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Abstract

In this paper, we develop and analyze a mixed finite element method
for the Stokes flow. This method is based on a stress-velocity-vorticity
formulation. A new discretization is proposed: the stress is approxi-
mated using the Raviart-Thomas elements, the velocity and the vorticity
by piecewise discontinuous polynomials. It is shown that if the orders of
these spaces are properly chosen then the advocated method is stable. We
derive error estimates for the Stokes problem, showing optimal accuracy
for both the velocity and vorticity.

Keywords: Mixed finite element; Stokes equations; Raviart-Thomas fi-
nite element; incompressible fluids

1 Introduction
It is hard to give a precise definition of mixed methods, see also [13], generally the
definition refers to a class of methods based on the simultaneous approximations
of a primal and a dual quantity: for example displacement and stress for the
elastic problem, temperature and heat flux for the heat equation. To clarify the
concept let us consider the simplest form of the steady heat equation:

−∆u = f,

where u is the temperature (primal quantity) and f is the source term. In
order to obtain the mixed formulation (or dual formulation) we have a second
quantity q = − gradu, the heat flux, that is identified as dual variable. So that
the heat equation becomes:

div q = f.

The dual formulation is written as a system of two equations, the first one is
the definition of heat flux, the second one is the energy conservation law. In
the same way we can identity a pair of primal and dual equation for the linear
elasticity problem. The primal formulation is given by

−div (C gradu) = f ,
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where u is the displacement and with C we denote the elasticity tensor. In the
dual equation we have to introduce the stress tensor defined as σ = C gradu;
the problem can be written as

−div σ = f ,

which is the linear momentum conservation law. This is equivalet to the Hellinger-
Reissner principle. To be more precise, we have also to enforce the conservation
of angular momentum, that is given by the symmetry of σ, this is what makes
the construction of a finite element method really complicated.

The usual mixed formulation of Stokes problem is given in terms of velocity
and pressure as: {

−∆u+ grad p = f ,

divu = 0.

Even though it is algebraically equivalet to the linear elasticity problem, only
a few authors [18, 17, 19] contributed to the development of a proper dual
formulation, or a real mixed formulation of Stokes equation.

Taking as reference the examples of heat equation and linear elasticity prob-
lem, we can say that the usual velocity-pressure formulation is the primal system
of equations. The dual one should include at least two equations: the rheolog-
ical model and the conservation of linear momentum; the unknowns should be
the stress tensor and the velocity fields.

The Stokes equations can be seen as a particular case of the linear elasticity
problem, in which the bulk modulus tends to infinity (incompressible case). The
theory can be deduced using the fact that all the theoretical results about the
Hellinger-Reissner formulation are indipendent of the bulk modulus, in partic-
ular there are no extra hypotheses for treating the incompressible case, see [4,
Section 2].

In this paper we give some novel theoretical results about the Stokes equa-
tions in their dual form without using the equivalence with the primal one: this
is, to our knowledge, a new contribution that can help in giving a more complete
picture of the mixed methods for fluid dynamics problems.

In the dual formulation the stress tensor is one of the unknowns of the prob-
lem and its symmetry is fundamental to ensure the conservation of angular
momentum, nevertheless the construction of a finite element method honoring
this constraint is really hard, see [11] for a list of references related to this issue.
Recently the introduction of the finite element exterior calculus [5] gives a new
abstract framework for the construction of elements with weakly imposed sym-
metry [6]. Such construction requires rather sophisticated mathematical tools,
here we present a different approach based on more elementary and standard
techniques. The results in this paper differ from previous ones since construc-
tion relies on Raviart-Thomas finite element space. In the existing literature
Brezzi-Douglas-Marini finite element [6] and finite elment spaces augmented
with proper bubble functions [3] have been used.

The results in this paper can be compared with the ones in [6]: the Brezzi-
Douglas-Marini (BDM) finite element gives a discretization with fewer degrees
of freedom with respect to Raviart-Thomas (RT ) finite element, but a worse
asymptotic order of convergence. We can state also that BDM finite element
ensures the same order of convergence for all the unknowns, on the other side
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the RT finite element does not share such property, but it is more accurate.
Finally, as pointed out by Suri [30] the constans in the errors estimates for the
RT finite element are truly indipendent on the polynomial degree, on the other
side for BDM finite element there is a small dependence.

The paper is structured as follows, Section 2 contains the basic notations
and definitions, in Section 3 the mixed formulation for the Stokes equations is
introduced and the well posedness of such problem is proved, then in Section 4
a finite element approximation based on Raviart-Thomas space is given and in
Section 5 some numerical tests confirm the theoretical results.

2 Notation and preliminaries
We begin with some basic notations that will be used throughout this paper.
We denote by V the usual finite dimensional Euclidean space Rn provided with
the inner product

u · v :=

n∑
i=1

uivi, u,v ∈ V.

M denotes the algebra of n × n matrices. For any σ ∈ M, σT denote the
transpose defined as

(σu) · v = u · (σTv), ∀u,v ∈ V.

