge of f̂i, ei 6⊂ ∂ΓN}, and eij will indicate the j − th element of J(i).
Clearly, j ranges from 1 to a maximum of 3 if the facet has no edges on the
Neumann boundary. For each eij 6⊂ ∂ΓD we indicate with p̂f̂(eij) the approxi-

mated fracture pressure in the only cell f̂(eij) such that f̂i∩ f̂(eij) = eij . While,
if eij ⊂ ∂ΓD, p̂f̂(eij) indicates the average value of the Dirichlet datum on ei,

and eventually it contributes to the right hand side.

The approximation of −∇Γ · (KΓ∇Γ pΓ ) by the finite volume scheme may
then be written as

−
∑

eij∈J(i)

Tij(p̂f̂(eij) − p̂f̂i), i = 1, . . . NΓ . (15)

Matrix T, of components Tij , is the so called transmissibility matrix, whose
computation is explained in details in the given references. It is symmetric and
positive semi-definite (positive definite if ∂ΓD 6= ∅).
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1.3 The algebraic system

From now on, to simplify the notation, we omit the subscript h to indicate the
vectors of degrees of freedom. Thanks to the definitions in (8), (14) and (15),
we may write the linear system governing the discrete problem as

Mcu+ BTp+ CTpΓ = g

Bu = h,

Cu− TpΓ = hΓ ,

(16)

or, equivalently, Mc B
T CT

B 0 0
C 0 −T

 up
pΓ

 =

 g
h

hΓ

 , (17)

where we recall that the vectors u, p and pΓ contain the approximate solu-
tion for the bulk velocity, bulk pressure, and fracture pressure, respectively,
while the vectors g, h and hΓ contain the terms arising from the forcing and
boundary data.

Theorem 2 System (16), or equivalently (17), is well posed.

Proof Let us first note that we can reduce the linear system to a classic
saddle point algebraic problem. We define the following block matrices B̃ ∈
R(NP+NΓ )×Nf and T̃ ∈ R(NP+NΓ )×(NP+NΓ ) as

B̃ =

[
B
C

]
, T̃ =

[
0 0
0 T

]
, (18)

and the vectors π = [p,pΓ ]T and h̃ = [h,hΓ ]T. The system can be rewritten
as [

Mc B̃T

B̃ −T̃

] [
u
π

]
=

[
g

h̃

]
. (19)

Following the steps illustrated in [40], we may prove that Mc is symmetric pos-

itive definite and ker(B̃T ) = ∅. Since T̃ is positive semi-definite, well posedness
follows from standard results on saddle point systems, see for instance [20,22].
A similar result may be found also in [11]. We also note that the problem is

well posed even if T̃ = 0. In this case, if also hΓ = 0 we have Ju · nΓ Kf̂ = 0

for all f̂ ∈ Γh, and pΓ is the vector of Lagrange multipliers imposing this
condition.

2 Spectral properties of the governing system of equations

In this work we will mainly focus on three dimensional test cases, since their
solution is more challenging. That is why the numerical scheme has been in-
troduced for that setting. However in this section, for the sake of generality,
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we report the results for a generic space dimension d, with d = 2 or d = 3.
It it understood that for the two dimensional case the assumptions made on
the mesh has to be reinterpreted appropriately. Moreover, we will keep the
notation used for the three dimensional setting. In the following, with a . b
(respectively, a & b) we indicate the existence of a positive constant C, inde-
pendent of h, such that a ≤ Cb (a ≥ Cb), while a ' b means b . a . b. We also
recall that for any family of meshes {Ωh, h > 0} that satisfy Assumption 1
we have

|P| ' hd, |f| ' hd−1 and card(Fh(P)) ≤ N∗, (20)

for all P ∈ Ωh and f ∈ Γh, and where N∗ a positive integer independent of h. In
all the following derivations, we assume that the mesh satisfies Assumption 1,
and consequently the inequalities in (20).

We first introduce some norms and norm equivalence results. For all vh ∈
Wh we define

|||vh|||2Wh
=
∑
P∈Ωh

|P|
∑

f∈Fh(P)

v2f , (21)

‖vh‖2Wh
=|||vh|||2Wh

+
∑
f̂∈Γh

|̂f|(JvhK2f̂ + {vh}2f̂ ), (22)

‖vh‖2Mc =[vh,vh]Wh
= vThMcvh, (23)

‖q‖2QΩh =[qh, rh]QΩh =
∑
P∈Ωh

|P|q2P, (24)

and

‖q‖2QΓh =
∑
f̂∈Γh

|̂f|q2
f̂
, (25)

while with ‖ · ‖ we indicate the standard Euclidean norm.

Lemma 1 We have the following inequalities:

‖p‖2QΩh ' h
d‖p‖2, ‖pΓ ‖2QΓh ' h

d−1‖pΓ ‖2, (26)

C∗||vh||2Wh
. ||vh||2Mc . C∗||vh||2Wh

∀ vh ∈Wh, (27)

where C∗ = min( 1
K∗ , ξ0η∗) and C∗ = max( 1

K∗
, η∗). Moreover, it holds that

|||vh|||Wh
≤ ‖vh‖Wh

≤
√

1 +
C

h
|||vh|||Wh

∀ vh ∈Wh, (28)

for a C > 0, and, for h sufficiently small,

hd||vh||2 . ‖vh‖2Wh
. hd−1‖vh‖2 ∀ vh ∈Wh. (29)
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Proof The equivalence relations in (26) is an immediate application of the
definition (24) and (25), and of the inequalities in (20).

The proof of (27) and (28) may be found in [40, Lemma 3.4] and [40,
Lemma 3.1]. As for (29), we clearly have

‖vh‖2Wh
≥ min

P∈Ωh

∑
P∈Ωh

∑
f∈Fh(P)

|f|v2f&hd‖vh‖2,

while, ∑
f̂∈Γh

JvhK2f̂ + {vh}2f̂ ≤ 2
∑
f̂∈Γh

(v2
f+ (̂f)

+ v2
f− (̂f)

) ≤ 2‖vh‖2

and ∑
P∈Ωh

∑
f∈Fh(P)

v2f ≤ 2
∑
f∈Fh

v2f −
∑

f∈F∂Ωh

v2f ≤ 2‖vh‖2.

Thus,
‖vh‖2Wh

≤ 2 max(max
P∈Ωh

|P|,max
f̂∈Γh
|̂f|))‖vh‖2 . hd−1‖vh‖2,

for a sufficiently small h.

