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Abstract

This work evaluates the predictive ability of a novel personalised computational tool for
simulating the growth of brain tumours using the neuroimaging data collected during one
clinical case study. The mathematical model consists in an evolutionary fourth-order par-
tial differential equation with degenerate motility, in which the spreading dynamics of the
multiphase tumour is coupled through a growth term with a parabolic equation determining
the diffusing oxygen within the brain. The model also includes a reaction term describing
the effects of radiotherapy, that is simulated in accordance to the clinical schedule. We
collect Magnetic Resonance (MRI) and Diffusion Tensor (DTI) imaging data for one patient
at given times of key clinical interest, from the first diagnosis of a giant glioblastoma to its
surgical removal and the subsequent radiation therapies. These neuroimaging data allow
reconstructing the patient-specific brain geometry in a finite element virtual environment,
that is used for simulating the tumour recurrence pattern after the surgical resection. In
particular, we characterize the different brain tissues and the tumour location from MRI
data, whilst we extrapolate the heterogeneous nutrient diffusion parameters and cellular
mobility from DTI data.
The numerical results of the simulated tumour are found in good qualitative and quantita-
tive agreement with the volume and the boundaries observed in MRI data. Moreover, the
simulations point out a consistent regression of the tumour mass in correspondence to the
application of radiotherapy, with an average growth rate which is of the same order as the
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one calculated from the neuroimaging data. Remarkably, our results display the highest
Jaccard index of the tumour region reported in the biomathematical literature.
In conclusion, this work represents an important proof-of-concept of the ability of this math-
ematical framework to predict the tumour recurrence and its response to therapies in a
patient-specific manner.

1 Introduction

Glioblastoma multiforme (GBM) is the most aggressive subtype of glioma, a type of primary
brain tumour arising from the glial cells of the nervous system. The median survival of patients
with GBM is less than one year, rising up to 15-16 months for those treated with the standard
protocol of surgery followed by adjuvant chemotherapy and radiation treatment [26, 25, 8].
Its poor prognosis is related to the surgical limitations in performing a complete resection,
that is feasible only in a low percentage of cases, and to the infiltrative nature of the tumour
cells, hindering the precise detection of GBM boundaries, both with by neuroimaging and by
intra-operative techniques [35, 37]. Consequently, the surgical resection is often ineffective, and
GBM almost invariably recurs independently from the post-operative treatments. Waiting for
novel therapeutic approaches, improving the patient survival rate and the quality of life requires
screening methods for the earlier detection of GBM, as well as a deeper understanding of its
evolution dynamics prediction, in order to target surgical procedures and treatments.
The magnetic resonance imaging (MRI) is the technique of election in detecting brain tumours,
providing a detailed microscopic reconstruction of the brain. Nonetheless, it fails in giving in-
sights on its realistic infiltration, that is very often well beyond the detected boundary. The
GBM spreading is highly influenced by the local heterogeneity and anisotropy of the brain tis-
sue. In particular, whilst the motion of cells inside the cerebrospinal fluid is driven by isotropic
unconfined diffusion, the tumour cells migrate rapidly inside the constrained domain of the
white matter (made by bundles of myelinated nerve fibres) preferably along the direction of
the nerve tracts [24, 23, 46, 20, 64], whereas they move slowly in the grey matter (consisting,
primarily, of neuronal cell bodies, glial cells, synapses and capillaries), due to the lack of a
preferential expansion direction in the microstructure.
The advent of Diffusion Tensor Imaging (DTI) has allowed clinicians to infer new insights on
the local alignment of the brain fibers within each voxel (i.e. a volumetric image element),
by deriving the principal direction of water diffusion, that are also relevant for cell migration
[46, 20, 64]. Despite providing a useful indication on the brain microstructure, the DTI does
not give a direct measurement of the extent of cell migration, which is regulated by complex
chemical and mechanical cues [32, 50]. Nonetheless the DTI technology paves the way to im-
prove patient-specific strategies of GBM treatment, giving additional information about the
brain micro–structure of each patient.
In combination with the biomathematical modeling of GBM evolution, such neuroimaging tech-
niques open the possibility to build predictive and quantitative tools for the personalised in-
vestigation of the spatio-temporal evolution and infiltration of GBM. The resulting insights
allow testing different therapeutic strategies in order to improve the treatment outcomes. This
works goes beyond the mathematical state-of-the-art for modeling GBM growth, that is col-
lected in the exhaustive reviews [26, 3]. Swanson et al. [54] first described the GBM cells
growth through a simple reaction-diffusion equation, with either a heterogeneous diffusion co-
efficient (i.e. a piecewise-function with two different constant values in each region) [54, 56] or
an anisotropic and heterogeneous diffusion tensor [30] derived from DTI. Later improvements
included the effect of therapies, defining the so-called Proliferation-Invasion-Radiation-Therapy
model [47, 17], in which a loss term representing cell-killing by radiation was used to predict re-
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sponse to external beam radiotherapy on a patient-specific basis. These approaches have been
tested by comparing the predictions of the mathematical model with the measured tumour
growth [52, 48, 6, 33, 38, 39] and its recurrence after resection [55, 57].
Other modelling approaches used a diffusion tensors of the Fokker-Planck form (instead of the
standard Fickian form used in Swanson’s models), derived through the parabolic scaling limit of
the mesoscopic transport equations [41, 29, 21, 22]. These models have introduced a systematic
procedure for connecting the DTI data to parameters in the macroscopic model, showing a good
ability to reproduce the tumour evolution, at least in those situations in which the tumour is
somewhat regular [53]. However, both classes of diffusive models neglect the generation and
accumulation of forces inside the tumour, at the interface between the host and the malignant
tissue and inside the healthy tissue.
The first attempt to include such mechanical cues inside a mathematical GBM model was done
in [13] defining a mass effect, that results from the physical pressure and includes the effects
of the deforming tissue. Mechanical models have been further refined in [9, 28], performing
numerical simulations using atlas data (which provides a general map of a human brain that is
not specific to a particular patient), to be compared to the clinically observed growth. Notwith-
standing, these mechanical models considered neither the effect of therapies on tumour growth
nor its recurrence after incomplete resection, and describe the tumour mass made by a single
constituent.
Multiphase mixture models represents a more realistic descriptions of GBM evolution at a macro-
scopic scale [4, 11]. They consider the tumour as a saturated medium [10], comprising at
least one solid phase (e.g. cells, extracellular matrix, etc) and one liquid phase (e.g. water)
[11, 61, 19, 4]. We recently proposed a novel multiphase GBM model based on a phase-field
approach [14]. Later improvements [2] allowed us accounting for the cell motion along the white
matter fibers and for the response of tumour mass to chemotherapy and radiotherapy. In this
work, we make a step forward towards the integration of clinical neuroimaging data within
this personalised mathematical framework. In particular, we introduce a numerical approach
in order to assess the predictive ability of the model to reproduce the tumour growth dynamics
observed in a clinical case study. This work is organized as follows. In section 2 we summarize
the main aspects of the multiphase continuous mathematical model of GBM growth [2], used
to simulate the specific clinical case of a patient diagnosed with a giant cell glioblastoma (i.e.,
a subtype of glioblastoma multiforme characterized by a predominance of multinucleated giant
cells [34]). We follow its evolution from the surgical removal to the end of the adjuvant radio-
therapy, consisting of 5 weeks of daily sessions during five days per week, and starting 40 days
after surgery). In section 3 we describe the new numerical strategy to elaborate the neuroimag-
ing data, collected at given times of key clinical interest by the Istituto Neurologico Carlo Besta
(Milan, Italy). In section 4 we define an original procedure to include such patient-specific
data in the model, by defining and tuning adaptively its relevant parameters. We later perform
numerical simulations of the tumour re-growth after surgery and radiotherapy, evaluating in
section 5 the predictive ability of the model against the clinical data. The main results are
discussed in the last section, together with few concluding remarks.