The space M is provided with the inner product

σ : τ := tr (σT τ) =
n∑

i=1

n∑
j=1

σijτij , σ, τ ∈ M,

where tr denote the usual trace linear functional. Throughout the paper we will
make an extensive use of the following projectors defined on M

symσ :=
σ + σT

2
, skew σ :=

σ − σT

2
, dev σ := σ − 1

n
trσI,

where I ∈ M is the identity matrix. The ranges of sym and skew are the
subspaces of symmetric and skew-symmetric matrices and they are denoted by
S and K respectively so we have the orthogonal decomposition M ∼ S⊕K.

Let us now introduce the functional spaces which will be used throughout
the paper. Let Ω denotes an open bounded set in Rn with Lipschitz continuous
boundary ∂Ω, which, for the sake of simplicity, we suppose to be a n-polytope.
Given a vector space W (for our purposes it can be R, V, M or one of the pre-
viously introduced subspaces) with C∞(Ω;W) we denote the space of infinitely
differentiable functions defined on Ω with values in W. Given a real number
p ∈ [1,∞) with Lp(Ω;W) we denote the space of p-integrable functions defined
on Ω with values in W. For p = ∞, the space L∞(Ω;W) is the set of essentially
bounded function provided with the norm

‖f‖∞,Ω = inf {α ≥ 0 | |f(x)| ≤ α for almost every x ∈ Ω}.

Given an integer m ≥ 0 we define the following family of spaces

Wm,p(Ω;W) := {f ∈ Lp(Ω;W) | ∂αf ∈ Lp(Ω;W), |α| ≤ m}.
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When p = 2 then Wm,2(Ω;W) is the usual Sobolev space Hm(Ω;W) provided
with the norm

‖f‖m,Ω :=

√ ∑
|α|≤m

‖∂αf‖2L2(Ω;W).

We introduce also the space H(div,Ω;V) of vector-valued functions in L2(Ω;V)
whose distributional divergence belongs to L2(Ω;R), provided with the norm

‖v‖H(div,Ω;V) :=
√

‖v‖20,Ω + ‖div v‖20,Ω.

In similar way, the space H(div,Ω;M) denotes the subspace of matrix-valued
functions in L2(Ω;M) whose distributional divergence (by rows) belongs to
L2(Ω;V) with the norm

‖σ‖H(div,Ω;M) :=
√
‖σ‖20,Ω + ‖div σ‖20,Ω.

Fixed Γ ⊆ ∂Ω we may define the following pair of trace operators

v ∈ C∞(Ω;V) 7→ v|Γ, σ ∈ C∞(Ω;M) 7→ σn|Γ,

where n denotes the unit outward normal along Γ. These operators have
a unique continuous linear extension on H1(Ω;V) and H(div,Ω;M) respec-
tively [24, Section 1.5] and the images of such trace operators are denoted by
H1/2(Γ;V) and H−1/2(Γ;V) respectively. Moreover, we have the Green’s formula∫

Ω

(gradv : σ + v · div σ) dx =

=

∫
∂Ω

v · (σn) dγ, ∀v ∈ H1(Ω;V),∀σ ∈ H(div,Ω;M),

For sake of simplicity, the following notation is introduced

ΣΓ := {σ ∈ H(div,Ω;M) | σn|Γ = 0} ,
V := L2(Ω;V), Q := L2(Ω;M),

moreover
Σ := Σ∅, Σ0 := Σ∂Ω.

The projectors sym and skew induce naturally the definition of the following
subspaces

Σsym
Γ :=

{
σ ∈ ΣΓ

∣∣σ = σT
}
, Σskew

Γ :=
{
σ ∈ ΣΓ

∣∣σ = −σT
}
,

then the projectors can be extended in a natural way to the space ΣΓ

sym : ΣΓ 7→ Σsym
Γ , skew : ΣΓ 7→ Σskew

Γ .

The spaces Qsym and Qskew are defined in a similar way. It is then straight-
forward to prove that the projectors sym and skew induce the following L2-
orthogonal decompositions

ΣΓ ∼ Σsym
Γ ⊕ Σskew

Γ , Q ∼ Qsym ⊕Qskew.

We shall use the expression A . B to say that there exists a constant C
which does not depend on the discretization parameter h such that A ≤ CB.
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3 The stress-velocity formulation of Stokes prob-
lem

The motion of an incompressible isotropic Newtonian viscous fluid at low Reynolds
number is described by the Stokes equations{

−div (2µ grads u) + grad p = f , in Ω,

divu = 0, in Ω.
(1)

Where µ ∈ L∞(Ω) is the viscosity of the fluid and it is assumed to be positive;
f ∈ L2(Ω;V) is a given external body force, the unknowns are the velocity
u ∈ H1(Ω;V) and the pressure p ∈ L2(Ω) and grads denotes the symmetric
part of the gradient.

Problem (1) must be supplemented with proper boundary conditions: we
can assign the velocity on the boundary: given g ∈ H1/2(∂Ω;V) then

u = g, on ∂Ω,

If the function g satisfies the compatibility condition∫
∂Ω

g · n dγ = 0,

then Problem (1) is well posed in the sense that it admits an unique solution up
an additive constant value of the pressure. Alternatively, we can consider the
case when a traction condition is enforced; in such case, given h ∈ H−1/2(∂Ω;V),
the following condition is used

(2µ grads u− pI)n = h, on ∂Ω.