In the following we will indicate by A the global matrix

A =

Mc B
T CT

B 0 0
C 0 −T

 =

[
Mc B̃T

B̃ −T̃

]
. (30)

It is well known, see for instance [54,37], that A has Nf positive and NB =
NΓ + NP negative eigenvalues. We will indicate by 0 < λMcmin ≤ λMcmax the

minimum and maximum eigenvalue of Mc, by 0 < µB̃
min ≤ µB̃

max the minimum

and maximum singular value of B̃T , and by λT̃max > 0 the maximum eigenvalue

of T̃, which clearly corresponds also to the maximum eigenvalue of T. Finally,
we define

ζ =
NB

max
k=1

‖pΓ,k‖2

‖πk‖2
, (31)

where πk = [pk,pΓ,k]T ∈ Qh is the pressure component of the eigenvector
corresponding to the k-th negative eigenvalue of A. Clearly ζ ≤ 1.

We have the following

Lemma 2 The spectrum of A satisfies

σ(A) ⊆ I− ∪ I+,

where

I− =

[
1

2

(
λMcmin − ζλ

T̃
max −

√
(λMcmin + ζλT̃max)2 + 4(µB̃

max)2
)
,

1

2

(
λMcmax −

√
(λMcmax)2 + 4(µB̃

min)2
)]
⊂ R−,

I+ =

[
λMcmin,

1

2

(
λMcmax +

√
(λMcmax)2 + 4(µB̃

max)2
)]
⊂ R+.
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Proof The result is an extension of the one given in [52]. For the sake of brevity,
we report only the part that differs from the cited reference. We indicate with

λ−,Amin = λA−NB ≤ . . . ≤ λ
A
−1 = λ−,Amax < 0 < λ+,Amin = λA1 ≤ . . . λANf

= λ+,Amax

the eigenvalues of A and with (λ, [u,π]T ) = (λ, [u,p,pΓ ]T ) a generic eigenpair
of A. It means that

Mcu + B̃Tπ = λu, (32)

B̃u− T̃π = λπ. (33)

In particular, we consider here a λ < 0. In this case, Mc−λI is non-singular
and we may build the Schur complement of block Mc, by which we can write

πT
[
B̃ (Mc − λI)

−1 B̃T + T̃
]
π = −λ‖π‖2 ≥ 0, (34)

The part of the proof that differs from that in [52] concerns the estimate

of λ−,Amin, where we exploit the special structure of T̃. More precisely, from (34)
we may derive that

πT
[
B̃ (Mc − λI)

−1 B̃T + T̃
]
π

‖π‖2
= −λ =

πT
[
B̃ (Mc − λI)

−1 B̃T
]
π

‖π‖2
+
‖pΓ ‖2

‖π‖2
pTΓTpΓ
‖pΓ ‖2

≥ 0,

by which we deduce that

(λMcmin − λ)−1(µB̃
max)2 + ζλT̃max + λ ≥ 0,

i.e.

λ2 + (ζλT̃max − λ
Mc
min)λ− (µB̃

max)2 − ζλT̃maxλ
Mc
min ≤ 0,

and thus,

λ−,Amin ≥
1

2

(
λMcmin − ζλ

T̃
max −

√
(λMcmin + ζλT̃max)2 + 4(µB̃

max)2
)
. (35)

The proof is concluded by integrating this result with the other bounds pro-
vided in the cited reference.

We can now proceed to specialize to our problem the various terms in Lemma 2
.

Lemma 3 The eigenvalues of Mc satisfy asymptotically, i.e for h sufficiently
small, the following bounds

K−1∗ hd & λMcmin & C∗h
d, and ξ0η∗h

d−1 . λMcmax . C∗hd−1. (36)
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Proof To obtain λMcmin & C∗h
d and λMcmax . C∗hd−1 it is sufficient to bound

the Rayleigh quotient
vTMcv

‖v‖2
=
‖v‖2Mc
‖v‖2

by exploiting inequalities (27)-(29) of Lemma 1. The other inequalities are
again obtained by considering the same Rayleigh quotient and using the def-
inition of Mc in (8). If we choose v ∈ Wh such that v 6= 0 and vf = 0 if
f ∈ Fh \ FΓh we have vTMcv & maxf∈FΓh

(|f|)ξ0η∗‖v‖2, by which we obtain

ξ0η∗h
d−1 . λMcmax. If instead v is such that vf = 0 if f ∈ FΓh , we can obtain

vTMcv . K−1∗ minP∈Ωh(|P|)‖v‖2, by which λMcmin . K−1∗ hd.

Lemma 4 If Γh is K-orthogonal on each fracture, then

λT̃max = λTmax . K∗Γh
d−3. (37)

Proof If the grid is K-orthogonal T̃ is symmetric positive semidefinite and
diagonally dominant, and the estimate is then easily obtained by bounding
the Rayleigh quotient and by the fact that the fracture equations are posed
on d− 1 dimensional surfaces embedded in Rd.

Numerical experiments in Section 4.3 have verified the validity of this estimate,
also in cases where the grid is not strictly K-orthogonal.

We state now the following conjecture.

Conjecture 1 The coefficient ζ defined in (31) satisfies

ζ . h. (38)

This conjecture has been verified indirectly by examining the behavior of the
spectrum of A experimentally. It can be justified by the fact the pressure
component π = (p,pΓ ) of an eigenvector of A is an approximation of the
pressure component of an eigenfunction (p, pΓ ) ∈ Q × ZΓ of our differential
problem, thus, ‖p‖QΩh ' ‖p‖L2(Ω), while ‖pΓ ‖QΓh ' ‖pΓ ‖L2(Γ ). We can now

consider π as the pressure eigenvector for which the ratio in (31) reaches its
maximal value. Thanks to (26), ‖p‖2 & h−d‖p‖2

QΩh
and ‖pΓ ‖2 . h1−d‖pΓ ‖2QΓh ,

we can then infer that ζ = ‖pΓ ‖2
‖pΓ ‖2+‖p‖2 . h. However, no rigorous proof is

currently available.
To estimate the singular values of B̃T we extend the work in [47] to the case

of fractured domains. To this aim, we have to make an additional assumption
on the mesh. It is a technical assumption which is satisfied if the mesh does
not exhibit ”pathological situations”. We define the total grid Λh = Ωh ∪ Γh,
which contains both bulk and fracture polygonal cells. So a generic cell c ∈ Λh
may be a bulk cell or a fracture cell. Let us consider the undirected graph
G where the elements of Λh are the graph nodes and the set of graph edges
Lh ⊆ Λh × Λh are defined by:

– For any P1,P2 ∈ Ωh, (P1,P2) ∈ Lh if and only if ∃f ∈ F0
h such that

f = P1 ∩ P2,
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– For any P ∈ Ωh and f̂ ∈ Γh, (P, f̂) ∈ Lh if and only if f̂ ∩ ∂P = f̂.