2 Mathematical model

The GBM evolution is described by the continuum diffuse-interface multiphase model proposed
in [2]. Specifically, the tumour mass is represented as a binary, saturated, closed mixture of
two incompressible constituents [11, 12, 14]: the cellular phase accounting for tumour cells and
the liquid phase representing host healthy cells, dead tumour cells and the interstitial fluid with
possibly nutrients or other chemicals dispersed inside it. Since the cells are mostly composed
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by water, it is possible to assume that the true mass densities [10] are constant and equal to
the water density, so that the evolution can be represented in terms of their volume fractions:
the tumour volume fraction φ and the liquid/host volume fraction φ` = (1− φ).
The tumour expands either by cell motion inside the host tissue, guided by both mechanical and
chemical cues, or by cell proliferation and death, that are related to nutrients availability and of
GBM response to therapies. In particular, we consider here oxygen as the only chemical species
coupled in cell production/loss and we restrict our analysis to the response only to radiotherapy.
The evolution of the oxygen concentration inside the brain is described by a parabolic equation,
accounting both for its diffusion inside the heterogeneous and anisotropic brain tissue, and for
its uptake, at a constant rate δn, by the neoplastic cells and for the release, at a rate Sn, from
an homogeneously distributed vasculature filling the available healthy/liquid space. Without
loss of generality, we consider the dimensionless concentration of the diffusing nutrient, n(x, t),
normalized with respect to the typical physiological concentration ns in the capillaries.
After enforcing the mechanical balance laws, the model reduces to the following system of
coupled partial differential equations, representing the spatio-temporal evolution of the GBM
and nutrients [2]:

∂φ

∂t
= ∇ ·

(
φ(1− φ)2

M0
T∇(f(φ)− ε2∆φ)

)
−∇ · (knφnsT∇n)

+ νφ[n− δ]+(1− φ)− νdφ[δ − n]+ − kR(t)φ ,

(1a)

∂n

∂t
= ∇ · (D∇n)− δnφn+ Sn(1− n)(1− φ) . (1b)

The first term on the r.h.s. of eq. (1a) reproduces the motion of cells in response to the
mechanical stress inside the tumour mass. Specifically M0 is a friction parameter, T is a
positive definite symmetric tensor representing the preferential directions of white matter fiber
tracts, f(φ) is a phenomenological function describing the excess of stress in the tissue due to
cell-cell mechanical interactions[12, 11, 4] whereas the term ε2∆φ takes into account the non-
local intermixing and adhesion forces that generate a sort of surface tension between the tumour
and the host tissue, controlling the thickness of the moving diffuse interface that represents the
expanding GBM. In the present work, we assume that f(φ) takes the form of a single-well
Lennard-Jones type potential

f(φ) = E
φ2(φ− φe)