Again, if the function h satisfies the compatibility condition∫
∂Ω

h dγ +

∫
Ω

f dx = 0

then the problem is well posed, but now the velocity u is uniquely determined
up an infinitesimal rigid displacement ωx+ b, where ω ∈ K and b ∈ V. In the
mixed case no compatibility condition is needed and the solution is uniquely
determined.

For the ease of presentation from now on we consider the full homogeneous
velocity problem, where the velocity is assumed to be null along the boundary,
for this reason the boundary condition will not be written in the problem for-
mulation any more. Without difficulties all the analysis can be carried out in
the inhomogeneous case and in all the other described configurations.

In order to derive the mixed formulation of Stokes equations the definition
of stress tensor σ is used, then the problem can be written as a system of three
equations 

σ = 2µ grads u− pI, in Ω,

div σ + f = 0, in Ω,

divu = 0, in Ω,
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which are the constitutive equation, the equation of conservation of linear mo-
mentum and the incompressibility constraint respectively. Generally the quan-
tity σ is dropped by substituting the first equation in the second one, obtaining
the usual velocity-pressure formulation. In this work we leave untouched the
second equation and the pressure p is dropped in the same way as in [17, 18, 19].
Noticing that trσ = np and using the incompressibility constraint the constitu-
tive equation can be rewritten as

1

2µ
dev σ = grads u.

Then the problem can be recasted in a form that involves only the stress and
velocity variables 

1

2µ
dev σ = grads u, in Ω,

div σ + f = 0, in Ω.

Note that if this problem admits a solution then the velocity satisfies the in-
compressibility condition without enforcing it:

divu = tr (grads u) =
1

2µ
tr (dev σ) = 0.

The weak formulation of this problem reads: find (σ,u) ∈ Σsym × V such
that 

∫
Ω

1

2µ
dev σ : dev τ + u · div τ dx = 0,∫

Ω

(div σ + f) · v dx = 0,
(2)

for all τ ∈ Σsym and v ∈ V . Clearly if (u, p) ∈ H1(Ω;V) × L2(Ω) is a weak
solution of Problem (1) than the pair (σ̂,u), where σ̂ = 2µ grads u − pI, is a
solution of Problem (2). This is possible only because f ∈ L2(Ω;V), in such case
from the Green’s formula it follows that div σ̂ ∈ L2(Ω;V); if f is less regular, for
example f ∈ H−1(Ω;V), then Problem (1) could admit a weak solution but it
would not be possible to prove that σ̂ has the required regularity for obtaining
the equivalence of the problems.

Problem (2) is a saddle point problem, then a proper finite element approx-
imation of it must satisfy the well known inf − sup condition [8, 12] in order to
prevent spurius modes. The definition of a pair of finite element spaces that
honors both the inf − sup condition and the symmetry constraint of the stress
tensor is extremely difficulty and generally leads to a definition of spaces with
a huge number of degrees of freedom (24 per triangle [7] and 162 per tetra-
hedral [1, 2]), that makes them unsuitable for real applications. Two different
approaches are possible to bypass the problem: using a stabilization technique
like least squares formulations to avoid the inf − sup condition [10, 16], or to
weaken the symmetry requirement enforcing it only weakly with a Lagrange
multiplier [3, 6]. Here we adopt the second technique; for this reason a third
equation equivalent to the conservation of angular momentum and a new un-
known ω ∈ Qskew, the vorticity, are introduced. The weak formulation of the
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problem becomes: find (σ,u, ω) ∈ Σ× V ×Qskew such that

∫
Ω

1

2µ
dev σ : dev τ + u · div τ + ω : τ dx = 0,∫

Ω

(div σ + f) · v dx = 0,∫
Ω

σ : φdx = 0,

(3)

for all τ ∈ Σ, v ∈ V and φ ∈ Qskew. Again, if (σ,u) is a solution of Problem (2)
than the triple (σ,u, ω̂), where ω̂ = skew (gradu), is a solution of Problem (3).

As previously said if a solution of this problem exists then it can not be
unique: the stress tensor σ is unique up to an additive constant value of pressure.
For this reason the proper functional space for the stress is given by the quotient
space Σ0 := Σ/R, where it is considered the identification

α ∈ R 7→ αI ∈ Σ,

or equivalently the projector

σ ∈ Σ 7→ σ −
(

1

|Ω|

∫
Ω

trσ dx

)
1

n
I ∈ Σ0,

where |Ω| denotes the measure of the domain Ω
The existence and uniqueness of solution for Problem (3) can be prooved

using the equivalence between Problem (1) and Problem (3), like in [4, The-
orem 2.1]. Here we given a new proof based of the abstract theory of sad-
dle point problems (for the details see [15, Chapter II]). The bilinear forms
a : Σ0 × Σ0 → R and b : Σ0 × V ⊕Qskew → R are defined as

a(σ, τ) :=

∫
Ω

1

2µ
dev σ : dev τ dx,

b(σ, (u, ω)) :=

∫
Ω

u · div σ + ω : σ dx.