Assumption 3 The global mesh Λh satisfies the following assumption: there
exists a family of elementary paths Ψ = {ζi}i=1,...,Nγ which are connected
subgraphs of G with nodes of maximal degree 2, such that

– for every cell c ∈ Λh there exists one and only one path ζi ∈ Ψ with c ∈ ζi,
i.e. the family of paths Ψ defines a partition of Λh;

– the first and last node, cs,i and ce,i, of any ζi ∈ Ψ have a facet in F∂Ωh ;
– there exists a constant L∗ independent from h such that

Li ≤ L∗h−1, i = 1, ..., Nγ ,

where Li is the number of cells in ζi.

We can now state the following.

Lemma 5 For h sufficiently small, the singular values of B̃T satisfy the fol-
lowing bounds

µB̃
min & hd, µB̃

max . hd−1. (39)

Proof A singular values B̃T is the square root of an eigenvalue of

B̃B̃T =

[
B
C

] [
BT CT

]
=

[
BBT BCT

CBT CCT

]
,

which is a full rank matrix, thanks to the discrete inf-sup condition, as proven
in [40]. Let us consider each block more closely in order to characterize the
elements of the matrix in detail. The block (1,1) is BBT ∈ RNP×NP and we
have

[BBT]ij =


∑

f∈Fh(Pi)
|f|2 if i = j

−
∑

fi∈Fh(Pi)∩Fh(Pj)
|fi|2 if i 6= j.

(40)

Now we focus on block (1,2), i.e. BCT ∈ RNP×NΓ . We have

[BCT]ij =

{
−|̂fj |2 if Fh(Pi) ∩ (f+(̂fj) ∪ f−(̂fj)) 6= ∅
0 otherwise.

(41)

Block (2,1) is just the transpose of the block (1,2), while block (2,2), given by
CCT ∈ RNΓ×NΓ , is diagonal, with elements

[CCT]ij =

{
2|̂fi|2 if i = j

0 if i 6= j.
(42)

We start seeking an upper bound for the eigenvalues λ(B̃B̃T) of B̃B̃T.
Thanks to Gershgorin Theorem, we have

σ(B̃B̃T) ⊆
NP+NΓ⋃
i=1

Ri,
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where Ri are the row circles. From (40)-(42), we note that we have two types
of row circles. Indicating by xic and ri the center and the radius of circle Ri,
respectively, we have

xic =
∑

f∈Fh(Pi)

|f|2, ri =
∑

f∈Fh(Pi)\F∂Ωh

|f|2, for i = 1, . . . , NP,

xic =2|̂fi−NP
|2, ri = 2|̂fi−NP

|2, for i = NP, . . . , NP +NΓ .

We can then derive that

λmax(B̃B̃T) ≤ max

{
max
P∈Ωh

( ∑
f∈Fh(P)

|f|2 +
∑

f∈Fh(P)\F∂Ωh

|f|2
)
, 4 max

f̂∈Γh
|̂f|2
}

≤ max

{
2N∗max

f∈Fh
|f|2, 4 max

f̂∈Γh
|̂f|2
}

= 2N∗max
f∈Fh

|f|2 . h2(d−1),

(43)

since N∗ ≥ 2. The estimate of the smallest eigenvalue requires the additional
mesh Assumption 3. To do so we first consider the elements of the vector
B̃Tπ ∈ RNf . For each f ∈ F0

h we can identify the two adjacent cells Pf
1 and Pf

2

so that αPf
1,f

= 1 and αPf
2,f

= −1. For f ∈ F∂Ωh we can identify the cell Pf of

which f is a boundary facet and for f ∈ FΓh also the corresponding f̂ ∈ Γh, i.e
the fracture cell that coincides geometrically with f. So, for 1 ≤ i ≤ N f and
indicating with fi the i-th bulk facet, we have

[B̃Tp̃]i =


−αPfi ,fi |fi|pPfi , if fi ∈ F∂Ωh ,

|fi|(pPfi
2
− p

P
fi
1

), if fi ∈ F0
h,

αPfi ,fi |fi|(pf̂ − pPfi ), if fi ∈ FΓh .

If we now consider the Rayleigh quotient of B̃B̃T we may rearrange the terms
to get

πTB̃B̃Tπ

‖π‖2
=

∑
f∈F∂Ωh

|f|2p2Pf +
∑

f∈F0
h

|f|2(pPf
2
− pPf

1
)2 +

∑
f∈FΓh

|f|2(pf̂ − pPf )2∑
P∈Ωh

p2P +
∑

f̂∈Γh
p2
f̂

We can characterize the smallest eigenvalue as

λmin(B̃B̃T) = min
π 6=0

∑
f∈F∂Ωh

|f|2p2Pf +
∑

f∈F0
h

|f|2(pPf
2
− pPf

1
)2 +

∑
f∈FΓh

|f|2(pf̂ − pPf )2∑
P∈Ωh

p2P +
∑

f̂∈Γh
p2
f̂

≥ min
f∈Fh

|f|2 min
π 6=0

∑
f∈F∂Ωh

p2Pf +
∑

f∈F0
h

(pPf
2
− pPf

1
)2 +

∑
f∈FΓh

(pf̂ − pPf )2∑
P∈Ωh

p2P +
∑

f̂∈Γh
p2
f̂
.



Preconditioning techniques for flow in fractured porous media 19

We now order the elements of Λh path by path. Therefore, π = [p,pΓ ]T may
be partitioned in [π1, . . . ,πNζi ]

T, where πi = [πcs,i , . . . , πce,i ]
T are the pressure

values (either in the bulk or in the fracture) associated to the cells in path ζi.
For each graph edge e of ζi we indicate with πe1,i and πe2,i the elements of πi
associated to the cells at end of the edge. Since |f| & hd−1, we have

λmin(B̃B̃T) & h2(d−1) min
π 6=0

Nγ∑
i=1

(
π2
cs,i +

∑
e∈ζi

(πe2,i − πe1,i)2 + π2
ce,i

)
∑
c∈Λh

π2
c

.

The last term is equivalent to the Rayleigh coefficient of the block diagonal
matrix

Σ = diag(E1,E2, . . . ,ENγ−1
,ENγ ) ∈ R(NP+NΓ )×(NP+NΓ ),

where Ei = tridiag(−1, 2,−1) ∈ RLi×Li. The eigenvalues of Ei can be computed
explicitly as

λj(Ei) = 2

(
1− cos

Li + 1− j
Li + 1

)
, j = 1, . . . , Li.