1− φ
, (2)

where E is the Young modulus of the cancerous phase [11] and φe is the volume fraction
corresponding to the state of equilibrium or undeformed state (i.e., the threshold value for
which no action is exerted on the neighbours cells). Along with mechanical cues, tumour cells
also move in response to chemical factors, such as nutrients, in a process called chemotaxis. The
second term on the r.h.s of eq. (1a), precisely, takes into account the chemotactic motion of
GBM cells towards higher concentration of oxygen, following the preferential directions of white
matter fibers, according to the specific chemotactic parameter kn and the maximum amount of
oxygen released by the vasculature ns. The nutrient availability not only influences the motion
of tumour cells but also guides their proliferation and death, accordingly to the third and fourth
terms on the r.h.s. of eq. (1a), where [·]+ stands for the positive part of its argument, ν and νd
are the neoplastic cells proliferation and death rates respectively and δ is a threshold value for
hypoxia. The proliferation term also encapsulates contact inhibition mechanisms by enforcing
the saturation constraint. Finally, the last term on the r.h.s of eq. (1a) represents cell death
in response to the application of the external beam radiation therapy. The mass sink term
is taken proportional to the GBM volume fraction with a death rate kR(t), which follows the
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temporal profile of the therapy schedule [43]. The specific radiotherapy protocol considered in
this work consists of fractionated focal irradiation at a total daily dose d of 2 Gy, five consecutive
days per week. The patient undertook 25 sessions before interrupting the treatment for severe
clinical complications. Therefore, referring to the linear-quadratic (LQ) model [58], kR(t) can
be modelled by the following piecewise constant function:

kR(t) =

{
αd+ βd2 t2i ≤ t ≤ t2i+1

0 otherwise
(3)

where α [Gy−1] and β [Gy−2] are two tissue-dependent parameters, called respectively the linear
and quadratic coefficients for cell kill [47, 49], and t2i and t2i+1, with i = 0, ..., 4, are respectively
the days at the beginning and at the end of each weakly radiotherapy periods.

We remark that both the diffusion of oxygen and the motion of cells are represented by
heterogeneous and anisotropic tensors, D and T respectively, that can be inferred by the patient
specific DTI data. The oxygen released by the vasculature is carried by the interstitial fluid
diffusing inside the extracellular space, so that the local values of tensor D can be directly
obtained by the diffusion tensor of water from the DT images. We also assume that also
tumour cells travel in the extracellular space either in an isotropic manner if they are in a liquid
region or following the preferential directions of white matter fibers. However, the ability of
cells to directly move along the fiber tracks is enhanced with respect to random water motion
along the same path. Therefore we choose the tensor T in order to keep the same eigenvectors
of the tensor D with an enhanced cell motion along preferential directions characterized by a
tuning parameter r > 1, as done in [30, 2]. Specifically, denoting by λi and ei (with i = 1, 2, 3)
the descending ordered eigenvalues and the corresponding eigenvectors of D, we define

T =
1

T̂av
T̂ , with T̂av =

1

3
tr(T̂ ) and T̂ = a1(r)λ1e1 ⊗ e1 + a2(r)λ2e2 ⊗ e2 + a3(r)λ3e3 ⊗ e3 ,

where ai(r) are functions of the anisotropy controlling factor r and depend on the linear (c`),
planar (cp) and spherical anisotropy coefficients (cs), defined as followsa1(r)
a2(r)
a3(r)

 =

r r 1
1 r 1
1 1 1

c`cp
cs

 , c` =
λ1 − λ2

λ1 + λ2 + λ3
, cp =

2(λ2 − λ3)

λ1 + λ2 + λ3
, cs =

3λ3

λ1 + λ2 + λ3
.

Finally the system (1) is integrated with proper initial and boundary conditions, that will
be discussed in the Section 4.

3 Integration of the imaging data into a virtual computational
environment

MR images were acquired at four events: pre-surgery (PreSurg), i.e. one day before the surgery;
post-surgery (PostSurg), i.e. 2 days after the surgery; pre-radiotherapy (PreRad), i.e. 34 days
after the surgery; post-radiotherapy (PostRad), i.e. 79 days after the surgery.

Three types of MR images were acquired at the PreSurg event: (i) a T1-weighted MR
image at 1mm× 1mm× 1mm spatial resolution, useful to depict the structural anatomy of the
patients brain; (ii) a FLAIR (FLuid-Attenuated Inversion Recovery) image at 1mm × 1mm ×
0.5mm spatial resolution, useful to delineate the outline of the tumour and peri-tumoural rim by
suppressing signal from cerebrospinal fluid (CSF); (iii) a set of 140 diffusion-weighted images at
2mm×2mm×2mm spatial resolution with anterior-posterior phase encoding direction, including
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16 images without diffusion weighting (referred to as B0 images), 20 images with a b-value of
700s/mm2 and 20 diffusion-sensitising directions, 40 images with a b-value of 1500s/mm2 and
40 diffusion-sensitising directions and 64 images with a b-value of 3000s/mm2 and 64 diffusion-
sensitising directions. All 124 diffusion-sensitising directions were sampled uniformly on the
hemisphere. An additional B0 image was acquired with reversed phase encoding direction, i.e.
posterior-anterior encoding, for helping in geometric distortion correction. At the PostSurg and
PreRad events only the T1-weighted and the FLAIR MR images were collected, whereas only
the T1-weighted MR image was collected at the PostRad image. The fact that no diffusion image
has been collected after the operation event forced us to artificially reconstruct the diffusion field
after the deformation induced by the removal of the tumour mass on the neighboring tissues
after the surgery. All MRI data were processed using the ANIMA toolbox, unless specified
otherwise. The raw diffusion data were preprocessed at each event as follows:

� Eddy current distortion correction. This is done by non-linear registration of 140
diffusion images onto the first one, in which each non-linear transformation is computed
only in the phase encoding direction.

� Susceptibility distortion correction. This is done using the method proposed by
[27], which uses forward and backward phase encoding images to estimate susceptibility-
induced deformations and correct for them by symmetric block-matching non-linear reg-
istration.

� Denoising. This is done by blockwise non-local means filtering of each diffusion image
according to the methods proposed in [18] and [60].