Clearly both of them are bounded, hence continuous, so that to prove the well
posedness of Problem (3) it is necessary to verify that:

• the bilinear form a is strictly coercive on the subspace

KerB := {σ ∈ Σ0 | b(σ, (u, ω)) = 0 ∀(u, ω) ∈ V ⊕Qskew} =

= {σ ∈ Σ0 ∩ Σsym | div σ = 0};

• the inf − sup condition is satisfied, i.e. there exists β > 0 such that for all
(u, ω) ∈ V ⊕Qskew

sup
σ∈Σ0\{0}

b(σ, (u, ω))

‖σ‖Σ0

≥ β‖(u, ω)‖V⊕Qskew .

Lemma 1 Let be Σ̂ the Hilbert space obtained from C∞(Ω;M) by completion
with respect to the seminorm induced by the bilinear form

(σ, τ) 7→
∫
Ω

dev σ : dev τ + div σ · div τ dx.

Then Σ̂ is isomorphic to Σ0.
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Proof This proof follows the same of [21, Theorem 2.1]. Clearly Σ0 ⊆ Σ̂, then
we have to prove the inverse inclusion. Let σ ∈ Σ̂, clearly dev σ ∈ L2(Ω;M),
div σ ∈ L2(Ω;V) and

grad (trσ) = n(div σ − div (dev σ)) ∈ H−1(Ω;V),

then for each i, j = 1, . . . , n

gradσij = grad (dev σ)ij +
1

n
grad (trσ)δij ∈ H−1(Ω;V).

Hence σ ∈ Σ by a lemma of J.-L. Lions [22, Theorem 3.2]. Then the identity
map i : Σ0 → Σ̂ is continuous and surjective. Injectivity holds since the elements
τ ∈ Σ0 are such that ∫

Ω

tr τ dx = 0.

By the Banach open mapping theorem also the inverse map i−1 is continuous.
Hence i is an isomorphism.

In the case of full stress boundary condition the same result can be proved
for the space of functions σ ∈ Σ0. In this case it is necessary to consider the
space C∞

0 (Ω;M) and the proof proceeds in the same way, but the injectivity
is given by the boundary condition. Clearly, the same is true for the mixed
boundary condition case: it is enough to put a stress boundary condition on
a portion of boundary Γ ⊂ ∂Ω with not null capacity in order to ensure the
injectivity of map i.

Corollary 1 The bilinear form a(·, ·) is strictly coercive on the space KerB.

Proof It is enough to observe that the space KerB is contained in the subspace
of divergence-free functions of Σ0 and use Lemma 1.

The proof of the validity of inf − sup condition is given by a standard argu-
ment used in the context of saddle point problems and the same technique will
be used for the discrete problem in the next section. Then we are ready to state
and prove the following lemma that concludes the proof of the well posedness
of Problem (3). This result is equivalent to [6, Theorem 7.1], but our proof is
different and we think that this proof gives a clearer image about the structure
of Problem (3) and the physical meaning of each term.

Lemma 2 There exists β > 0 such that for all (u, ω) ∈ V ⊕Qskew

sup
σ∈Σ0\{0}

b(σ, (u, ω))

‖σ‖Σ0

≥ β‖(u, ω)‖V⊕Qskew .

Proof Given a pair of functions (u, ω) ∈ V ⊕ Qskew let us now deal with the
variational problem: find φ ∈ H1

0 (Ω;V) such that∫
Ω

grads φ : gradsψ dx =

∫
Ω

u ·ψ + ω : gradψ dx

for all ψ ∈ H1
0 (Ω;V). The existence and uniqueness of a solution of this problem

is ensured by the Lax-Milgram theorem and it is a standard application of Korn
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inequality [21, Theorem 2.3]. Moreover, from the Lax-Milgram theorem the
following stability inequality holds

‖grads φ‖0,Ω ≤ C‖(u, ω)‖V⊕Qskew ,

where C is a positive constant that is strictly related to Ω and does not depend
on data (u, ω). Now define σ = ω − grads φ then by Green’s formula the
distributional divergence of σ is equal to u, so we obtain

σ = ω − grads φ, div σ = u,

and we get the stability estimate

‖σ‖Σ0 ≤ ‖σ‖Σ ≤
√

1 + C2‖(u, ω)‖V⊕Qskew .

We can state that, given (u, ω) ∈ V ⊕ Qskew there exists σ0 ∈ Σ0, that is the
projection of σ in Σ0, such that

b(σ0, (u, ω)) = b(σ, (u, ω)) =

∫
Ω

‖u‖2 + ‖ω‖2 dx,

then the inf − sup condition holds with β = 1/
√
1 + C2 by the stability estimate.

This lemma can not be used directly to prove that the inf − sup condition
is satisfied also for full stress and mixed boundary conditions. Nevertheless in
these situation the proof is still valid replacing Σ0 with ΣΓ and noticing that
by construction σn|Γ = 0.

Remark 1 The space of infinitesimal rigid displacements plays a crucial role
in the Stokes problem. As previously noted if the traction condition is enforced
along all the boundary of Ω then the velocity is defined up to an infinitesimal
rigid displacement. In such case Σ0 is the proper space for the stress unknown,
then, by the abstract theory of saddle point problems, the components (u, ω)
are uniquely defined up to an element of the subspace

KerBT :=
{
(u, ω) ∈ V ⊕Qskew

∣∣ b(σ, (u, ω)) = 0 ∀σ ∈ Σ0

}
.