Therefore, λmin(Ei) = 2

(
1 − cos

1

Li + 1

)
, and, from Assumption 3 on the

maximum length of the paths,

λmin(Σ) ≥ min
i=1,...,Nγ

λLi(Ei) = 2 min
i=1,...,Nγ

(
1−cos

1

Li + 1

)
≥
(

1−cos
1

L∗h−1 + 1

)
.

Finally,

λmin(B̃B̃T) & h2(d−1)λmin(Σ) & h2(d−1)
(

1− cos
h

L∗ + h

)
.

For sufficiently small h it holds that 1 − cos h
L∗+h

≤ h2

2L2
∗
, by which we can

conclude that

µB̃
min =

√
λmin(B̃B̃T) & hd. (44)

Theorem 3 Let h be sufficiently small, and assume that Assumptions 1, 3
and Conjecture 1 hold. Then, the spectrum of A satisfies

I−∪I+ = [λ−,Amin, λ
−,A
max]∪ [λ+,Amin, λ

+,A
max] ⊆ [−k1hd−2, −k2hd+1]∪ [k3h

d, k4h
d−1],
(45)

where ki are positive constants independent from h but depending on the bounds
on the permeability in the bulk and in the fractures. Consequently, the condition
number is characterized by the following bound,

K2(A) ≤ k1
k2
h−3. (46)



20 Paola F. Antonietti et al.

Proof The bounds to characterize the intervals I− and I+ are obtained by ap-
plying estimates (37), (36), (39) and (38) to Lemma 2. Indeed, by considering
only the leading terms for h sufficiently small we have

λ−,Amin & −K∗Γhd−2, (47)

and

λ−,Amax=
1

2

(
λMcmax −

√
(λMcmax)2 + 4(µB

min)2
)
≤ 1

2
λMcmax

(
1−

√
1 + 4

(µB
min)2

(λMcmax)2

)
.

(48)

Since
(µB
min)2

(λMcmax)2
& h2 and 1−

√
1 + kh2 ' −kh2, we deduce

λ−,Amax . − (µB
min)2

λMcmax
. − 1

C∗
hd+1. (49)

Concerning the interval of positive eigenvalues we immediately have

λ+,Amin & λMcmin & C∗h
d. (50)

and, finally

λ+,Amax .
λMcmax

2

(
1 +

√
1 + 4

(µB
max)2

(λMcmax)2

)
. C∗hd−1 (51)

Defining the following constants,

k1 = K∗Γ , k2 =
1

C∗
, k3 = C∗ and k4 = C∗,

we recover the asymptotic spectrum estimate (45) and we can conclude that

||A||2 ≤ k1hd−2, ||A−1||2 ≤
1

k2
h−d−1,

by which we obtain the estimate of the condition number (46).

Concerning the asymptotic behavior of the condition number in function of the
problem parameters, we may note that the most relevant term is proportional
to

k1/k2 = K∗ΓC
∗ = max(K∗Γ /K∗,K

∗
Γ η
∗). (52)

Therefore, as expected, an important role is played by the permeability con-
trast between bulk and fractures.

Remark 1 We may note that without Conjecture 1 we will have in (35) that

for λ−,Amin the term ζλT̃max is of order hd−3. This will imply a condition number
K2(A) of the order h−4, much more restrictive
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Remark 2 The results here presented are asymptotic, i.e. they hold for an
h sufficiently small. The dependence on the problem parameters shows that
the leading term of O(h−3) in the condition number is more relevant when
fractures are much more permeable than the bulk. This has been confirmed in
the numerical experiments.

The next result is important for the derivation of suitable preconditioners
for the system. We define Mc

D = diag(Mc), the diagonal part of the mimetic
inner product matrix. We have the following

Theorem 4 Matrix Mc
D is asymptotically spectrally equivalent to Mc. That

is, if h ≤ h0, then

λ
McD
max ' λMcmax and λ

McD
min ' λ

Mc
min, (53)

where λ
McD
max and λ

McD
min are the maximum and minimum eigenvalue of Mc

D,
respectively, and the hidden constants depend on the problem parameters but
not on h.

Proof We first note that both Mc and Mc
D can be build cell-wise,

Mc =
∑
P∈Ωh

Mc
P Mc =

∑
P∈Ωh

MD,P.

Consequently, see [55], the Rayleigh quotient satisfies

min
P∈Ωh

vTPM
c
PvP

vTPM
c
D,PvP

≤ vTMcv

vTMc
Dv
≤ max

P∈Ωh

vTPM
c
PvP

vTPM
c
D,PvP

, (54)

where vTP and vPΓ are the restriction of the vector of velocity degrees of
freedom v ∈ Wh on the velocity degrees of freedom of P and to the velocity
degrees of freedom of P that lies on Γ , respectively. We have that vTPM

c
PvP =

vTPMPvP + vTPΓ EPvPΓ , where MP and EP are the elemental contributions to
the matrices M and E, respectively. Coercivity and stability results for Mc

P,
reported in [40], together with the quasi-uniformity assumption (20) and the
definition of E, lead to

vTPMPvP ' hd‖vP‖2, and vTPΓ EPvPΓ ' hd−1‖vPΓ ‖2. (55)

Let us now indicate with mc
ii the j-th diagonal element of Mc

P and we set
mc
jj = mjj + ejj , where mjj and ejj are the elements of MD,P and ED,P, the

diagonal part of MP and EP respectively, and we indicate with ej the j-th
canonical vector with all components zero apart from [ej ]j = 1. With simple
algebraic manipulations, from (11) and (12) we find that

mjj = eTj MPej =
|fj |2

|P|
(cfj − cP)K−1P (cfj − cP) + γPeTj

(
I− ZP(ZT

PZP)−1ZT
P

)
ej .
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Since γP ' hd,
|fj |2

|P|
' hd−2, (cfj − cP)K−1P (cfj − cP) ' h2, and noting that

I− ZP(ZT
PZP)−1ZT

P is a projection matrix, we can claim that

mjj ' hd, ∀j. (56)

While, considering the definition of E given in (10), and indicating with FΓh (P) ⊂
FΓh the set of facets of P that lay on Γh and f̂ the fracture cell corresponding
to a f ∈ FΓh (P), we may infer

vTPED,PvP ' ‖vPΓ ‖2
∑

f∈FΓh (P)

ηf̂ |f| ' h
d−1‖vPΓ ‖2, (57)

since ξ0 > 0.
In conclusion, by exploiting (55), (56) and (57) we have

vTPM
c
PvP

vTPMD,PvP
' hd‖vP‖2 + hd−1‖vPΓ ‖2

hd‖vP‖2 + hd−1‖vPΓ ‖2
,

by which the quotient is asymptotically a constant.