� Brain masking. Two steps have been implemented: (i) a segmentation of the brain is
obtained from the T1-weighted structural image by atlas-based squared velocity function
non-linear registration [15] and (ii) a projection of the resulting segmentation onto the
diffusion space is made via block-matching rigid registration [40, 16].

� Tensor model estimation. A simple yet popular model for the diffusion estimation is
the tensor model [7] which assumes that water diffuses according to a Gaussian process
with zero mean and covariance matrix proportional to the so-called diffusion tensor. The
diffusion MR signal is related to the diffusion tensor in an exponential analytical way.
Tensors are then estimated from the diffusion images by matrix inversion using the log-
signals. The estimated tensors that are not definite positive are replaced by a definite
positive tensor extrapolated from neighbouring voxels.

For fair image comparison, all images were projected into the space of the T1-weighted image
of the first event (PreSurg). This was done by affine block-matching registration. Specifically,
five images were deemed relevant for our tumour model: (i) the brain-masked T1-weighted
image which provides a structural picture of the brain; (ii) the brain-masked estimated tensor
image composed of single diffusion tensors in each voxel which provides valuable information
for nutrient displacements; (iii) the brain-masked FLAIR image which helps in delineating
the evolution of the tumour for comparison with our model prediction; (iv) a segmentation of
CSF, grey matter, white matter and the background that is obtained via the FAST algorithm
proposed by [63] which uses a hidden Markov random field to estimate the segmentation through
expectation-maximization, comparing the given images with probabilistic atlases relative to
the specified anatomical structures. These atlases are general reference images obtained by
averaging among the brain structures of different patients. The segmentation procedure is
elaborated from the T1-weighted MR images and produces colored labeled images superposed
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to the corresponding T1-weighted images (Fig. 1a-d); (v) a manual segmentation of the tumour
region (Fig. 1-e), obtained using a segmentation module provided by an open source software
called Slicer3D [42] starting from the T1-weighted and the FLAIR images.

In Figure 1 we report sagittal slices of the T1-weighted MR images at the PreSurg (1-a)
and PostSUrg (1-b) event, with the corresponding segmentation maps of the brain tissues (1-c
and 1-d respectively). We also show the manually segmented map of the tumour associated to
the PreSurg event (1-e), and the manually segmented maps of the ventricle area interested by
deformation at the PreSurg and PostSurg events (1-f), highlighting the deformation undergone
by the brain tissues after the surgical removal of the tumour mass.

From Figure 1-a it can be observed that the ventricle filled with CSF is being deformed
and enlarged by the presence of the growing tumour mass. From Figures 1-a and 1-b it can
be observed how the ventricle filled with CSF and containing the tumour mass at the PreSurg
contracts after the surgical removal of the tumour mass. We note moreover from Figure 1-b
that some tumour particles are present in the PostSurg image inside the deformed area which
was previously filled by the tumour mass, which are highlighted as light white spots and are
recognized by the segmentation process as belonging to the white matter tissue (colored in
brown), eventually containing CSF (see Figure 1-d). This information is used for reconstructing
the diffusion tensor field at the PostSurg event starting from its values acquired at the PreSurg
event, and for determining the initial tumour concentration at the PostSurg event.

In particular, in order to characterize the deformation undergone by the brain tissues after
the surgery of the tumour mass, we manually identified the ventricle area interested by the
enlargement due to the presence of the tumour mass at the PreSurg event and the corresponding
area at the PostSurg event, as depicted in Figure 1-f.

4 Numerical Discretization of the GBM model

This section concern the numerical procedure for obtaining a patient-specific virtual environ-
ment in finite element simulations.

First, we describe in Section 4.1 the mesh generation technique for integrating the data col-
lected by the MRI and the DTI in the patient-specific brain domain Ω to be used in numerical
simulations. In Section 4.2 we summarize the numerical procedure for tuning the model param-
eters and the initial tumour concentration at the PostSurg event in order to fit the available
clinical data. Finally, in Section 4.3 we show how to reconstruct the diffusion tensor from the
data collected at the PreSurg stage, by considering the deformation of the brain tissues after
the tumour mass removal, due to a lack of DTI data at the PostSurg event.

4.1 Finite element discretization and meshes generation

The eqs. (1a),(1b) have been solved using the finite element scheme introduced in [2], that uses
a discrete variational inequality for projecting the solution in each mesh element onto the space
of first-order polynomials with positive values. This projection aims at recovering the analytical
properties of the continuous solution, which can be shown to satisfy a positivity constraint and
a separation property from the singular value of the single-well potential. In particular, the
scheme is solved by a splitting algorithm on the nodes of the mesh whose associated basis
functions span the set on which the degenerate elliptic operator in (1) can be inverted (see also
[1] for details).

In order to study the patient-specific tumour evolution we extrapolate from the MR and DT
images the brain geometry mesh and additional meshes containing the values of the independent
components of the tensors D and T.
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Figure 1: Sagittal slices of T1-weighted MR images with segmentation maps superposed at the
PreSurg event (left column) and PostSurg event (right column). a) T1-weighted MR image at
the PreSurg event; b) T1-weighted MR image at the PostSurg event; c) Segmented map at the
PreSurg event, in which are highlighted white matter (in brown), grey matter (in yellow) and
cerebrospinal fluid (in green); d) Segmented map of the brain tissues at the PostSurg event; e)
Manually segmented and afterwards smoothed tumour map (in red) at the PreSurg event; f)
Manually segmented maps of the ventricle area interested by deformation at the PreSurg (in
red) and PostSurg (in green) event.
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Table 1: Values of the total volume of the multiphase tumour extensions at the PreSurg, PreRad
and PostRad events