It coincides with the space of infinitesimal rigid displacements:

KerBT =
{
(ωx+ b, ω) ∈ V ⊕Qskew

∣∣ω ∈ K and b ∈ V
}
.

Moreover the same technique can be applied in even more complicated cases:
for example only the normal or the tangential component of the velocity can
be constrained, and then it is necessary to enforce the complementary part of
stress. Using these boundary conditions it is not hard to define problems with
a solution which is unique up to a translation.

4 Finite element discretization of the mixed for-
mulation

In this section we derive the discrete version of Problem (3) by adapting the
theory developed in the previous section. The results of this section are strictly
related to the ones developed in [6, Section 6], but there are two main differences:

9



• we have chosen to adopt the Raviart-Thomas element [29, 26] instead of
the Brezzi-Douglas-Marini element [14, 27];

• the framework of finite element exterior calculus is not required: the anal-
ysis exploits the Fortin’s trick [23, Proposition 4.1] to prove the good
properties of the proposed finite element approximation.

As usual, now suppose we are given a regular family Th of triangulations of
the domain Ω consisting of n-simplices [20, Chapter 2], this means that there
exists a constant C > 0 such that

sup
K∈Th

hK ≤ h, and sup
K∈Th

hK

ρK
≤ C,

where hK and ρK are the diameter and the inradius of the n-simplex K re-
spectively. Given an integer k ≥ 0 with Pk(K) is denoted the space of real
polynomials of degree less or equal to k defined on the n-simplex K and with
RT k(K) the Raviart-Thomas space of index k on the n-simplex K. Using such
spaces then we can introduce the conforming approximation of spaces Σ, V and
Qskew: for each integer k ≥ 0 we define the finite element spaces

ΣRT
h,k := {σh ∈ Σ | σh|K ∈ V⊗RT k(K), ∀K ∈ Th},
Vh,k := {vh ∈ V | vh|K ∈ V⊗ Pk(K), ∀K ∈ Th},

Qskew
h,k :=

{
ωh ∈ Qskew

∣∣ ωh|K ∈ K⊗ Pk(K), ∀K ∈ Th
}
.

The space ΣRT
h,k is defined by approximating each row of the tensor σ ∈ Σ

with a vector in the Raviart-Thomas space. Because ΣRT
h,k ⊂ Σ then for each

σh ∈ ΣRT
h,k the normal component σhn is continuous across the elements, from

the physical point of view this is equivalent to the action-reaction law and the
Cauchy’s fundamental theorem [31, Chapter III]. The spaces Vh,k and Qh,k are
the space of piecewise polynomials of degree at most k with values in V and K
respectively.

Before stating the main result let us briefly sum up the properties of the
chosen finite element spaces. The interpolation operator ΠRT

h,k associated with
the Raviart-Thomas space of index k is defined as∫

K′
(q −ΠRT

h,k q) · nφdγ = 0, ∀φ ∈ Pk(K
′), ∀K ′ ∈ Eh,

∫
K

(q −ΠRT
h,k q) · φ dx = 0, ∀φ ∈ V⊗ Pk−1(K), ∀K ∈ Th, (4)

where Eh is the set of (n − 1)-simplices in Th. From the Green’s identity it
follows that ∫

K

div (q −ΠRT
h,k q)φdx = 0, ∀φ ∈ Pk(K), ∀K ∈ Th (5)

or equivalently divRT k(K) = Pk(K). With Ph,k are denoted both the inter-
polation operators from V into Vh,k and from Qskew into Qskew

h,k .
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Theorem 1 For each integer k ≥ 1 there exists an unique

(σh,uh, ωh) ∈ ΣRT ,0
h,k × Vh,k ×Qskew

h,k−1

such that 

∫
Ω

1

2µ
dev σh : dev τh + uh · div τh + ωh : τh dx = 0,∫

Ω

(div σh + f) · vh dx = 0,∫
Ω

σh : φh dx = 0,

(6)

for all τh ∈ ΣRT
h,k , vh ∈ Vh,k and φh ∈ Qskew

h,k−1. Moreover there exists β > 0

indipendent from h such that for all (uh, ωh) ∈ Vh,k ⊕Qskew
h,k−1

sup
σh∈Σ0

h,k\{0}

b(σh, (uh, ωh))

‖σh‖Σ0

≥ β‖(uh, ωh)‖V⊕Qskew .

Proof Again we have to prove:

• the bilinear form a is strictly coercive on the space KerBh

KerBh := {σ ∈ Σ0
h,k | b(σh, (uh, ωh)) = 0 ∀(uh, ωh) ∈ Vh,k ⊕Qskew

h,k−1};

• since all the functional spaces are finite dimension then the inf − sup con-
dition is satisfied with a constant βh ≥ 0, then we have to prove that βh

is bounded away from zero in order to ensure the convergence of the finite
element method, i.e. there exists β0 > 0 such that βh ≥ β for all h > 0.