3 Preconditioning techniques for the discrete generalized
saddle-point system

In this section we present several ABF preconditioners applied to the problem
at hand. For an overview of preconditioning technique the reader may refer
to [56], and [20] for the particular case of saddle point problems. For an il-
lustration of iterative methods for problems arising from the discretization of
partial differential equations the reader may refer to [37].

The objective is to verify the effectiveness of a diagonal approximation of
the matrix Mc Indeed, the result of Theorem 4 suggests that approximating
Mc with its the diagonal,

M̂c = diag([mc]ii). i = 1, 2, . . . , (58)

could be an interesting and simple choice.
To be computational effective, the block-preconditioners we are going to

consider require also an approximation for the Schur complement S = −T̃ −
B̃M−1c B̃T. For Mixed Finite Elements for the Stokes problem there is a wide
strand of literature on the topic of finding good approximations of S, see for
instance [20]. On the other hand, in the context of MFD discretizations we are
not aware of any effective strategy. We propose here the approximation simply
given by

Ŝ = −T̃− B̃M̂cB̃
T. (59)

Matrix −Ŝ is s.p.d. and rather sparse, so it is easily factored with a sparse
Cholesky factorization [33].



Preconditioning techniques for flow in fractured porous media 23

In a first set of test cases we will consider also the approximation of Mc

with its lumped form

M̃c = diag(
∑
j

[mc]ij), i = 1, 2, . . . , (60)

a technique widely used in low-order finite elements. We will show that this
choice is completely inadequate for our class of problems.

We have chosen two iterative schemes, MINRES [49] and GMRES [50].
The former is in principle the method of choice for indefinite symmetric sys-
tems. However it restricts the choice of preconditioners to symmetric positive
definite ones. Therefore, the reduced constraints on the possible precondition-
ers of GMRES makes it particularly interesting, despite its larger memory
requirement. For GMRES we have chosen the left-preconditioned formulation.

3.1 Block Diagonal Preconditioner

The first ABF preconditioner we have considered is given by

P =

[
M̂c

0 −Ŝ

]
, (61)

where Ŝ if computed according to (59) and M̂c using (58) or, alternatively,
(60). The application of the preconditioner is straightforward, and recalled
in Algorithm 1. At each iteration, we compute the preconditioned residual
z = [z1, z2]T given by Pz = r, where r = [r1, r2]T is the current residual.

Algorithm 1 Block diagonal preconditioner. Computation of z = P−1r.

Solve M̂cz1 = r1
Solve −Ŝz2 = r2

This preconditioner is symmetric positive definite, therefore it may be used
for both GMRES and MINRES. The most demanding part of Algorithm 1 is
solving the linear system −Ŝz2 = r2, which is however made effective by the
Cholesky factorization (a possible alternative, not considered in this work, is
to use multigrid techniques).

3.2 Block triangular preconditioner

In this case, we set

P =

[
M̂c B̃

T

0 Ŝ

]
, (62)
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Given the above definitions, the solution of Pz = r can be obtained by
employing the following factorization of its inverse

P−1 =

[
M̂−1c 0

0 I

] [
I B̃T

0 −I

] [
I 0

0 −Ŝ−1

]
.

More precisely, at each iteration, computing the preconditioned residual is
attained by Algorithm 2. Again, the most demanding part of Algorithm 2

Algorithm 2 Block triangular preconditioner. Computation of z = P−1r.

Solve −Ŝz2 = r2
Compute γ = r1 − B̃Tz2
Solve M̂cz1 = γ

is solving the linear system −Ŝz2 = r2. The additional computational effort
compared with the diagonal block preconditioner is minimal. However, this
preconditioner is not s.p.d. and therefore it has been tested only with GMRES.

3.3 Block LU preconditioner

Now we introduce a preconditioner based on an approximate block LU factor-
ization. For the matrix A the following block LU factorization holds:

A =

[
Mc B̃T

B̃ −T̃

]
=

[
Mc 0

B̃ S

] [
I M−1c B̃T

0 I

]
, (63)

The idea is again to replace Mc and S with the proposed approximations M̂c

and Ŝ, so that the preconditioner is now

P =

[
M̂c 0

B̃ Ŝ

] [
I M̂−1c B̃T

0 I

]
. (64)

Multiplying the factors we get

P =

[
M̂c B̃T

B̃ −̂̃T
]
,

̂̃
T = −(B̃M̂cB̃

T + Ŝ). (65)

Note that with this approximation of the Schur Complement, (65) reduces
to

P =

[
M̂c B̃T

B̃ −T̃

]
, (66)

since
̂̃
T = T̃. The preconditioner in (66) is the classical form of an indefinite

preconditioner, more precisely it falls under the class of constraint precondi-
tioners, see [20] for more details. A constraint preconditioner has the same
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block structure of the original matrix. Therefore, a saddle point matrix is pre-
conditioned by another saddle point matrix that can be inverted in an easier
way. For a given residual r = [r1, r2]T, computing the preconditioned resid-
ual z = [z1, z2]T = P−1r requires the steps illustrated in Algorithm 3. The

Algorithm 3 Block LU preconditioner. Computation of z = P−1r.

Solve M̂cy1 = r1
Solve Ŝz2 = r2 − B̃y1

Solve M̂cγ = B̃Tz2
Compute z1 = y1 − γ

computational costs are slightly higher than the ones of Algorithm 2, with
an additional multiplication by M̂−1c and B̃. We observe that the approximate
block LU preconditioner based on employing the diagonal part of Mc mimics
the well-known SIMPLE preconditioning (see [37]) used in computational fluid
dynamics.

4 Numerical tests

In this section we present some numerical experiments. The first illustrates
some solutions obtained with the proposed model on two test cases, one with
a single fracture cutting the domain and the second one with a more complex
network. We then use the set-up of the first test case to verify the spectral
properties of the matrices with respect to the theoretical estimates. Finally,
we test the performances of the proposed preconditioners using the matrices
stemming from the discretization of the two test cases.