PreSurg PreRad PostRad

tumour volume 17313.6mm3 6504.5mm3 10973.6mm3

In particular we extract the external brain and tumour surfaces from the segmentation of the
MR images at the PreSurg event, then we generate the surface computational mesh (Fig. 2a-b).
After a preliminary smoothing of the segmented maps, we treat the MR images with VMTK
[5] (the Vascular Modeling ToolKit), a collection of Python libraries and tools, in order to
create the computational tetrahedral meshes. First, the external brain and tumour surfaces
are extracted from the segmented maps, using the marching cubes algorithm. Then, operating
multiple surface smoothing and refinement steps, we obtain the surface computational mesh
(Fig. 2a-b and 3). Afterwards, the internal tetrahedrons are generated through a constrained
Delaunay tetrahedralization of the domain defined by its boundary using the TetGen library
[51], and the brain mesh is conveniently refined in the area surrounding the tumour center
(Fig. 2c-d). Lastly, the labelled mesh is created exploiting the capabilities of the Visualization
Toolkit (VTK) library [65], in order to assign a label to each cell depending on which cerebral
tissue the cell barycenter belongs to (Fig. 2e-f).

By analyzing the tumour surface extension reported in Figure 3 we observe that the tumour
mass has an ellipsoid-like form, with semiaxes of 23.5, 15.3, 13.6 mm in the x, y, z directions,
respectively, and occupies a global volume of about 17313.6mm3. The volume has been calcu-
lated by integrating the characteristic function associated to the tumour segmentation map over
the computational mesh. Using the same technique we calculated the volumes of the tumour
extension at the PreRad and PostRad events, starting from the manually segmented maps of
the tumour. The corresponding values of the tumour volume are reported in Table 1.

We note that the tumour volume at the PostRad event is more than half the volume at the
PreSurg event.

We finally generated the additional six meshes, each one representing one independent com-
ponent of the symmetric water diffusion tensor D, starting from the DTI data. These images
have been treated in order to give the numerical diffusion value in mm2/s for each each voxel.
The diffusion tensor data are associated to each cell with the same procedure used for the la-
bels, thus creating six different meshes, each one representing one independent component of
the symmetric diffusion tensor D. At the same time, additional six meshes associated with
each independent component of the tensor of preferential directions T are created from the
components of D, as explained in subsection 2. Figure 4 depicts an axial (z-normal) slice of the
DTI data associated to the xx-component of the diffusion tensor (a), with the corresponding
meshes associated to the same component of the tensors D (b) and T (c). We note that inside
the tumour mass the diagonal values of the tensor D can be an order of magnitude smaller
than the diffusion values in the surrounding CSF.

4.2 Tuning of the model parameters and determination of the initial condi-
tion

In order to obtain a clinically useful and potentially predictive model, we first have to tune
the parameters and the initial tumour concentration at the PostSurg event to fit the available
clinical data. We start our analysis considering the set of parameters reported in [2], that fall
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Figure 2: (a) External brain surface extracted from the segmented map; (b) remeshed and
smoothed external surface; (c) tetrahedral mesh generated within the surface extracted from
the medical images and then (d) conveniently refined in the area surrounding the tumour; (e-f)
labelled mesh obtained from the refined mesh, in which to each cell is assigned a label depending
on the cerebral tissue its barycenter belongs to: grey matter (blue), white matter (light blue),
cerebrospinal fluid (red).

Figure 3: tumour extension at the PreSurg event. External brain (blue meshed surface) and
tumour (light grey) surfaces from the segmented maps seen by different angles: x-normal view
(a), y-normal view (b) and z-normal view (c).
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Figure 4: z-normal slices of the DTI data (a) and the meshes corresponding to the xx-
components of the tensors D (b) and T (c).

within an admissible biological range. In particular, we initially take E = 694 Pa, ν = 0.08
1/day, νd = 0.04 1/day, M0 = 5000 (Pa day)/mm2, φe = 0.389, ε = 0.35 Pa1/2mm, δ = 0.3,
ns = 0.07 mM, Sn = 104 1/day, Dn = 86.4 mm2/day, δn = 8640 1/day, kn = 2 mm2/(mM
day) except for the white matter in which kn = 8 mm2/(mM day). This set of parameters was
proved [2] to reproduce a tumour expansion which follows a Gompertzian profile [36] with a
GBM front velocity in the same order of magnitude of the maximal expansion speed reported
in the literature, i.e. 0.09− 0.11mm/day [31].

We observe from Figure 1-b that some tumour aggregates seem to be still present in the
PostSurg image inside the deformed area which was previously filled by the tumour mass. These
regions appear as light white spots in Figure 1-b and are recognized by the segmentation process
as belonging to the white matter tissue (colored in brown). The initial volume fraction of the
tumour cells at the PostSurg event is thus determined in the following way:

i) we first define the characteristic function of the remaining tumour cells at the PostSurg
event as the characteristic function of the white matter inside the domain of intersection between
the tumour area at the PreSurg event (white meshes surface in Fig. 5a-c) and the area deformed
after the tumour removal at the PostSurg event (green meshed surface in Fig. 5a-c);

ii) we multiply this characteristic function by a constant value representing the average
volume fraction of the tumour clusters left after the operation (brown surface in Fig. 5a-c).

This average volume fraction of left tumour particles has been estimated in the following
way: given a set of model parameters, we run a simulation starting from an initially small
spherical tumour mass centered in the center of the tumour distribution manually segmented
at the PreSurg event and growing in the CSF, until it reaches the same volume of the tumour’s
mass at the PreSurg event. In this situation the tumour concentration is expected to saturate
at a peak value corresponding to the stationary solution of (1). By comparing T1-weighted and
FLAIR MR images we found that the tumour mass at this stage is not very infiltrated inside
the surrounding tissue, having a well defined border pushing against the ventricles. When the
tumour is removed at the PostSurg event, the tumour particles that haven’t been removed are
identified as the remaining fragments infiltrated into the ventricle walls, thus having the same
peak value of volume fraction.