The first point is simple to prove, by (5) we have that

KerBh ⊂ {σ ∈ Σ0 | div σ = 0},

then the coercivity follows directly from Lemma 1.
The proof of the second point uses the Fortin’s trick [23]: we shall prove that

the operator ΠRT
h,k : Σ → ΣRT

h,k is a uniformly continuous operator such that

b(σ −ΠRT
h,k σ, (vh, ωh)) = 0, ∀(uh, ωh) ∈ Vh,k ⊕Qskew

h,k−1. (7)

Because the projection Σ → ΣRT
h,k is done row-wise its uniform continuity is a

direct consequence of the results for the Laplace problem in mixed form [23,
Example 5.1]. The identity (7) is equivalent to (4) and (5).

It is clear from the previous proof the reason why it is not possible to define
a stable space with the lowest-order Raviart-Thomas elements (k = 0). In such
case it is necessary to stabilize the method augmenting the space for the stress
tensor with suitable bubble functions: the analysis of this method is reported
in [11, Example 2].

From the general theory of the saddle point problem it follows the error
estimate

‖σ − σh‖Σ + ‖u− uh‖V + ‖ω − ωh‖Qskew

. inf
τh inΣRT ,0

h,k

‖σ − τh‖Σ + inf
vh∈Vh,k

‖u− vh‖V + inf
φh∈Qskew

h,k−1

‖ω − φh‖Qskew .
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From this inequality it is easy to see the importance of balancing the quality
of the approximation for each component of the solution, as discussed in [11,
Section 3.2]. Following this theory our method would give rise to an error
estimate of the order of p − 1 due to the vorticity term. On the other hand
a more detailed analysis can show a optimal approximation estimates for all
components with the exception of the L2-error of the stress field.

Before stating the result about the error estimates it is important to remark
that even if the space KerBh is not contained in KerB, because the symmetry
is enforced only weakly, the following equivalence is still valid: for all σh ∈ ΣRT

h,k

div σh = 0 ⇔
∫
Ω

vh · div σh dx = 0 ∀vh ∈ Vh,k.

Theorem 2 If (σ,u, ω) is the solution of Problem (3) and (σh,uh, ωh) is solu-
tion of (6), then the following error estimates hold

‖σ − σh‖Σ0 . inf
τh∈ΣRT ,0

h,k

‖σ − τh‖Σ0 + inf
φh∈Qskew

h,k−1

‖ω − φh‖Qskew ,

‖div (σ − σh)‖0,Ω ≤ inf
τh∈ΣRT ,0

h,k

‖div (σ − τh)‖0,Ω,

‖(u− uh, ω − ωh)‖V⊕Qskew . ‖σ − σh‖Σ0+

+ inf
(vh,φh)∈Vh,k⊕Qskew

h,k−1

‖(u− vh, ω − φh)‖V⊕Qskew ,

moreover, if the domain Ω is convex, we have also

‖u− uh‖V . ‖u− Ph,ku‖V + h
(
‖σ − σh‖Σ0 + ‖ω − ωh‖Qskew

)
.

Proof Fixed f ∈ L2(Ω;V) we define the affine manifold Zh,k(f) as the set of
σh ∈ ΣRT ,0

h,k such that

b(σh, (vh, ωh)) +

∫
Ω

f · vh = 0 ∀(vh, ωh) ∈ Vh,k ⊕Qskew
h,k−1.

Chosen τh ∈ Zh,k(f) then zh = τh−σh belongs to KerBh, then by the coercivity
proved in the previous theorem there exists α > 0 such that α‖zh‖2Σ ≤ a(zh, zh).
Now, by linearity and using that σ and σh are respectively solution of the
continuous and discrete problem:

α‖zh‖2Σ ≤ a(τh − σ, zh)− b(zh, (u− uh, ω − ωh)).

Recall that div zh = 0 because zh ∈ KerBh, then this inequality, by continuity
and equation of angular momentum conservation, reduces to

α‖τh − σh‖Σ ≤ ‖a‖‖σ − τh‖Σ + ‖ω − φh‖Qskew .

for all τh ∈ Zh,k(f) and φh ∈ Qskew
h,k−1. From here it is a standard argument to

obtain the first error estimate, see [15, Section II.2.2].
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By linearity, from the equation of linear momentum conservation∫
Ω

div (σ − σh) · vh dx = 0 ∀vh ∈ Vh,k.

Taken vh = div (τh − σh) with τh ∈ ΣRT ,0
h,k it is easy to prove the second error

estimate.
Again, by linearity, from the equations of conservation of linear and angular

momentum, for all τh ∈ ΣRT ,0
h,k and (vh, φh) ∈ V ⊕Qskew

b(τh, (uh − vh, ωh − φh)) = a(σ − σh, τh) + b(τh, (u− vh, ω − φh)),

using the continuity of both forms a and b, the inf − sup condition the following
estimates follows

‖(uh − vh, ωh − φh)‖V⊕Qskew . ‖σ − σh‖Σ0 + ‖(u− vh, ω − φh)‖V⊕Qskew .