4.1 Setup A - single fracture case

In the first test we have considered a domain Ω = (−1, 1) × (−1, 1) × (0, 1)
and a fracture Γ = (−1, 1) × {0} × (0, 1). On the left and right boundary
sides we consider Dirichlet conditions, in particular we fix p = 1 on {y = −1}
and p = 0 on {y = 1}, while on the top, bottom, front and back sides we
impose homogeneous Neumann boundary conditions, whereas for the fracture
we consider full Dirichlet boundary conditions setting p = 1 on the top and p =
0 on the bottom side: in this way we are simulating two orthogonal flows, one
in the bulk and one in the fracture, and, by varying the fracture parameters,
see Figure 2, we vary their interaction. We have considered 3 cases: a “sealed”
fracture Kτ = 10−2, Kn = 1, where the low normal permeability hinders
the flow across the fracture; a “neutral case” with Kτ = 10−2, Kn = 102,
where the material filling the fracture has the same permeability as the bulk
and we expect negligible pressure and velocity jumps; and a highly conductive
fracture, Kτ = 1, Kn = 102.
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Kτ = 10−2, Kn = 1 Kτ = 10−2, Kn = 102 Kτ = 1, Kn = 102
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Fig. 2 Pressure field in the bulk domain for different values of Kτ and Kn, setup A (single
fracture).

Note the jump of pressure across the fracture obtained in the case of the
“sealed” fracture, Figure 2-left, and the linear pressure profile in 2-center,
where the fracture has a negligible effect on the bulk flow. More interesting is
the case of the conductive fracture in Figure 2-right, where we have a strong
interaction between the fracture and bulk flow, and the fracture becomes a
preferential path for the fluid.

4.2 Setup B - fracture network

We here consider a more realistic case, i.e. a network of fractures. The bulk
domain is now Ω = (0, 2)× (0, 1)× (0, 1) and the network Γ consists of seven
fractures with several intersections shown in Figure 3. On the left and right
boundary sides of the domain we consider Dirichlet conditions, in particular
we fix p = 1 on {x = 0} and p = 0 on {x = 2}, while on the top, bottom, front
and back boundary sides of the domain we impose homogeneous Neumann
boundary conditions. A polyhedral mesh of diameter h = 0.193 is employed
and the resulting dimension of the system is 43834.

Fig. 3 Porous medium with network of fractures.
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In this test we consider larger contrasts between the equivalent permeabil-
ity Kτ and Kn and the bulk permeability with respect to the previous test.
In the case of blocking fractures we set Kτ = 10−3, Kn = 10−1. As shown
in Figure 4 the action of the fractures as barriers implies a strong discontinu-
ity of the pressure across the fractures. The case of conductive fractures, with
Kτ = 10, Kn = 103 is shown in Figure 5: note that in this case the distribution
of pressure in the bulk follows the main network direction, since the fractures
attract the bulk flow.
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0.998 

Pressure

0.2514

0.5001

0.7489

0.00264

0.998 

Pressure

0.2514

0.5001

Fig. 4 Pressure distribution in the fractures network - sealed network case: Kτ = 10−3,
Kn = 10−1.
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0.4997

Fig. 5 Pressure distribution in the porous medium - conductive network case: Kτ = 10,
Kn = 103.

4.3 Spectral properties of the matrix

We consider the geometrical configuration of Setup A, illustrated in Sec-
tion 4.1. First, we study experimentally the maximum eigenvalue of the trans-
missibility matrix T to verify (37). Then, we estimate the condition number of
the global matrix of the problem A to verify the theoretical estimate of The-
orem 3. The maximum and minimum eigenvalues have been estimated with
the eigs function of MATLAB R©.
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Hexahedral grid
h 0.25 0.125 0.0625 0.0313

λTmax 8.00e-05 8.00e-05 8.00e-05 8.00e-05

Tetrahedral grid
h 1.118 0.563 0.314 0.144

λTmax 9.74e-05 1.02e-04 1.02e-04 1.02e-04

Polyhedral grid
h 0.559 0.265 0.137 0.067

λTmax 9.10e-05 9.75e-05 1.00e-04 1.03e-04

Table 1 Maximum eigenvalue of matrix T for different types of grids.

Hexahedral grid

h 0.25 0.125 0.0625 0.0313
kf=1e-3 4.31e+01 8.54e+01 1.69e+02 3.41e+02
kf=1 2.77e+01 8.79e+01 6.58e+02 2.64e+03
kf=1e3 1.02e+04 8.20e+04 6.55e+05 5.32e+06

Tetrahedral grid

h 1.118 0.563 0.314 0.144
kf=1e-3 3.38e+02 7.04e+02 1.35e+03 2.76e+03
kf=1 3.38e+02 6.91e+02 2.54e+03 1.01e+04
kf=1e3 3.74e+04 3.14e+05 2.51e+06 2.21e+07

Polyhedral grid

h 0.559 0.265 0.137 0.067
kf=1e-3 1.12e+03 4.17e+03 8.69e+03 2.52e+04
kf=1 1.11e+03 4.18e+03 1.47e+04 5.85e+04
kf=1e3 2.09e+05 1.78e+06 1.47e+07 1.15e+08

Table 2 Condition number of A by varying the mesh size and the fracture permeability
for different types of grids.

We wanted to assess that the theoretical bound (37) on the maximal eigen-
value of T holds (at least approximately) also for more general grids. Since
d = 3 the bound states that λTmax should be bounded by a quantity invariant
with h.

In Table 1 we have reported the estimated values for different grids and
K̂Γ = kf I, with kf = 10−3. We may note that for regular hexahedral grids,
which induce a rather regular mesh on Γ , the eigenvalue is in fact constant
with a value that respects the bound very closely. However, even for more
general meshes, the value of λTmax is scarcely affected by h, with higher values
that probably reflects the lower mesh regularity.

We focus now on the numerical validation of the estimate of the condition
number of the system matrix A stated in Theorem 3.

We can observe in Table 2 that the h-dependence of the condition num-
ber changes with the fracture permeability and with h, as expected. Yet, the
theoretical bound in (46), with K2(A) = O(h−3) is reached only for the high-
est value of kf , when the coefficient in (52) has the highest value of 10. In
the other cases, for the values of h here considered, a less restrictive variation
with h has been found. This is probably due to the fact that the meshes are
not refined enough. Indeed, the theoretical estimate is asymptotic, and with a
mesh size not sufficiently small the other terms defining the the intervals I−

and I+ in (45) may have a greater impact on the condition number. The case
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of high fracture permeability is indeed the most challenging because of the
strong effect of the coupling terms. These results also confirm Conjecture 1,
without which the condition number would be O(h−4).