By comparing the T1-weighted MR slice and the corresponding segmentation map in Figure
5 we noticed that most of the tumour particles left after the surgery are infiltrated inside the
grey matter between the ventricles in the area filled by the tumour mass at the PreSurg event.
A small fraction of tumour particles is also infiltrated at the boundary of the grey matter
surrounding the ventricles in the same area.

Finally, once that the initial condition for the GBM volume fraction has been determined,
we performed an adaptive procedure to tune the parameters of the model in order to obtain the
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Figure 5: Initial concentration of the tumour distribution at the PostSurg event, calculated as
the characteristic function of the white matter (brown) inside the PreSurg tumour area (white)
and the area deformed after the tumour removal at the PostSurg event (green), multiplied by
the average volume fraction of left tumour particles. a) Initial distribution from a x-normal
view; b) a y-normal view; c) a z-normal view; d) Axial slices of the T1-weighted MR image
(left) and the corresponding segmented map (right) at the PostSurg event.

best fit with the clinical data. In particular, we performed a sensitivity analysis by varying only
kn, M0, ν and νd in order to obtain a tumour volume at the PreRad event which reproduces
at least the 95% of the volume growth obtained from the MR images at the PreRad event
(reported in Table 1).

We remark that the tumour boundary is conventionally represented by the hypersurface
φ(x, t) = 0.01, and the volume of the tumour mass is calculated from the simulation results by
considering the volumetric integral of the characteristic function of the set {x|φ(x, t) > 0.01}.

We aimed at reproducing the 95% of the volume growth obtained from the MR images at the
PreRad event for the best parameter fitting to be used in simulations. We found the following
values: kn = 12 mm2/(mM day) in the white matter, kn = 3 mm2/(mM day) in the other brain
tissues, M0 = 3900 (Pa day)/mm2, ν = 0.1 1/day, νd = 0.05 1/day.

In this case, the tumour concentration of an initial small spherical tumour mass reaches a
peak value of about 0.61, that is chosen as the initial value φ0 for the tumour volume fraction
in simulations. The initial oxygen distribution n0(x) := n(x, 0) is the corresponding stationary
solution of the nutrient governing equation:

−∇ · (D∇n0) = Sn(1− n0)(1− φ0)− δnφ0n0 , (4)

where φ0 is the initial tumour distribution. We also impose the following boundary conditions
on the outer brain surface:

∇φ · n = 0 ∀x ∈ ∂Ω , (5a)

∇Σ · n = 0 ∀x ∈ ∂Ω , (5b)

n = 1 ∀x ∈ ∂Ω (5c)
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where n is the unit outer normal at the brain surface. In particular, a homogeneous Neumann
condition on the cell volume fraction and on the chemical potential Σ := f(φ)− ε2∆φ is chosen
to the spatial confinement of the skull bone, whilst a Dirichlet condition is taken for the nutrient
as the physiological concentration of the oxygen in the brain.

4.3 Estimation of brain deformation and diffusion tensor at the PostSurg
event

In Section 3 we highlighted a contraction of the brain ventricle containing the tumour mass at
after its surgical removal. This poses a difficulty in the mesh definition, since it is not physically
meaningful to associate to this deformed area the DTI data. In order to solve this issue,
we manually identified the ventricle surfaces both at the PreSurg event and at the PostSurg
event, as shown in Figure 1-f. Specifically, we assigned different labels to the region inside
the ventricle surface at the PostSurg event (green area in Figure 1-f), that is called deformed
PostSurg region, and the one between the ventricle surfaces at the PreSurg and PostSurg events
(red area in Figure 1-f), denoted as deformed PreSurg region. The latter domain represents the
region that is filled by CSF and tumour material at the PreSurg event and it is then occupied
by brain tissue at the PostSurg event. We finally identified the non-deformed region as the
outer domain that is not altered by the deformation. These domains are illustrated in Figure
6. Note that the width of the deformed PreSurg region, i.e., the area between the red meshed
and the green meshed surfaces in Figure 6, defines locally the deformation undergone by the
brain ventricle after the surgery. Accordingly, we established the following procedure to tune
the values of the diffusion tensor at the PostSurg event. If the barycenter of a mesh cell belongs
to the non-deformed region, we assign the values given by DTI data at the PreSurg event. If
the cell mesh barycenter belongs to the deformed PreSurg or the deformed PostSurg regions,
we average the diffusion values of each component, that is associated with the same tissue label
in the PreSurg segmentation, over a spherical domain centered in the barycenter and with a
given radius r. The radius is taken equal to the smallest value of the semiaxes of the tumour
ellipsoid in the deformed PostSurg region, whereas in the deformed PreSurg region it is defined
by r = d1 +d2 where d1 and d2 are the shortest distances between the cell mesh barycenter and
the two surfaces bounding the deformed PreSurg region (highlighted as the red and the green
meshes in Figure 6). These choices ensures that the DTI values are averaged over a domain that
gives a meaningful physical representation of the local brain micro–structure at the PostSurg
event.

The procedure outlined above allowed us to reconstruct the DTI information also in those
region interested by deformation after tumour removal. This reconstruction is depicted in Fig.
7, displaying two x-slices of the component Dyy calculated from the DT images at the PreSurg
event and the corresponding modified data at the PostSurg event. The comparison of these
images allows to visualize how the diffusion components have changed in consequence of the
ventricle deformation.