The third estimate now follows directly by the triangle inequality.
The last estimate is obtained by duality. Let be U and P the solution of

the Dirichlet homogeneous problem
div(2µ gradsU − PI) = Ph,ku− uh, in Ω,

divU = 0, in Ω,

U = 0, on ∂Ω,

then set T = 2µ gradsU−PI. Exploiting the commutativity property divΠRT
h,k =

Ph,k div of the Raviart-Thomas finite elements we obtain

‖Ph,ku− uh‖2V =

∫
Ω

div T · (Ph,ku− uh) dx =

=

∫
Ω

div (ΠRT
h,k T ) · (u− uh) dx =

then we use that u and uh are solution of Problem (3) and (6)

= −
∫
Ω

[
1

2µ
dev (σ − σh) + (ω − ωh)

]
: ΠRT

h,k T dx =

=

∫
Ω

[
1

2µ
dev (σ − σh) + (ω − ωh)

]
: (T −ΠRT

h,k T ) dx+

−
∫
Ω

(σ − σh) : gradsU dx =

using the orthogonal decomposition gradU = symgradU + skew gradU and
integrating by parts

=

∫
Ω

[
1

2µ
dev (σ − σh) + (ω − ωh)

]
: (T −ΠRT

h,k T ) dx+

+

∫
Ω

div (σ − σh) · (U − Ph,kU) dx+

+

∫
Ω

(σ − σh) : skew(gradU − Ph,k−1 gradU) dx.

13



Table 1: Summary of asymptotic order of convergence.
RT k BDMk

‖σ − σh‖Σ0 k k
‖div(σ − σh)‖0,Ω k + 1 k

‖u− uh‖V k + 1 k
‖σ − σh‖Qskew k k

Using the elliptic regularity, which holds when the domain Ω is convex, the
norms ‖U‖2,Ω and ‖T‖1,Ω are bounded by ‖Ph,ku− uh‖V . Moreover, the in-
terpolation operators satisfy the following estimates [28, Section 3.4]∥∥T −ΠRT

h,k T
∥∥
0,Ω

. h‖T‖1,Ω, ‖Ph,kU −U‖0,Ω . h‖U‖1,Ω,

‖Ph,k−1 gradU − gradU‖0,Ω . h‖U‖2,Ω.

From here the last estimate follows directly by the triangle inequality.

This theorem is still valid if the finite space chosen for discretization is the
one introduced in [6]. As previously remarked, in the work of Arnold et al. the
finite element space used for the stress unknown is defined as follow

ΣBDM
h,k := {σh ∈ Σ | σh|K ∈ V⊗ BDMk(K), ∀K ∈ Th},

where BDMk denotes the Brezzi-Douglas-Marini finite element [14, 27] of de-
gree k. In this case the method is stable if the finite element space ΣBDM

h,k ×
Vh,k−1×Qskew

h,k−1 is used and Theorem 2 is still valid since the proof does not rely
on the definition of the finite element space, but only on the commutativity prop-
erty of the interpolation operators, that in the case of Brezzi-Douglas-Marini
elements is given by

divΠBDM
h,k = Ph,k−1 div,

where in this case ΠBDM
h,k denotes the extensions to the tensors (row-wisely) of

interpolation operator associated to the space BDMk.
These two different finite element spaces are related by the following inclu-

sions

ΣBDM
h,k × Vh,k−1 ×Qskew

h,k−1 ⊂ ΣRT
h,k × Vh,k ×Qskew

h,k−1 ⊂ ΣBDM
h,k+1 × Vh,k ×Qskew

h,k ,

for k ≥ 1. So the Brezzi-Douglas-Marini finite element gives a discretization
with fewer degrees of freedom, but a worse asymptotic order of convergence.
In Table 1 the asymptotic order of convergence are summed up: it is clear
that both methods are not optimal in the stress variable, but the BDM finite
element gives a more balanced method, on the other side the RT finite element
are more accurate. It is also worth to mention the paper of Suri [30] where a
more detailed analysis for rectangular higher order methods for heat equation is
reported. The author shows that the Raviart-Thomas are optimal, in the sense
that the constants in the errors estimates do not depend on h and k, on the
other side for the Brezzi-Douglas-Marini there is a small dependence on k (see
the cited paper for the technical details).
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Table 2: Errors and convergence rate for the case k = 1.
ΣRT

h,1 × Vh,1 ×Qskew
h,0

h ‖σ − σh‖0,Ω ‖div (σ − σh)‖0,Ω
6.40× 10−1 2.58× 10−1 – 3.08× 10−2 –
3.44× 10−1 1.15× 10−1 1.30 7.72× 10−3 2.22
1.73× 10−1 5.00× 10−2 1.21 1.70× 10−3 2.21
8.80× 10−2 2.53× 10−2 1.00 4.30× 10−4 2.03
4.41× 10−2 1.25× 10−2 1.02 1.06× 10−4 2.04
2.24× 10−2 6.23× 10−3 1.03 2.66× 10−5 2.04

h ‖u− uh‖V ‖ω − ωh‖Qskew

6.40× 10−1 1.81× 10−2 – 1.13× 10−1 –
3.44× 10−1 4.28× 10−3 2.31 5.49× 10−2 1.17
1.73× 10−1 9.15× 10−4 2.25 2.49× 10−2 1.16
8.80× 10−2 2.32× 10−4 2.02 1.26× 10−2 1.00
4.41× 10−2 5.70× 10−5 2.04 6.25× 10−3 1.02
2.24× 10−2 1.42× 10−5 2.05 3.12× 10−3 1.03