4.4 Testing the preconditioners

We now present tests to assess the performance of the preconditioners illus-
trated in Section 3. To make a fair comparison all tests have been made by
constructing the matrices, building a random vector w, constructing the left
hand side as b = Aw and solving Ax = b. The stopping tolerance has been set
so that on each test the final relative error in the 2-norm, i.e ‖x̂−w‖2/‖w‖2
being x̂ the approximated solution, is of the order of 10−6. To assess the per-
formance in terms of CPU times, whenever possible we compare with the time
needed for the solution with the multifrontal direct solver UMFPACK [34].
UMFPACK is a very efficient tool for solving sparse linear systems, so it pro-
vides a valuable reference. It is memory demanding though, so we could not
use it for the largest examples. The tests were performed on an 2.7 Ghz i7
Intel processor with 16 GBytes RAM.

For the initial tests we also considered a simple diagonal preconditioner,
which corresponds to a rescaling of the equations. Since our matrix A has a
diagonal block of zeroes, for the corresponding rows no scaling has been per-
formed, i.e. the block has been replaced with the identity. This comparison has
been set up only to show the performance gained by the ABF preconditioners
versus a trivial preconditioner.

In the following we will denote with Diag the simple diagonal precondi-
tioner, with ABFD D, ABFTr D and ABFLU D the approximate block factor-
ization preconditioners based on diagonal, block triangular and the block LU
factorization with Mc approximated by its diagonal part, respectively. When
we use the lumped inner-product matrix to approximate Mc, we use the sub-
script L:ABFD L, ABFTr L and ABFLU L.

The first set of tests still considers a single fracture that cuts the whole
domain as described in the previous section, whereas the second deals with
the network of fractures presented in Section 4.2, and is more realistic and
challenging. For GMRES the restart level is set to 100 in all simulations (a
value that is never reached in the most significant cases).

The fundamental goal of the analyses is the study of the effectiveness of
the preconditioners for different parameter values and mesh sizes. In all tests,
the bulk permeability is assumed to be K = I, the fracture aperture lΓ = 10−2.

4.4.1 Setup A - single fracture case

Here we present the case with a single fracture that cuts the whole domain
with the geometric configuration shown in Section 4.3.

We consider first how the different preconditioners behave with respect to
the mesh size h in the case of neutral fracture, i.e. Kτ = 10−2 and Kn = 102.
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h=0.559 (4100 dof) h=0.282 (17220 dof) h=0.157 (87500 dof)
It RelTime It RelTime It RelTime

GMRES

Diag 471 68.5 2158 147 3460 193.0
ABFD D 42 3.0 114 2.9 118 2.6
ABFTr D 23 2.3 56 1.5 54 1.2
ABFLU D 15 2.0 31 1.0 30 0.8
ABFD L 1240 211.0 X X X X
ABFTr L 790 140.0 X X X X
ABFLU L 87 6.9 619 30.9 1910 113.0

MINRES

Diag 520 19.0 1614 36.7 2915 54.0
ABFD D 42 2.0 101 2.7 112 2.4

Table 3 Setup A: number of iterations to reach convergence with different preconditioners,
and computing times by varying the mesh size. RelTime is the ratio between the actual com-
puting time and the one required for a global solve with the direct method implemented in
UMFPACK. X means that the iterative solver has not reached convergence in the prescribed
number of iterations. We have used polyhedral meshes.

The number of iterations to reach convergence, along with the corresponding
computing time, are shown in Table 3. Note that solving the system with a
trivial diagonal preconditioner is extremely inefficient, as expected, and will
not be considered in the next tests. We have contemplated it here only to
show that the linear system stemming from our problem cannot be solved in
practice by an iterative method without resorting to a good preconditioner.
Indeed, ABFD D, ABFTr D, ABFLU D provide a significant improvement of
performance with timings comparable with the direct solver, particularly in
the most refined cases.

The first thing we can note is that the approximation with inner-product
lumping is highly ineffective. Therefore, it will not be considered in the next
tests. The good results obtained with the diagonal approximation are in line
with the finding of Theorem 4. Indeed, it is well known that approximate
block triangular and approximate LU preconditioners perform well if the (1,1)-
block matrix and the Schur complement are replaced by a spectrally equivalent
one [52,37].

The performance of GMRES with ABFLU D outperforms all the other
techniques, with a number of iteration rather low and computational time
that outperforms UMFPACK for the larger matrix. With the ABFD D we
obtain a slightly better performance with MINRES than with GMRES, as
expected. Since memory is also a possible bottleneck we report in Table 4 the
memory requirement of UMFPACK, MINRES and GMRES for the cases of
Table 3, limited to the block diagonal preconditioner (memory requirement of
GMRES with block triangular or LU preconditioners is of the same order). We
may note that GMRES is more demanding in terms of memory (as expected)
and the memory requested by the direct solver is much higher and grows
approximately quadratically with the number of degrees of freedom.
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Memory (in Mbytes)

Dof MINRES GMRES UMFPACK
4100 1.1 2.3 5.8
17220 6.5 15.6 114
87500 41.6 63.3 1800

Table 4 Memory requirement for the different method. For the iterative solvers we have
considered the block diagonal preconditioner.

Kτ=10−2, Kn=1 Kτ=10−2, Kn=102 Kτ=1, Kn=102

It RelTime It RelTime It RelTime

GMRES

ABFD D 119 2.6 112 2.4 121 2.7
ABFTr D 51 1.2 50 1.2 50 1.2
ABFLU D 31 0.7 31 0.8 31 0.7

MINRES

ABFDiag D 116 1.9 112 1.9 119 2.1

Table 5 Setup A: number of iterations to reach convergence with different preconditioners
and computing times obtained by varying the model parameters. RelTime is the ratio of the
actual computing time to the one of a global solve with UMFPACK.

We now examine the robustness of the preconditioner with respect to the
parameters of the fracture model Kτ and Kn. We consider value of permeabil-
ity corresponding to the three cases of Figure 2: Kτ = 10−2, Kn = 1 (sealing
fracture); Kτ = 10−2, Kn = 102 (”neutral” fracture); Kτ = 1, Kn = 102

(conductive fracture). Hereafter, we do not consider the two preconditioners
based on the lumping of Mc, nor the Diag preconditioner, which have shown
a poor performance. For this test a polyhedral mesh of size h = 0.208 has
been employed and the corresponding dimension of the linear system is of size
43031. The results, presented in Table 5, show a substantial invariance with
respect to parameter changes.