5 Results

In this section we investigate the tumour growth after the surgery and its response to radio-
therapy. Simulation are performed starting at the PostSurg event (at time t0 = 0 days), aiming
at validating the numerical results against the tumour distribution observed by the MR images
at the PreRad event (at time t = 32 days) and at the PostRad event (at time t = 77 days).

An adaptive time step, introduced in [2], has been implemented in order for the time step to
satisfy the Courant-Friedrichs-Lewy condition ∆t < hmin/vmax, being hmin the smallest edge
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Figure 6: Deformed PostSurg region, defined as the region inside the inner surface mesh high-
lighted in green color; deformed PreSurg region, defined as the region between the outer surface
mesh in red color and the inner surface mesh in green color; non-deformed region, defined as
the region outside the areas interested by the deformation.

length among the mesh cells and vmax the maximum on Ω of the tumour expansion velocity,
defined as

vmax := maxxj

[(
knnsT∇n−

(1− φ)2

M0
T∇Σ

)
· n
]
(xj), (6)

where xj are the spatial coordinates of the node j and n is the normal vector, proportional to
∇φ, to the hypersurfaces φ = c, where c is a constant (which represents the direction locally
orthogonal to the tumour front). In particular, we impose

∆t = min

(
100 · M0

E2
ε2,

hmin

2vmax

)
, (7)

where M0ε
2/E2 is the typical time scale for the spinodal decomposition dynamics of φ [12]. The

basic temporal step is ∆t = 100 ·M0ε
2/E2 ∼ 0.1 day.

In Figures 8-9 we show the time evolution of the mass and the volume of the tumour obtained
by simulation. The mass of the tumour cells is defined as ρ

∫
Ω φdx, with units of g. We observe

that the mass of the tumour oscillates and decreases in correspondence to the application of the
radiotherapy, indicated by red arrows in the figure, and starts to increase again after the therapy
cycle. However, the total volume occupied by the multiphase tumour increases constantly from
the PostSurg to the PostRad events, which means that the present tumour keep expanding in
volume during the radiotherapy. In particular, the tumour volume calculated from simulations
at the PreRad event is 6179.3mm3, and the volume at the PostRad event is 10795.2mm3.
These values are compared to the ones obtained by the MR images reported in Table 1. Our
results are in quantitative agreement with the experimental data at the PostRad event: the
simulated tumour volume obtained is around 98% of the volume extracted from the MRI data.
We also calculate the Jaccard index between the sets of the tumour support calculated by the
simulation and by the MR images, reported in Figure 9 at the PreRad and the PostRad event.
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Figure 7: (a) x-slice of the component Dyy calculated from the DT images at the PreSurg event;
(b) x-slice of the component Dyy calculated from the characterization of the brain tissues defor-
mation at the PostSurg event. The contours of the deformed PreSurg and deformed PostSurg
regions have been higlighted as red (outer) and green (inner) lines respectively.

The Jaccard index J between two sets of finite measure A and B is defined as

J :=

∫
Ω χA∩B∫
Ω χA∪B

, (8)

where χS is the characteristic function of the set S which has value 1 for elements in the set
and zero otherwise. This index has been used in [53] as a good metrics for model fitting, being
a measure of the similarity of the two sets, which indicates how much they overlap everywhere.
In our simulations the Jaccard index at the PostRad event is J = 0.7116. This value indicates
a very good quantitative agreement between the tumour distribution predicted by the model
and the one observed from the MRI data. The Jaccard index ranged between 0.45 and 0.66 in
3D simulations based on a parabolic anisotropic model based on DTI [53].

Moreover, the contour plots of the tumour concentrations at the PreRad and PostRad events
are shown in Figure 9. We observe that the contours of the growing tumour according to the
proposed model fit well with the contours obtained by the MR images both at the PreRad
and the PostRad events. The qualitative agreement gets improved at the PostRad event. The
simulation results show tumour infiltrations outside the tumour region identified in the MR
image at the PreRad event. Figure 10 shows a z-slice of the tumour volume fraction calculated
from the simulation results at the PostSurg, at the PreRad and the PostRad events, together
with the tumour contours from the corresponding MR images.

From Figures 10-e and 10-f it can be observed a recidive of the tumour growth after the
surgical removal at the PreRad event, and after the application of the radioterapic treatment
at the PostRad event. In particular, while at the PreRad event the tumour is growing inside a
region filled by CSF fluid, at the PostRad event the tumour is growing and infiltrating inside
the grey matter surrounding it. We also observe from Figure 10-b that, at the PreRad event,
a tumour infiltration outside the region outlined by the corresponding MR image is present in
the simulation results. This infiltration is characterized by a smaller value of the concentration
(around 0.3) than the value in the principal mass of the tumour (around 0.45). At the PostRad
event this infiltration has became visible also in the MR image; in this case the simulated tumour
concentration in Figure 10-c is contained inside the tumour region given by the MR image.