ΣBDM
h,1 × Vh,0 ×Qskew

h,0

h ‖σ − σh‖0,Ω ‖div (σ − σh)‖0,Ω
6.40× 10−1 2.55× 10−1 – 4.31× 10−1 –
3.44× 10−1 1.16× 10−1 1.26 2.14× 10−1 1.12
1.73× 10−1 5.01× 10−2 1.23 9.98× 10−2 1.11
8.80× 10−2 2.54× 10−2 1.00 5.13× 10−2 0.98
4.41× 10−2 1.25× 10−2 1.03 2.55× 10−2 1.01
2.24× 10−2 6.23× 10−3 1.03 1.28× 10−2 1.02

h ‖u− uh‖V ‖ω − ωh‖Qskew

6.40× 10−1 1.94× 10−1 – 1.14× 10−1 –
3.44× 10−1 9.82× 10−2 1.09 5.50× 10−2 1.17
1.73× 10−1 4.58× 10−2 1.11 2.49× 10−2 1.16
8.80× 10−2 2.35× 10−2 0.98 1.26× 10−2 1.00
4.41× 10−2 1.17× 10−2 1.01 6.25× 10−3 1.02
2.24× 10−2 5.88× 10−3 1.02 3.12× 10−3 1.03
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Table 3: Errors and convergence rate for the case k = 2.
ΣRT

h,2 × Vh,2 ×Qskew
h,1

h ‖σ − σh‖0,Ω ‖div (σ − σh)‖0,Ω
6.40× 10−1 2.28× 10−2 – 1.99× 10−3 –
3.44× 10−1 5.83× 10−3 2.19 2.75× 10−4 3.18
1.73× 10−1 1.26× 10−3 2.23 2.84× 10−5 3.32
8.80× 10−2 3.70× 10−4 1.81 3.79× 10−6 2.97
4.41× 10−2 8.08× 10−5 2.21 4.70× 10−7 3.03

h ‖u− uh‖V ‖ω − ωh‖Qskew

6.40× 10−1 1.00× 10−3 – 1.11× 10−2 –
3.44× 10−1 1.35× 10−4 3.22 2.87× 10−3 2.17
1.73× 10−1 1.38× 10−5 3.33 6.26× 10−4 2.22
8.80× 10−2 1.85× 10−6 2.97 1.65× 10−4 1.97
4.41× 10−2 2.26× 10−7 3.05 4.05× 10−5 2.04

ΣBDM
h,2 × Vh,1 ×Qskew

h,1

h ‖σ − σh‖0,Ω ‖div (σ − σh)‖0,Ω
6.40× 10−1 2.27× 10−2 – 3.08× 10−2 –
3.44× 10−1 5.85× 10−3 2.18 7.72× 10−3 2.22
1.73× 10−1 1.26× 10−3 2.24 1.70× 10−3 2.21
8.80× 10−2 3.70× 10−4 1.81 4.30× 10−4 2.03
4.41× 10−2 1.21× 10−4 1.62 6.69× 10−3 -3.98a

h ‖u− uh‖V ‖ω − ωh‖Qskew

6.40× 10−1 1.19× 10−2 – 1.11× 10−2 –
3.44× 10−1 2.95× 10−3 2.25 2.87× 10−3 2.18
1.73× 10−1 6.25× 10−4 2.20 6.27× 10−4 2.22
8.80× 10−2 1.64× 10−4 2.04 1.65× 10−4 1.97
4.41× 10−2 4.04× 10−5 2.03 4.49× 10−5 1.85

aThis value is probably due to the particular implementation of the BDM finite element.
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5 Numerical experiments
In this section we report the results of some numerical experiments carried out
using the finite element method proposed in this paper and in [6]. In particular
we measure the order of convergence for the cases k = 1 and k = 2. We consider
the full Dirichlet Stokes problem in the domain

Ω =
{
x ∈ R2

∣∣ ‖x‖ < 1
}
,

whose analytical solution is given by

u =

(
− cosx sin y
sinx cos y

)
, p = −1

4
(cos (2x) + cos (2y)).

The implementation of this test case is coded in Python with the aid of Fen-
ics [25], for the solution of the linear system the PETSc [9] built in LU solver
has been used. The full code is available to the following URL:

https://gist.github.com/mattiapenati/0acde0f4aac174d98742

The results are reported in the Table 2 and 3 where h represented the maxi-
mum diameter of the triangulation. The theoretical results are confirmed since
both methods achieve the predicted order of convergence.

6 Conclusions
In this paper we have proposed a new mixed formulation of Stokes problem and
we have given a detailed analysis of a new numerical finite element method based
on the Raviart-Thomas element. With respect to existing literature our pro-
posal does not rely on the equivalence between the primal formulation (velocity-
pressure) and the dual one (stress-velocity-vorticity); moreover the proposed er-
ror analysis is more detailed than the existing ones and it shows the optimality
of a new family of finite element space for the Stokes problem.
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