To complete this first analysis we considered also more demanding prob-
lems in terms of number of degrees of freedom, namely 318 209, 615 793 and
1 216 061, denoted in the following as 300K, 600K and 1.2M respectively. The
value of the permeability in the rock matrix is unitary and in the fracture the
effective permeabilities are Kτ=10−2 and Kn=102. For practical reasons, we
are using here grids made of tetrahedra. In this case UMFPACK is not able
to solve the problem because of memory constraints. Therefore, we report two
different relative times. The first (indicated by R1) is the ratio between the
time taken on a given grid and a the time taken by GMRES+ILU D on the
same grid. The second (indicated by R2) is the ratio between the time taken
on a given grid and the one for the same method on grid 300K.

The results are reported in Table 6. We may note that the results in terms
of number of iterations are rather invariant with respect to the mesh size,
showing the good scalability of all preconditioners. Moreover, they are smaller
than the ones reported in Table 5. This is explained by the fact that with
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300K 600K 1.2M
It R1 R2 It R1 R2 It R1 R2

GMRES

ABFD D 70 3.0 1.0 73 3.1 2.7 74 3.3 8.6
ABFTr D 39 1.7 1.0 41 1.9 2.83 41 1.8 8.2
ABFLU D 22 1.0 1.0 22 1.0 2.66 22 1.0 8.0

MINRES

ABFD D 71 2.7 1.0 73 2.8 2.8 75 3.0 8.7

Table 6 Setup A: number of iterations to reach convergence with different preconditioners
and computing times on three different grids of relatively large size. R1 is the ratio between
the time taken for the solution on a given grid and GMRES with ABFLU D on the same
grid. R2 indicates the ration of the time taken on a given grid and that for the same method
on the 300K grid.

tetrahedral grids the Mc matrix is much sparser. Indeed, while the number
of elements per row is of the order of 26 for the polyhedral grids we have
considered, it drops to 7 for the tetrahedral grids. We have not investigated
this behavior further, but it is consistent with similar findings for the 2D
case reported in [42], even if for a different discretization scheme. The choice
GMRES with ABFLU D is also in this case the one performing best in terms
of both number of iterations and computing time. We can also observe for
all preconditioners a power dependence of the computing time on the total
number of degrees of freedom with an exponent of about 1.6.

4.4.2 Setup B - fracture network case

We consider now the configuration illustrated in Section 4.2. The larger con-
trasts between the equivalent fracture permeabilities Kτ and Kn and the bulk
permeability with respect to the previous set-up and the presence of a full
network makes the effect of fractures more important.

Kτ = 10−3, Kn = 10−1 Kτ = 10−3, Kn = 103 Kτ = 10, Kn = 103

It RelTime It RelTime It RelTime

GMRES

ABFD D 136 4.8 159 4.5 170 4.7
ABFTr D 63 1.8 70 2.0 70 2.0
ABFLU D 31 1.0 32 1.0 32 1.0

MINRES

ABFD D 136 3.1 127 2.9 145 3.2

Table 7 Setup B: number of iterations and computing time for the different preconditioners
and by varying the model parameters. RelTime is the ratio of the actual computing time
with the one of a global solve with UMFPACK. We have used polyhedral meshes.

Also in this case, illustrated in Table 7, we can confirm a the good perfor-
mance of GMRES with ABFLU D which has proved to be robust also with
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respect to variations of the model parameter. The other technique show a
slight degradation of performance compared with the results of the previous,
simpler, setup.

To finally verify the robustness with respect to parameter contrast, we
performed two further tests with high contrast. In particular, we have set
a unitary permeability in the bulk, whereas in the fractures permeability is
8 orders of magnitude smaller or larger, leading to effective permeabilities
of Kτ = 10−11, Kn = 10−5 for the impermeable case, Kτ = 105, Kn =
1011 for the permeable case. We note that in for these values, the estimated
condition number of the full matrix is of the approximately 2×109 and 3×1011,
respectively. We are then dealing with rather ill-conditioned problems. The
results, shown in Table 8, show that all the proposed ABF preconditioners
behaves reasonably well even for large contrast problems, in particular GMRES
with ABFLU D is particularly robust and consistently more performing than
the direct solver. We point out that in the test cases of this Section, GMRES
with ABFD D has restarted, and this justifies the higher number of iterations
compared to MINRES.

Kτ = 10−11, Kn = 10−5 Kτ = 105, Kn = 1011

It RelTime It RelTime

GMRES

ABFD D 176 3.9 167 3.7
ABFTr D 62 1.4 59 1.4
ABFLU D 34 0.8 32 0.8

MINRES

ABFD D 138 3.4 137 3.3

Table 8 Setup B: number of iterations and computing time for the different preconditioners
and by varying the model parameters. RelTime is the ratio of the actual computing time
with the one of a global solve with UMFPACK. We have used polyhedral meshes.

5 Conclusions

In this work we have assessed some spectral properties of the linear system
arising from the discretization with mimetic finite differences of a hybrid-
dimensional Darcy problem in a fractured porous media. We have then imple-
mented and tested a set of ABF preconditioning techniques for the iterative
solution of the discrete problem, proposing a strategy to build the approxima-
tion of the factors..

For what concerns the spectral analysis the technique adopted is an ex-
tension of that proposed in [47] to take into account the hybrid dimensional
nature of the problem. The main finding is that the condition number scales
asymptotically as O(h−3), a more restrictive result with respect to mimetic
finite differences applied to the standard Darcy equation. The reason lays in
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the hybrid-dimensional nature of the problem, in particular the presence of the
coupling term in the mimetic inner product matrix Mc. To reach this result
we had to make an assumption to control the contribution to the spectral esti-
mate coming from the term deriving from the discretization of the problem in
the fractures. The conjecture is based on the fact that this term operates only
on the 1-codimensional manifold representing the fracture network. We note
that this situation is different than standard stabilized Stokes problem, where
the (2,2) block in the Stokes matrix is the discretization of an operator acting
on the whole domain. Further work will be needed to prove the conjecture,
but numerical experiments seem to confirm it.

We have investigated numerically the effect of different grid size and type,
and different values of contrast between bulk and fracture permeability. We
have found that rather classic block-diagonal and block-triangular and LU
ABF preconditioners, where the mimetic inner product matrix Mc is replaced
by its diagonal and the same technique is adopted to construct the approxi-
mation of the Schur complement, work extremely well, showing a good scala-
bility with respect to the mesh size h, despite the non-favorable scaling of the
condition number, and robustness also with respect to variations of the prob-
lem parameters, in particulat GMRES with ABFLU D. Further analysis may
study the effect of heterogeneity and anisotropy in the permeability tensor.
Another line of research would be to test our approximation strategy with the
preconditioners for double saddle point problems recently proposed in [4].
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