Figure 11 displays the evolution over time of the maximum expansion velocity vmax of the
tumour front, defined in (6), obtained by the simulation results, from the PreRad to the PostRad
events. We observe that vmax oscillates and decreases in correspondence to the application of
the radiotherapy treatment, indicated by red arrows in the figure, and starts to increase after
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Figure 8: Time evolution of the mass of the tumour cells from the PostSurg to the PostRad
events, with the application of the radiotherapy treatments of 2 Gy indicated as red arrows.

the therapy cycle. We note that before and after the radiotherapy treatment the expansion
velocity reaches a value around 0.1mm/day, which is in the same order of magnitude of the

Figure 9: Evolution of the simulated tumour volume over time (green line), with indication of
the Jaccard index J at the PreRad (blue marker) and PostRad (red marker) events. The insets
display the simulated (light grey) and the observed tumour boundaries from MRI data (blue
surface in PreRad, red surface in PostRad).
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Figure 10: z-slice of the tumour concentration calculated from the simulations at the Post-
Surg event (a), at the PreRad event (b) and at the PostRad event (c), overlapped with the
corresponding contours of the tumour concentration from the MR images, highlighted in green
(PreRad) and red (PostRad) color. Axial slices of the T1-weighted MR images at the PostSurg
(d), PreRad (e) and PostRad (f) events.

maximal expansion speed reported in the literature, i.e. 0.09− 0.11mm/day [31] .
Moreover, in Figure 11 we report the average expansion velocity in the time period between

the PreRad and the PostRad events, which we call v∗, calculated from the simulation results.
This value is equal to v∗ = 0.068 mm/day. We can compare this value with the corresponding
velocity obtained from the analysis of the MR images.

At the top of Figure 11 we show the tumour contours manually segmented at the PreRad
and the PostRad events. The experimental average velocities in the x, y and z directions can
be obtained by calculating the difference of tumour semi-diameters along the coordinate axes
of the tumour contours manually segmented at the PreRad and the PostRad events, divided by
the time period of 45 days. Their values are 0.065 mm/day in the x direction, 0.048 mm/day
in the y direction and 0.082 mm/day in the z direction, whose average value is 0.065 mm/day,
which is in accordance with the value of 0.068 mm/day found in numerical simulations.

6 Discussion and Conclusions

This work used the diffuse-interface multiphase model recently proposed in [2] in order to sim-
ulate the clinical case study of a patient from the first diagnosis of a giant glioblastoma, to its
surgical removal and the subsequent radiation therapies. The mechanical model consists in an
evolutionary fourth-order partial differential equation with degenerate motility, describing the
spreading over time of the tumour volume fraction, with a growth term that is coupled with a
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Figure 11: Evolution of the maximum expansion velocity vmax of the tumour front (green
line) over time from the PreRad (blue marker) to the PostRad (red marker) events, with the
application of the radiotherapy treatment of 2 Gy indicated as red arrows. The dashed line
represents the average expansion velocity v∗ in the time period between the PreRad and the
PostRad events from the simulations. The insets show the tumour contours manually segmented
at the PreRad (left) and the PostRad (right) events are also reported.

parabolic equation determining the diffusing oxygen within the brain. We developed a suitable
finite element method for simulating the tumour evolution on the patient-specific brain geom-
etry and micro–structure, that is reconstructed from MRI clinical data, aiming at predicting
the recurrence pattern after the surgical resection. The model also includes a reaction term
describing the effects of radiotherapy, that is simulated in accordance to the clinical schedule.
Most of the model parameters were extracted directly from the patient MRI and DTI data,
whilst a few were tuned in order to best fit the clinically detected tumour evolution within the
physiological ranges found in literature. Notably, we successfully characterized the different
brain tissues and the tumour location from MRI data, whilst we extrapolated from DTI data
the heterogeneous and anisotropic nutrient diffusion parameters at given times of key clinical
relevance, as well as the preferential directions of cell motion along white mater fiber bundles.
The proposed approach represents a significant advance with respect to the state-of-the-art
GBM models, since it takes into account both for the chemo-mechanical cues guiding cell mi-
gration in the patient-specific micro–structure of the simulated brain and for the multiphase
composition of the tumour mass. Most importantly, the numerical results prove that the patient-
specific mathematical model is able to predict the tumour recurrence in clinical case study.
Indeed, we proved that the simulated contours of the recurrent tumour fit the corresponding
boundaries observed in MRI data at given clinical times (i.e. just after surgical resection, before
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and after the radiation therapy). Consistently with clinical data, the simulations pointed out
a regression of the tumour mass in correspondence to the application of radiotherapy cycles,
whilst the volume occupied by the tumour cells constantly increased with an average growth
rate which is in agreement with the GBM expansion velocity reported in the literature [31]
and calculated by the patient clinical data. The quantitative agreement is given by the 98%
overlap calculated between the volume numerically simulated and the one detected from the
neuroimaging data of the patient. Remarkably, our results display a higher Jaccard index of the
tumour region after the application of therapies than any other model in the biomathematical
literature [53], thus proving its ground-breaking potential for delivering accurate patient-specific
predictions.
Another original contribution of this study is the definition of numerical strategy to take into
account for the change of the DTI data before and after surgery, due to the registered brain
deformation resulting from the release of mechanical stresses after tumour removal. Since the
brain tissue tend to fill the remaining cavity, the correct alignment of fibers and their location
cannot be inferred from the data acquired on the patient before the surgery was performed,
such as done in [55, 57, 29, 14, 2]. Moreover, it is well known that the tumour modifies the fiber
structure in the invaded area when spreading into the brain parenchyma [59, 45, 44, 62].
Future work will be focused on coupling the evolution of fibers alignment in the peritumoural
area with the registered tissue deformations, with the aim to provide a quantitative tool towards
an adaptive update of the clinical DTI data. Furthermore we will focus on refining the methods
for fitting the model parameters through constrained optimization problems, and on the devel-
opment of automated tumour segmentation tool, in order to avoid the manual segmentation
that can introduce a bias and a human error into the process. The model will be finally applied
on a large cohort of patients in order to test its reliability as a novel computation tool to assist
the personalised clinical treatment.
In summary, this work represents an important proof of concept of the predictive ability of the
model to describe the tumour progression and its response to therapies in a patient-specific
manner. Such an original integration of neuroimaging data within the mathematical model has
the potential to support medical doctors in the clinical evaluation of the optimal therapeutic
strategy for every patient.
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